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Small angle limits of negatively curved
Kähler–Einstein metrics with
crossing edge singularities

Yuxiang Ji

Abstract. Let (𝑋,𝐷) be a log smooth log canonical pair such that 𝐾𝑋 + 𝐷
is ample. Extending a theorem of Guenancia and building on his techniques,
we show that negatively curved Kähler–Einstein crossing edge metrics con-
verge to Kähler–Einstein mixed cusp and edge metrics smoothly away from
the divisor when some of the cone angles converge to 0. We further show
that near the divisor such normalized Kähler–Einstein crossing edge met-
rics converge to a mixed cylinder and edge metric in the pointed Gromov–
Hausdorff sense when some of the cone angles converge to 0 at (possibly)
different speeds.
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1. Introduction
1.1. The small angle world. Let 𝑋 be a compact Kähler manifold of dimen-
sion 𝑛 and 𝐷 ⊂ 𝑋 be a smooth hypersurface. A Kähler edge metric on 𝑋 with
angle 2𝜋𝛽 (0 < 𝛽 ≤ 1) along𝐷 is a Kählermetric on𝑋⧵𝐷 that is quasi-isometric
to the model edge metric at 𝐷:

𝜔cone =
𝛽2
√
−1𝑑𝑧1 ∧ 𝑑�̄�1
|𝑧1|2(1−𝛽)

+
𝑛∑

𝑖=2

√
−1𝑑𝑧𝑖 ∧ 𝑑�̄�𝑖,
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where 𝑧1,… , 𝑧𝑛 are holomorphic coordinates and 𝐷 is locally given by {𝑧1 = 0}.
Tian generalized Calabi’s conjecture to Kähler–Einstein edgemetrics and stud-
ied the applications of negatively curved Kähler–Einstein edge metric to alge-
braic geometry by letting the cone angle tend to 2𝜋 [17]. Donaldson proposed
using Kähler edge metrics to study the existence problem of smooth Kähler–
Einstein metrics of positive curvature on 𝑋 by deforming the cone angle to 2𝜋
[4]. Since thenmuch research has gone into understanding the large angle lim-
its (when𝛽 → 1) ofKähler (–Einstein) edgemetrics in relation to theYau–Tian–
Donaldson conjecture. Cheltsov–Rubinstein initiated the program of studying
Kähler–Einstein edge metrics in another extreme where the cone angle goes to
zero [3]. One topic of their program is to understand the limit, when such ex-
ists, of Kähler–Einstein edge metrics as the cone angle tends to 0. This paper
is following that program. We prove that on a log smooth log canonical pair
(𝑋,𝐷), i.e., 𝑋 is a compact Kähler manifold and 𝐷 =

∑𝑟
𝑖=1(1−𝛽𝑖)𝐷𝑖 is a divisor

with simple normal crossing support such that 𝛽𝑖 ∈ [0, 1) for all 𝑖, assuming
that 𝐾𝑋 +

∑𝑟
𝑖=1 𝐷𝑖 is ample, then the negatively curved Kähler–Einstein cross-

ing edge metrics converge to the Kähler–Einstein mixed cusp and edge metric
when some of the cone angles tend to 0. We further study the asymptotic be-
havior of the Kähler–Einstein crossing edge metrics near the divisor and show
the rescaled Kähler–Einstein crossing edge metrics converge to mixed cylinder
and edge metrics on (ℂ∗)𝑚 × ℂ𝑛−𝑚 when some of the cone angles tend to 0. A
beautiful theorem of Guenancia related the Kähler–Einstein edge metric to the
Kähler–Einstein cuspmetric in the smooth case [8], which confirmed a conjec-
ture made byMazzeo [12]. Our paper is a generalization of Guenancia’s results
to the snc case. An added interesting feature of our work is the possibility that
multiple angles converge to zero at (possibly) different rates. Such kind of small
angle limits, where some angles tend to zero but others do not could be interest-
ing when studying moduli spaces of Kähler–Einstein metrics since these limits
could correspond to approaching various strata in the moduli space.

1.2. Guenancia’s convergence result. Let 𝔻∗ be the punctured unit disc in
ℂ. The first observation is that

𝜔𝜂,𝔻∗ ∶=
𝜂2
√
−1𝑑𝑧 ∧ 𝑑�̄�

|𝑧|2(1−𝜂)(1 − |𝑧|2𝜂)2
, 𝑧 ∈ 𝔻∗, 𝜂 ∈ (0, 1),

is a Kähler edge metric with cone angle 2𝜋𝜂 at 0 and it has constant Ricci cur-
vature −2. When 𝜂 tends to 0, 𝜔𝜂,𝔻∗ converges pointwise (see (5) for the detail)
to the following cusp metric (also called a Poincaré metric) on 𝔻∗:

𝜔𝑃,𝔻∗ ∶=
√
−1𝑑𝑧 ∧ 𝑑�̄�

|𝑧|2 (log |𝑧|2)2
. (1)

In higher dimensions, we consider the pair (𝑋,𝐷)where𝑋 is a compact Kähler
manifold of dimension𝑛 and𝐷 is a smooth divisor such that𝐾𝑋+𝐷 is ample. By
Kobayashi [11, Theorem 1] or Tian–Yau [18, Theorem 2.1] with complements
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byWu [19], there exists a unique complete Kähler–Einstein metric 𝜔0 on 𝑋 ⧵𝐷
with cusp singularity along 𝐷 such that Ric𝜔0 = −𝜔0.

Definition 1.1. 𝜔0 is said to have cusp singularities along 𝐷 if whenever 𝐷 is
locally given by {𝑧1 = 0}, there exists a constant 𝐶 > 0 such that

𝐶−1𝜔cusp ≤ 𝜔0 ≤ 𝐶𝜔cusp,

where 𝜔cusp is the model cusp metric:

𝜔cusp ∶=

√
−1𝑑𝑧1 ∧ 𝑑�̄�1

|𝑧1|2 log
2 |𝑧1|2

+
𝑛∑

𝑖=2

√
−1𝑑𝑧𝑖 ∧ 𝑑�̄�𝑖.

Since ampleness is an open condition, there exists some 𝛽0 such that for 0 <
𝛽 < 𝛽0, 𝐾𝑋 + (1 − 𝛽)𝐷 is also ample. Thus, by Campana–Guenancia–Păun
[9, Theorem A] and Jeffres–Mazzeo–Rubinstein [10, Theorem 2], there exists a
unique negatively curved Kähler–Einstein edge metric 𝜔𝛽 for each such small
𝛽 ∈ (0, 𝛽0]. The family of metrics {𝜔𝛽}0≤𝛽<𝛽0 can be seen as currents on 𝑋
satisfying the twisted Kähler–Einstein equation:

Ric𝜔𝛽 = −𝜔𝛽 + (1 − 𝛽)[𝐷], 0 ≤ 𝛽 < 𝛽0.

As a generalization of the observation discussed in the beginning of this section,
Guenancia related these two metrics as follows:

Theorem 1.2. [8, Theorem A and B] Let 𝜔0 be defined as in Definition 1.1.
{𝜔𝛽}0<𝛽<𝛽0 converge to 𝜔0 in both the weak topology of currents and the 𝐶

∞
loc(𝑋 ⧵

𝐷)-topology as 𝛽 → 0. Moreover, for 𝛽 ∈ (0, 1∕2], there exists a constant𝐶 > 0 in-
dependent of 𝛽 such that on any coordinate chart𝑈 where 𝐷 is given by {𝑧1 = 0},
the Kähler–Einstein edge metric 𝜔𝛽 satisfies

𝐶−1𝜔𝛽,mod ≤ 𝜔𝛽 ≤ 𝐶𝜔𝛽,mod, (2)

where

𝜔𝛽,mod ∶=
𝛽2
√
−1𝑑𝑧1 ∧ 𝑑�̄�1

|𝑧1|2(1−𝛽)(1 − |𝑧1|2𝛽)2
+

𝑛∑

𝑖=2

√
−1𝑑𝑧𝑖 ∧ 𝑑�̄�𝑖.

The relation between the convergence result in Theorem 1.2 and (2) is that
the weak convergence from (𝜔𝛽)0<𝛽<𝛽0 to𝜔0 can be recovered from (2) by using
Lebesgue’s Dominated Convergence Theorem.
As an application of Theorem 1.2, Guenancia studied the asymptotic behav-

ior of 𝜔𝛽 near 𝐷 as 𝛽 → 0. Fix a point 𝑝 ∈ 𝐷, let𝑈𝛽 denote the punctured met-
ric ball 𝐵𝜔𝛽 (𝑝, 1) of radius 1 centered at 𝑝 with respect to the metric 𝜔𝛽 . Then
after renormalization by 𝛽−2, there exists a subsequence of the metric spaces
(𝑈𝛽,

1
𝛽2
𝜔𝛽) converging to (ℂ∗ × ℂ𝑛−1, 𝜔cyl) in the pointed Gromov–Hausdorff

sense, where 𝜔cyl is a so-called cylindrical metric:

Definition 1.3. Let 𝜋 ∶ ℂ𝑛 → ℂ∗ × ℂ𝑛−1 be the universal cover of ℂ∗ × ℂ𝑛−1

given by 𝜋(𝑧1… , 𝑧𝑛) = (𝑒𝑧1 , 𝑧2,… , 𝑧𝑛). A Kähler metric 𝜔cyl on ℂ∗ × ℂ𝑛−1 is
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called cylindrical if 𝜋∗𝜔 is isometric to the usual Euclidean metric on ℂ𝑛 up to
a complex linear transformation.

Theorem 1.4. [8, Theorem C] Let (𝛽𝑘)𝑘∈ℕ be a sequence of positive numbers
converging to 0. Then, up to extracting a subsequence, there exists a cylindrical
metric 𝜔cyl on ℂ∗ × ℂ𝑛−1 such that the metric spaces (𝑈𝛽𝑘 , 𝛽

−2
𝑘 𝜔𝛽𝑘 ) converge in

pointed Gromov-Hausdorff topology to (ℂ∗ × ℂ𝑛−1, 𝜔cyl) when 𝑘 tends to +∞.

1.3. The main results. A natural problem is to generalize Theorems 1.2 and
1.4 to the snc case when all or some of the cone angles tend to 0. This possi-
bility is mentioned in [8] but there is no detailed proof given. In this paper, we
generalize Theorems 1.2 and 1.4 to the snc setting.
From now on, let (𝑋,𝜔) be an 𝑛-dimensional compact Kähler manifold with

a smooth Kähler metric 𝜔. Fix a divisor 𝐷𝛽 ∶=
𝑟∑

𝑖=1
(1 − 𝛽𝑖)𝐷𝑖, where 𝛽𝑖 ∈ (0, 1)

for 𝑖 = 1,… , 𝑟. Assume each 𝐷𝑖 is smooth and irreducible. We further assume
𝐷𝛽 has simple normal crossing support, i.e., for any 𝑝 ∈ supp(𝐷𝛽) lying in
the intersection of exactly 𝑚 components 𝐷1,… , 𝐷𝑚, there exists a coordinate
chart (𝑈, {𝑧𝑖}𝑛𝑖=1) containing𝑝 such that𝐷𝑗|𝑈 = {𝑧𝑗 = 0} for 𝑗 = 1,… , 𝑚,𝑚 ≤ 𝑛.

Suppose𝐾𝑋+
𝑟∑

𝑖=1
𝐷𝑖 is ample. Let 𝑠𝑖 denote a defining section of𝐷𝑖 and ℎ𝑖 = |⋅|ℎ𝑖

be a smooth hermitian metric on 𝐿𝐷𝑖 , which is the line bundle induced by 𝐷𝑖.
We normalize ℎ𝑖 such that log |𝑠𝑖|2ℎ𝑖 + 1 < 0 for each 𝑖. Denote

𝛽 ∶= (𝛽1,… , 𝛽𝑟) ∈ (0, 1)𝑟.

The following result is well known (see [14, §4] for a survey) .

Theorem 1.5. [9, 10, 13] (Solution of the Calabi–Tian conjecture in the nega-
tive regime) There exists a unique Kähler–Einstein crossing edge metric with neg-
ative curvature, denoted by𝜔𝜙𝛽 = 𝜔+

√
−1𝜕�̄�𝜙𝛽 on𝑋 with cone angle 2𝜋𝛽𝑖 along

𝐷𝑖 for each 𝑖. In another word, 𝜔𝜙𝛽 satisfies the Kähler–Einstein edge equation

Ric𝜔𝜙𝛽 − [𝐷𝛽] = −𝜔𝜙𝛽 .

Analogously to [8], let us introduce a reference metric,

Ω𝛽 ∶= 𝜔 −
𝑟∑

𝑖=1

√
−1𝜕�̄� log

⎡
⎢
⎢
⎣

1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖

𝛽𝑖

⎤
⎥
⎥
⎦

2

. (3)

Our first result is as follows.

Theorem 1.6. Let 𝜔𝜙𝛽 be given by Theorem 1.5. Let Ω𝛽 be given by (3). There

exists a uniform constant 𝐶 > 0, independent of 𝛽 ∈ (0, 1
2
]𝑟, such that

𝐶−1Ω𝛽 ≤ 𝜔𝜙𝛽 ≤ 𝐶Ω𝛽 .
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The key point of Theorem 1.6 is that the constant𝐶 is uniformwith respect to
small 𝛽𝑖, 𝑖 = 1,… , 𝑟. According to Theorem1.6 and Lebesgue’s DominatedCon-
vergence Theorem, we obtain the weak convergence from 𝜔𝜙𝛽 to the Kähler–
Einstein mixed cusp and edge metric 𝜔0 constructed in [7] as some of the cone
angles tend to 0. In particular, when 𝛽 → 0 ∈ [0, 1)𝑟, the limiting metric of

such 𝜔𝜙𝛽 is the unique Kähler–Einstein cusp metric on (𝑋,
𝑟∑

𝑖=1
𝐷𝑖) constructed

in [11, 18, 19]. More precisely, the following result is shown in section 2.3.

Theorem 1.7. The Kähler–Einstein crossing edge metric 𝜔𝜙𝛽 converges to a
Kähler–Einstein mixed cusp and edge metric on (𝑋,𝐷𝛽) globally in a weak sense
and locally in a strong sense when some of the cone angles tend to 0. In particular,

𝜔𝜙𝛽 converges to the Kähler–Einstein cusp metric on (𝑋,
𝑟∑

𝑖=1
𝐷𝑖) in the above sense

when 𝛽 → 0 ∈ [0, 1)𝑟.

Remark 1.8. In Theorem 1.7, we assume 𝐾𝑋 +
𝑟∑

𝑖=1
𝐷𝑖 to be ample to ensure

the existence of a limiting Kähler–Einstein metric by the work of Kobayashi
[11] and Tian–Yau–Wu [18, 19]. An interesting open problem is to study the
convergence of 𝜔𝜙𝛽 when we only assume the ampleness of 𝐾𝑋 + 𝐷𝛽 for 0 <
𝛽𝑖 ≪ 1, 𝑖 = 1,… , 𝑟.

Theorem 1.6 and Theorem 1.7 generalize Guenancia’s Theorem 1.2 from the
smooth case to the snc case.
As an application of Theorem 1.6, we study the asymptotic behavior of the

Kähler–Einstein crossing edge metric 𝜔𝜙𝛽 near 𝐷𝛽 when the smallest cone an-
gle approaches 0, with possibly other cone angles also converging to 0.
To state the result, without loss of generality, we assume for 𝛽 = (𝛽1,… , 𝛽𝑟)

there holds 𝛽1 ≤ 𝛽2 ≤ ⋯ ≤ 𝛽𝑟. Fix a point 𝑝 ∈ 𝐷𝛽 . Choose a coordinate chart
(𝑈, {𝑧𝑖}𝑛𝑖=1) containing 𝑝 such that 𝐷𝑗|𝑈 = {𝑧𝑗 = 0} for 𝑗 = 1,… , 𝑚, 𝑚 ≤ 𝑛.
Consider a small neighborhood 𝑈𝛽 about 𝑝 defined by

⎧

⎨
⎩

𝑧 ∈ (ℂ∗)𝑚 × ℂ𝑛−𝑚 ∶ |𝑧1| < 𝑒
− 1
2𝛽1 , |𝑧𝑗| < (

𝛽1
𝛽𝑗
)

1
𝛽𝑗

, 𝑗 = 2,… , 𝑚, |𝑧𝓁| < 1,𝓁 = 𝑚 + 1,… , 𝑛
⎫

⎬
⎭

.

We show that after normalization by factor 𝛽−21 , a subsequence of metrics 𝜔𝜙𝛽
converges to amixed cylinder and edgemetric on (ℂ∗)𝑚×ℂ𝑛−𝑚 (see Definition
3.1 for more details. We note that our Definition 3.1 is in a weaker sense of
quasi-isometry comparing to Definition 1.3.) as 𝛽1 tends to 0. The limiting
metric has cylindrical part along the component 𝐷1 where the cone angle 𝛽1
approaches 0 while has conical singularities along other components. More
precisely, the third result of this paper is as follows:
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Theorem 1.9. Let {𝛽1,𝑘}𝑘∈ℕ be a sequence of positive numbers converging to 0.
Assume further that {𝛽𝑖,𝑘}𝑘∈ℕ does not converge to 0 for each 𝑖 = 2,… , 𝑟 and all
𝛽𝑖,𝑘 ∈ (0, 1

2
]. Let 𝜔𝜙𝛽𝑘 be the (negatively curved) Kähler–Einstein crossing edge

metric on (𝑋,𝐷𝑘 =
∑𝑟

𝑖=1(1 − 𝛽𝑖,𝑘)𝐷𝑖). Then there exists a subsequence of the
metric spaces (𝑈𝛽𝑘 ,

1
𝛽21,𝑘

𝜔𝜙𝛽𝑘 ) converging in pointed Gromov-Hausdorff topology

to ((ℂ∗)𝑚 × ℂ𝑛−𝑚, 𝜔∞) where 𝜔∞ is a mixed cylinder and edge metric.

Theorem 1.9 is a generalization of [8, Theorem C] which shows the conver-
gence of Kähler–Einstein edge metrics to a cylindrical metric in the smooth
case. Regarding complex dimension 1, i.e., in the Riemann surface case, but in
the positive curvature regime, Rubinstein–Zhang showed that the (American)
football equipped with the Ricci solitonmetric converges to the cone-cigar soli-
ton on ℝ+ as two cone angles converge to 0 at a different speed and to a flat
cylindrical metric as two cone angles converge to 0 at a comparable speed [16,
Theorem 1.1-1.3]. In [16], the 𝑆1-symmetry of the metric plays an important
role in the proof. In higher dimensions, we generalize Theorem 1.9 to allow
more than one cone angles to tend to 0 and study the limit behavior of metrics
under this joint degeneration of cone angles. The result is as follows.

Theorem 1.10. Let {𝛽1,𝑘}𝑘∈ℕ be a sequence of positive numbers converging to
0. Assume further that for any 𝑖 ∈ {2,… , 𝑟} such that {𝛽𝑖,𝑘}𝑘∈ℕ also converges
to 0, there holds lim𝑘→∞

𝛽1,𝑘
𝛽𝑖,𝑘

∈ [0, 1] and all 𝛽𝑖,𝑘 ∈ (0, 1
2
]. Let 𝜔𝜙𝛽𝑘 be the (nega-

tively curved) Kähler–Einstein crossing edgemetric on (𝑋,𝐷𝑘 =
∑𝑟

𝑖=1(1−𝛽𝑖,𝑘)𝐷𝑖).
Then there exists a subsequence of the metric spaces (𝑈𝛽𝑘 ,

1
𝛽21,𝑘

𝜔𝜙𝛽𝑘 ) converging in

pointed Gromov-Hausdorff topology to ((ℂ∗)𝑚×ℂ𝑛−𝑚, 𝜔∞), where𝜔∞ is amixed
cylinder and edge metric with cylindrical part along components whose cone an-
gles converge to 0 and conical part along other components.

In the language of [16], [16, Theorem 1.1-1.3] completely describe, in a geo-
metric sense, the boundary behavior of the body of ample angles [15] of the pair
(𝑆2, 𝑁 + 𝑆), where 𝑁 and 𝑆 denote the north and south poles of the Riemann
sphere respectively. In higher dimensions, given a pair (𝑋, �̃� =

∑𝑟
𝑖=1 𝐷𝑖), The-

orem 1.10 is still not a satisfactory description of the boundary of the body of
ample angles of (𝑋, �̃�) in the negative curvature regime. Part of the reason is
that different subsequences may converge to different mixed cylinder and edge
metrics. A complete characterization of the moduli space of such (𝑋, �̃�) en-
dowed with Kähler–Einstein crossing edge metrics in the sense of [14] is still
open. However, Theorem 1.10 is interesting in its own right from an analytical
point of view.

1.4. Main ingredients of the proofs. Wefirst recall the key ingredient in the
proof of Theorem 1.2 is the boundedness of the holomorphic bisectional curva-
ture of the model metric 𝜔𝛽,mod, which makes it possible to use the Chern–Lu
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inequality to obtain the Laplacian estimates, cf. [8, Theorem 3.2]. Therefore,
one way to prove corresponding results of Theorem 1.2 in the snc setting is to
first extend [8, Theorem 3.2] to the snc setting, i.e., prove boundedness of holo-
morphic bisectional curvature of the model metricΩ𝛽 (see (3) for details). This
is done in Lemma 2.4 by adapting arguments in [10, Lemma 2.3] and making
use of the fact that we only need to deal with small 𝛽𝑖’s. Then the proof of
Theorem 1.6 uses a modified maximum principle argument and Chern–Lu’s
inequality to give respectively the 𝐶0 and Laplacian estiamte. A useful fact in
the proof is the observation thatΩ𝛽 shares the same crossing edge singularities
as 𝜔𝜙𝛽 (see Claim 2.8 for the detail).
An important observation is that the reference metric Ω𝛽 has the property

of converging to a Kähler metric with mixed cusp and edge singularities when
some of the cone angles tend to 0. This observation, combined with the content
of Theorem 1.6, give us the result of Theorem 1.7 as a corollary. As another con-
sequence of Theorem 1.6, Theorem 1.9 and Theorem 1.10 treat the limit behav-
ior of the Kähler–Einstein crossing edge metric 𝜔𝜙𝛽 near the divisor 𝐷𝛽 when
some of the cone angles approach 0. After fixing a point in the divisor 𝐷𝛽, we
first rescale the reference metric to obtain its convergence to a mixed cylinder
and edge metric (see Definition 3.1) as the smallest cone angle tends to 0 in a
small neighborhood of 𝐷𝛽 . To obtain the pointed Gromov–Hausdorff conver-
gence of the rescaledKähler–Einstein crossing edgemetric𝜔𝜙𝛽 near the divisor,
we actually show a stronger local smooth convergence result. We use Theo-
rem 1.6 and the limit behavior of Ω𝛽 mentioned above to obtain 𝐶0-estimates
of rescaled 𝜔𝜙𝛽 . By a standard use of Evans–Krylov theory and Arzelà–Ascoli
Theorem, we obtain the 𝐶∞loc-convergence of the rescaled 𝜔𝜙𝛽 as some of the
cone angles tend to 0.

2. Small angle limits of the Kähler–Einstein crossing edge
metrics
Let 𝔻∗ = {𝑧 ∈ ℂ ∶ 0 < |𝑧| < 1} be the punctured unit disc in ℂ. The first

observation is, for 𝜂 ∈ (0, 1), the following Kähler metric

𝜔𝜂,𝔻∗ ∶ = −
√
−1𝜕�̄� log(1 − |𝑧|2𝜂)

=

√
−1𝜂2|𝑧|2𝜂−2

(1 − |𝑧|2𝜂)2
𝑑𝑧 ∧ 𝑑�̄�

has negative constant curvature and cone singularity with cone angle 2𝜋𝜂 at
0 ∈ ℂ. Indeed, direct calculation using the Poincaré–Lelong formula [6] yields

Ric𝜔𝜂,𝔻∗ = 2𝜋(1 − 𝜂)𝛿0 − 2𝜔𝜂,𝔻∗ , (4)

where 𝛿0 denotes the Dirac measure at 0.
For a fixed 𝑧 ∈ 𝔻∗,

lim
𝜂→0

𝜂2|𝑧|2𝜂−2

(1 − |𝑧|2𝜂)2
= 1

|𝑧|2 (log |𝑧|2)2
. (5)
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Thus, 𝜔𝜂,𝔻∗ converges uniformly to the Poincaré metric 𝜔𝑃,𝔻∗ defined in (1) for
any compact 𝐾 ⋐ 𝔻∗ when 𝜂 tends to 0. Note that

Ric𝜔𝑃,𝔻∗ = 2𝜋𝛿0 − 2𝜔𝑃,𝔻∗ .

Thus, 𝜔𝑃,𝔻∗ is a Kähler–Einstein cusp metric on 𝔻∗ with cusp singularity at 0.
Next we introduce a reference metric that generalizes 𝜔𝜂,𝔻∗ to higher dimen-
sional manifolds.

2.1. The reference metric. From now on, let (𝑋,𝐷𝛽) be an 𝑛-dimensional
compact Kähler manifold with an ℝ-divisor 𝐷𝛽 =

∑𝑟
𝑖=1(1 − 𝛽𝑖)𝐷𝑖 such that

𝐾𝑋 +
∑𝑟

𝑖=1 𝐷𝑖 is ample, where 𝛽𝑖 ∈ (0, 1) for 𝑖 = 1,… , 𝑟. Given this assump-
tion,𝐾𝑋+𝐷𝛽 is ample for small 𝛽1,… , 𝛽𝑟 since ampleness is an open condition.
Assume each 𝐷𝑖 is smooth and irreducible. We further assume 𝐷𝛽 has simple
normal crossing support, i.e., for any 𝑝 ∈ supp(𝐷𝛽) lying in the intersection of
exactly𝑚 divisors 𝐷1,… , 𝐷𝑚,𝑚 ≤ 𝑛, there exists a coordinate chart (𝑈, {𝑧𝑖}𝑛𝑖=1)
containing 𝑝 such that 𝐷𝑗|𝑈 = {𝑧𝑗 = 0} for 𝑗 = 1,… , 𝑚. Let 𝑠𝑖 denote a defin-
ing holomorphic section of 𝐷𝑖 and ℎ𝑖 = | ⋅ |ℎ𝑖 be a smooth hermitian metric on
𝐿𝐷𝑖 , which is the line bundle induced by 𝐷𝑖. Let 𝜃𝑖 denote the curvature form
of each (𝐿𝐷𝑖 , ℎ𝑖). We normalize ℎ𝑖 such that log |𝑠𝑖|

2
ℎ𝑖
+ 1 < 0 for each 𝑖. Let 𝜔

be a fixed smooth Kähler metric with [𝜔] = 𝑐1 (𝐾𝑋 +
𝑟∑

𝑖=1
𝐷𝑖). Below we denote

𝐷 ∶=
∑𝑟

𝑖=1 𝐷𝑖 and 𝛽 ∶= (𝛽1,… , 𝛽𝑟).
Define the reference metric:

Ω𝛽 ∶= 𝜔 −
𝑟∑

𝑖=1

√
−1𝜕�̄� log

⎡
⎢
⎢
⎣

1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖

𝛽𝑖

⎤
⎥
⎥
⎦

2

. (6)

Remark 2.1. The appearance of 𝛽𝑖 in the denominator of the log term in the
potential function does not affect the definition of the reference metric. We
use this convention, following [8], since the potential function in (6) defined in
such a way will be shown to converge weakly to a potential function for some
Kähler cusp metric. See Lemma 2.10 for details.

Ω𝛽 can be seen as a generalization of 𝜔𝜂,𝔻∗ to higher dimensional manifolds.
First, let us recall [8, Lemma 3.1].

Lemma 2.2. Ω𝛽 is a Kähler edge form with cone angle 2𝜋𝛽𝑖 along 𝐷𝑖 for 𝑖 =
1,… , 𝑟. More precisely,

Ω𝛽 = 𝜔 + 2 ⋅
𝑟∑

𝑖=1

⎛
⎜
⎝

√
−1

𝛽2𝑖
|𝑠𝑖|

2−2𝛽𝑖
ℎ𝑖

(1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖
)2
⟨𝐷1,0𝑠𝑖, 𝐷1,0𝑠𝑖⟩ −

𝛽𝑖|𝑠𝑖|
2𝛽𝑖
ℎ𝑖

1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖

𝜃𝑖
⎞
⎟
⎠
,

(7)
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where 𝐷1,0 is the (1, 0)-part of the Chern connection of (𝐿𝐷𝑖 , ℎ𝑖) for each 𝑖. Up to
rescaling {ℎ𝑖}𝑖=1,…,𝑟, there holdsΩ𝛽 ≥

1
2
𝜔.

Proof. A concise proof for the case 𝑟 = 1 is given in [8, Lemma 3.1]. For the
reader’s convenience, we give a detailed proof here. In fact, it suffices to show
(7) when 𝑟 = 1. Hence, below we suppose 𝑟 = 1 and drop the subscript 𝑖 for
simplicity.
If we set

𝑓(𝑥) = − log (
1 − 𝑥𝛽

𝛽
)
2

,

𝜙 = |𝑠|2ℎ = ℎ ⋅ |𝑠|2,

then Ω𝛽 = 𝜔 +
√
−1𝜕�̄�𝑓◦𝜙. Recall there holds

√
−1𝜕�̄�𝑓◦𝜙 =

√
−1(𝑓′′(𝜙)𝜕𝜙 ∧ �̄�𝜙 + 𝑓′(𝜙)𝜕�̄�𝜙).

We calculate

𝑓′ =
2𝛽𝑥𝛽−1

1 − 𝑥𝛽
,

𝑓′′ =
−2𝛽𝑥𝛽−2

1 − 𝑥𝛽
+

2𝛽2𝑥𝛽−2

(1 − 𝑥𝛽)2
.

Then

Ω𝛽 = 𝜔 +
√
−1 ⋅

2𝛽|𝑠|2𝛽−2ℎ

1 − |𝑠|2𝛽ℎ
𝜕�̄�|𝑠|2ℎ

+
√
−1 ⋅

⎛
⎜
⎝

2𝛽2|𝑠|2𝛽−4ℎ

(1 − |𝑠|2𝛽ℎ )2
−
2𝛽|𝑠|2𝛽−4ℎ

1 − |𝑠|2𝛽ℎ

⎞
⎟
⎠
𝜕|𝑠|2ℎ ∧ �̄�|𝑠|

2
ℎ.

Note

𝜕�̄�|𝑠|2ℎ = 𝑠𝜕𝑠 ∧ �̄�ℎ + |𝑠|2𝜕�̄�ℎ + ℎ𝜕𝑠 ∧ �̄�𝑠 + 𝑠𝜕ℎ ∧ �̄�𝑠, (8)

𝜕|𝑠|2ℎ ∧ �̄�|𝑠|
2
ℎ = |𝑠|4𝜕ℎ ∧ �̄�ℎ + 𝑠ℎ|𝑠|2𝜕ℎ ∧ �̄�𝑠 + 𝑠ℎ|𝑠|2𝜕𝑠 ∧ �̄�ℎ + |𝑠|2ℎ2𝜕𝑠 ∧ �̄�𝑠,

(9)

and the fact

𝜃 = −
√
−1𝜕�̄� logℎ =

√
−1(𝜕ℎ ∧ �̄�ℎ

ℎ2
− 𝜕�̄�ℎ

ℎ
) (10)

⟨𝐷1,0𝑠, 𝐷1,0𝑠⟩ = ⟨𝜕𝑠 ⋅ 𝑒 + 𝜕ℎ
ℎ
𝑠 ⋅ 𝑒, 𝜕𝑠 ⋅ 𝑒 + 𝜕ℎ

ℎ
𝑠 ⋅ 𝑒⟩ (11)

= ℎ𝜕𝑠 ∧ �̄�𝑠 + 𝑠𝜕𝑠 ∧ �̄�ℎ + 𝑠𝜕ℎ ∧ �̄�𝑠 + |𝑠|2

ℎ
𝜕ℎ ∧ �̄�ℎ. (12)
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We calculate

Ω𝛽 = 𝜔 +
√
−1

2𝛽|𝑠|2𝛽−2ℎ

1 − |𝑠|2𝛽ℎ
𝜕�̄�|𝑠|2ℎ +

√
−1

⎛
⎜
⎝

2𝛽2|𝑠|2𝛽−4ℎ

(1 − |𝑠|2𝛽ℎ )
2
−
2𝛽|𝑠|2𝛽−4ℎ

1 − |𝑠|2𝛽ℎ

⎞
⎟
⎠
𝜕|𝑠|2ℎ ∧ �̄�|𝑠|

2
ℎ

= 𝜔 +
⎛
⎜
⎝

√
−1

2𝛽|𝑠|2𝛽−2ℎ

1 − |𝑠|2𝛽ℎ
|𝑠|2𝜕�̄�ℎ −

√
−1

2𝛽|𝑠|2𝛽−4ℎ

1 − |𝑠|2𝛽ℎ
|𝑠|4𝜕ℎ ∧ �̄�ℎ

⎞
⎟
⎠

+
√
−1

2𝛽|𝑠|2𝛽−2ℎ

1 − |𝑠|2𝛽ℎ
(𝑠𝜕𝑠 ∧ �̄�ℎ + ℎ𝜕𝑠 ∧ �̄�𝑠 + 𝑠𝜕ℎ ∧ �̄�𝑠)

+
√
−1

⎛
⎜
⎝

2𝛽2|𝑠|2𝛽−4ℎ

(1 − |𝑠|2𝛽ℎ )
2
−
2𝛽|𝑠|2𝛽−4ℎ

1 − |𝑠|2𝛽ℎ

⎞
⎟
⎠
(𝑠ℎ|𝑠|2𝜕ℎ ∧ �̄�𝑠 + 𝑠ℎ|𝑠|2𝜕𝑠 ∧ �̄�ℎ + |𝑠|2ℎ2𝜕𝑠 ∧ �̄�𝑠)

+
√
−1

2𝛽2|𝑠|2𝛽−4ℎ

(1 − |𝑠|2𝛽ℎ )
2
|𝑠|4𝜕ℎ ∧ �̄�ℎ

= 𝜔 −
2𝛽|𝑠|2𝛽ℎ
1 − |𝑠|2𝛽ℎ

√
−1(𝜕ℎ ∧ �̄�ℎ

ℎ2
− 𝜕�̄�ℎ

ℎ
)

+
√
−1

2𝛽2|𝑠|2𝛽−2ℎ

(1 − |𝑠|2𝛽ℎ )
2
(ℎ𝜕𝑠 ∧ �̄�𝑠 + 𝑠𝜕𝑠 ∧ �̄�ℎ + 𝑠𝜕ℎ ∧ �̄�𝑠 + |𝑠|2

ℎ
𝜕ℎ ∧ �̄�ℎ)

= 𝜔 + 2 ⋅
√
−1

𝛽2|𝑠|2𝛽−2ℎ

(1 − |𝑠|2𝛽ℎ )
2
⟨𝐷1,0𝑠, 𝐷1,0𝑠⟩ − 2 ⋅

𝛽|𝑠|2𝛽ℎ
1 − |𝑠|2𝛽ℎ

𝜃,

which is what we need. Since
√
−1

𝛽2𝑖
|𝑠𝑖|

2−2𝛽𝑖
ℎ𝑖

(1 − |𝑠𝑖|
2𝛽𝑖
ℎ )2

⟨𝐷1,0𝑠𝑖, 𝐷1,0𝑠𝑖⟩

contributes as a non-negative (1, 1)-form for each 𝑖, we will show that up to

rescaling ℎ𝑖,
𝛽𝑖|𝑠𝑖|

2𝛽𝑖
ℎ𝑖

1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖

can be made arbitrarily small to conclude that Ω𝛽 ≥

1
2
𝜔. To see this, consider the function 𝑓𝛽𝑖 (𝑡) ∶=

𝛽𝑖𝑡𝛽𝑖

1 − 𝑡𝛽𝑖
. The function 𝑓𝛽𝑖 (𝑡)

is increasing in (0, 1) and satisfies 𝑓𝛽𝑖 (0) = 0. Hence for any 𝛿 > 0, ∃𝑡𝛿 ∈
(0, 1), such that for 𝑡 ∈ (0, 𝑡𝛿], 𝑓𝛽𝑖 (𝑡) ≤ 𝛿 for each 𝑖 = 1,… , 𝑟. Now take 𝛿 =

1
4𝑟 ⋅ sup𝑋,𝑖 ||𝜃𝑖||𝜔

and rescale each ℎ𝑖 such that |𝑠𝑖|2ℎ𝑖 ≤ 𝑡𝛿. Then

2 ⋅
𝑟∑

𝑖=1
−

𝛽𝑖|𝑠𝑖|
2𝛽𝑖
ℎ𝑖

1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖

𝜃𝑖 ≥ −12𝜔



SMALL ANGLE LIMITS OF NEGATIVE CURVED KE CROSSING EDGE METRICS 603

and therefore Ω𝛽 ≥
1
2
𝜔. □

When 𝑟 = 1 and 𝛽 = 𝛽1 ∈ (0, 1
2
], the following result of Guenancia states

that the reference metric Ω𝛽 has uniformly bounded holomorphic bisectional
curvatures on 𝑋 ⧵ 𝐷𝛽 .

Lemma 2.3. [8, Theorem 3.2]When 𝑟 = 1, there exists a constant𝐶 > 0 depend-
ing only on 𝑋 such that for all 𝛽 ∈ (0, 1

2
], the holomorphic bisectional curvature

ofΩ𝛽 is bounded by 𝐶.

We generalize this result to the SNC case by adapting arguments from [10,
Lemma 2.3].

Lemma 2.4. There exists a constant 𝐶 > 0 depending only on𝑋 such that for all
𝛽 where 𝛽𝑖 ∈ (0, 1∕2] for each 𝑖 = 1,… , 𝑟, the holomorphic bisectional curvature
ofΩ𝛽 is uniformly bounded by 𝐶 on 𝑋 ⧵ 𝐷.

Proof. We prove the lemma following [10, Lemma 2.3]. When 𝑟 = 1, this gives
another proof for our Lemma 2.3. To deal with the more complicated 𝑟 > 1
case, we need to treat non-diagonal terms in the metric tensor of Ω𝛽 carefully.
Since the idea of the proof is the same for general 𝑟 > 1, we assume 𝑟 = 2 for
simplicity.
Step 1: Estimate the metric tensor.
Fix a point 𝑝 ∈ 𝑋 ⧵𝐷. We can find local holomorphic coordinates such that

𝑠1 = 𝑧1, 𝑠2 = 𝑧2 and the hermitian metric ℎ𝑘 on 𝐿𝐷𝑘 is given by ℎ𝑘 = 𝑒−𝜙𝑘 with
𝜙𝑘(𝑝) = 0 and 𝑑𝜙𝑘(𝑝) = 0 for 𝑘 = 1, 2. In these local coordinates, write

𝜔 =
√
−1𝑔𝑖�̄�𝑑𝑧𝑖 ∧ 𝑑�̄�𝑗,

𝜃𝑘 =
√
−1𝜃𝑘𝑖�̄�𝑑𝑧

𝑖 ∧ 𝑑�̄�𝑗,

where 𝑔𝑖�̄� and 𝜃𝑘𝑖�̄� are smooth functions of the coordinate 𝑧 and 𝑘 = 1, 2. More-
over, for 𝑘 = 1, 2, we have

⟨𝐷1,0𝑠𝑘, 𝐷1,0𝑠𝑘⟩ = ⟨𝑑𝑧𝑘 ⋅ 𝑒𝑘 − 𝑧𝑘𝜕𝜙𝑘 ⋅ 𝑒𝑘, 𝑑𝑧𝑘 ⋅ 𝑒𝑘 − 𝑧𝑘𝜕𝜙𝑘 ⋅ 𝑒𝑘⟩

= 𝑒−𝜙𝑘 (1 − �̄�𝑘
𝜕𝜙𝑘
𝜕�̄�𝑘

− 𝑧𝑘
𝜕𝜙𝑘
𝜕𝑧𝑘

+ |𝑧𝑘|2
𝜕𝜙𝑘
𝜕𝑧𝑘

𝜕𝜙𝑘
𝜕�̄�𝑘

)𝑑𝑧𝑘 ∧ 𝑑�̄�𝑘

+
𝑛∑

𝑖≠𝑘
𝑒−𝜙𝑘 (−�̄�𝑘

𝜕𝜙𝑘
𝜕�̄�𝑖

+ |𝑧𝑘|2
𝜕𝜙𝑘
𝜕𝑧𝑘

𝜕𝜙𝑘
𝜕�̄�𝑖

)𝑑𝑧𝑘 ∧ 𝑑�̄�𝑖

+
𝑛∑

𝑗≠𝑘
𝑒−𝜙𝑘 (−𝑧𝑘

𝜕𝜙𝑘
𝜕𝑧𝑗

+ |𝑧𝑘|2
𝜕𝜙𝑘
𝜕𝑧𝑗

𝜕𝜙𝑘
𝜕�̄�𝑘

)𝑑𝑧𝑗 ∧ 𝑑�̄�𝑘

+
𝑛∑

𝑖,𝑗≠𝑘
𝑒−𝜙𝑘 |𝑧𝑘|2

𝜕𝜙𝑘
𝜕𝑧𝑖

𝜕𝜙𝑘
𝜕�̄�𝑗

𝑑𝑧𝑖 ∧ 𝑑�̄�𝑗.
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For the sake of brevity, we introduce the following notations for 𝑘 = 1, 2:

𝑎𝑘 = −�̄�𝑘
𝜕𝜙𝑘
𝜕�̄�𝑘

− 𝑧𝑘
𝜕𝜙𝑘
𝜕𝑧𝑘

+ |𝑧𝑘|2
𝜕𝜙𝑘
𝜕𝑧𝑘

𝜕𝜙𝑘
𝜕�̄�𝑘

,

𝑏𝑘𝑗 =
𝜕𝜙𝑘
𝜕𝑧𝑗

+ �̄�𝑘
𝜕𝜙𝑘
𝜕𝑧𝑗

𝜕𝜙𝑘
𝜕�̄�𝑘

, 𝑗 ≠ 𝑘,

𝑐𝑘𝑖�̄� =
𝜕𝜙𝑘
𝜕𝑧𝑖

𝜕𝜙𝑘
𝜕�̄�𝑗

, 𝑖, 𝑗 ≠ 𝑘.

Then 𝑎𝑘, 𝑏𝑘𝑗 and 𝑐
𝑘
𝑖�̄� are smooth and vanish at 𝑝. Writing Ω𝛽 =

√
−1𝑔𝑖�̄�𝑑𝑧𝑖 ∧

𝑑�̄�𝑗, by (7) we have

𝑔 = 𝑔𝑖�̄� − 2 ⋅
2∑

𝑘=1

𝛽𝑘|𝑠𝑘|
2𝛽𝑘
ℎ𝑘

1 − |𝑠𝑘|
2𝛽𝑘
ℎ𝑘

𝜃𝑘𝑖�̄� + 2 ⋅
2∑

𝑘=1

𝛽2𝑘|𝑠𝑘|
2𝛽𝑘−2
ℎ𝑘

(1 − |𝑠𝑘|
2𝛽𝑘
ℎ𝑘

)2
⟨𝐷1,0𝑠𝑘, 𝐷1,0𝑠𝑘⟩

= 𝑔𝑖�̄� − 2 ⋅
2∑

𝑘=1

𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 |𝑧𝑘|2𝛽𝑘

1 − |𝑧𝑘|2𝛽𝑘 ⋅ 𝑒−𝛽𝑘𝜙𝑘
𝜃𝑘𝑖�̄� + 2 ⋅

2∑

𝑘=1

𝛽2𝑘𝑒
−(𝛽𝑘−1)𝜙𝑘 |𝑧𝑘|2𝛽𝑘−2

(1 − |𝑧𝑘|2𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 )2
⟨𝐷1,0𝑠𝑘, 𝐷1,0𝑠𝑘⟩.

For each component, we have

𝑔11̄ = 𝑔11̄ − 2 ⋅
2∑

𝑘=1

𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 |𝑧𝑘|2𝛽𝑘

1 − |𝑧𝑘|2𝛽𝑘 ⋅ 𝑒−𝛽𝑘𝜙𝑘
𝜃𝑘11̄ + 2 ⋅

𝛽21𝑒
−(𝛽1−1)𝜙1 |𝑧1|2𝛽1−2

(1 − |𝑧1|2𝛽1𝑒−𝛽1𝜙1)2
𝑒−𝜙1 (1 + 𝑎1)

+ 2 ⋅
𝛽22𝑒

−(𝛽2−1)𝜙2 |𝑧2|2𝛽2−2

(1 − |𝑧2|2𝛽2𝑒−𝛽2𝜙2)2
𝑒−𝜙2 |𝑧2|2𝑐211̄,

𝑔12̄ = 𝑔12̄ − 2 ⋅
2∑

𝑘=1

𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 |𝑧𝑘|2𝛽𝑘

1 − |𝑧𝑘|2𝛽𝑘 ⋅ 𝑒−𝛽𝑘𝜙𝑘
𝜃𝑘12̄ + 2 ⋅

𝛽21𝑒
−(𝛽1−1)𝜙1 |𝑧1|2𝛽1−2

(1 − |𝑧1|2𝛽1𝑒−𝛽1𝜙1)2
𝑒−𝜙1 �̄�1�̄�12

+ 2 ⋅
𝛽22𝑒

−(𝛽2−1)𝜙2 |𝑧2|2𝛽2−2

(1 − |𝑧2|2𝛽2𝑒−𝛽2𝜙2)2
𝑒−𝜙2𝑧2𝑏21,

𝑔𝑖�̄� = 𝑔𝑖�̄� − 2 ⋅
2∑

𝑘=1

𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 |𝑧𝑘|2𝛽𝑘

1 − |𝑧𝑘|2𝛽𝑘 ⋅ 𝑒−𝛽𝑘𝜙𝑘
𝜃𝑘𝑖�̄�

+ 2 ⋅
2∑

𝑘=1

𝛽2𝑘𝑒
−(𝛽𝑘−1)𝜙𝑘 |𝑧𝑘|2𝛽𝑘−2

(1 − |𝑧𝑘|2𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 )2
𝑒−𝜙𝑘 |𝑧𝑘|2𝑐𝑘𝑖�̄� , 𝑖, 𝑗 ≥ 3.

Note that 𝑔22̄ (respectively 𝑔21̄) can be treated similarly as 𝑔11̄ (respectively
𝑔12̄). The first observation is that the term 𝛽𝑘∕(1 − |𝑧𝑘|2𝛽𝑘 ⋅ 𝑒−𝛽𝑘𝜙𝑘 ) (and also
its square) which appears in each 𝑔𝑖�̄� will not blow up as 𝛽𝑘 → 0 for 𝑘 = 1, 2.
Indeed, the function 𝑥 ↦ 𝛽∕(1−𝑥𝛽) is uniformly bounded for all small 𝛽 under
the assumption 𝑥 < 𝑒−1. Since we always assume |𝑠𝑘|2ℎ𝑘 < 𝑒−1 for 𝑘 = 1, 2, we
only need to consider a point 𝑝 that is near 𝐷 (i.e., |𝑧1| and |𝑧2| are small) and
show the holomorphic bisectional curvature at 𝑝 is uniformly bounded in 𝛽.
To achieve this, we consider a change of coordinate 𝜉𝑘 = 𝑧𝛽𝑘𝑘 ∕𝛽𝑘 for 𝑘 = 1, 2.
Such 𝜉𝑘 is multi-valued. Thus, we need to choose a single-valued branch of
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the Riemann surface associated to 𝑧𝑘 ↦ 𝑧𝛽𝑘𝑘 . More specifically, whenever we
workwith 𝜉𝑘, denoting the polar coordinates of 𝜉𝑘 by (𝑟𝑘, 𝜃𝑘), we always assume
𝜃𝑘 ∈ [0, 2𝜋𝛽𝑘). Under this assumption, 𝜉𝑘 always take values in the space
{(𝑟, 𝜃) ∈ ℂ ∶ 𝜃 ∈ [0, 𝜋)} for 𝑘 = 1, 2 for varying 𝛽𝑘 as we have 𝛽𝑘 ∈ (0, 1∕2].
Moreover, whenwe consider the inversemap of the change of coordinates 𝑧𝑘 =
(𝛽𝑘𝜉𝑘)1∕𝛽𝑘 , we assume 𝜉𝑘 ∈ {(𝑟, 𝜃) ∈ ℂ ∶ 𝜃 ∈ [0, 2𝜋𝛽𝑘)} and hence 𝑧𝑘 ∈
{(𝑟, 𝜃) ∈ ℂ ∶ 𝜃 ∈ [0, 2𝜋)} for varying 𝛽𝑘. In the new coordinates, we have

𝑑𝑧1 ∧ 𝑑�̄�1 = |𝛽1𝜉1|
2
𝛽1
−2
𝑑𝜉1 ∧ 𝑑�̄�1,

𝑑𝑧1 ∧ 𝑑�̄�2 = 𝛽
1
𝛽1
−1

1 𝛽
1
𝛽2
−1

2 𝜉
1
𝛽1
−1

1 �̄�
1
𝛽2
−1

2 𝑑𝜉1 ∧ 𝑑�̄�2.

From now on, we make the change of coordinates summarized as above:

𝜉𝑘 =
𝑧𝛽𝑘𝑘
𝛽𝑘

, 𝑘 = 1, 2

𝜉𝓁 = 𝑧𝓁, 𝓁 = 3,… , 𝑛.

We record the components of Ω𝛽, denoted by Ω𝛽 =
√
−1ℎ𝑖�̄�𝑑𝜉𝑖 ∧ 𝑑𝜉𝑗, in the

new coordinates:

ℎ11̄ = |𝛽1𝜉1|
2
𝛽1
−2
𝑔11̄ − 2 ⋅

𝛽
2
𝛽1
+1

1 𝑒−𝛽1𝜙1 |𝜉1|
2
𝛽1

1 − 𝑒−𝛽1𝜙1 |𝛽1𝜉1|2
𝜃111̄ − 2 ⋅

𝛽32𝑒
−𝛽2𝜙2 |𝜉2|2|𝛽1𝜉1|

2
𝛽1
−2

1 − 𝑒−𝛽2𝜙2 |𝛽2𝜉2|2
𝜃211̄

+ 2 ⋅
𝛽21𝑒

−𝛽1𝜙1

(1 − 𝑒−𝛽1𝜙1 |𝛽1𝜉1|2)2
(1 + 𝑎1) + 2 ⋅

𝛽42|𝜉2|
2|𝛽1𝜉1|

2
𝛽1
−2

(1 − 𝑒−𝛽2𝜙2 |𝛽2𝜉2|2)2
𝑐211̄,

ℎ12̄ = (𝛽
1
𝛽1
−1

1 𝛽
1
𝛽2
−1

2 𝜉
1
𝛽1
−1

1 �̄�
1
𝛽2
−1

2 ) 𝑔12̄ − 2 ⋅
𝑒−𝛽1𝜙1𝜉1

1 − 𝑒−𝛽1𝜙1 |𝛽1𝜉1|2
(𝛽

1
𝛽1
+2

1 𝛽
1
𝛽2
−1

2 𝜉
1
𝛽1
1 �̄�

1
𝛽2
−1

2 ) 𝜃112̄

− 2 ⋅
𝑒−𝛽2𝜙2𝜉2

1 − 𝑒−𝛽2𝜙2 |𝛽2𝜉2|2
(𝛽

1
𝛽1
−1

1 𝛽
1
𝛽2
+2

2 𝜉
1
𝛽1
−1

1 �̄�
1
𝛽2
2 ) 𝜃212̄ + 2 ⋅

𝛽31𝑒
−𝛽1𝜙1𝜉1𝛽

1
𝛽2
−1

2 �̄�
1
𝛽2
−1

2

(1 − 𝑒−𝛽1𝜙1 |𝛽1𝜉1|2)2
�̄�12

+ 2 ⋅
𝛽32𝑒

−𝛽2𝜙2𝜉2𝛽
1
𝛽1
−1

1 𝜉
1
𝛽1
−1

1

(1 − 𝑒−𝛽2𝜙2 |𝛽2𝜉2|2)2
𝑏21,

ℎ1�̄� = 𝛽
1
𝛽1
−1

1 𝜉
1
𝛽1
−1

1 𝑔1�̄� − 2 ⋅
𝛽

1
𝛽1
+2

1 𝑒−𝛽1𝜙1𝜉1𝜉
1
𝛽1
1

1 − 𝑒−𝛽1𝜙1 |𝛽1𝜉1|2
𝜃11�̄� − 2 ⋅

𝛽
1
𝛽1
−1

1 𝛽32𝑒
−𝛽2𝜙2 |𝜉2|2𝜉

1
𝛽1
−1

1

1 − 𝑒−𝛽2𝜙2 |𝛽2𝜉2|2
𝜃21�̄�

+ 2 ⋅
𝛽31𝑒

−𝛽1𝜙1𝜉1
(1 − 𝑒−𝛽1𝜙1 |𝛽1𝜉1|2)2

�̄�1𝑗 + 2 ⋅
𝛽42𝛽

1
𝛽1
−1

1 𝑒−𝛽2𝜙2 |𝜉2|2𝜉1
1
𝛽1
−1

(1 − 𝑒−𝛽2𝜙2 |𝛽2𝜉2|2)2
𝑐21�̄� , 𝑗 = 3,… , 𝑛

ℎ𝑖�̄� = 𝑔𝑖�̄� − 2
2∑

𝑘=1

𝛽𝑘𝑒−𝛽𝑘𝜙𝑘 |𝛽𝑘𝜉𝑘|2

1 − 𝑒−𝛽𝑘𝜙𝑘 |𝛽𝑘𝜉𝑘|2
𝜃𝑘𝑖�̄� + 2

2∑

𝑘=1

𝛽2𝑘𝑒
−𝛽𝑘𝜙𝑘 |𝛽𝑘𝜉𝑘|2

(1 − 𝑒−𝛽𝑘𝜙𝑘 |𝛽𝑘𝜉𝑘|2)2
𝑐𝑘𝑖�̄� , 𝑖, 𝑗 = 3,… , 𝑛.

(13)
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Note that ℎ2𝑖 can be treated similarly as ℎ1�̄�. A first observation is that since

𝛽𝑘 ∈ (0, 1∕2], both 𝛽
2
𝛽𝑘
−2

𝑘 and |𝜉𝑘|
2
𝛽𝑘
−2
are uniformly bounded. Regarding the

metric tensor of Ω𝛽, terms that involve 𝑔𝑖�̄� or 𝜃𝑘𝑖�̄� are also uniformly bounded.
Moreover, after the change of coordinates, there does not exist singular term in
each component ℎ𝑖�̄�. In conclusion, ℎ𝑖�̄� is uniformly bounded for any 𝑖, 𝑗, i.e.,
by (13), in coordinates (𝜉1, 𝜉2, 𝜉3 = 𝑧3,… , 𝜉𝑛 = 𝑧𝑛), there holds

ℎ𝑖�̄� = 𝑂(1), for 𝑖, 𝑗 = 1,… , 𝑛.

In otherwords, we have shown that themetric tensorℎ𝑖�̄� is bounded fromabove
for all 𝑖, 𝑗. However, the metric tensor may degenerate as 𝛽1 or 𝛽2 tends to 0.
According to (13), we have for rather small 𝛽1 and 𝛽2 the following asymptotic
behaviors of each metric tensor:

ℎ11̄ ∼ 𝛽21 , ℎ22̄ ∼ 𝛽22 ,

ℎ12̄, ℎ21̄ ∼ 𝛽31𝛽
3
2|𝜉1||𝜉2|,

ℎ1�̄� ∼ 𝛽31|𝜉1|, 𝑗 = 3,… , 𝑛
ℎ𝑖�̄� = 𝑂(1), 𝑖, 𝑗 = 3,… , 𝑛.

(14)

Step 2: Estimate the inverse of the metric tensor
Recall the curvature tensor is given by

𝑅𝑖�̄�𝑘�̄� = −ℎ𝑖�̄�,𝑘�̄� + ℎ𝑠𝑡ℎ𝑖𝑡,𝑘ℎ𝑠�̄�,𝓁. (15)

To estimate the holomorphic bisectional curvature, we take two unit vectors
(w.r.t. the metric ℎ𝑖�̄�) 𝑢𝑖

𝜕
𝜕𝜉𝑖

and 𝑣𝑗 𝜕
𝜕𝜉𝑗
. Then by (14) there holds

𝑢1, 𝑣1 = 𝑂(𝛽−11 ), 𝑢2, 𝑣2 = 𝑂(𝛽−12 ),

𝑢𝑖, 𝑣𝑖 = 𝑂(1), 𝑖 = 3,… , 𝑛.
(16)

To finish the proof we need to bound 𝑅𝑖�̄�𝑘�̄�𝑢𝑖�̄�𝑗𝑣𝑘𝑣𝓁. We first consider 𝑅𝑖�̄�𝑘�̄�.
We need to analyze ℎ𝑖�̄�, ℎ𝑖�̄�,𝑘 and ℎ𝑖�̄�,𝑘�̄�.
Wefirst treatℎ𝑖�̄�. By (13) and (14), onefinds thatdet{ℎ𝑖�̄�} is uniformly bounded

and tends to 0 as 𝛽1 or 𝛽2 tends to 0. More precisely, by (14) there holds

det{ℎ𝑖�̄�} ∼ 𝛽21𝛽
2
2 . (17)

Since ℎ𝑖�̄� = 𝐶𝑗𝑖∕ det{ℎ𝑖�̄�}, where 𝐶𝑗𝑖 is the 𝑗𝑖-th cofactor of the matrix {ℎ𝑖�̄�},
we deduce from (14) and (17) that

ℎ1�̄�, ℎ𝑖1̄ ∼ 𝛽−21 , 𝑖, 𝑗 ≠ 2

ℎ12̄ ∼ 𝛽−21 𝛽−22 ,

ℎ𝑖�̄� = 𝑂(1), 𝑖, 𝑗 ≠ 1, 2,

(18)
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while ℎ2�̄� and ℎ𝑗2̄ can be treated in the same way. Roughly speaking, ℎ𝑖�̄� are
bounded for fixed 𝛽 near 𝑝 but may tend to infinity with respect to 𝛽 as de-
scribed above. However, by (13) and (14), for any 𝑗, ℎ1�̄� (respectively ℎ2�̄�) de-
generate at the rate of at least 𝛽21 (respectively 𝛽

2
2), when 𝛽1 (respectively 𝛽2) is

small, and taking derivatives may only cause the terms ℎ𝑖�̄�,𝑘 and ℎ𝑖�̄�,𝑘�̄� to con-
verge to 0 at a faster speed in 𝛽. Thus, the singularity in ℎ𝑖�̄� does not cause a
problem when we consider the curvature tensor (15), where the ℎ𝑖�̄� terms are
multiplied by corresponding ℎ𝑖𝑡,𝑘 or ℎ𝑠�̄�,𝓁. We explain this in detail later in Step
4.
Step 3: Estimate derivatives of the metric tensor
Now we turn to show that ℎ𝑖�̄�,𝑘 and ℎ𝑖�̄�,𝑘�̄� are uniformly bounded and find

their dependence on 𝛽1 and 𝛽2. For 𝑘,𝓁 ∈ {3,… , 𝑛}, as taking derivative w.r.t.
𝜕∕𝜕𝑧3 = 𝜕∕𝜕𝜉3,… , 𝜕∕𝜕𝑧𝑛 = 𝜕∕𝜕𝜉𝑛 will not contribute extra singular terms, the
uniform boundedness of ℎ𝑖�̄� implies that this also holds for such ℎ𝑖�̄�,𝑘 and ℎ𝑖�̄�,𝑘�̄�.
It remains to deal with ℎ𝑖�̄�,𝑘 and ℎ𝑖�̄�,𝑘�̄� for 𝑘,𝓁 ∈ {1, 2}.
By the exact formula of eachℎ𝑖�̄� in (13), wefind that the exponent of the terms

𝜉1, �̄�1, 𝜉2, �̄�2 is at least 1 when 𝛽1 and 𝛽2 are rather small, and indeed both the
term ℎ𝑖�̄� and their first or second order derivatives are smooth in 𝜉1, �̄�1, 𝜉2, �̄�2. In
summary, taking derivatives of themetric tensor does not cause singularities in
𝜉1, �̄�1, 𝜉2, �̄�2. We only need to derive the asymptotic behavior of the derivatives
with respect to 𝛽. To achieve this, it is enough to deal with the following term
𝑇 from (13). The reason is that any other terms in (13) have higher order de-
pendence in 𝛽1 and 𝛽2, before and after taking the derivatives. So we consider
taking derivatives of the following term

𝛽21𝑒
−𝛽1𝜙1

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)2 =∶ 𝑇 (19)

w.r.t. 𝜕∕𝜕𝜉1 and 𝜕∕𝜕𝜉2, since this is the most singular term appearing in the
metric tensor. And by symmetry of indices we only need to consider 𝜕∕𝜕𝜉1(𝑇),
𝜕2∕𝜕𝜉1𝜕�̄�2(𝑇) and 𝜕2∕𝜕𝜉1𝜕�̄�1(𝑇). In the coordinates (𝜉1, 𝜉2, 𝜉3 = 𝑧3,… , 𝜉𝑛 =
𝑧𝑛),

𝜕
𝜕𝜉1

=
𝜕𝑧1
𝜕𝜉1

𝜕
𝜕𝑧1

= 𝛽1∕𝛽1−11 𝜉1∕𝛽1−11
𝜕
𝜕𝑧1

,

𝜕2

𝜕𝜉1𝜕�̄�2
=
𝜕�̄�2
𝜕�̄�2

𝜕𝑧1
𝜕𝜉1

𝜕2

𝜕𝑧1𝜕�̄�2
,

𝜕2

𝜕𝜉1𝜕�̄�1
=
𝜕�̄�1
𝜕�̄�1

𝜕𝑧1
𝜕𝜉1

𝜕2

𝜕𝑧1𝜕�̄�1
.

Thus, we have

𝜕
𝜕𝜉1

(𝑇) = 𝜕
𝜕𝜉1

𝛽21𝑒
−𝛽1𝜙1

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)2
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=
𝛽1∕𝛽1+11 𝜉1∕𝛽1−11

𝜕
𝜕𝑧1
(𝑒−𝛽1𝜙1)

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)2 +
2𝛽1∕𝛽1+31 𝑒−𝛽1𝜙1 �̄�1𝜉

1∕𝛽1
1

𝜕
𝜕𝑧1
(𝑒−𝛽1𝜙1)

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)3

+
2𝛽41𝑒

−2𝛽1𝜙1 �̄�1
(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)3

= 𝑂(𝛽41|𝜉1|) = 𝑂(1),

since 𝛽1 ∈ (0, 1∕2] and 𝜙1 is smooth w.r.t. 𝑧1,… , 𝑧𝑛. Similarly, we get

𝜕2

𝜕𝜉1𝜕�̄�2
(𝑇) = 𝑂(𝛽41𝛽

1∕𝛽2−1
2 |𝜉1||𝜉2|1∕𝛽2−1) = 𝑂(1),

since we only need to address 𝜕∕𝜕𝜉2(𝑒−𝛽1𝜙1)when taking derivative of 𝜕∕𝜕𝜉1(𝑇)
w.r.t. 𝜕∕𝜕�̄�2. Finally, direct calculations yield

𝜕2

𝜕𝜉1𝜕�̄�1
𝑇 =

𝛽2∕𝛽11 |𝜉1|2∕𝛽1−2
𝜕2

𝜕𝑧1𝜕�̄�1
𝑒−𝛽1𝜙1

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)2

+
2𝛽1∕𝛽1+31 𝜉1∕𝛽1−11

𝜕
𝜕𝑧1
𝑒−𝛽1𝜙1(𝜉1𝑒−𝛽1𝜙1 + |𝜉1|2𝛽

1∕𝛽1−1
1 �̄�1∕𝛽1−11

𝜕
𝜕𝑧1
𝑒−𝛽1𝜙1)

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)3

+
2𝛽41 (

𝜕
𝜕�̄�1
𝑒−𝛽1𝜙1 𝜕

𝜕𝜉1
(|𝜉1|2𝑒−𝛽1𝜙1) + 𝑒−𝛽1𝜙1 𝜕2

𝜕𝜉1𝜕�̄�1
|𝜉1|2𝑒−𝛽1𝜙1)

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)3

+
6𝛽61𝑒

−𝛽1𝜙1 𝜕
𝜕𝜉1
(|𝜉1|2𝑒−𝛽1𝜙1)

𝜕
𝜕�̄�1
(|𝜉1|2𝑒−𝛽1𝜙1)

(
1 − 𝛽21|𝜉1|2𝑒−𝛽1𝜙1

)4

= 𝑂(𝛽41).

In conclusion, we have shown

ℎ𝑖�̄�,𝑘 = 𝑂(1),
ℎ𝑖�̄�,𝑘�̄� = 𝑂(1),

for fixed 𝛽 and any 𝑖, 𝑗, 𝑘,𝓁 = 1,… , 𝑛. In other words, the derivative of the
metric tensor is bounded for fixed 𝛽. Moreover, by taking derivatives of (13),
we find that the derivatives of the metric tensor degenerate (w.r.t. 𝛽1 and 𝛽2) at
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the rate shown below:

ℎ11̄,1, ℎ11̄,1�̄� = 𝑂(𝛽41), 𝓁 = 1,… , 𝑛

ℎ11̄,2, ℎ11̄,2𝑖 = 𝑂(𝛽31𝛽
3
2), 𝑖 = 1,… , 𝑛,

ℎ11̄,𝑘�̄� = 𝑂(𝛽31), 𝑘 ≠ 1, 2,𝓁 = 1,… , 𝑛

ℎ12̄,1 = 𝑂(𝛽41𝛽
4
2),

ℎ12̄,𝑘 = 𝑂(𝛽31𝛽
3
2), 𝑘 ≠ 1,

ℎ12̄,1�̄� = 𝑂(𝛽41𝛽
4
2), 𝓁 = 1,… , 𝑛,

ℎ12̄,𝑘�̄� = 𝑂(𝛽31𝛽
3
2), 𝑘 ≠ 1,𝓁 = 1,… , 𝑛

ℎ1�̄�,𝑘 = 𝑂(𝛽31), 𝑗 ≠ 1, 2, 𝑘 ≠ 2,

ℎ1�̄�,2 = 𝑂(𝛽31𝛽
3
2), 𝑗 ≠ 1, 2

ℎ1�̄�,𝑘�̄� = 𝑂(𝛽31), 𝑗 ≠ 1, 2, 𝑘 ≠ 2,𝓁 ≠ 2,

ℎ1�̄�,𝑘�̄� = 𝑂(𝛽31𝛽
3
2), 𝑗 ≠ 1, 2, 𝑘 = 2 or 𝓁 = 2,

ℎ𝑖�̄�,1 = 𝑂(𝛽1∕𝛽1−11 ), 𝑖, 𝑗 ≠ 1, 2

ℎ𝑖�̄�,2 = 𝑂(𝛽1∕𝛽2−12 ), 𝑖, 𝑗 ≠ 1, 2

ℎ𝑖�̄�,11̄ = 𝑂(𝛽2∕𝛽1−21 ), 𝑖, 𝑗 ≠ 1, 2

ℎ𝑖�̄�,22̄ = 𝑂(𝛽2∕𝛽2−22 ), 𝑖, 𝑗 ≠ 1, 2

ℎ𝑖�̄�,12̄, ℎ𝑖�̄�,21̄ = 𝑂(𝛽1∕𝛽1−11 𝛽1∕𝛽2−12 ), 𝑖, 𝑗 ≠ 1, 2
ℎ𝑖�̄�,𝑘, ℎ𝑖�̄�,𝑘�̄� = 𝑂(1), 𝑖, 𝑗, 𝑘,𝓁 ≠ 1, 2.

(20)

Step 4: Estimate the sum 𝑅𝑖�̄�𝑘�̄�𝑢𝑖�̄�𝑗𝑣𝑘𝑣𝓁.
Wehave shown the derivatives ofℎ𝑖�̄� are bounded. To show that𝑅𝑖�̄�𝑘�̄�𝑢𝑖�̄�𝑗𝑣𝑘𝑣𝓁

is bounded, we consider

𝑅𝑖�̄�𝑘�̄�𝑢𝑖�̄�𝑗𝑣𝑘𝑣𝓁 = (−ℎ𝑖�̄�,𝑘�̄� + ℎ𝑠𝑡ℎ𝑖𝑡,𝑘ℎ𝑠�̄�,𝓁)𝑢𝑖�̄�𝑗𝑣𝑘𝑣𝓁.

We consider three different cases.
When none of 𝑖, 𝑗, 𝑘,𝓁, 𝑠, 𝑡 is 1 or 2: then the sum is uniformly bounded

because none of the term blow up w.r.t. 𝛽1 or 𝛽2.
When 𝑠, 𝑡 ≠ 1, 2 and 𝑖, 𝑗, 𝑘,𝓁may take values from 1 or 2: then we found

from (20) that the common factors of powers of 𝛽1 or 𝛽2 in ℎ𝑖�̄�,𝑘 and ℎ𝑖�̄�,𝑘�̄� com-
pensate for the degeneracy of 𝑢1, 𝑢2 and 𝑣1, 𝑣2.
When 𝑠 or 𝑡 = 1, 2: then in the worst case, where 𝑠 = 1, 𝑡 = 2, we find

from (20) that all the derivatives that have 1 or 2 in the subscript have at least
a degeneracy rate of 𝛽31 or 𝛽

3
2 . However, ℎ

𝑠𝑡 blows up at the rate of 𝛽−21 𝛽−22 .
Combining this fact with (16) we find that the common factors of 𝛽1 and 𝛽2 in
the derivatives can still compensate for the degeneracy of ℎ𝑠𝑡 and 𝑢, 𝑣.
Then we conclude that when 𝛽 satisfies that 𝛽𝑘 ∈ (0, 1∕2] for each 𝑘, the

holomorphic bisectional curvature of Ω𝛽 is uniformly bounded in 𝛽. □
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Remark 2.5. Aspointed out to the author byH.Guenancia, J. Sturm’s trick (see
[14, p. 62]) can also be applied to simplify the proof of the curvature bounds in
Lemma 2.3. Our proof of Lemma 2.4 deals with the general case where 𝑟 > 1.

2.2. A priori estimates. By Theorem 1.5, there is a unique Kähler–Einstein
crossing edgemetric on𝑋with cone angle 2𝜋𝛽𝑖 along each𝐷𝑖, denoted by𝜔𝜙𝛽 =

𝜔 −
∑𝑟

𝑖=1 𝛽𝑖𝜃𝑖 +
√
−1𝜕�̄�𝜙𝛽, such that

⎧
⎪

⎨
⎪
⎩

𝜔𝑛𝜙𝛽 =
𝑒𝑓+𝜙𝛽𝜔𝑛

Π𝑟
𝑖=1|𝑠𝑖|

2(1−𝛽𝑖)
ℎ𝑖

,

𝜔𝜙𝛽 = 𝜔 −
𝑟∑

𝑖=1
𝛽𝑖𝜃𝑖 +

√
−1𝜕�̄�𝜙𝛽 > 0,

(21)

where 𝑓 ∈ 𝐶∞(𝑋). In this section, we establish a Laplacian estimate for 𝜔𝜙𝛽
with respect to the reference metric Ω𝛽 by proving the following result.

Theorem 2.6. For 𝛽 = (𝛽1,… , 𝛽𝑟) ∈ (0, 1
2
]𝑟, there exists a constant 𝐶 > 0 (inde-

pendent of 𝛽1,… , 𝛽𝑟) such that
𝐶−1Ω𝛽 ≤ 𝜔𝜙𝛽 ≤ 𝐶Ω𝛽, (22)

on 𝑋 ⧵ supp(𝐷).

Define

𝜓𝛽 ∶= −
𝑟∑

𝑖=1
log

⎡
⎢
⎢
⎣

1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖

𝛽𝑖

⎤
⎥
⎥
⎦

2

,

then

Ω𝛽 = 𝜔 +
√
−1𝜕�̄�𝜓𝛽 .

Proof of Theorem 2.6. We divide the proof into two steps. First, we deduce
the 𝐶0-estimate for potential functions 𝜙𝛽 and 𝜓𝛽 by using a modified maxi-
mumprinciple. Thenwe derive the Laplacian estimate by applying Chern–Lu’s
inequality to the identity map (𝑋,𝜔𝜙𝛽 )→ (𝑋,Ω𝛽).

Remark 2.7. When 𝑟 = 1, the proof of (22) is already given in [8, Proposition
4.2]. The main difference for the case 𝑟 > 1 is that 𝜔𝜙𝛽 and Ω𝛽 admit crossing
edge singularities. However, thanks to Lemma 2.4, we are able to follow the
arguments in [8] and treat all the components at once.

Step 1: 𝐶0-estimate: Comparing 𝝓𝜷 with 𝝍𝜷 .
We first compare the potential functions of 𝜔𝜙𝛽 and Ω𝛽 . Let �̃�𝛽 ∶= 𝜙𝛽 − 𝜓𝛽,

then we get

𝜔𝑛𝜙𝛽 =
𝑒𝜙𝛽+𝑓𝜔𝑛

∏𝑟
𝑖=1 |𝑠𝑖|

2(1−𝛽𝑖)
ℎ𝑖

, (23)
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⇒(Ω𝛽 −
𝑟∑

𝑖=1
𝛽𝑖𝜃𝑖 +

√
−1𝜕�̄��̃�𝛽)𝑛 = 𝑒�̃�𝛽+𝐹𝛽Ω𝑛

𝛽, (24)

where 𝐹𝛽 = 𝜓𝛽 + 𝑓 + log
⎛
⎜
⎝

𝜔𝑛
∏𝑟

𝑖=1 |𝑠𝑖|
2(1−𝛽𝑖)
ℎ𝑖

⋅Ω𝑛
𝛽

⎞
⎟
⎠
. Then we claim that

Claim 2.8. For some uniform constant 𝐶 > 0,
||𝐹𝛽||𝐶0(𝑋⧵𝐷) ≤ 𝐶. (25)

Proof. First note that 𝑓 is smooth on 𝑋 by construction, hence it is bounded
as 𝑋 is compact. Therefore, it suffices to show

𝐹𝛽 − 𝑓 = 𝜓𝛽 + log
⎛
⎜
⎝

𝜔𝑛
∏𝑟

𝑖=1 |𝑠𝑖|
2(1−𝛽𝑖)
ℎ𝑖

⋅Ω𝑛
𝛽

⎞
⎟
⎠

= log
⎛
⎜
⎝

∏𝑟
𝑖=1 𝛽

2
𝑖 ⋅ 𝜔

𝑛

∏𝑟
𝑖=1 |𝑠𝑖|

2(1−𝛽𝑖)
ℎ𝑖

(1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖
)2 ⋅Ω𝑛

𝛽

⎞
⎟
⎠

is bounded. To prove the claim, it is equivalent to showing

Ω𝑛
𝛽 =

∏𝑟
𝑖=1 𝛽

2
𝑖

∏𝑟
𝑖=1 |𝑠𝑖|

2(1−𝛽𝑖)
ℎ𝑖

(1 − |𝑠𝑖|
2𝛽𝑖
ℎ𝑖
)2
𝑒𝑂(1)𝜔𝑛

near the divisor. This amounts to saying that Ω𝑛
𝛽 has a pole of order

∏𝑟
𝑖=1 |𝑠𝑖|

2(1−𝛽𝑖)
ℎ𝑖

. Without loss of generality, we can assume 𝑟 = 1 and thus be-
low we drop the 𝑖 in the subscript for simplicity. Let 𝑝 ∈ 𝑀 ⧵ 𝐷 near 𝐷. Let
𝑒 be a local holomorphic frame for 𝐿𝐷, and (𝑧1,… , 𝑧𝑛) be a local holomorphic
coordinate chart such that 𝑠 = 𝑧1𝑒. Let ℎ = 𝑒−𝜙 be a smooth hermitian metric
on 𝒪𝑋(𝐷) and 𝜃 the curvature form of (𝐿𝐷, ℎ). Denote

𝜔 =
√
−1𝑔𝑖�̄�𝑑𝑧𝑖 ∧ 𝑑�̄�𝑗,

𝜃 =
√
−1𝜙𝑖�̄�𝑑𝑧𝑖 ∧ 𝑑�̄�𝑗.

Recall the expression (7) of Ω𝛽 . We calculate

⟨𝐷1,0𝑠, 𝐷1,0𝑠⟩ = 𝑒−𝜙(𝑑𝑧1 + 𝑧1
𝜕𝜙
𝜕𝑧𝑘

𝑑𝑧𝑘) ∧ (𝑑�̄�1 + �̄�1
𝜕𝜙
𝜕�̄�𝑘

𝑑�̄�𝑘)

= 𝑒−𝜙[(1 + �̄�1
𝜕𝜙
𝜕�̄�𝑘

+ 𝑧1
𝜕𝜙
𝜕𝑧1

+ |𝑧1|2
𝜕𝜙
𝜕𝑧1

𝜕𝜙
𝜕�̄�1

)𝑑𝑧1 ∧ 𝑑�̄�1

+
𝑛∑

𝑘=2
(�̄�1

𝜕𝜙
𝜕�̄�𝑘

+ |𝑧1|2
𝜕𝜙
𝜕𝑧1

𝜕𝜙
𝜕�̄�𝑘

)𝑑𝑧1 ∧ 𝑑�̄�𝑘

+
𝑛∑

𝑘=2
(𝑧1

𝜕𝜙
𝜕𝑧𝑘

+ |𝑧1|2
𝜕𝜙
𝜕𝑧𝑘

𝜕𝜙
𝜕�̄�1

)𝑑𝑧𝑘 ∧ 𝑑�̄�1
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+
𝑛∑

𝑘,𝑙=2
|𝑧1|2

𝜕𝜙
𝜕𝑧𝑘

𝜕𝜙
𝜕�̄�𝑙

𝑑𝑧𝑘 ∧ 𝑑�̄�𝑙].

Hence,
𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
⟨𝐷1,0𝑠, 𝐷1,0𝑠⟩

= (
𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
+ 𝑂(1))𝑑𝑧1 ∧ 𝑑�̄�1 +

𝑛∑

𝑘=2
(

𝛽2|𝑠|2𝛽ℎ
𝑧1(1 − |𝑠|2𝛽ℎ )2

+ 𝑂(1))𝑑𝑧1 ∧ 𝑑�̄�𝑘

+
𝑛∑

𝑘=2
(

𝛽2|𝑠|2𝛽ℎ
�̄�1(1 − |𝑠|2𝛽ℎ )2

+ 𝑂(1))𝑑𝑧𝑘 ∧ 𝑑�̄�1 +
𝑛∑

𝑘,𝑙=2

𝛽2|𝑠|2𝛽ℎ
(1 − |𝑠|2𝛽ℎ )2

𝑑𝑧𝑘 ∧ 𝑑�̄�𝑙

= (
𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
+ 𝑂(1))𝑑𝑧1 ∧ 𝑑�̄�1 +

𝑛∑

𝑘=2
(

𝛽2|𝑠|2𝛽ℎ
𝑧1(1 − |𝑠|2𝛽ℎ )2

+ 𝑂(1))𝑑𝑧1 ∧ 𝑑�̄�𝑘

+
𝑛∑

𝑘=2
(

𝛽2|𝑠|2𝛽ℎ
�̄�1(1 − |𝑠|2𝛽ℎ )2

+ 𝑂(1))𝑑𝑧𝑘 ∧ 𝑑�̄�1 +
𝑛∑

𝑘,𝑙=2
𝑂(1)𝑑𝑧𝑘 ∧ 𝑑�̄�𝑙.

Let

(𝐴𝑖𝑗)𝑛𝑖,𝑗=1 = (𝑔𝑖�̄�)𝑛𝑖,𝑗=1 −
𝛽|𝑠|2𝛽ℎ
1 − |𝑠|2𝛽ℎ

(𝜙𝑖�̄�)𝑛𝑖,𝑗=1 +
𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
⟨𝐷1,0𝑠, 𝐷1,0𝑠⟩.

Write (𝐴𝑖𝑗)𝑛𝑖,𝑗=1 as a block matrix

(𝐴𝑖𝑗)𝑛𝑖,𝑗=1 = [
𝐴11 𝐴𝑟
𝐴𝑐 (𝐴𝑖𝑗)𝑛𝑖,𝑗=2

] , (26)

then

𝐴11 = 𝑔11̄ −
𝛽|𝑠|2𝛽ℎ
1 − |𝑠|2𝛽ℎ

𝜙11̄ +
𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
+ 𝑂(|𝑠|2𝛽−1ℎ ) + 𝑂(|𝑠|2𝛽ℎ )𝑂(1),

𝐴1𝑗 = 𝑔1�̄� −
𝛽|𝑠|2𝛽ℎ
1 − |𝑠|2𝛽ℎ

𝜙1�̄� + 𝑂(|𝑠|2𝛽−1ℎ ) + 𝑂(|𝑠|2𝛽ℎ ) + 𝑂(1), 𝑗 = 2,… , 𝑛,

𝐴𝑖1 = 𝑔𝑖1̄ −
𝛽|𝑠|2𝛽ℎ
1 − |𝑠|2𝛽ℎ

𝜙𝑖1̄ + 𝑂(|𝑠|2𝛽−1ℎ ) + 𝑂(|𝑠|2𝛽ℎ ) + 𝑂(1), 𝑖 = 2,… , 𝑛,

𝐴𝑘𝑙 = 𝑂(|𝑠|2𝛽ℎ ) + 𝑂(1), 𝑘, 𝑙 = 2,… , 𝑛.

Recall the formula for determinant of block matrices as in (26),

det(𝐴𝑖𝑗)𝑛𝑖,𝑗=1 = det(𝐴𝑖𝑗)𝑛𝑖,𝑗=2 ⋅ (𝐴11 − 𝐴𝑟((𝐴𝑖𝑗)𝑛𝑖,𝑗=2)
−1𝐴𝑐). (27)
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Using (27),

Ω𝑛
𝛽

𝜔𝑛 =
det(𝑔𝑖�̄� −

𝛽|𝑠|2𝛽ℎ
1−|𝑠|2𝛽ℎ

𝜙𝑖�̄� +
𝛽2

|𝑠|2(1−𝛽)ℎ (1−|𝑠|2𝛽ℎ )2
⟨𝐷1,0𝑠, 𝐷1,0𝑠⟩)

det(𝑔𝑖�̄�)

=
det(𝐴𝑖𝑗)𝑛𝑖,𝑗=1
det(𝑔𝑖�̄�)

= 𝑒𝑂(1) ⋅ det(𝐴𝑖𝑗)𝑛𝑖,𝑗=2 ⋅ (𝐴11 − 𝐴𝑟((𝐴𝑖𝑗)𝑛𝑖,𝑗=2)
−1𝐴𝑐)

= 𝑒𝑂(1) ⋅
⎛
⎜
⎝

𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
+ 𝑂(|𝑠|4𝛽−2ℎ ) + 𝑂(|𝑠|2𝛽−1ℎ ) + 𝑂(|𝑠|4𝛽−1ℎ )

+𝑂(|𝑠|2𝛽ℎ ) + 𝑂(|𝑠|4𝛽ℎ ) + 𝑂(1)
⎞
⎟
⎠
.

Thus, onefinds that the dominant term is
𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
. In anotherword,

we have shown Ω𝑛
𝛽 = 𝑒𝑂(1)

𝛽2

|𝑠|2(1−𝛽)ℎ (1 − |𝑠|2𝛽ℎ )2
𝜔𝑛, which is exactly what we

need. □

Lemma 2.9. There exists a uniform constant 𝐶 > 0 in 𝛽 such that,

sup
𝑋⧵𝐷

|�̃�𝛽| ≤ 𝐶,

when 𝛽𝑖 are small enough for every 𝑖.

Proof. First note that for a fixed 𝛽, �̃�𝛽 is bounded according to [10, 9]. We aim
to derive a uniform bound for �̃�𝛽 in 𝛽. Let 𝜒𝛽,𝜖 = �̃�𝛽 + 𝜖

∑𝑟
𝑖=1 log |𝑠𝑖|

2
ℎ𝑖
for small

𝜖 > 0. Since 𝜒𝛽,𝜖(𝑝) approaches −∞ when 𝑝 → 𝐷, 𝜒𝛽,𝜖 obtains its maximum
on 𝑋 ⧵ 𝐷, at say 𝑝max . Then

0 ≥
√
−1𝜕�̄��̃�𝛽(𝑝max) − 𝜖

𝑟∑

𝑖=1
𝜃𝑖(𝑝max),

where 𝜃𝑖 is the curvature of the Chern connection on (𝐿𝐷𝑖 , ℎ𝑖). Then at 𝑝max ,

(Ω𝛽 −
𝑟∑

𝑖=1
𝛽𝑖𝜃𝑖 +

√
−1𝜕�̄��̃�𝛽)𝑛 ≤ (Ω𝛽 +

𝑟∑

𝑖=1
(𝜖 − 𝛽𝑖)𝜃𝑖)𝑛 (28)

≤ 2𝑛Ω𝑛
𝛽𝑖
, (29)

by the fact thatΩ𝛽 ≥ 𝑟(𝜖−𝛽𝑖)𝜃𝑖 for small enough 𝜖 and 𝛽𝑖, as shown in Lemma
2.2. Combining (24) and (29), at 𝑝max ,

𝑒�̃�𝛽+𝐹𝛽 (𝑝max) ≤ 2𝑛
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⇒ �̃�𝛽(𝑝max) ≤ 𝑛 log 2 − 𝐹𝛽(𝑝max)
≤ 𝑛 log 2 − inf

𝑋⧵𝐷
𝐹𝛽 .

For any 𝑝 ∈ 𝑋 ⧵ 𝐷,

�̃�𝛽(𝑝) = 𝜒𝛽,𝜖(𝑝) − 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑝)

≤ 𝜒𝛽,𝜖(𝑝max) − 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑝)

≤ 𝑛 log 2 − inf
𝑋⧵𝐷

𝐹𝛽 + 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑝max) − 𝜖

𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑝)

≤ 𝐶

for some constant 𝐶 > 0, when letting 𝜖 → 0 and using (25). Similarly by
considering �̃�𝛽,𝜖 ∶= �̃�𝛽 − 𝜖

∑𝑟
𝑖=1 log |𝑠𝑖|

2
ℎ𝑖
achieving its minimum on 𝑋 ⧵ 𝐷, we

can show a lower bound for �̃�𝛽 on 𝑋 ⧵ 𝐷.
□

Step 2: The Laplacian estimates for 𝝎𝝓𝜷 and𝛀𝜷 .
In this section, we use Chern–Lu’s inequality to deduce the Laplacian esti-

mate of 𝜔𝜙𝛽 with respect to Ω𝛽 .
Consider the identity map

id ∶ (𝑋 ⧵ 𝐷,𝜔𝜙𝛽 )→ (𝑋 ⧵ 𝐷,Ω𝛽).

By definitions, Ric𝜔𝜙𝛽 = −𝜔𝜙𝛽 . From Lemma 2.4, |BisecΩ𝛽
| ≤ 𝐶3 for some

constant 𝐶3 > 0 when 𝛽𝑖 ∈ (0, 1
2
] for every 𝑖. Then by Chern–Lu’s inequality

[10, Proposition 7.1] (see also [14, Proposition 7.2]),

∆𝜔𝜙𝛽 (log tr𝜔𝜙𝛽 Ω𝛽) ≥ −1 − 2𝐶3 tr𝜔𝜙𝛽 Ω𝛽 . (30)

Set for 0 < 𝜖 ≪ 1,

𝐻𝛽,𝜖 = log tr𝜔𝜙𝛽 Ω𝛽 − 4(𝐶3 + 1)�̃�𝛽 + 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 ,

then

∆𝜔𝜙𝛽𝐻𝛽,𝜖 = ∆𝜔𝜙𝛽 (log tr𝜔𝜙𝛽 Ω𝛽 − 4(𝐶3 + 1)�̃�𝛽) − 𝜖
𝑟∑

𝑖=1
tr𝜔𝜙𝛽 𝜃𝑖 (31)

≥ ∆𝜔𝜙𝛽 (log tr𝜔𝜙𝛽 Ω𝛽) + 4(𝐶3 + 1) (12 tr𝜔𝜙𝛽 Ω𝛽 − 𝑛) − tr𝜔𝜙𝛽Ω𝛽
, (32)

where the last inequality is true by noting that 𝜃𝑖 ≤ 𝑀Ω𝛽 for some uniform
constant𝑀 > 0 and assuming 𝜖 < 1

2𝑟𝑀
and

∑𝑟
𝑖=1 𝛽𝑖 <

1
2𝑀
.
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Combine (30) and (32),

∆𝜔𝜙𝛽𝐻𝛽,𝜖 ≥ tr𝜔𝑖,𝓁 Ω𝛽𝑖 − 𝐶 (33)

for some uniform constant 𝐶 > 0. 𝐻𝛽,𝜖 achieves its maximum on 𝑋 ⧵𝐷, at, say
𝑞max . Then by (33),

tr𝜔𝜙𝛽 Ω𝛽(𝑞max) ≤ 𝐶.

For any 𝑞 ∈ 𝑋 ⧵ 𝐷,

log tr𝜔𝜙𝛽 Ω𝛽(𝑞) = 𝐻𝛽,𝜖(𝑞) + 4(𝐶3 + 1)�̃�𝛽(𝑞) − 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑞)

≤ 𝐻𝛽,𝜖(𝑞max) + 4(𝐶3 + 1)�̃�𝛽(𝑞) − 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑞)

≤ 𝐶 − 4(𝐶3 + 1)�̃�𝛽(𝑞max) + 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑞max)

+ 4(𝐶3 + 1)�̃�𝑖,𝓁(𝑞) − 𝜖
𝑟∑

𝑖=1
log |𝑠𝑖|2ℎ𝑖 (𝑞)

≤ some uniform constant 𝐶,

where the last inequality is true by Lemma 2.9 and letting 𝜖 → 0 for fixed 𝑞.
Hence we have shown

𝜔𝜙𝛽 ≥ 𝐶 ⋅Ω𝛽, (34)

on𝑋 ⧵ supp(𝐷) as desired. Since 𝜔𝜙𝛽 andΩ𝛽 are equivalent on𝑋, we obtain the
estimate (22) on 𝑋 ⧵ 𝐷.

□

2.3. Global convergence of 𝝎𝝓𝜷 . A smooth Kähler metric Ω𝑃𝐶 on 𝑋 ⧵ 𝐷 is
said to have mixed cusp and edge singularities along a divisor 𝐷 if whenever 𝐷
is locally given by 𝐷 =

∑𝑡
𝑖=1{𝑧𝑖 = 0} +

∑𝑚
𝑗=𝑡+1(1 − 𝛽𝑗){𝑧𝑗 = 0} with 𝑡 < 𝑚 ≤ 𝑛,

Ω𝑃𝐶 is quasi-isometric to the following metric:

𝜔𝑃𝐶 ∶=
𝑡∑

𝑖=1

√
−1𝑑𝑧𝑖 ∧ 𝑑�̄�𝑖

|𝑧𝑖|2 log
2 |𝑧𝑖|2

+
𝑚∑

𝑗=𝑡+1

𝛽2𝑗
√
−1𝑑𝑧𝑗 ∧ 𝑑�̄�𝑗

|𝑧𝑗|2(1−𝛽𝑗)
+

𝑛∑

𝓁=𝑚+1

√
−1𝑑𝑧𝓁 ∧ 𝑑�̄�𝓁.

In particular, when 𝑡 = 𝑚, 𝜔𝑃𝐶 has merely cusp singularities along 𝐷.
In the case 𝑡 = 𝑚, it is well known [11, 18] that if 𝐾𝑋 + 𝐷 is ample, there ex-
ists a unique Kähler–Einstein metric on 𝑋 ⧵𝐷 with cusp singularities along 𝐷.
In general, it is shown that if 𝐾𝑋 + 𝐷 is ample, there exists a unique Kähler–
Einstein metric on 𝑋 ⧵ 𝐷 with mixed cusp and cone singularities along 𝐷 [7,
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Theorem A]. As a corollary of Theorem 2.6, we study the global weak conver-
gence and local smooth convergence of the Kähler–Einstein crossing edgemet-
rics 𝜔𝜙𝛽 to a Kähler–Einstein mixed cusp and edge metric on (𝑋,𝐷𝛽) as some
of the cone angles tend to 0. The first observation is the following lemma.

Lemma 2.10. Assume 𝛽𝑖 → 0, for 𝑖 = 1,… , 𝑡 < 𝑟, and 𝛽𝑗 → 𝑑𝑗 ∈ (0, 1) for
𝑗 = 𝑡 + 1,… , 𝑟, then Ω𝛽 weakly converges to some Kähler mixed cusp and edge
metricΩ𝑃𝐶 . Moreover,Ω𝛽 converges toΩ𝑃𝐶 in 𝐶∞loc(𝑋 ⧵ supp(𝐷𝛽)).

Proof. Recall the definition ofΩ𝛽 . Note that log
[
(1 − |𝑠𝑖|

2𝛽𝑖
ℎ𝑖
)∕𝛽𝑖

]2
converges to

log log2 |𝑠𝑖|2ℎ𝑖 in 𝐿
1(𝑋,𝜔) and 𝐶∞loc(𝑋 ⧵ supp(𝐷𝛽)) as 𝛽𝑖 → 0 for each 𝑖 = 1,… , 𝑡.

Thus Ω𝛽 converges to

Ω𝑃𝐶 ∶= 𝜔 −
𝑡∑

𝑖=1

√
−1𝜕�̄� log log2 |𝑠𝑖|2ℎ𝑖 −

𝑟∑

𝑗=𝑡+1

√
−1𝜕�̄� log

⎡
⎢
⎢
⎣

1 − |𝑠𝑗|
2𝑑𝑗
ℎ𝑗

𝑑𝑗

⎤
⎥
⎥
⎦

2

in 𝐶∞loc(𝑋 ⧵ supp(𝐷𝛽)) sense and weakly in the sense of currents. It remains
to show that Ω𝑃𝐶 has mixed cusp and edge singularities along 𝐷𝛽 . To see this,
recall we denote by 𝜃𝑖 the Chern curvature form of (𝐿𝐷𝑖 , ℎ𝑖) for each 𝑖, then by
(8) and (10), we calculate that

𝑡∑

𝑖=1

√
−1𝜕�̄� log log2 |𝑠𝑖|2ℎ𝑖

=
𝑡∑

𝑖=1
2
√
−1 ⋅

(𝜕�̄�|𝑠𝑖|2ℎ𝑖 )(log |𝑠𝑖|
2
ℎ𝑖
)(|𝑠𝑖|2ℎ𝑖 ) − 𝜕(log |𝑠𝑖|2ℎ𝑖 |𝑠𝑖|

2
ℎ𝑖
)�̄�|𝑠𝑖|2ℎ𝑖

(log |𝑠𝑖|2ℎ𝑖 )
2(|𝑠𝑖|2ℎ𝑖 )

2

=
𝑟∑

𝑖=1

2
√
−1⟨𝐷1,0𝑠𝑖, 𝐷1,0𝑠𝑖⟩

log2 |𝑠𝑖|2ℎ𝑖 |𝑠𝑖|
2
ℎ𝑖

+ 2
log |𝑠𝑖|2ℎ𝑖

𝜃𝑖.

Thus,Ω𝑃𝐶 has cusp singularities along𝐷𝑖 for 𝑖 = 1,… , 𝑡. The result follows. □

Theorem 2.11. The Kähler–Einstein crossing edge metric 𝜔𝜙𝛽 converges to the
Kähler–Einstein mixed cusp and edge metric on (𝑋,𝐷𝛽) globally in a weak sense
and locally in a strong sense when 𝛽𝑖 → 0 for 𝑖 = 1,… , 𝑡 < 𝑟 and 𝛽𝑗 → 𝑑𝑗 ∈ (0, 1)
for 𝑗 = 𝑡 + 1,… , 𝑟.

Proof. By Theorem 2.6, the family of 𝜔𝜙𝛽 has uniformly bounded mass. Thus,
the family of 𝜔𝜙𝛽 is relatively compact in the weak topology. The same argu-
ments in the proof of Lemma 2.9 and elliptic estimates give respectively the 𝐶0-
estimate and all higher-order estimates for the family of 𝜔𝜙𝛽 . Therefore, any
weak limit 𝜔0 is smooth on 𝑋 ⧵ supp(𝐷𝛽) and this 𝐶∞loc-convergence indicates
that such 𝜔0 is Kähler–Einstein outside 𝐷𝛽 . Lemma 2.10 shows any such 𝜔0
also admits mixed cusp and edge singularities along 𝐷𝛽 . Thus, by the unique-
ness argument in this setting [7, Proposition 2.5], all such 𝜔0 coincides with
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the unique Kähler–Einstein metric on 𝑋 ⧵ supp(𝐷𝛽)with mixed cusp and cone
singularities along 𝐷𝛽 . Hence we have shown the locally strong and globally
weak convergence of 𝜔𝜙𝛽 to a Kähler–Einstein mixed cusp and edge metric as
𝛽𝑖 → 0 for 𝑖 = 1,… , 𝑡 and 𝛽𝑗 → 𝑑𝑗 for 𝑗 = 𝑡 + 1,… , 𝑟. □

3. Asymptotic behavior near the divisors in the small angle limit
Theorem 2.11 only gives us the smooth convergence of 𝜔𝜙𝛽 to a Kähler–

Einstein mixed cusp and edge metric away from the divisor when cone an-
gles approach 0. In this section, we study the asymptotic behavior of 𝜔𝜙𝛽 near
𝐷 when some of the cone angles tend to 0. More precisely, consider a fixed
point 𝑝 ∈ 𝐷𝛽 with a holomorphic coordinate chart (𝑈, {𝑧𝑖}𝑛𝑖=1) centered at 𝑝
such that 𝐷𝛽 ∩ 𝑈 = {𝑧1⋯ 𝑧𝑚 = 0}, for 𝑚 ≤ 𝑛 and 𝐷𝑗 ∩ 𝑈 = {𝑧𝑗 = 0} for
𝑗 = 1,… , 𝑚. Let 𝛽𝑖 denote the cone angle along 𝐷𝑖 for each 𝑖. From now on,
assume 𝛽1 ≤ 𝛽2 ≤ ⋯ ≤ 𝛽𝑚. We allow other cone angles to tend to 0, but
we always assume that 𝛽1 goes to 0 in the fastest speed, i.e., 𝛽1∕𝛽𝑖 ↛ +∞, for
𝑖 = 2,… , 𝑚.

3.1. A small neighborhood of 𝑫𝜷 . By choosing an appropriate coordinate
system [2, Lemma 4.1], whenever 𝐷𝛽 is locally given by {𝑧1⋯ 𝑧𝑚 = 0}, the
reference metric Ω𝛽 is equivalent to the following metric:

𝜔𝛽,mod ∶=
𝑚∑

𝑖=1

𝛽2𝑖
√
−1𝑑𝑧𝑖 ∧ 𝑑�̄�𝑖

|𝑧𝑖|2(1−𝛽𝑖)(1 − |𝑧𝑖|2𝛽𝑖 )2
+

𝑛∑

𝑗=𝑚+1

√
−1𝑑𝑧𝑗 ∧ 𝑑�̄�𝑗. (35)

Thus, Theorem 2.6 tells us on 𝑋 ⧵ supp(𝐷𝛽), there exists a uniform constant
𝐶 > 0 such that

𝐶−1𝜔𝛽,mod ≤ 𝜔𝜙𝛽 ≤ 𝐶𝜔𝛽,mod. (36)

Thanks to (36), it is enough to consider ((ℂ∗)𝑚 × ℂ𝑛−𝑚, 𝜔𝛽,mod) when dealing
with a small neighborhood of 𝐷𝛽 under the metric 𝜔𝜙𝛽 . Let us fix a point 𝑝 ∈
𝐷𝛽 . Let (𝑈, 𝑧1,… , 𝑧𝑛) be a holomorphic coordinate chart centered at 𝑝, such
that 𝑈 ∩ 𝐷𝛽 = {𝑧1⋯ 𝑧𝑚 = 0} and 𝑈 ∩ 𝐷𝑖 = {𝑧𝑖 = 0} for 𝑖 = 1,… , 𝑚. Let
𝔻 ∶= {|𝑧𝑖| ≤ 1, 𝑖 = 1,… , 𝑛} be the unit polydisk. Then we claim that the
distance function 𝑑𝛽 induced by the completion of 𝜔𝛽,mod on 𝔻 satisfies

𝑑𝛽(0, 𝑧) ≃
𝑚∑

𝑖=1

1
2 log (

1 + |𝑧𝑖|𝛽𝑖

1 − |𝑧𝑖|𝛽𝑖
) +

𝑛∑

𝑗=𝑚+1
|𝑧𝑗|, 𝑧 ∈ 𝔻, (37)

where "≃" means "is equivalent up to a constant independent of 𝑧 to". Indeed,
1
2 log (

1 + 𝑥𝛽𝑖

1 − 𝑥𝛽𝑖
) is the primitive of

𝛽𝑖
𝑥1−𝛽𝑖 (1 − 𝑥2𝛽𝑖 )

, and (37) follows from this

fact and (35). Summarizing the discussions above, it is enough to study the
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polydisk in ℂ𝑛

{|𝑧𝑖|𝛽𝑖 <
1 − 𝑒−2𝑎

1 + 𝑒−2𝑎
, 𝑖 = 1,… , 𝑚, 𝑧𝑗 < 𝑎, 𝑗 = 𝑚 + 1,… , 𝑛} , 𝑎 > 0,

when we study a neighborhood of 𝐷𝛽 given by the geodesic ball 𝐵𝜔𝜙𝛽 (𝑝, 𝑎) cen-
tered at 𝑝 of radius 𝑎 with respect to the metric 𝜔𝜙𝛽 .

3.2. The mixed cylinder and edge metric. In this section, we focus on a
small neighborhood of 𝐷𝛽 and show that in a neighborhood of 𝐷𝛽, a renor-
malization of 𝜔𝛽,mod locally converges to a mixed cylinder and edge metric (see
Definition 3.1 below) in the 𝐶∞-sense.

Definition 3.1. A Kähler metric �̃� on (ℂ∗)𝑚 ×ℂ𝑛−𝑚 is called a mixed cylinder
and edge metric if �̃� is quasi-isometric to the following metric:

𝜔mix ∶=
𝑡∑

𝑖=1

√
−1𝑑𝑧𝑖 ∧ 𝑑�̄�𝑖
|𝑧𝑖|2

+
𝑚∑

𝑗=𝑡+1

𝛽2𝑗
√
−1𝑑𝑧𝑗 ∧ 𝑑�̄�𝑗

|𝑧𝑗|2(1−𝛽𝑗)
+

𝑛∑

𝓁=𝑚+1

√
−1𝑑𝑧𝓁 ∧ 𝑑�̄�𝓁,

where 𝛽𝑗 ∈ (0, 1) for 𝑗 = 𝑡 + 1,… , 𝑚.

Denote by 𝔻(𝑎1,… , 𝑎𝑚, 𝑏) the set

{𝑧 ∈ (ℂ∗)𝑚 × ℂ𝑛−𝑚 ∶ |𝑧𝑖| < 𝑎𝑖, 𝑖 = 1,… , 𝑚, |𝑧𝑗| < 𝑏, 𝑗 = 𝑚 + 1,… , 𝑛}.

Let

𝑈𝛽 ∶= 𝔻
⎛
⎜
⎝
𝑒
− 1
2𝛽1 , (

𝛽1
𝛽2
)

1
2𝛽2
,… , (

𝛽1
𝛽𝑚

)

1
2𝛽𝑚

, 1
⎞
⎟
⎠
.

From section 3.1, one realizes𝑈𝛽 as a neighborhood of 𝐷𝛽 . We endow𝑈𝛽 with
1
𝛽21
𝜔𝛽,mod. Define a map

Ψ𝛽 ∶ 𝔻
⎛
⎜
⎝
𝑒

1
2𝛽1 , (

𝛽2
𝛽1
)

1
2𝛽2

,… , (
𝛽𝑚
𝛽1

)

1
2𝛽𝑚

, 1
𝛽1

⎞
⎟
⎠
→ 𝑈𝛽 = 𝔻

⎛
⎜
⎝
𝑒
− 1
2𝛽1 , (

𝛽1
𝛽2
)

1
2𝛽2

,… , (
𝛽1
𝛽𝑚

)

1
2𝛽𝑚

, 1
⎞
⎟
⎠

(𝑤1,… , 𝑤𝑚, 𝑤𝑚+1,… , 𝑤𝑛)↦
⎛
⎜
⎝
𝑒
− 1
𝛽1 𝑤1, (

𝛽1
𝛽2
)

1
𝛽2
𝑤2,… , (

𝛽1
𝛽𝑚

)

1
𝛽𝑚
𝑤𝑚, 𝛽1𝑤𝑚+1,… , 𝛽1𝑤𝑛

⎞
⎟
⎠
.

On Ψ−1
𝛽 (𝑈𝛽), the pull-back metric reads

Ψ∗
𝛽(

1
𝛽21
𝜔𝛽,mod) =

𝑒−2|𝑤1|2𝛽1

(1 − 𝑒−2|𝑤1|2𝛽1)2
⋅

√
−1𝑑𝑤1 ∧ 𝑑�̄�1

|𝑤1|2
+

𝑚∑

𝑖=2

√
−1𝑑𝑤𝑖 ∧ 𝑑�̄�𝑖

|𝑤𝑖|2(1−𝛽𝑖)(1 −
𝛽21
𝛽2𝑖
|𝑤𝑖|2𝛽𝑖 )2

(38)

+
𝑛∑

𝑗=𝑚+1

√
−1𝑑𝑤𝑗 ∧ 𝑑�̄�𝑗 . (39)
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Note that for (𝑤1,… , 𝑤𝑚, 𝑤𝑚+1,… , 𝑤𝑛) ∈ (ℂ∗)𝑚×ℂ𝑛−𝑚, |𝑤1|2𝛽1 → 1 as 𝛽1 → 0
and 𝛽21

𝛽2𝑖
|𝑤𝑖|2𝛽𝑖 → 0 as 𝛽1

𝛽𝑖
→ 0. Moreover, for any compact subset 𝐾 ⊂ (ℂ∗)𝑚 ×

ℂ𝑛−𝑚, when 𝛽1 is small enough, 𝐾 ⊂ Ψ−1
𝛽 (𝑈𝛽). Hence we have indeed shown

the following result.

Lemma3.2. Thepull-back of 1
𝛽21
𝜔𝛽,mod byΨ𝛽 onany compact subset𝐾 ⊂ (ℂ∗)𝑚×

ℂ𝑛−𝑚 converges to amixed cylindrical and conical metric in 𝐶∞(𝐾)when 𝛽1 → 0
and 𝛽𝑖 does not converge to 0 for each 𝑖 = 2,… , 𝑚.

Proof. Summarizing the discussions above, Ψ∗
𝛽(

1
𝛽21
𝜔𝛽,mod) converges to

𝑒−2

(1 − 𝑒−2)2
⋅

√
−1𝑑𝑤1 ∧ 𝑑�̄�1

|𝑤1|2
+

𝑚∑

𝑖=2

√
−1𝑑𝑤𝑖 ∧ 𝑑�̄�𝑖

|𝑤𝑖|2(1−𝛽𝑖)
+

𝑛∑

𝑗=𝑚+1

√
−1𝑑𝑤𝑗 ∧ 𝑑�̄�𝑗 =∶ �̂�,

which is amixed cylinder and edgemetric byDefinition 3.1, in𝐶∞(𝐾) as𝛽1 → 0
and 𝛽1

𝛽𝑖
→ 0,∀𝑖 = 2,… , 𝑚. □

3.3. The convergence of renormalized 𝝎𝝓𝜷 near𝑫𝜷 . For a Kähler metric 𝜉

on ℂ𝑛, let us denote �̄� ∶= Ψ∗
𝛽 (

1
𝛽21
𝜉).

Theorem 3.3. Let {𝛽1,𝑘}𝑘∈ℕ be a sequence of positive numbers converging to 0.
Assume further that lim𝑘→∞ 𝛽𝑖,𝑘 > 0 for each 𝑖 = 2,… , 𝑟. Assume all 𝛽𝑖,𝑘 ∈
(0, 1

2
]. Let 𝜔𝜙𝛽𝑘 be the (negatively curved) Kähler–Einstein crossing edge metric

on (𝑋,𝐷𝑘 =
∑𝑟

𝑖=1(1 − 𝛽𝑖,𝑘)𝐷𝑖). Then there exists a subsequence of the metric

spaces (𝑈𝛽𝑘 ,
1
𝛽21,𝑘

𝜔𝜙𝛽𝑘)which converges in pointed Gromov-Hausdorff topology to

((ℂ∗)𝑚×ℂ𝑛−𝑚, �̄�∞), where �̄�∞ is amixed cylindrical and conical metric. Indeed,
a subsequence of �̄�𝜙𝛽𝑘 converges in 𝐶

∞
loc((ℂ

∗)𝑚 × ℂ𝑛−𝑚)-topology to �̄�∞.

Proof. First note that 𝜔𝜙𝛽 admits a potential function on 𝑈𝛽 since 𝜔𝛽,mod ad-
mits one. Thus, �̄�𝜙𝛽 admits a potential function on Ψ

−1
𝛽 (𝑈𝛽), denoted by �̄�𝛽 .

The proof consists of three steps. We first deduce the 𝐶0-estimate of �̄�𝛽 us-
ing Theorem 2.6. Then we derive the 𝐶2,𝛼-estimates for �̄�𝛽 by the standard
regularization arguments for Monge–Ampère equations. This combining with
Arzelà–Ascoli Theorem gives us a cluster value of the metrics. Finally, we use
that smooth convergence to conclude the pointed Gromov–Hausdorff conver-
gence as wanted.
Step 1: 𝑪𝟎-estimates.
Discussions in section 3.1 indicate that there exists a uniform constant𝐶 > 0

(independent of 𝛽 ∈ (0, 1
2
]𝑟) such that

𝐶−1𝜔𝛽,mod ≤ 𝜔𝜙𝛽 ≤ 𝐶𝜔𝛽,mod
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on 𝑈𝛽 . Thus

𝐶−1Ψ∗
𝛽 (

1
𝛽21
𝜔𝛽,mod) ≤ �̄�𝜙𝛽 ≤ 𝐶Ψ∗

𝛽 (
1
𝛽21
𝜔𝛽,mod) .

By Lemma 3.2, Ψ∗
𝛽(

1
𝛽21
𝜔𝛽,mod) converges in 𝐶∞(𝐾) to �̂� for any compact 𝐾 ⊂

(ℂ∗)𝑚 × ℂ𝑛−𝑚. Hence, there exists a constant 𝐶𝐾 > 0 (independent of 𝛽) such
that

𝐶−1𝐾 �̂� ≤ �̄�𝜙𝛽 ≤ 𝐶𝐾�̂�. (40)

By (40), �̄�𝜙𝛽 is uniformly bounded inmass on𝐾. Then by theweak compactness
of positive currents and the equivalence between this and the𝐿1-convergence of
potential functions, we can find a normalized potential function �̄�𝛽 such that
it has a uniform 𝐿1loc bound, hence uniform 𝐿𝑝loc bounds, for any 𝑝 > 1. By
(40), ∆�̄�𝛽 is uniformly bounded. Thus by standard elliptic regularity results, [5,
Theorem 8.17], there exists a constant 𝐶 independ of 𝛽 such that

||�̄�𝛽||𝐶0(𝐾) ≤ 𝐶, for 𝐶 = 𝐶(𝐾). (41)

Step 2: Higher-order estimates and the smooth local convergence.
Since 𝜔𝜙𝛽 satisfies the Kähler–Einstein equation outside 𝐷𝛽, �̄�𝜙𝛽 satisfies

Ric �̄�𝜙𝛽 = −𝛽21�̄�𝜙𝛽 on 𝐾. (42)

Let 𝑑𝑉eucl denote the Euclidean volume form on (ℂ∗)𝑚 × ℂ𝑛−𝑚. Define

𝐻𝛽 ∶= log
�̄�𝑛𝜙𝛽𝑒

−𝛽21 �̄�𝛽

𝑑𝑉eucl
.

𝐻𝛽 is pluriharmonic by (42). By the definition of𝐻𝛽,

(
√
−1𝜕�̄��̄�𝛽)𝑛 = 𝑒𝛽

2
1 �̄�𝛽+𝐻𝛽𝑑𝑉eucl. (43)

By (40),

||𝛽21�̄�𝛽 +𝐻𝛽||𝐶0(𝐾) < +∞. (44)

Combining (41) and (44), we see ||𝐻𝛽||𝐶0(𝐾) < +∞. Then by gradient estimates
for pluriharmonic functions,

||𝐻𝛽||𝐶𝑘(𝐾) < 𝐶(𝑘, 𝐾), where 𝐶(𝑘, 𝐾) only depends on 𝑘 and 𝐾 not on 𝛽.
(45)

Define

Φ ∶ 𝜙 ↦ log
(
√
−1𝜕�̄�𝜙)𝑛𝑒−𝛽

2
1𝜙

𝑑𝑉eucl
.

Φ is a uniform elliptic concave operator as a function of 𝜕�̄�𝜙. Hence by the
Evans–Krylov theory, ||𝜙||𝐶2,𝛼(𝐾) is controlled by ||𝜙||𝐶0(𝐾′), ||∆𝜙||𝐶0(𝐾′), and
||Φ(𝜙)||𝐶0,1(𝐾′) for some 𝐾′ ⋑ 𝐾. Since Φ(�̄�𝛽) = 𝐻𝛽, by (45), (41) and the fact
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||∆�̄�𝛽||𝐶0(𝐾′) < +∞, there exist some 𝛼 ∈ (0, 1) and a uniform constant 𝐶 > 0
such that

||�̄�𝛽||𝐶2,𝛼(𝐾) ≤ 𝐶.

By standard bootstrapping arguments, every derivative of �̄�𝛽 is uniformly
bounded on 𝐾. Then Arzelà-Ascoli theorem indicates (�̄�𝛽𝑘 )𝑘∈ℕ has a conver-
gent subsequence in 𝐶∞(𝐾)-topology. Recall (42), letting 𝛽1 → 0 then due to
the 𝐶∞-convergence above we get a cluster value �̄�∞ such that

Ric �̄�∞ = 0.

By (40), �̄�∞ is quasi-isometric to �̂�, and therefore is a mixed cylinder and edge
metric.
Step 3: Pointed Gromov–Hausdorff convergence
It remains to show a subsequence of (𝑈𝛽𝑘 ,

1
𝛽21,𝑘

𝜔𝜙𝛽𝑘 ) converges in pointed

Gromov-Hausdorff topology to ((ℂ∗)𝑚 × ℂ𝑛−𝑚, �̄�∞). Fix 𝑞 ∈ (ℂ∗)𝑚 × ℂ𝑛−𝑚

and fix a radius 𝑎 > 0. First note that by construction, 𝐵�̄�𝜙𝛽𝑘
(𝑞, 𝑎) is isometric

to 𝐵 1
𝛽21,𝑘

𝜔𝜙𝛽𝑘
(Ψ𝛽𝑘 (𝑞), 𝑎). Secondly, by letting the index 𝑘 ∈ ℕ be large enough,

we have 𝐵�̄�∞(𝑞, 2𝑎) ⊂ Ψ−1
𝛽𝑘
(𝑈𝛽𝑘 ). Finally, due to the local 𝐶

∞-convergence,
𝐵�̄�𝜙𝛽𝑘

(𝑞, 𝑎) ⊂ 𝐵�̄�∞(𝑞, 2𝑎) and 𝐵�̄�𝜙𝛽𝑘
(𝑞, 𝑎) converges to 𝐵�̄�∞(𝑞, 𝑎) in the Gromov-

Hausdorff topology. Therefore (𝑈𝛽𝑘 ,
1
𝛽21,𝑘

𝜔𝜙𝛽𝑘 ) converges (up to a subsequence)

in pointed Gromov-Hausdorff topology to ((ℂ∗)𝑚×ℂ𝑛−𝑚, �̄�∞) by [1, Definition
8.1.1]. □

If we further allow more than one cone angles converge to 0, then we have
the following results by modifying the result of Lemma 3.2.

Theorem 3.4. Let {𝛽1,𝑘}𝑘∈ℕ be a sequence of positive numbers converging to 0.
Assume further that for any 𝑖 = 2,… , 𝑟 such that {𝛽𝑖,𝑘}𝑘∈ℕ also converges to 0,
there holds lim𝑘→∞

𝛽1,𝑘
𝛽𝑖,𝑘

∈ [0, 1]. Assume 𝛽𝑖,𝑘 ∈ (0, 1
2
] for 𝑖 = 1, 2,… , 𝑟 and

all 𝑘 ∈ ℕ. Let 𝜔𝜙𝛽𝑘 be the (negatively curved) Kähler–Einstein crossing edge
metric on (𝑋,𝐷𝑘 =

∑𝑟
𝑖=1(1 − 𝛽𝑖,𝑘)𝐷𝑖). Then there exists a subsequence of the

metric spaces (𝑈𝛽𝑘 ,
1
𝛽21,𝑘

𝜔𝜙𝛽𝑘 ) converging in pointed Gromov-Hausdorff topology

to ((ℂ∗)𝑚 ×ℂ𝑛−𝑚, �̄�∞), where �̄�∞ is a mixed cylinder and edge metric with cylin-
drical part along components whose cone angles converge to 0 and conical part
along other components.

Proof. Without loss of generality, assume

lim
𝑘→∞

𝛽𝑖,𝑘 = 0, for 𝑖 = 1,… , 𝑡, 𝑡 < 𝑚, (46)

lim
𝑘→∞

𝛽𝑗,𝑘 ∶= 𝛽𝑗,∞ > 0, for 𝑗 = 𝑡 + 1,… , 𝑚. (47)
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Moreover, assume

lim
𝑘→∞

𝛽1,𝑘
𝛽𝓁,𝑘

= 𝑐𝓁 ∈ (0, 1], for 𝓁 = 1,… , 𝑠, 𝑠 < 𝑡, (48)

lim
𝑘→∞

𝛽1,𝑘
𝛽𝓁,𝑘

= 0, for 𝓁 = 𝑠 + 1,… , 𝑡. (49)

Recall in Lemma 3.2, we denote by 𝔻(𝑎1,… , 𝑎𝑚, 𝑏) the set

{𝑧 ∈ (ℂ∗)𝑚 × ℂ𝑛−𝑚 ∶ |𝑧𝑖| < 𝑎𝑖, 𝑖 = 1,… , 𝑚, |𝑧𝑗| < 𝑏, 𝑗 = 𝑚 + 1,… , 𝑛},

and

Ψ𝛽 ∶ 𝔻
⎛
⎜
⎝
𝑒

1
2𝛽1 , (

𝛽2
𝛽1
)

1
2𝛽2

,… , (
𝛽𝑚
𝛽1
)

1
2𝛽𝑚

, 1
𝛽1

⎞
⎟
⎠
→ 𝑈𝛽 ∶= 𝔻

⎛
⎜
⎝
𝑒
− 1
2𝛽1 , (

𝛽1
𝛽2
)

1
2𝛽2

,… , (
𝛽1
𝛽𝑚

)

1
2𝛽𝑚

, 1
⎞
⎟
⎠

(𝑤1,… , 𝑤𝑚, 𝑤𝑚+1,… , 𝑤𝑛)↦
⎛
⎜
⎝
𝑒
− 1
𝛽1 𝑤1, (

𝛽1
𝛽2
)

1
𝛽2
𝑤2,… , (

𝛽1
𝛽𝑚

)

1
𝛽𝑚
𝑤𝑚, 𝛽1𝑤𝑚+1,… , 𝛽1𝑤𝑛

⎞
⎟
⎠
.

Now let us modify Ψ𝛽 by defining

𝑉𝛽 ∶= 𝔻
⎛
⎜
⎜
⎝

𝑒
− 1
2𝛽1 , 𝑒

− 1
2𝛽2 ,… , 𝑒

− 1
2𝛽𝑠 , (

𝛽1
𝛽𝑠+1

)

1
2𝛽𝑠+1

,… , (
𝛽1
𝛽𝑚

)

1
2𝛽𝑚

, 1
⎞
⎟
⎟
⎠

,

and

Φ𝛽 ∶ 𝔻
⎛
⎜
⎜
⎝

𝑒
1
2𝛽1 , 𝑒

1
2𝛽2 ,… , 𝑒

1
2𝛽𝑠 , (

𝛽𝑠+1
𝛽1

)

1
2𝛽𝑠+1

,… , (
𝛽𝑚
𝛽1

)

1
2𝛽𝑚

, 1
𝛽1

⎞
⎟
⎟
⎠

→ 𝑉𝛽 ,

Φ𝛽(𝑤1,… , 𝑤𝑠, 𝑤𝑠+1,… , 𝑤𝑚, 𝑤𝑚+1,… , 𝑤𝑛) =

⎛
⎜
⎜
⎝

𝑒
− 1
𝛽1 𝑤1, 𝑒

− 1
𝛽2 𝑤2,… , 𝑒

− 1
𝛽𝑠 𝑤𝑠, (

𝛽1
𝛽𝑠+1

)

1
𝛽𝑠+1

𝑤𝑠+1,… , (
𝛽1
𝛽𝑚

)

1
𝛽𝑚
𝑤𝑚, 𝛽1𝑤𝑚+1,… , 𝛽1𝑤𝑛

⎞
⎟
⎟
⎠

.

Then

Φ∗
𝛽 (

1
𝛽21
𝜔𝛽,mod) =

𝑠∑

𝑖=1

𝛽21
𝛽2𝑖

𝑒−2|𝑤𝑖|2𝛽𝑖

(1 − 𝑒−2|𝑤𝑖|2𝛽𝑖 )2
⋅

√
−1𝑑𝑤𝑖 ∧ 𝑑�̄�𝑖

|𝑤𝑖|2

+
𝑚∑

𝑗=𝑠+1

√
−1𝑑𝑤𝑗 ∧ 𝑑�̄�𝑗

|𝑤𝑗|2(1−𝛽𝑗) (1 −
𝛽21
𝛽2𝑗
|𝑤𝑗|2𝛽𝑗)

2 +
𝑛∑

𝓁=𝑚+1

√
−1𝑑𝑤𝓁 ∧ 𝑑�̄�𝓁.

Denote

𝛽𝑘 ∶= (𝛽1,𝑘,… , 𝛽𝑟,𝑘), for 𝑘 ∈ ℕ∗.
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For a compact 𝐾 ⊂ (ℂ∗)𝑚 × ℂ𝑛−𝑚, there exists a large enough 𝑘 such that

𝐾 ⊂ Φ−1
𝛽𝑘
(𝑉𝛽𝑘 ). By assumptions (46) and (48), Φ

∗
𝛽𝑘

⎛
⎜
⎝

1
𝛽21,𝑘

𝜔𝛽𝑘 ,mod
⎞
⎟
⎠
converges in

𝐶∞(𝐾) to
𝑠∑

𝑖=1

𝑒−2

𝑐2𝑖 (1 − 𝑒−2)

√
−1𝑑𝑤𝑖 ∧ 𝑑�̄�𝑖

|𝑤𝑖|2
+

𝑡∑

𝑗=𝑠+1

√
−1𝑑𝑤𝑗 ∧ 𝑑�̄�𝑗

|𝑤𝑗|2

+
𝑚∑

𝓁=𝑡+1

√
−1𝑑𝑤𝓁 ∧ 𝑑�̄�𝓁

|𝑤𝓁|2(1−𝛽𝓁,∞)
+

𝑛∑

𝑞=𝑚+1

√
−1𝑑𝑤𝑞 ∧ 𝑑�̄�𝑞 =∶ �̌�,

which is a mixed cylindrical and conical metric by Definition 3.1. The cylindri-
cal parts are along 𝐷𝑖, 𝑖 = 1,… , 𝑡, whose cone angle goes to 0. The remainder
of the proof is similar to that of Theorem 3.3.

□
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