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Generalized residual finiteness of groups

Nic Brody and Kasia Jankiewicz

Abstract. A countable group is residually finite if every nontrivial element
can act nontrivially on a finite set. When a group fails to be residually finite,
wemightwant tomeasure howdrastically it fails - it could be that only finitely
many conjugacy classes of elements fail to act nontrivially on a finite set, or
it could be that the group has no nontrivial actions on finite sets whatsoever.
We define a hierarchy of properties, and construct groups which become ar-
bitrarily complicated in this sense.
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1. Introduction
Many infinite discrete groups are known to be residually finite. For example,

free groups, and more generally, by the theorem of Mal’cev [Mal40], all finitely
generated linear groups are residually finite. Other examples include all finitely
generated nilpotent groups. A famous open problem of geometric group theory
asks whether all Gromov-hyperbolic groups are residually finite [Bes04, Prob
1.15]. Without the assumption of Gromov-hyperbolicity, there are also many
examples of groups which are not residually finite.
Of course if a group 𝐺 has no finite index subgroups at all, then 𝐺 is very far

from being residually finite. This happens, for example, for the Higman group
(see Example 3.1) or any infinite simple group. However, there are also non-
residually finite groups that are very close to being residually finite, in the sense
that the intersection of all finite-index subgroups is a finite nontrivial group (see
Example 3.3). We would like to distinguish between these possibilities.

Received January 9, 2024.
2020Mathematics Subject Classification. 20E26, 20F65.
Key words and phrases. residual finiteness, wreath products.

ISSN 1076-9803/2024

583

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm


584 NIC BRODY AND KASIA JANKIEWICZ

We propose the notion of 𝛼-residual finiteness for arbitrary ordinal 𝛼, which
generalizes the notions of a finite group, and a residually finite group. For ex-
ample, the Deligne group (defined in Example 3.2), which is a non-residually
finite extension ofℤ by a residually finite group, is (𝜔⋅2)-residually finite, where
𝜔 is the order type of the natural numbers, and so 𝜔 ⋅ 2 is the order type cor-
responding to two copies of natural numbers listed one after the other. On the
other hand, the Higman group, whose intersection of all finite index subgroups
is an infinite simple group, is not 𝛼-residually finite for any ordinal 𝛼. For a
precise definition of 𝛼-residual finiteness, see Section 3.
Our main result is a construction of the following examples.

Theorem 1.1. For every 𝑛 ∈ ℤ, where 𝑛 ≥ 1, there exists a finitely generated
group 𝐺𝑛 which is 𝜔 ⋅ 𝑛-residually finite, but not 𝜔 ⋅ (𝑛 − 1)-residually finite.

We also give a characterization of 𝛼-residual finiteness in terms of actions on
rooted 𝛼-trees, which can be thought of as trees of depth 𝛼. Informally, those
are collections of vertex sets and edge sets indexed by ordinals 𝑖 ≤ 𝛼, with edges
joining vertices in sets whose indices differ by 1. For limit ordinals, the vertex
sets are defined as the limit sets of the preceding sets of vertices.

Theorem 1.2. A group 𝐺 is 𝛼-residually finite if and only if 𝐺 admits a simple
action on a rooted 𝛼-tree.

This note is organized as follows. In Section 2 we recall some background
on ordinals and cardinals. In Section 3 we give motivation and definition of 𝛼-
residual finiteness, and prove some properties of this notion. In the following
Section 4 we include a discussion on 𝛼-trees and prove Theorem 1.2. Finally,
in Section 5 we prove Theorem 1.1

Acknowledgement. We thankMartinBridson,MarcoLinton, and the anony-
mous referee for their helpful comments. The second author was supported by
the NSF grants DMS-2203307 and DMS-2238198.

2. Background on ordinals and cardinals
We include basics on ordinals and cardinals. For more background see e.g.

[Hal74].

2.1. Ordinals. An ordered set (𝑋,≤) consists of a set 𝑋, and a binary relation
≤, which is reflexive, anti-symmetric, and transitive. An ordered set (𝑋,≤) is
well-ordered, if for any 𝑎, 𝑏 ∈ 𝑋 either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎, and every non-empty
subset of 𝑋 has a least element with respect to ≤.
Let (𝑋,≤) and (𝑌,≤) be two ordered sets. A function 𝑓 ∶ 𝑋 → 𝑌 is mono-

tonic if for every 𝑎, 𝑏 ∈ 𝑋 such that 𝑎 ≤ 𝑏, we have 𝑓(𝑎) ≤ 𝑓(𝑏). An order
isomorphism is a monotonic bijection whose inverse is also monotonic. We say
(𝑋,≤) and (𝑌,≤) have the same order type if there exists an order isomorphism
between 𝑋 and 𝑌. We note that having the same order type is an equivalence
relation.
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An ordinal is the order type of a well-ordered set. The ordinal 𝜔 is the order
type of the natural numbers with the standard order ≤. Every natural number
𝑛 is the order type of the set {1, 2,… , 𝑛} with the standard order.

2.2. Ordinal arithmetic. The arithmetic operations of addition andmultipli-
cation can be defined for ordinals. Let 𝛼, 𝛽 be two ordinals. We define 𝛼 + 𝛽
to be the ordinal whose underlying set is the disjoint union of those of 𝛼 and 𝛽,
and the order is extended so that each element of 𝛼 is less than each element of
𝛽. We let 𝛼 ⋅ 𝛽 be the ordinal whose underlying set is the product of those for
𝛼 and 𝛽, and the order is reverse lexicographic, so that (𝑎1, 𝑏1) < (𝑎2, 𝑏2) if and
only if 𝑏1 < 𝑏2 or 𝑏1 = 𝑏2 and 𝑎1 < 𝑎2.
For example, the ordinal 𝜔+𝜔 corresponds to the order type of two copies of

the natural numbers, where each number in the first copy is smaller than each
number in the second copy. This is the same ordinal as 𝜔 ⋅ 2.
We note that neither addition nor multiplication is commutative. For exam-

ple, 1+𝜔 = 𝜔, but 𝜔+1 is the order type of the ordered set (ℕ∪ {∞},≤)where
the order on ℕ is standard, and 𝑛 ≤∞ for every 𝑛 ∈ ℕ. In particular, the order
type𝜔+1 contains a largest element, while the order type𝜔 does not. Similarly,
𝜔 ⋅ 2 ≠ 2 ⋅ 𝜔.
An ordinal 𝛼 is a successor of 𝛽 if 𝛼 is the smallest ordinal greater than 𝛽, i.e.

𝛼 = 𝛽 + 1. A limit ordinal is a non-zero ordinal that is not a successor ordinal.
Equivalently, 𝛼 is a limit ordinal if there exists 𝛽 such that 𝛽 < 𝛼, and for every
such 𝛽, there exists an ordinal 𝛾 such that 𝛽 < 𝛾 < 𝛼. Note that, in particular,
every successor ordinal is of the form 𝛼+ 𝑛 for some limit ordinal 𝛼 and 𝑛 > 0.

2.3. Cardinals. A cardinal is a set considered up to bijection. There is a natu-
ral association of a cardinal to each ordinal, by taking any set of given order type
and considering it up to bijection. Finite ordinals are in one to one correspon-
dence with finite cardinals, and both can be identified with natural numbers.
Among infinite ordinals, there are many ordinals that correspond to the same
cardinal; ordinals 𝜔, 𝜔 + 1 and 𝜔 ⋅ 2 all correspond to the cardinal ℵ0.

3. 𝜶-residual finiteness
We recall that a countable group 𝐺 is residually finite if for every nontrivial

𝑔 ∈ 𝐺, there exists a finite index subgroup 𝐻 ⊆ 𝐺 such that 𝑔 ∉ 𝐻. Equiv-
alently, 𝐺 is residually finite if for every nontrivial 𝑔 ∈ 𝐺 there exists a finite
quotient 𝜙 ∶ 𝐺 → 𝑄 such that 𝜙(𝑔) ≠ 1. The residual finiteness core 𝖢𝗈𝗋𝖾(𝐺)
of a countable group 𝐺, is the intersection of all finite index subgroups of 𝐺. A
group 𝐺 is residually finite if and only if 𝖢𝗈𝗋𝖾(𝐺) = {1}.

3.1. Motivation. We start with reviewing some examples of non-residually fi-
nite groups.

Example 3.1 ([Hig51]). The Higman group is given by the presentation

𝐻 = ⟨𝑎, 𝑏, 𝑐, 𝑑 ∣ 𝑎−1𝑏𝑎 = 𝑏2, 𝑏−1𝑐𝑏 = 𝑐2, 𝑐−1𝑑𝑐 = 𝑑2, 𝑑−1𝑎𝑑 = 𝑎2⟩.



586 NIC BRODY AND KASIA JANKIEWICZ

It is an infinite group that admits no finite quotients. In particular, 𝖢𝗈𝗋𝖾(𝐻) =
𝐻.

Example 3.2 ([Del78], see also [Mor09]). Note that the fundamental group of
𝑆𝑝2𝑛(ℝ) is ℤ. There exists a finite index subgroup 𝐺 ⊆ 𝑆𝑝2𝑛(ℤ) such that the
preimage𝐺 of𝐺 in the universal cover ˜𝑆𝑝2𝑛(ℝ) of 𝑆𝑝2𝑛(ℝ) is a central extension

1→ ℤ→ 𝐺 → 𝐺 → 1.
Moreover, every finite index subgroup of 𝐺 contains the kernel ℤ, and in fact
𝖢𝗈𝗋𝖾(𝐺) is equal to the index two subgroup 2ℤ of the kernelℤ. In particular, 𝐺
is not residually finite, but {residually finite}-by-{residually finite}.

Example 3.3. If instead of lifting 𝐺 to the universal cover, we lift to a finite
cover of degree 𝑘 ≥ 3, we obtain a central extension of the form

1→ ℤ∕𝑘ℤ→ 𝐺 → 𝐺 → 1.
The group 𝐺 is not residually finite, but finite-by-{residually finite}.

Our goal is to distinguish the above groups using a finer notion than residual
finiteness, which we define in the next section.

3.2. Definition.

Definition 3.4. Let 𝛼 be an ordinal and 𝜅 a cardinal. A group 𝐺 is called 𝛼-
residually 𝜅-bounded if there exists an 𝛼-indexed chain {C𝑖(𝐺)}𝑖≤𝛼 of subgroups
of 𝐺 so that

(i) C0(𝐺) = 𝐺, and C𝛼(𝐺) = {1},
(ii) [C𝑖(𝐺) ∶ C𝑖+1(𝐺)] < 𝜅 for all 𝑖 < 𝛼,
(iii) C𝜆(𝐺) =

⋂
𝑖<𝜆 C𝑖(𝐺) for limit ordinals 𝜆 ≤ 𝛼.

The chain of subgroups {C𝑖(𝐺)}𝑖≤𝛼 is called an (𝛼, 𝜅)-residual chain for 𝐺.

When (𝛼, 𝜅) = (𝜔,ℵ0), we recover the standard notion of residual finiteness.
Groupswhich are𝛼-residuallyℵ0-boundedwill be called𝛼-residually finite. We
note that if 𝐺 is 𝛼-residually finite, then 𝐺 is 𝛽-residually finite for every 𝛽 > 𝛼.
Similarly, if 𝐺 is 𝛼-residually 𝜅1-bounded, then 𝐺 is 𝛼-residually 𝜅2-bounded

for every 𝜅2 > 𝜅1. Moreover, every group 𝐺 is 1-residually 𝜅-bounded for every
𝜅 > |𝐺|. However, if 𝑝 is prime and 𝑘 < 𝑝,ℤ∕𝑝ℤ is not 𝛼-residually 𝑘-bounded
for any 𝛼.

Definition 3.5. We say the residual finiteness depth 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝛼 if 𝐺 is 𝛼-
residually finite, but not 𝛽-residually finite for any 𝛽 < 𝛼

While our definition does not appear in the literature,MarcoLinton informed
us of the following result of Baumslag, which we restate in our terminology.

Theorem 3.6 ([Bau71]). Every positive one-relator group (i.e. where the relator
is a positive word) is 𝜔 ⋅ 𝑛-residually finite for some 𝑛.



GENERALIZED RESIDUAL FINITENESS OF GROUPS 587

Baumslag also conjectured [Bau74] that every one-relator group is 𝜔 ⋅ 𝑛-
residually finite for some𝑛. One should note thatmanywell-knownone-relator
groups (including non-solvable Baumslag-Solitar groups) are not Hopfian, and
consequently, not residually finite.

3.3. Properties. The notion of 𝛼-residual finiteness is not very interesting for
finite ordinals. Indeed, for every𝑛 ∈ ℕ such that𝑛 ≥ 1 a group𝐺 is𝑛-residually
finite if and only if 𝐺 is finite. More generally, we have the following.

Proposition 3.7. If 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝛼, then 𝛼 is 0, 1, a limit ordinal, or the succes-
sor of a limit ordinal.

Proof. Any successor ordinal can be expressed as 𝛼 + 𝑛 for some 𝑛 ≥ 1, and
some limit ordinal 𝛼. Suppose that 𝐺 is (𝛼+𝑛)-residually finite for some 𝑛 ≥ 2
and sone limit ordinal𝛼, and let {C𝑖(𝐺)}𝑖≤𝛼+𝑛 be its𝛼+𝑛 index chain provided by
the definition. That means that C𝛼+𝑛(𝐺) = {1} and [C𝛼+𝑛−1(𝐺) ∶ C𝛼+𝑛(𝐺)] <
∞,. . . , [C𝛼(𝐺) ∶ C𝛼+1(𝐺)] < ∞, hence [C𝛼(𝐺) ∶ C𝛼+𝑛(𝐺)] < ∞. In partic-
ular the chain {C′𝑖(𝐺)}𝑖≤𝛼+1 where C′𝑖(𝐺) = C𝑖(𝐺) for 𝑖 ≤ 𝛼, and C′𝛼+1(𝐺) =
C𝛼+𝑛(𝐺) = {1} is an (𝛼 + 1, ℵ0)-residual chain for 𝐺 as in Definition 3.4. Thus
𝐺 is (𝛼 + 1)-residually finite. □

Example 3.8. We have 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 0 if and only if 𝐺 is the trivial group, and
𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 1 if and only if 𝐺 is a nontrivial finite group. A group 𝐺 with
𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝜔 + 1 is finite-by-residually finite.
More generally, we have the following.

Proposition 3.9. Suppose that

1→ 𝑁 → 𝐺
𝜋
,→ 𝑄 → 1

is a short exact sequence of groups where 𝑄 is 𝛼1-residually 𝜅1-bounded and𝑁 is
𝛼2-residually 𝜅2-bounded. Then 𝐺 is (𝛼1 + 𝛼2)-residuallymax{𝜅1, 𝜅2}-bounded.
Proof. Let {C𝑖(𝑄)}𝑖≤𝛼1 , {C𝑖(𝑁)}𝑖≤𝛼2 be (𝛼1, 𝜅1)- and (𝛼2, 𝜅2)-residual chains for

𝑄 and 𝑁 respectively. For 𝑖 ≤ 𝛼1 + 𝛼2 set C𝑖(𝐺) = {𝜋
−1(C𝑖(𝑄)) for 𝑖 ≤ 𝛼1

C𝑖−𝛼1(𝑁) for 𝑖 > 𝛼1
Then C𝛼1(𝐺) =

⋂
𝑖<𝛼1

𝜋−1(C𝑖(𝑄)) = 𝜋−1(⋂𝑖<𝛼1
C𝑖(𝑄)) = 𝜋−1(1𝑄) = 𝑁. Thus

{C𝑖(𝐺)}𝑖≤𝛼1+𝛼2 is an (𝛼1 + 𝛼2,max{𝜅1, 𝜅2})-residual chain for 𝐺. □

Proposition 3.10. Let 𝐺 be a group such that 𝖢𝗈𝗋𝖾(𝐺) has 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝖢𝗈𝗋𝖾(𝐺))) =
𝛼 > 0. Then 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝜔 + 𝛼.
Proof. Note that if 𝖢𝗈𝗋𝖾(𝐺) is 𝛼-residually finite for some ordinal 𝛼 > 0, then
necessarily [𝐺 ∶ 𝖢𝗈𝗋𝖾(𝐺)] = ∞. Indeed, if [𝐺 ∶ 𝖢𝗈𝗋𝖾(𝐺)] < ∞, then any finite
index subgroup of 𝖢𝗈𝗋𝖾(𝐺), which exists by the assumption that 𝖢𝗈𝗋𝖾(𝐺) is 𝛼-
residually finite, would also have finite index in 𝐺, contradiction the definition
of 𝖢𝗈𝗋𝖾(𝐺). Thus, 𝐺∕𝖢𝗈𝗋𝖾(𝐺) is an infinite residually finite group. By Proposi-
tion 3.9 𝐺 is (𝜔+𝛼)-residually finite. It remains to prove that 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) is not
less than 𝜔 + 𝛼.
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Since 𝐺 surjects onto an infinite group, clearly 𝐺 is infinite, so 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) ≥
𝜔. Suppose that𝐺 is (𝜔+𝛽)-residually finite for someordinal𝛽, and let {C𝑖(𝐺)}𝑖≤𝛼
be the (𝜔 + 𝛽)-residual chain for 𝐺. Since C𝜔(𝐺) is an intersection of finite in-
dex subgroups of 𝐺 we have C𝜔(𝐺) ⊇ 𝖢𝗈𝗋𝖾(𝐺). By construction, this (𝜔 + 𝛽)-
residual chain also provides a 𝛽-residual chain witnessing 𝛽-residual finiteness
of C𝜔(𝐺). In particular, this proves that 𝖢𝗈𝗋𝖾(𝐺) is 𝛽-residually finite.
It follows that 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝜔 + 𝛼 as claimed. □

Remark. We emphasize that 𝜔+ 𝛼might be equal to 𝛼. Indeed, this is the case
precisely when 𝛼 ≥ 𝜔𝜔.

In the next proposition, 𝐺𝑋 denotes the group of functions from the set 𝑋
to the group 𝐺, with the group operation defined coordinate-wise. By 𝐺(𝑋) we
denote the subgroup of the functions with finite support.

Proposition 3.11. If 𝐺 is 𝛼-residually finite, and 𝑋 is a countable set, 𝐺𝑋 is
𝛼-residually finite. In particular, if 𝐺 is infinite, 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑋) =
𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺(𝑋)).

Proof. Let {C𝑖(𝐺)}𝑖≤𝛼 be a residual chain for 𝐺, and {𝑥0, 𝑥1, 𝑥2, 𝑥3,… } an enu-
meration of 𝑋. Then consider the chain

𝐻𝑛 = {𝑓∶ 𝑋 → 𝐺 ∣ 𝑓(𝑥𝑖) ∈ C𝑛−𝑖(𝐺) for 𝑖 < 𝑛}.

This has index [𝐺 ∶ C1(𝐺)][𝐺 ∶ C2(𝐺)] … [𝐺 ∶ C𝑛(𝐺)] < ∞, and the intersec-
tion of all𝐻𝑛 is trivial.
The second statement follows because 𝐺 ≤ 𝐺(𝑋) ≤ 𝐺𝑋 . □

4. Actions on rooted trees
4.1. Faithful actions on rooted finite valence trees. If 𝐺 is a group, 𝑔 ∈ 𝐺
and 𝐻 ≤ 𝐺, the element 𝑔 permutes the left cosets of 𝐻. For a fixed group 𝐺,
we may wish to study all such actions at once, for all 𝑔 and all 𝐻. Note that if
𝐻2 ≤ 𝐻1 ≤ 𝐺, the permutations of𝐻2 are compatible with permutations of𝐻1,
in the sense that if 𝑔 fixes𝐻2, it fixes𝐻1 as well.

Proposition 4.1 (Folklore). A countable group 𝐺 is residually finite if and only
if it acts faithfully on a rooted finite valence tree.

Proof. Let C𝑖(𝐺) for 𝑖 ∈ ℕ be a residual chain. Consider a rooted tree 𝑇 with
the level 𝑖 vertex sets 𝑉𝑖 = 𝐺∕C𝑖(𝐺), and edges joining the cosets 𝑔C𝑖+1(𝐺) and
𝑔C𝑖(𝐺). This admits a left 𝐺-action via ℎ(𝑔C𝑖(𝐺)) = (ℎ𝑔)C𝑖(𝐺), which preserves
the edge structure. Since {C𝑖(𝐺)}𝑖∈ℕ is a residual chain, for every 1 ≠ 𝑔 ∈ 𝐺
there is an 𝑖 with 𝑔 ∉ C𝑖(𝐺). So 𝑔 acts nontrivially on𝑉𝑖. This shows that𝐺 acts
faithfully on a rooted finite valence tree.
Conversely, suppose 𝐺 acts faithfully on a rooted tree 𝑇, and let 𝐺𝑖 be the

finite index subgroup which fixes the 𝑖th level of the tree. Since the action is
faithful, no nontrivial element fixes every level of the tree, so ∩𝑖∈ℕ𝐺𝑖 = 1. □
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4.2. Rooted 𝜶-trees.

Definition 4.2. Let 𝛼 be an ordinal, and 𝜅 a cardinal. A rooted (𝛼, 𝜅)-tree 𝑇
is a family {𝑉𝑖}𝑖≤𝛼 of sets, and a family {𝐸𝑖}𝑖<𝛼 of functions, where 𝑉0 = {∗},
𝐸𝑖 ∶ 𝑉𝑖+1 → 𝑉𝑖 with |𝐸−1𝑖 (𝑣𝑖)| < 𝜅, and for a limit ordinal 𝜆 ≤ 𝛼,𝑉𝜆 = lim←,,𝑖<𝜆 𝑉𝑖.

For each 𝑖 ≤ 𝛼, we refer to𝑉𝑖 as the vertex set of 𝑇 at level 𝑖. By 𝑉<𝑖 we denote
the union

⋃
𝑗<𝑖 𝑉𝑗, the vertex set of 𝑇 at level at most 𝑖. Note that when 𝛼 is a

finite ordinal, then 𝑇 is just a rooted tree of depth 𝛼. When 𝛼 = 𝜔, then 𝑇 is a
standard infinite rooted tree, with an extra vertex corresponding to each end of
𝑇.
The directed system determines restriction maps 𝐸𝑗𝑖 ∶ 𝑉𝑗 → 𝑉𝑖 for any 𝑖 ≤

𝑗 ≤ 𝛼. Indeed, if 𝑗 = 𝑖 + 𝑛 for some finite 𝑛 ≥ 0, then 𝐸𝑗𝑖 is the composition of
finitely manymaps 𝐸𝑗−1 ⋅𝐸𝑗−2⋯𝐸𝑖. Otherwise 𝑗 = 𝛽+𝑛 for some limit ordinal
𝛽 and some finite 𝑛 ≥ 0, and 𝑖 < 𝛽. Then by the definition of 𝑉𝛽 there is a map
𝐸𝛽𝑖 ∶ 𝑉𝛽 → 𝑉𝑖, and we define 𝐸

𝑗
𝑖 = 𝐸𝑗𝛽 ⋅ 𝐸

𝛽
𝑖 .

4.3. Actions on rooted 𝜶-trees. An automorphism of a rooted (𝛼, 𝜅)-tree is a
family 𝑔 = {𝑔𝑖}𝑖≤𝛼 of bijections of𝑉𝑖 satisfying𝐸𝑖𝑔𝑖+1 = 𝑔𝑖𝐸𝑖. An automorphism
is simple if the action on 𝑉𝛼 is fixed-point free; a group acts simply on an 𝛼-tree
if every nontrivial element acts as a simple automorphism.

Theorem 4.3. A group𝐺 is 𝛼-residually 𝜅-bounded if and only if𝐺 has a simple
action on a rooted (𝛼, 𝜅)-tree.

Proof.
⟹ Supposing {C𝑖(𝐺)}𝑖≤𝛼 is an (𝛼, 𝜅)-residual chain for 𝐺, we can build a

rooted (𝛼, 𝜅)-tree with a simple 𝐺-action as follows. Let

𝑉𝑗 = {{𝑔𝑖C𝑗(𝐺)}𝑖≤𝑗 ∣ 𝑔𝑖+1C𝑖(𝐺) = 𝑔𝑖C𝑖(𝐺) for 𝑖 < 𝑗},

and take 𝐸𝑗 ∶ 𝑉𝑗+1 → 𝑉𝑗 by

𝐸𝑗({𝑔𝑖C𝑗+1(𝐺)}𝑖≤𝑗+1) = {𝑔𝑖C𝑗(𝐺)}𝑖≤𝑗.

Then we have |𝐸−1𝑖 (𝑣𝑖)| = [C𝑖+1(𝐺) ∶ C𝑖(𝐺)] < 𝜅, and 𝑉𝜆 = lim←,,𝑖<𝜆 𝑉𝑖,
so we have constructed an (𝛼, 𝜅)-tree. The left𝐺-action 𝑔{𝑔𝑖C𝑘(𝐺)}𝑖≤𝑗 =
{𝑔𝑔𝑖C𝑗(𝐺)}𝑖≤𝑗 respects the edge structure.

⟸ Suppose 𝐺 acts simply on an (𝛼, 𝜅)-tree 𝑇 = (𝑉𝑖, 𝐸𝑖)𝑖≤𝛼. Let 𝑣𝛼 ∈ 𝑉𝛼,
and set 𝑣𝑖 = 𝐸𝛼𝑖 (𝑣𝛼) for any 𝑖 ≤ 𝛼. Let C𝑖(𝐺) = 𝖲𝗍𝖺𝖻(𝑣𝑖). By simplic-
ity of the action, C𝛼(𝐺) = 1, and since the tree is locally 𝜅, [C𝑖(𝐺) ∶
C𝑖+1(𝐺)] ≤ |𝐸−1𝑖 (𝑣𝑖)| < 𝜅 for all 𝑖 < 𝛼. Finally, if 𝜆 is a limit ordinal,
we have ∩𝑖<𝜆C𝑖(𝐺) = ∩𝑖<𝜆𝖲𝗍𝖺𝖻(𝑣𝑖) = {𝑔 ∈ 𝐺 ∣ 𝑔𝑣𝑖 = 𝑣𝑖 for all 𝑖 < 𝜆} =
𝖲𝗍𝖺𝖻(lim←,,𝑖<𝜆 𝑣𝑖) = 𝖲𝗍𝖺𝖻(𝑣𝜆) = C𝜆(𝐺), as desired. □
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5. A construction of 𝝎 ⋅ 𝒏-residually finite groups
If𝑋 is a set with a transitive𝐺 action, and𝐾 is a group, the (restricted) wreath

product 𝐾 ≀𝑋 𝐺 is defined

𝐾 ≀𝑋 𝐺 = 𝐾(𝑋) ⋊ 𝐺,

where 𝐾(𝑋) is the group of functions 𝑋 → 𝐾 with finite support, and the action
of 𝐺 on 𝐾(𝑋) is by precomposing with the 𝐺-action on 𝑋. By 𝐾 ≀ 𝐺, we mean
𝐾 ≀𝐺 𝐺, where 𝐺 acts on itself by left multiplication.
Note that 𝐾 ≀ 𝐺 is the quotient of the free product 𝐾 ∗ 𝐺 by the family of

relations {[𝑔𝑘𝑔−1, 𝑘′] = 1 ∣ 𝑘, 𝑘′ ∈ 𝐾, 1 ≠ 𝑔 ∈ 𝐺}.

Theorem 5.1. Suppose𝐺 is an infinite, finitely generated, residually finite group
with finite abelianization. Let 𝐺1 = 𝐺, and 𝐺𝑖+1 = 𝐺𝑖 ≀ 𝐺. The group 𝐺𝑛 is a
finitely generated group with 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛) = 𝜔 ⋅ 𝑛.

For example, we can take 𝐺 to be perfect (i.e. 𝐺 = [𝐺,𝐺]), such as 𝐺 =
𝖲𝖫𝑛(ℤ) for 𝑛 ≥ 3, or 𝐺 a cocompact hyperbolic triangle group with generators
of relatively prime orders, or 𝐺 a free product of (at least 2 nontrivial) finite
perfect groups. We can also take 𝐺 to be ℤ𝑛 ⋊ 𝐴𝑛, where 𝐴𝑛 permutes the
coordinates of ℤ𝑛, for 𝑛 ≥ 5.
For 𝑔 ∈ 𝐺, we let𝐺(𝑔)

𝑖 denote the functionswhose support is contained in {𝑔},
so this is an isomorphic copy of 𝐺𝑖. Note that we have a short exact sequence
𝐺(𝐺)
𝑖 → 𝐺𝑖+1

𝜋
,→ 𝐺, and that the normal closure of 𝐺(1)

𝑖 in 𝐺𝑖+1 is 𝐺
(𝐺)
𝑖 .

Lemma 5.2. [𝐺𝑖, 𝐺𝑖](𝐺) ≤ 𝖢𝗈𝗋𝖾(𝐺𝑖+1) ≤ 𝐺(𝐺)
𝑖 .

Proof. To see that 𝖢𝗈𝗋𝖾(𝐺𝑖+1) ≤ 𝐺(𝐺)
𝑖 , note that there is a natural map 𝐺𝑖+1 =

𝐺(𝐺)
𝑖 ⋊𝐺

𝜋
,→ 𝐺 with kernel𝐺(𝐺)

𝑖 . Since𝐺 is residually finite, a residual chain for
𝐺 pulls back under the quotient to a residual chain in 𝐺𝑖+1 terminating in 𝐺

(𝐺)
𝑖 .

To prove that 𝖢𝗈𝗋𝖾(𝐺𝑖+1) ≥ [𝐺𝑖, 𝐺𝑖](𝐺), it suffices to show that if 𝐻 is a sub-
group of 𝐺𝑖+1 with finite index, then 𝐻 contains [𝐺𝑖, 𝐺𝑖](𝐺). Since the intersec-
tion of finitely many conjugates of𝐻 yields a normal subgroup𝑁 of finite index
in 𝐺𝑖+1, it is enough to show that 𝑁 contains [𝐺𝑖, 𝐺𝑖](1), as this implies that 𝑁
contains its normal closure [𝐺𝑖, 𝐺𝑖](𝐺).
Note that 𝜋(𝑁) has finite index in 𝐺, and since 𝐺 is infinite, 𝜋(𝑁) is non-

trivial. Let 𝑔0 be a nontrivial element in 𝜋(𝑁), and 𝑔1 a lift to 𝑁. Now for any
𝑥, 𝑦 ∈ 𝐺(1)

𝑖 , the elements [𝑥, 𝑦] and [𝑔1𝑥𝑔−11 , 𝑦] have the same image in𝐺𝑖+1∕𝑁.
But since 𝑔1𝑥𝑔−11 ∈ 𝐺(𝑔0)

𝑖 and 𝑦 ∈ 𝐺(1)
𝑖 , we have [𝑔1𝑥𝑔−11 , 𝑦] = 1, and thus

[𝑥, 𝑦] ∈ 𝑁. This shows that [𝐺𝑖, 𝐺𝑖](𝐺) ≤ 𝖢𝗈𝗋𝖾(𝐺𝑖+1). □

Proof of Theorem 5.1. We prove by induction that 𝐺𝑛 is a finitely generated
group with 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛) = 𝜔 ⋅𝑛. The group𝐺1 = 𝐺 satisfies those conditions by
assumption. Suppose that𝐺𝑛−1 is a finitely generated groupwith 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛−1)
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= 𝜔 ⋅ (𝑛−1). Then 𝐺𝑛 = 𝐺𝑛1 ≀𝐺 is generated by the generators of 𝐺𝑛−1, and the
generators of 𝐺, in particular 𝐺𝑛 is finitely generated. By Proposition 3.10

𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛) = 𝜔 + 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝖢𝗈𝗋𝖾(𝐺𝑛)).
We need to show that 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝖢𝗈𝗋𝖾(𝐺𝑛)) = 𝜔 ⋅ (𝑛 − 1) to conclude that

𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛) = 𝜔 + 𝜔 ⋅ (𝑛 − 1) = 𝜔 ⋅ 𝑛.
By Lemma 5.2 we have

𝖽𝖾𝗉𝗍𝗁𝖱𝖥([𝐺𝑛−1, 𝐺𝑛−1](𝐺)) ≤ 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝖢𝗈𝗋𝖾(𝐺𝑛)) ≤ 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺
(𝐺)
𝑛−1).

Now, by Proposition 3.11,

𝖽𝖾𝗉𝗍𝗁𝖱𝖥([𝐺𝑛−1, 𝐺𝑛−1](𝐺)) = 𝖽𝖾𝗉𝗍𝗁𝖱𝖥([𝐺𝑛−1, 𝐺𝑛−1]),
and similarly 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺

(𝐺)
𝑛−1) = 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛−1). By the inductive assumption

𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛−1) = 𝜔 ⋅ (𝑛 − 1), and since [𝐺𝑛−1, 𝐺𝑛−1] has finite index in 𝐺𝑛−1,
we also have 𝖽𝖾𝗉𝗍𝗁𝖱𝖥([𝐺𝑛−1, 𝐺𝑛−1] = 𝜔 ⋅ (𝑛 − 1). Thus 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝖢𝗈𝗋𝖾(𝐺𝑛)) =
𝜔 ⋅ (𝑛 − 1). □

Note that the groups with residual depth 𝜔 ⋅ 𝑛 constructed in Theorem 5.1
are finitely generated but not finitely presented. The Deligne group 𝐺 from
Example 3.2 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) = 𝜔 ⋅ 2 is finitely presented. We do not know finitely
presented examples for 𝑛 > 2.
Question5.3. Does there exist a finitely presented group𝐺𝑛with 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛) =
𝜔 ⋅ 𝑛 for each 𝑛 ∈ ℕ?
Question 5.4. Does there exist a finitely generated (finitely presented?) group
𝐺𝑛 with 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺𝑛) = 𝜔 ⋅ 𝑛 + 1 for each 𝑛 ∈ ℕ?
There exist groups that are not 𝛼-residually finite for any 𝛼. An example of

such a group is the Higman group (Example 3.1) or any infinite simple group.
However, we do not knowwhether there are finitely generated groups with the
residual finiteness depth defined, but larger than 𝜔 ⋅ 𝑛 for all 𝑛. In particular,
we do not know the answer to the following question.

Question 5.5. Does there exist a finitely generated group 𝐺 with 𝖽𝖾𝗉𝗍𝗁𝖱𝖥(𝐺) =
𝜔2? What about 𝜔𝑘 for every 𝑘 ∈ 𝑁? Can 𝐺 be chosen to be finitely presented?

6. Application to profinite rigidity
Afinitely generated, residually finite groupΓ is said to be absolutely profinitely

rigid if for any finitely generated residually finite group Λ with Γ̂ ≅ Λ̂, we have
Γ ≅ Λ.
If there exists a group Γwhich is profinitely rigid and perfect, the group Γ ≀ Γ

will have the same profinite completion as Γ, and so we would not be able to
distinguish these two groups by their profinite completions. However, these
groups may be distinguished in terms of 𝛼-residual properties. Note that all of
the groups which are known to be absolutely profinitely rigid (see [BMRS20]
and [CW22]) have finite nontrivial abelianization, so are not perfect.
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