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On local zeta-integrals for 𝐆𝐒𝐩(𝟒)
and 𝐆𝐒𝐩(𝟒) × 𝐆𝐋(𝟐)

David Loeffler

Abstract. We prove that Novodvorsky’s definition of local 𝐿-factors for
generic representations of GSp(4) ×GL(2) is compatible with the local Lang-
lands correspondence when the GL(2) representation is non-supercuspidal.
We also give an interpretation in terms of Langlands parameters of the “ex-
ceptional” poles of theGSp(4)×GL(2) 𝐿-factor, and of the “subregular” poles
of GSp(4) 𝐿-factors studied in recent work of Rösner and Weissauer; and de-
duce consequences for Gan–Gross–Prasad type branching laws, either for re-
ducible generic representations, or for irreducible but non-generic represen-
tations.

Contents

1. Introduction 1
2. General notation 6
3. Principal series representations of GL(2) 6
4. Bessel models 8
5. Zeta integrals for GSp(4) × GL(2) 10
6. Relating the zeta integrals 14
7. Compatibility with the Langlands parameters 16
8. Proof of Theorems B, C and D 18
9. Proof of Theorem E 20
References 22

1. Introduction
In this note, we study the local 𝐿-factors associated to irreducible smooth

representations 𝜋 × 𝜎 of the group GSp(4, 𝐹) × GL(2, 𝐹), where 𝐹 is a nonar-
chimedean local field of characteric 0 (corrsponding to thenatural 8-dimensional
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representation of the 𝐿-group). These 𝐿-factors can be defined in several pos-
sible ways. Firstly, one can use the local Langlands correspondence of [GT11];
secondly, one can use Shahidi’s method. Thirdly, supposing 𝜋 and 𝜎 to be
generic, one can use a local zeta-integral of Rankin–Selberg type introduced
by Novodvorsky [Nov79]. It is shown in [GT11] that the first two constructions
agree, andwe shall denote the resulting 𝐿-factor simply by 𝐿(𝜋×𝜎, 𝑠). However,
it is not obvious whether the 𝐿-factor 𝐿Nov(𝜋 × 𝜎, 𝑠) defined via Novodvorsky’s
integral agrees with 𝐿(𝜋 × 𝜎, 𝑠).
Conjecture 𝛼. For any generic irreducible representations 𝜋 of GSp4(𝐹) and 𝜎
of GL2(𝐹), we have 𝐿(𝜋 × 𝜎, 𝑠) = 𝐿Nov(𝜋 × 𝜎, 𝑠).
The Novodvorsky integral formula plays a key role in our recent work with

Pilloni et al [LPSZ21] on the 𝑝-adic interpolation of 𝐿-values for cuspidal au-
tomorphic representations of GSp4 and GSp4 ×GL2, which gives a further in-
centive to study Conjecture 𝛼. The conjecture is known to hold in a substantial
range of cases by work of Soudry [Sou84], which we recall as Theorem 5.3 be-
low, but many other cases still remain open.

1.1. Compatibility of 𝑳-factors. Our first new result is the following:

Theorem A. Conjecture 𝛼 holds under the additional assumption that the
GL(2, 𝐹)-representation 𝜎 be non-supercuspidal.
The case of 𝜎 an irreducible principal series was established in [LPSZ21, The-

orem 8.9(i)], so it remains to consider the case when 𝜎 is a special representa-
tion. Twisting 𝜋 appropriately, we can assume that 𝜎 = St is the Steinberg
representation, and the proof in this case will be given as Theorem 7.3 below.
Since this paper was initially posted on the Mathematics ArXiv, a comple-

mentary result was proved by Yao Cheng [Che21], showing that Conjecture 𝛼
also holds if 𝜎 is supercuspidal and 𝜋 has trivial central character (so 𝜋 fac-
tors through PGSp4(𝐹) ≅ SO5(𝐹)). In particular, combining Cheng’s result and
Theorem A of the present paper proves Conjecture 𝛼, for any 𝜎, if the central
character of 𝜋 is a square in the group of characters of 𝐹×; this is Theorem 1.3
of [Che21]. We are optimistic that combining the methods of this paper and
[Che21] may lead to a complete proof of Conjecture 𝛼 in the near future.

1.2. Exceptional poles for𝐆𝐒𝐩(𝟒)×𝐆𝐋(𝟐). In the analysis of Novodvorsky’s
𝐿-factor, an important role is played by a partition of the set of its poles into
regular and exceptional poles (Definition 5.6). Let𝜋 and𝜎 be as inConjecture𝛼.
One sees easily that a necessary condition for 𝑠0 ∈ 𝐂 to be an exceptional pole
of 𝐿(𝜋 × 𝜎, 𝑠) is that 𝜒𝜋𝜒𝜎| ⋅ |2𝑠0 = 1. We propose the following conjecture:
Conjecture 𝛽. If 𝑠0 ∈ 𝐂 is such that 𝜒𝜋𝜒𝜎| ⋅ |2𝑠0 = 1, then 𝑠0 is an exceptional
pole of 𝐿Nov(𝜋 × 𝜎, 𝑠) if and only if it is a pole of the ratio

𝐿(𝜋 × 𝜎, 𝑠)𝐿(𝜋 × 𝜎, 𝑠 + 1)
𝐿(𝜋 × 𝜎 × St, 𝑠 + 1

2
)

.
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Equivalently (by Lemma 7.1 below), 𝑠0 is an exceptional pole if and only if the 8-
dimensional Weil–Deligne representation 𝜙𝜋 ⊗ 𝜙𝜎 has a 1-dimensional unrami-
fied direct summand whose 𝐿-factor has a pole at 𝑠0.

Our second new result, whose proof is intertwined with that of Theorem A,
is the following:

Theorem B. Conjecture 𝛽 holds under the additional ssumption that 𝜎 be non-
supercuspidal.

1.3. Subregular poles for 𝐆𝐒𝐩(𝟒). In order to prove Theorems A and B, we
shall use a relation between Novodvorsky’s zeta-integral for GSp(4) × GL(2)
and a zeta-integral for GSp(4) studied by Piatetski-Shapiro [PS97], depending
on a choice of (split) Bessel model of 𝜋. Rösner and Weissauer [RW17, RW18]
have computed the Piatetski-Shapiro 𝐿-factors for all generic 𝜋, and verified
that they coincide with the Langlands 𝐿-factors (independently of the choice of
Bessel model). In their computations, an important role is played by the notion
of a subregular pole of theGSp(4) 𝐿-factor (see Definition 4.8 below). The proof
of ourmain theorems also gives a conceptual interpretation of subregular poles,
which may be of independent interest:

Theorem C. Let 𝜋 be a generic irreducible representation ofGSp(4, 𝐹)with cen-
tral character 𝜒𝜋; and let 𝑠0 ∈ 𝐂. Then 𝑠0 is a subregular pole of 𝐿(𝜋, 𝑠) (for some
choice of split Bessel model) if and only if one of the following two possibilities
occurs:

(1) 𝑠0 is a pole of the ratio
𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)
𝐿(𝜋 × St, 𝑠 + 1

2
)
; equivalently, the Langlands pa-

rameter of 𝜋 has a 1-dimensional unramified direct summand whose 𝐿-
factor has a pole at 𝑠0. In this case, we necessarily have 𝜒𝜋| ⋅ |2𝑠0+1 ≠ 1.

(2) 𝜒𝜋| ⋅ |2𝑠0+1 = 1 and 𝑠0 +
1
2
is an exceptional pole of 𝐿(𝜋 × St, 𝑠); equiva-

lently, the Langlands parameter of𝜋 has a 2-dimensional, self-dual direct
summand isomorphic to an unramified twist of the Steinberg parameter,
whose 𝐿-factor has a pole at 𝑠0.

That is, a pole is subregular precisely when it arises from a direct summand
of the Langlands parameter which is either 1-dimensional, or 2-dimensional
and self-dual.

Remark 1.1. Theorem C is a fairly straightforward consequence of the results
of [RW18]. We include it here partly because it motivates the formulation of
Conjectures 𝛽 and 𝛿, and more importantly, because Theorem C plays a major
role in the proof of Theorem A. More precisely, we shall prove directly that an
analogue of Theorem C holds with the Langlands 𝐿-factor in the denominator
replaced by the Novodvorsky 𝐿-factor, and deduce Theorem A when 𝜎 is the
Steinberg by comparing this with Theorem C.
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1.4. Distinction of representations. Our next result is an interpretation of
exceptional poles in terms of𝐻-invariant periods, where

𝐻 = {(ℎ1, ℎ2) ∈ GL(2, 𝐹) × GL(2, 𝐹) ∶ det(ℎ1) = det(ℎ2)},
which is naturally a subgroup of GSp(4, 𝐹), see Section 2 below. It is not hard
to show (see Corollary 5.8 below) that if 𝑠0 is an exceptional pole of 𝐿(𝜋 × 𝜎, 𝑠),
then we have Hom𝐻

(
𝜋 ⊗ (| ⋅ |𝑠0 ⊠𝜎),𝐂

)
≠ 0.

Conjecture 𝛿. The dimension of Hom𝐻
(
𝜋 ⊗ (| ⋅ |𝑠0 ⊠ 𝜎),𝐂

)
is 1 if 𝑠0 is an

exceptional pole of 𝐿Nov(𝜋 × 𝜎, 𝑠), and 0 otherwise.

TheoremD. Conjecture 𝛿 is true if at least one of the following conditions holds:
∙ 𝜎 is non-supercuspidal,
∙ the central character of 𝜋 is a square.

Remark 1.2. The combination of Conjectures 𝛽 and 𝛿 is closely related to the
Gan–Gross–Prasad conjecture for non-tempered representations formulated in
[GGP20].
More precisely, taking 𝑠0 = 0, Conjectures 𝛽 and 𝛿 predict that Hom𝐻

(
𝜋 ⊗

(1⊠𝜎),𝐂
)
is non-zero if and only if theGSp4-valuedWeil–Deligne representa-

tion 𝜙𝜋 contains 𝜙∨𝜎 as a self-dual direct summand. If we suppose 𝜒𝜋 = 𝜒𝜎 = 1,
so the representations involved factor through SO5 and SO4, then this condition
on theWeil–Deligne representations is equivalent to the Langlands parameters
of 𝜋 and 1 ⊠ 𝜎∨ forming a “relevant pair” in the sense of [GGP20]. According
to the conjectures of op.cit., this should be a necessary and sufficient condition
for Hom𝐻

(
𝜋 ⊗ (1 ⊠𝜎),𝐂

)
to be non-zero.1

So, in the light of TheoremD,Conjecture𝛽 is an instance of the non-tempered
Gan–Gross–Prasad conjectures (mildly generalised from orthogonal groups to
spin groups); and Theorem B verifies the conjecture for representations of this
type when 𝜎 is non-supercuspidal.

1.5. Multiplicity one for reducible representations. We now give an in-
terpretation of the above results in terms of branching laws for reducible repre-
sentations. It follows from results of Prasad and Emory–Takeda2 that we have
dimHom𝐻(𝜋 ⊗ (𝜎1 ⊠ 𝜎2),𝐂) ⩽ 1 for any irreducible generic representations

1In op.cit. it is also assumed that the 𝐿-parameters are “of Arthur type”, which in this situation
corresponds to assuming that 𝜋 and 𝜎 are tempered; but this is not essential to the formulation
of the conjecture. It suffices that 𝜋 and 𝜎 are generic (or members of generic 𝐿-packets).

2The restriction (𝜎1⊠𝜎2)|𝐻 is a direct sum of irreducible𝐻-representations lying in the same
𝐿-packet. Theorem 5 of [Pra96] shows that there is at most one representation 𝜏 in this 𝐿-packet
such thatHom𝐻(𝜋⊗𝜏,𝐂) ≠ 0; and the general result onmultiplicity-one for GSpin groups from
[ET23], via the isomorphisms GSp4 ≅ GSpin5 and 𝐻 ≅ GSpin4, shows that for any such 𝜏 the
Hom-space has dimension ⩽ 1, giving the claim. Alternatively, the multiplicity-one result can
be extracted directly from the proof of [Pra96, Theorem 5] (Prasad, pers.comm.), although the
result is not explicitly stated there.
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𝜋 of GSp(4, 𝐹) and 𝜎1, 𝜎2 of GL(2, 𝐹). Of course, this Hom-space can only be
non-zero if 𝜒𝜋𝜒𝜎1𝜒𝜎2 = 1.
We consider here the situation in which one or both of the 𝜎𝑖 is replaced by

the reducible principal-series representationΣhaving the Steinberg representa-
tion as subrepresentation. (However, we continue to assume that𝜋 itself is irre-
ducible and generic.) One checks easily that for any irreducible generic 𝜎 with
𝜒𝜋𝜒𝜎 = 1, the leading term at 𝑠 = 0 of the zeta-integral defining 𝐿Nov(𝜋 × 𝜎, 𝑠)
gives a non-zero element of Hom𝐻(𝜋 ⊗ (Σ⊠ 𝜎),𝐂). Similarly, if 𝜒𝜋 = 1, then
the leading term of Piatetski-Shapiro’s zeta integral (with 𝜆1 = 𝜆2 = 1 in the
notation of Section 4.1) defines a nonzero element of Hom𝐻(𝜋 ⊗ (Σ⊠ Σ),𝐂).
We conjecture that these Hom-spaces are actually 1-dimensional, giving a gen-
eralisation to GSp4 ×GL2 ×GL2 of the results on branching laws for reducible
representations proved in [HS01] and [Loe21]:

Conjecture 𝜀.
(a) Suppose 𝜋 and 𝜎 are irreducible and generic, with 𝜒𝜋𝜒𝜎 = 1. Then

Hom𝐻(𝜋 ⊗ (Σ ⊠ 𝜎),𝐂) is 1-dimensional (and hence the leading term
of the Novodvorsky zeta-integral is a basis of this space).

(b) Suppose 𝜋 is irreducible and generic with 𝜒𝜋 = 1. Then the space

Hom𝐻(𝜋 ⊗ (Σ⊠ Σ),𝐂)

is 1-dimensional (andhence the leading termof thePiatetski-Shapiro zeta-
integral is a basis).

We shall see in §9 below that Conjecture 𝜀(a) implies Conjecture 𝛿, and we
shall prove the following partial result:

Theorem E.

(a) Conjecture 𝜀(a) is true if at least one of the following two conditions holds:
(i) 𝜒𝜋 is a square in the group of characters of 𝐹×;
(ii) 𝜎 is non-supercuspidal, and 𝑠 = 0 is not an exceptional pole of𝐿Nov(𝜋×

𝜎, 𝑠).

(b) Conjecture 𝜀(b) is true.

These results are used in [LZ20] and [LZ21] to studyEuler systems for Shimura
varieties attached to GSp(4) and GSp(4) × GL(2).

1.6. Acknowledgements. It is a pleasure to thank Mirko Rösner and Rainer
Weissauer for several interesting exchanges relating to the theory of [RW17,
RW18]; andKei Yuan Chan, Yao Cheng, andDipendra Prasad for their remarks
on an earlier version of this paper. Finally, the author would also like to thank
the anonymous referee for their careful reading of the paper and numerous
valuable comments and corrections.
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2. General notation
We shall consider the following setting:

∙ 𝐹 is a nonarchimedean local field of characteristic 0, and 𝑞 is the cardi-
nality of its residue field.

∙ | ⋅| the absolute value on 𝐹, normalised by |𝜛| = 1
𝑞
for𝜛 a uniformizer.

∙ We fix a nontrivial additive character 𝑒 ∶ 𝐹 → 𝐂×.
∙ 𝐺 denotes the groupGSp(4, 𝐹) ofmatrices preserving the standard anti-
diagonal symplectic form, and𝐻 the group

{(ℎ1, ℎ2) ∈ GL(2, 𝐹) × GL(2, 𝐹) ∶ det(ℎ1) = det(ℎ2)}.
We consider𝐻 as a subgroup of 𝐺 via the embedding

𝜄 ∶ ((𝑎 𝑏
𝑐 𝑑) , (

𝑎′ 𝑏′
𝑐′ 𝑑′))↦ (

𝑎 𝑏
𝑎′ 𝑏′
𝑐′ 𝑑′

𝑐 𝑑
) .

∙ In this paper “representation” will mean an admissible smooth repre-
sentation on a complex vector space.

∙ An “𝐿-factor”willmean a function of 𝑠 ∈ 𝐂 of the form 1∕𝑃(𝑞−𝑠), where
𝑃 is a polynomial with 𝑃(0) = 1. Any fractional ideal of 𝐂[𝑞𝑠, 𝑞−𝑠] con-
taining the unit ideal is generated by a unique 𝐿-factor.

3. Principal series representations of 𝐆𝐋(𝟐)
3.1. Definitions.

Definition 3.1. For 𝜇, 𝜈 smooth characters 𝐹× → 𝐂×, and 𝑠 ∈ 𝐂, we write
𝑖𝑠(𝜇, 𝜈) for the space of smooth functions 𝑓 ∶ GL(2, 𝐹)→ 𝐂 satisfying

𝑓
(( 𝑎 ⋆

0 𝑑
)
𝑔
)
= 𝜇(𝑎)𝜈(𝑑)|𝑎∕𝑑|𝑠𝑓(𝑔),

with GL(2, 𝐹) acting via right translation. If 𝑠 = 1
2
we write simply 𝑖(𝜇, 𝜈).

As is well known, 𝑖(𝜇, 𝜈) is irreducible unless 𝜇∕𝜈 = | ⋅ |±1; if 𝜇∕𝜈 = | ⋅ | it has
a 1-dimensional quotient, and if 𝜇∕𝜈 = | ⋅ |−1 it has a 1-dimensional subrep-
resentation. There is a unique (up to scalars) non-zero intertwining operator
𝑖𝑠(𝜇, 𝜈) → 𝑖1−𝑠(𝜈, 𝜇). The Steinberg representation St is the unique irreducible
subrepresentation of 𝑖(| ⋅ |1∕2, | ⋅ |−1∕2).
3.2. Godement–Siegel sections. Let 𝒮(𝐹2) be the Schwartz space of locally-
constant, compactly-supported functions on 𝐹2, with GL(2, 𝐹) acting via the
usual formula (𝑔 ⋅ Φ)(𝑥, 𝑦) = Φ((𝑥, 𝑦) ⋅ 𝑔). Then we define

𝑓Φ(𝑔;𝜇, 𝜈, 𝑠) = 𝜇(det 𝑔)| det 𝑔|𝑠 ∫
𝐹×
Φ((0, 𝑥) ⋅ 𝑔)(𝜇∕𝜈)(𝑥)|𝑥|2𝑠 d×𝑥,

which converges for ℜ(𝑠) > 0 and defines an element of 𝑖𝑠(𝜇, 𝜈). We write
simply 𝑓Φ(𝜇, 𝜈, 𝑠) for the function 𝑓Φ(−;𝜇, 𝜈, 𝑠). We may extend the definition
to all 𝑠 ∈ 𝐂 by analytic continuation, away from simple poles at the 𝑠 such that
| ⋅ |2𝑠 = 𝜈∕𝜇.



ON LOCAL ZETA-INTEGRALS 7

Remark 3.2. We have 𝑓Φ(𝑔;𝜇, 𝜈, 𝑠) = 𝜇(det 𝑔)𝑓Φ(𝑔;𝜇∕𝜈, 𝑠) in the notation of
[LPSZ21, §8.1].

Proposition 3.3. Let Φ̂ denote the Fourier transform.
(i) If 𝜈 ≠ 1, then the map Φ ↦ 𝑓Φ(1, 𝜈, 0) is well-defined, nonzero, and

GL(2, 𝐹)-equivariant, and identifies 𝑖(| ⋅ |−1∕2, | ⋅ |1∕2𝜈)with the maximal
quotient of 𝒮(𝐹2) on which 𝐹× acts by 𝜈.

(ii) If 𝜈 ≠ |⋅|−2, then themapΦ↦ 𝑓Φ̂(𝜈, 1, 1) is is well-defined, nonzero, and
GL(2, 𝐹)-equivariant, and identifies 𝑖(| ⋅ |1∕2𝜈, | ⋅ |−1∕2)with the maximal
quotient of 𝒮(𝐹2) on which 𝐹× acts by 𝜈.

Proof. Well-known. □

3.3. Whittaker functions. For Φ ∈ 𝒮(𝐹2) and 𝜇, 𝜈 smooth characters, we
define

𝑊Φ(𝑔;𝜇, 𝜈, 𝑠) = ∫
𝐹
𝑓Φ(

( 0 1
−1 0

) ( 1 𝑥
0 1

)
𝑔;𝜇, 𝜈, 𝑠)𝑒(𝑥) d𝑥,

and𝑊Φ(𝑔;𝜇, 𝜈) =𝑊Φ(𝑔;𝜇, 𝜈, 1
2
). Again wewrite simply𝑊Φ(𝜇, 𝜈) for the func-

tion 𝑊Φ(−;𝜇, 𝜈). Note that the integral is entire as a function of 𝑠, although
𝑓Φ(−) may not be, and there is no 𝑠 such that𝑊Φ(𝑔;𝜇, 𝜈, 𝑠) vanishes for all 𝑔
and Φ. We have

𝑊Φ(𝜇, 𝜈, 𝑠) = 𝜀 ⋅𝑊Φ̂(𝜈, 𝜇, 1 − 𝑠)
where 𝜀 is a nonzero constant independent ofΦ (a local root number). Wewant
to study the space of functions𝑊Φ(𝜇, 𝜈) for varying Φ ∈ 𝒮(𝐹2).

∙ If 𝜎 = 𝑖(𝜇, 𝜈) is irreducible, then the space of functions 𝑊Φ(𝜇, 𝜈) for
varying Φ ∈ 𝒮(𝐹2) is precisely the Whittaker model3𝒲(𝜎) of 𝜎.

∙ If 𝜎 has a one-dimensional quotient, then the functions 𝑓Φ(𝜇, 𝜈, 𝑠) are
regular at 𝑠 = 1

2
and span the representation 𝜎; and mapping 𝑓Φ to

𝑊Φ gives a bijection from 𝜎 to a subspace 𝒲(𝜎) ⊂ IndGL2𝑁2
𝑒−1, con-

taining the Whittaker model of the generic subrepresentation 𝜎gen as a
codimension-1 subspace.

∙ If 𝜎 has a one-dimensional subrepresentation, then it does not have a
Whittaker model; and the functions 𝑊Φ(𝜇, 𝜈) instead give the Whit-
taker model of 𝜎′ = 𝑖(𝜈, 𝜇), as we have just defined it. In this case, the
𝑓Φ(𝜇, 𝜈, 𝑠) are not all well-defined at 𝑠 = 1

2
(they may have poles). If we

define
𝒮0(𝐹2) ∶= {Φ ∈ 𝒮(𝐹2) ∶ Φ(0, 0) = 0},

then the 𝑓Φ for Φ ∈ 𝒮0(𝐹2) are well-defined and span 𝜎. The corre-
sponding 𝑊Φ span the Whittaker model of the irreducible subrepre-
sentation of 𝜎′, which is also the irreducible quotient of 𝜎.

3We define all Whittaker models for GL(2, 𝐹) with respect to the character
( 1 𝑥

1
)
↦ 𝑒(−𝑥);

this is slightly non-standard, but will simplify our formulae later
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4. Bessel models
Throughout this section, 𝜋 denotes an irreducible representation of 𝐺 with

central character 𝜒𝜋.

4.1. The Bessel model. Let Λ = (𝜆1, 𝜆2) be a pair of characters of 𝐹× with
𝜆1𝜆2 = 𝜒𝜋. A (split) Bessel model of 𝜋 (with respect to Λ) is a 𝐺-invariant sub-
space isomorphic to 𝜋 inside the space of functions 𝐺 → 𝐂 satisfying

𝐵((
1 𝑢 𝑣
1 𝑤 𝑢
1
1
) (

𝑥
𝑦
𝑥
𝑦
) 𝑔) = 𝑒(𝑢)𝜆1(𝑥)𝜆2(𝑦)𝐵(𝑔).

It follows from [RS16, Theorem 6.3.2(i)] that if such a subspace exists, it is
unique, and we denote it by ℬΛ(𝜋).

4.2. Piatetski-Shapiro’s integral. Suppose𝜋 admits aΛ-BesselmodelℬΛ(𝜋).

Definition 4.1. For 𝐵 ∈ ℬΛ(𝜋), 𝜇 a smooth character of 𝐹×, and Φ1,Φ2 ∈
𝒮(𝐹2), we define

𝑍(𝐵,Φ1,Φ2; Λ, 𝜇, 𝑠) =

∫
𝑁𝐻∖𝐻

𝐵(ℎ)Φ1((0, 1) ⋅ ℎ1)Φ2((0, 1) ⋅ ℎ2)𝜇(detℎ)| detℎ|𝑠+1∕2 dℎ,

where 𝑁𝐻 =
(( 1 ⋆

0 1
)
,
( 1 ⋆
0 1

))
is the unipotent radical of the standard Borel sub-

group of𝐻.

This converges forℜ(𝑠)≫ 0 andhasmeromorphic continuation as a rational
function of 𝑞𝑠. If 𝜇 is trivial, we write simply 𝑍(𝐵,Φ1,Φ2; Λ, 𝑠); we can always
reduce to this case by replacing 𝜋 with 𝜋⊗𝜇, and (𝜆1, 𝜆2)with (𝜆1𝜇, 𝜆2𝜇). The
following is the main result of [RW17]:

Theorem 4.2 (Rösner–Weissauer). The𝐂-vector space spanned by the functions

{𝑍(𝐵,Φ1,Φ2; Λ, 𝑠) ∶ 𝐵 ∈ ℬΛ(𝜋),Φ1,Φ2 ∈ 𝒮(𝐹2)}

is a fractional ideal of 𝐂[𝑞𝑠, 𝑞−𝑠] containing the constant functions. This ideal is
independent of Λ, and is generated by the 𝐿-factor 𝐿(𝜋, 𝑠) associated to the Lang-
lands parameter 𝜙𝜋.

4.3. Generic representations. Recall that 𝜋 is said to be generic if it admits
aWhittaker model, i.e. if it is isomorphic to a 𝐺-invariant subspace of the space
of functions𝑊 ∶ 𝐺 → 𝐂 satisfying

𝑊((
1 𝑥 ∗ ∗

1 𝑦 ∗
1 −𝑥

1
) 𝑔) = 𝑒(𝑥 + 𝑦)𝑊(𝑔). (1)

Such a model is unique if it exists; we denote it by𝒲(𝜋).
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Proposition 4.3. Suppose 𝜋 is generic, and let 𝜇 be a smooth character of 𝐹×.
For any𝑊 ∈𝒲(𝜋), the integral

𝐵(𝑊;𝜇, 𝑠) ∶= ∫
𝐹×
∫
𝐹
𝑊 ((

𝑎
𝑎
𝑥 1

1
) (

1
1

−1
1
)) |𝑎|𝑠−3∕2𝜇(𝑎) d𝑥 d×𝑎

converges forℜ(𝑠)≫ 0 andhasmeromorphic continuation as a rational function
of 𝑞𝑠. The set {𝐵(𝑊;𝜇, 𝑠) ∶𝑊 ∈𝒲(𝜋)} is a fractional ideal of𝐂[𝑞𝑠, 𝑞−𝑠] contain-
ing the constant functions, and it is generated by the spinor 𝐿-factor 𝐿(𝜋 × 𝜇, 𝑠)
associated to the Langlands parameter of 𝜋 × 𝜇.

Proof. The definition of the integral, and the proof of its analytic continuation,
are due to Novodvorsky [Nov79]. The proof that the 𝐿-factor defined by this
integral coincides with the Langlands 𝐿-factor is due to Takloo-Bighash [TB00].

□

Proposition 4.4 (Roberts–Schmidt). For any 𝑠, the space of functions

𝐵𝑊(𝑔;𝜇, 𝑠) ∶=
1

𝐿(𝜋 × 𝜇, 𝑠)
𝐵(𝑔𝑊;𝜇, 𝑠)

for𝑊 ∈𝒲(𝜋) is the Bessel modelℬΛ(𝜋) of 𝜋 with respect to the pair
Λ = (𝜇−1| ⋅ |1∕2−𝑠, 𝜇𝜒𝜋| ⋅ |𝑠−1∕2).

See [RS16] for details. Since 𝜇 is arbitrary, we see that a generic representa-
tion has a Bessel model for every character Λ with 𝜆1𝜆2 = 𝜒𝜋.

4.4. Exceptional and subregularpoles. Suppose𝜋 admits aΛ-Besselmodel.

Definition 4.5. We define 𝐿Λreg(𝜋, 𝑠) and 𝐿ΛKir(𝜋, 𝑠) as the unique 𝐿-factors such
that

({𝑍(𝐵,Φ1,Φ2; Λ, 𝑠) ∶
𝐵 ∈ ℬΛ(𝜋),Φ1,Φ2 ∈ 𝒮(𝐹2),

Φ1(0, 0)Φ2(0, 0) = 0 }) =
(
𝐿Λreg(𝜋, 𝑠)

)
,

({𝑍(𝐵,Φ1,Φ2; Λ, 𝑠) ∶
𝐵 ∈ ℬΛ(𝜋),Φ1,Φ2 ∈ 𝒮(𝐹2),
Φ1(0, 0) = Φ2(0, 0) = 0 }) =

(
𝐿ΛKir(𝜋, 𝑠)

)
.

We let 𝐿Λex(𝜋, 𝑠) = 𝐿(𝜋, 𝑠)∕𝐿Λreg(𝜋, 𝑠), and 𝐿Λsub(𝜋, 𝑠) = 𝐿Λreg(𝜋, 𝑠)∕𝐿ΛKir(𝜋, 𝑠), which
are clearly also 𝐿-factors, so we have

𝐿(𝜋, 𝑠) = 𝐿Λex(𝜋, 𝑠) ⋅ 𝐿Λsub(𝜋, 𝑠) ⋅ 𝐿
Λ
Kir(𝜋, 𝑠).

The poles of 𝐿Λex(𝜋, 𝑠) are said to be exceptional poles for 𝜋 and Λ; the poles of
𝐿Λsub are said to be subregular poles.

Remark 4.6. The factor we call 𝐿ΛKir(𝜋, 𝑠) is denoted by 𝐿(𝑠,𝑀) in the works of
Rösner–Weissauer, where𝑀 is a certain auxiliary space. The notation 𝐿ΛKir(𝜋, 𝑠)
is intended to emphasise the relation with Kirillov models.

Theorem 4.7 (Piatetski-Shapiro, [PS97, Theorem 4.3]). If 𝜋 is generic, then
𝐿Λex(𝜋, 𝑠) is identically 1, for all possible choices of Λ.
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So exceptional poles do not occur for generic representations; however, we
shall see later that subregular poles do frequently occur. The poles of 𝐿Λsub(𝜋, 𝑠)
(if any) are simple [RW18, Corollary 3.2]. We say 𝑠 = 𝑠0 is a type I subregular
pole if it is a pole of the ratio

𝑍(𝐵,Φ1,Φ2; Λ, 𝑠)
𝐿ΛKir(𝜋, 𝑠)

for some (Φ1,Φ2)withΦ1(0, 0) = 0, and a type II subregular pole if we may take
(Φ1,Φ2) such that Φ2(0, 0) = 0. Clearly, any subregular pole must be of type I
or type II (but these possibilities are not mutually exclusive).
Since the two factors of 𝐻 are conjugate in 𝐺, one checks that 𝑠0 is a type II

subregular pole for the (𝜆1, 𝜆2)Besselmodel if and only if it is a type I subregular
pole for the (𝜆2, 𝜆1) Bessel model. So it suffices to analyse type II subregular
poles. Moreover, if 𝑠0 is a type II subregular pole, then it must also be a pole
of 𝐿(𝜆1, 𝑠 +

1
2
) (cf. Proposition 3.1 of [RW18]; note that the characters 𝜌 and 𝜌⋇

of op.cit. are 𝜆2 and 𝜆1 in our notation – the order is switched since we use a
different matrix model ofGSp4). In particular, for a given 𝜋 whose 𝐿-factor has
a pole at 𝑠0, there is at most one character Λ such that 𝑠0 is a type II subregular
pole for the Λ-Bessel model, namely Λ =

(
| ⋅ |−1∕2−𝑠0 , 𝜒𝜋| ⋅ |1∕2+𝑠0

)
.

Definition 4.8. Suppose𝜋 is generic. We shall simply say “𝑠0 is a subregular pole
of 𝐿(𝜋, 𝑠)” tomean that it is a type II subregular pole for this specific Bessel charac-
ter, or (equivalently) a type I subregular pole for the character given by swapping
𝜆1 and 𝜆2.

Note that these two Bessel characters coincide if and only if 𝜒𝜋| ⋅ |2𝑠0+1 = 1.
The subregular poles have been tabulated for all Bessel models in [RW17,

RW18]. Non-supercuspidal representations ofGSp(4, 𝐹)have been classified by
Sally andTadić [ST93], into 11 types I–XI; the tables in [RS07, AppendixA] are a
useful reference. All types except I, VII, and X have several subtypes, with sub-
types “a” being the generic representations. So the generic non-supercuspidal
representations are those of Sally–Tadic types {I, IIa, IIIa, IVa, Va, VIa, VII, VI-
IIa, IXa, X, XIa}. We can neglect the supercuspidal representations and those of
types {VII, VIIIa, IXa}, since 𝐿(𝜋, 𝑠) is identically 1 for all such representations.

Theorem 4.9 (Rösner–Weissauer). If 𝜋 is a generic representation, then every
pole of 𝐿(𝜋, 𝑠) is subregular, unless 𝜋 is of type IIIa or IVa, in which case there are
no subregular poles. □

5. Zeta integrals for 𝐆𝐒𝐩(𝟒) × 𝐆𝐋(𝟐)
5.1. Novodvorsky’s integral. We now suppose 𝜋 is a generic irreducible rep-
resentation of 𝐺; and we let 𝜎 be a representation of GL2(𝐹) which is either ir-
reducible and generic, or a reducible principal-series representation with one-
dimensional quotient, defining the Whittaker model𝒲(𝜎) in the latter case as
in Section 3.3 above
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For𝑊0 ∈𝒲(𝜋), Φ1 ∈ 𝒮(𝐹2), and𝑊2 ∈𝒲(𝜎), we define

𝑍(𝑊0,Φ1,𝑊2; 𝑠) = ∫
𝑍𝐺𝑁𝐻∖𝐻

𝑊0(𝜄(ℎ))𝑓Φ1
(
ℎ1; 1, (𝜒𝜋𝜒𝜎)−1, 𝑠

)
𝑊2(ℎ2) dℎ.

Theorem 5.1 (Novodvorsky). There is 𝑅 <∞, depending on 𝜋 and 𝜎, such that
the integral converges for ℜ(𝑠) > 𝑅 and has analytic continuation as a ratio-
nal function in 𝑞𝑠. The 𝐂-vector space spanned by the functions 𝑍(𝑊0,Φ,𝑊2; 𝑠)
for varying (𝑊0,Φ,𝑊2) is a fractional ideal of 𝐂[𝑞𝑠, 𝑞−𝑠] containing the constant
functions. □

See [Nov79], [Sou84], and [LPSZ21, §8] for further details.

Definition 5.2. We let 𝐿Nov(𝜋 × 𝜎, 𝑠) be the unique 𝐿-factor generating the frac-
tional ideal of values of the zeta integral.

This is the 𝐿-factor featuring in Conjecture 𝛼. Although the conjecture is
open in general,many cases can be obtained from the following result of Soudry.
If 𝜏1, 𝜏2 are irreducible generic representations of GL(2, 𝐹) with the same cen-
tral character, then we can regard the product 𝜏1⊠𝜏2 as a representation of the
group

(GL(2, 𝐹) × GL(2, 𝐹))∕{(𝑧, 𝑧−1) ∶ 𝑧 ∈ 𝐹×}.
This group is isomorphic to the split orthogonal similitude group GSO(4, 𝐹),
and there is a theta-lifting from this group toGSp(4, 𝐹). The non-supercuspidal
generic representations that are 𝜃-lifts from GSO(2, 2) are those of Sally–Tadić
types I, IIa, Va, VIa, VIIIa, X and XIa, while types IIIa, IVa, VII and IXa are
not in the image. The image of the 𝜃-lift also contains some (but not all) of the
generic supercuspidal representations of GSp(4).
Theorem 5.3 (Soudry, [Sou84]). Suppose that 𝜋 is an irreducible generic repre-
sentation of the form 𝜋 = 𝜃(𝜏1, 𝜏2), where 𝜏𝑖 are irreducible generic representa-
tions ofGL(2, 𝐹) as above. Suppose that 𝜎 is irreducible, and if 𝜎 is supercuspidal,
that it is not an unramified twist of 𝜏∨1 or 𝜏

∨
2 . Then we have

𝐿Nov(𝜋 × 𝜎, 𝑠) = 𝐿(𝜋 × 𝜎, 𝑠) = 𝐿(𝜏1 × 𝜎, 𝑠)𝐿(𝜏2 × 𝜎, 𝑠),
where 𝐿(𝜏𝑖 × 𝜎, 𝑠) are the GL2 ×GL2 Rankin–Selberg 𝐿-factors. □

5.2. An auxiliary integral. To better understand Novodvorsky’s integral, we
write it in terms of the following auxiliary function:

Definition 5.4. For𝑊0 ∈𝒲(𝜋) and𝑊2 ∈𝒲(𝜎2) we define

𝑍(𝑊0,𝑊2, 𝑠) ∶= ∫
𝑁2∖GL2

𝑊0 ((
det 𝑔

𝑔
1
))𝑊2(𝑔)| det 𝑔|𝑠−1 d𝑔,

where𝑁2 is the upper-triangular unipotent subgroup of GL(2, 𝐹).
One computes that the function on ℎ defined by ℎ ↦ 𝑍(ℎ𝑊0, ℎ2𝑊2, 𝑠) de-

pends only on the first projection ℎ1 of ℎ, and belongs to the principal-series
GL(2, 𝐹)-representation 𝑖1−𝑠(1, 𝜈−1), where 𝜈 = (𝜒𝜋𝜒𝜎)−1.
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Proposition 5.5. For𝑊0,𝑊2 as above and Φ ∈ 𝒮(𝐹2), we have

𝑍(𝑊0,Φ1,𝑊2; 𝑠) =
⟨
𝑍(𝑊0,𝑊2; 𝑠), 𝑓Φ(1, 𝜈, 𝑠)

⟩
,

where ⟨−,−⟩denotes the canonical duality pairing between 𝑖1−𝑠(1, 𝜈−1)and 𝑖𝑠(1, 𝜈),
given by integration over 𝐵2∖GL2.

Proof. Let 𝐻+ be the subgroup {(ℎ1, ℎ2) ∈ 𝐻 ∶ ℎ1 is upper-triangular} of 𝐻.
Then 𝑍𝐺𝑁𝐻 ⩽ 𝐻+, and we can write the integral over 𝑍𝐺𝑁𝐻∖𝐻 defining
𝑍(𝑊0,Φ,𝑊2; 𝑠) as an integral over 𝑍𝐺𝑁𝐻∖𝐻+ composed with an integral over
𝐻+∖𝐻. However, the map GL(2, 𝐹) → 𝐻+ given by 𝛾 ↦

(( det 𝛾
1
)
, 𝛾
)
gives

a bijection 𝑍𝐺𝑁𝐻∖𝐻+ ≅ 𝑁2∖GL2; and projection onto the first factor clearly
identifies𝐻+∖𝐻 with 𝐵2∖GL2. □

5.3. Exceptional poles of the 𝐆𝐒𝐩(𝟒) × 𝐆𝐋(𝟐) integral.

Definition 5.6. We define 𝐿Novreg (𝜋 × 𝜎, 𝑠) to be the 𝐿-factor generating the frac-
tional ideal

{
𝑍(𝑊0,Φ1,𝑊2; 𝑠) ∶𝑊0 ∈𝒲(𝜋),Φ1 ∈ 𝒮0(𝐹2),𝑊2 ∈𝒲(𝜎)

}
,

and we define 𝐿Novex (𝜋 × 𝜎, 𝑠) to be the quotient, so that

𝐿Nov(𝜋 × 𝜎, 𝑠) = 𝐿Novreg (𝜋 × 𝜎, 𝑠)𝐿Novex (𝜋 × 𝜎, 𝑠).

(We use implicitly here the fact that the fractional ideal (⋆) contains the con-
stant functions, which follows from the proof of [LPSZ21, Theorem 8.9(i)].)

Proposition 5.7. The 𝐿-factor 𝐿Novreg (𝜋 × 𝜎, 𝑠) is also the 𝐿-factor generating the
fractional ideal

{
𝑍(𝑊0,𝑊2; 𝑠) ∶𝑊0 ∈𝒲(𝜋),𝑊2 ∈𝒲(𝜎)

}
.

Proof. This follows from the formula of Proposition 5.5, since the functions
𝑓Φ(1, 𝜈, 𝑠) for Φ ∈ 𝒮0(𝐹2) are entire and span the whole of 𝑖𝑠(1, 𝜈). □

Corollary 5.8. The poles of 𝐿Novex (𝜋 × 𝜎, 𝑠), if any, are simple. If 𝑠 = 𝑠0 is a pole
of this factor, then we must have 𝜒𝜋𝜒𝜎| ⋅ |2𝑠0 = 1, and

Hom𝐻 (𝜋 ⊗ (| ⋅ |𝑠0 ⊠𝜎),𝐂) ≠ 0.

Proof. It follows from the previous proposition that if the rational function
𝑍(𝑊0,Φ,𝑊2; 𝑠)∕𝐿Novreg (𝜋 × 𝜎, 𝑠) has a pole of order 𝑛 ⩾ 1 at 𝑠 = 𝑠0, for some
(𝑊0,Φ,𝑊2), then 𝑓Φ(1, 𝜈, 𝑠) must also have a pole of order 𝑛 at 𝑠0 (where 𝜈 =
(𝜒𝜋𝜒𝜎)−1 as above). This can only occur if 𝑛 = 1 and | ⋅ |2𝑠0 = 𝜈. Moreover,
since the residues of the 𝑓Φ land in the one-dimensional representation | ⋅ |𝑠0 ,
the residue at an exceptional pole defines a non-zero element of

Hom𝐻 (𝜋 ⊗ (| ⋅ |𝑠0 ⊠𝜎),𝐂) . □
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5.4. Regular poles. We now relate 𝐿Novreg (𝜋 × 𝜎, 𝑠) to the supercuspidal sup-
port of 𝜋 and 𝜎. Recall that an irreducible 𝐺-representation 𝜋 is said to have
supercuspidal support in 𝑃, for a parabolic 𝑃 ⊆ 𝐺, if it is a subquotient of the
parabolic induction of a supercuspidal representation of the Levi of 𝑃. There
are four conjugacy classes of parabolic subgroups in 𝐺 = GSp(4, 𝐹): the whole
group, the Klingen and Siegel parabolics

𝑃Kl = (
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆
) and 𝑃Si = (

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆
⋆ ⋆

)

and the standard Borel 𝐵𝐺 = 𝑃Si ∩ 𝑃Kl.

Proposition 5.9. For any𝑊0 and𝑊2, we have

𝑍(𝑊0,𝑊2, 𝑠) = ∫
𝐵2∖GL2

𝑌(𝑔𝑊0, 𝑔𝑊2, 𝑠) d𝑔,

where 𝑌(𝑊0,𝑊2, 𝑠) denotes the integral

∫
𝐹××𝐹×

𝑊0((
𝑥𝑦2

𝑥𝑦
𝑦
1
))𝑊2(( 𝑥 1 ))𝜒𝜎(𝑦)|𝑥|𝑠−2|𝑦|2𝑠−2 d×𝑥 d×𝑦.

Proof. This follows by writing 𝐵2 as the semidirect product of𝑁2 and the max-
imal torus 𝑇2 ≅ 𝐹× × 𝐹×. □

Since 𝐵2∖GL2 is compact, the fractional ideal of 𝐂[𝑞±𝑠] generated by
𝑍(𝑊0,𝑊2, 𝑠) for all (𝑊0,𝑊2) is contained in that generated by the functions
𝑌(𝑊0,𝑊2, 𝑠). So we need to investigate the possible asymptotic behaviour of

the function (𝑥, 𝑦) ↦ 𝑊0((
𝑥𝑦2

𝑥𝑦
𝑦
1
))𝑊2(( 𝑥 1 )), for𝑊0 ∈ 𝒲(𝜋) and𝑊2 ∈

𝒲(𝜎). It follows from Lemma 2.6.2 of [RS07] that the support of this function
is contained in a compact subset of 𝐹 × 𝐹, so the poles of the 𝑌(𝑊0,𝑊2, 𝑠), if
any, arise from asymptotics as 𝑥 → 0 or 𝑦 → 0.

Proposition 5.10.
∙ If 𝜋 is supercuspidal, or its supercuspidal support lies in the Siegel para-

bolic, then the support of 𝑦 ↦ 𝑊0((
𝑦2

𝑦
𝑦
1
)) is compact in 𝐹×, for all

𝑊0 ∈𝒲(𝜋).
∙ If 𝜋 is supercuspidal, or its supercuspidal support lies in the Klingen par-
abolic, then the support of 𝑥 ↦ 𝑊0((

𝑥
𝑥
1
1
)) is compact in 𝐹× for all

𝑊0 ∈𝒲(𝜋).
∙ If 𝜎 is supercuspidal, then the support of 𝑥 ↦ 𝑊2(( 𝑥 1 )) is compact in
𝐹×, for any𝑊2 ∈𝒲(𝜎).

Proof. We prove the first claim; the other two are similar. Let 𝑁Kl denote the
unipotent radical of 𝑃Kl. The hypotheses imply that 𝐽Kl(𝜋) = 0, where 𝐽Kl(𝜋)
is the Jacquet functor. As a vector space 𝐽Kl(𝜋) = 𝜋∕𝜋(𝑁Kl), where 𝜋(𝑁Kl) is
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the span of vectors of the form (𝑛 − 1)𝑣 for 𝑣 ∈ 𝜋 and 𝑛 ∈ 𝑁Kl. However, one
computes easily using (1) that if𝑊0 = (𝑛 − 1)𝑊′

0 for some𝑊
′
0 ∈ 𝒲(𝜋) and

𝑛 ∈ 𝑁Kl, then𝑊0 ((
𝑦2

𝑦
𝑦
1
)) = (𝑒(𝑡𝑦) − 1)𝑊′

0 ((
𝑦2

𝑦
𝑦
1
)), where 𝑡 ∈ 𝐹 is

the (1, 2)-entry of 𝑛. If we choose 𝑦 small enough, then 𝑒(𝑡𝑦) = 1; so for all such

𝑦 we have𝑊0 ((
𝑦2

𝑦
𝑦
1
)) = 0. □

Proposition 5.11. Suppose that either
∙ 𝜋 is supercuspidal,
∙ 𝜎 is supercuspidal, and 𝜋 is not a subquotient of a representation induced
from the Klingen parabolic of the form 𝜒⋊ 𝜏, with 𝜏 an unramified twist
of 𝜎∨.

Then 𝐿Novreg (𝜋 × 𝜎, 𝑠) = 1, so all poles of 𝐿Nov(𝜋 × 𝜎, 𝑠) are exceptional.

Proof. If 𝜋 is supercuspidal, or 𝜎 is supercuspidal and 𝜋 is supported in the
Siegel parabolic, then the above results show that the integrand of𝑌(𝑊0,𝑊2, 𝑠)
has compact support for all (𝑊0,𝑊2), so the integrals 𝑌(𝑊0,𝑊2, 𝑠) have no
poles, and hence the 𝑍(𝑊0,𝑊2, 𝑠) a fortiori have no poles either.
This leaves the more delicate case when 𝜎 is supercuspidal, and 𝜋 is sup-

ported in the Klingen parabolic. The above arguments show that, if 𝑠0 is a pole
of 𝐿Novreg (𝜋 × 𝜎, 𝑠), then the leading term of 𝑍(𝑊0,𝑊2, 𝑠) at 𝑠0 vanishes when
𝑊0 ∈𝒲(𝜋)(𝑁Kl). Hence the leading term depends only on the image of𝑊0 in
the Klingen Jacquet module of 𝜋; and this leading term defines a non-zero lin-
ear functional on 𝐽Kl(𝜋)⊗𝜎which isGL(2, 𝐹)-equivariant, up to an unramified
twist, wherewe regardGL(2, 𝐹) as a subgroup of theKlingen Levi𝐹××GL(2, 𝐹).
Hence some unramified twist of 𝜎∨ appears in the Jacquet module, and the re-
sult follows. □

6. Relating the zeta integrals
We’ll fix throughout this section a generic irreducible representation 𝜋 of 𝐺.

6.1. The basic formula. The following is Proposition 8.4 of [LPSZ21]:

Proposition 6.1. For any smooth characters 𝜇2, 𝜈2 of 𝐹, we have
𝑍(𝑊0,Φ1,𝑊Φ2(𝜇2, 𝜈2); 𝑠) = 𝐿(𝜋 × 𝜈2, 𝑠)𝑍(𝐵𝑊0 ,Φ1,Φ2; Λ, 𝜇2, 𝑠),

where Λ = (𝜒𝜋𝜈2| ⋅ |
𝑠−

1
2 , 𝜈−12 | ⋅ |

1
2
−𝑠
), and 𝐵𝑊0 = 𝐵𝑊0(𝑔; 𝜈2, 𝑠) ∈ ℬΛ(𝜋).

Here𝑊Φ2(−;𝜇2, 𝜈2) is the Whittaker function defined in Section 3.3.

Corollary 6.2. If 𝜎 = 𝑖(𝜇2, 𝜈2) is a principal-series representation with 𝜇2∕𝜈2 ≠
| ⋅ |−1, then we have

𝐿Nov(𝜋 × 𝜎, 𝑠) = 𝐿(𝜋 × 𝜇2, 𝑠)𝐿(𝜋 × 𝜈2, 𝑠).
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Proof. Since the functions 𝑊Φ2(−;𝜇2, 𝜈2) for varying Φ2 form the Whittaker
model𝒲(𝜎), the 𝐿-factor 𝐿Nov(𝜋 × 𝜎, 𝑠) is the unique 𝐿-factor generating the
fractional ideal {𝑍(𝑊0,Φ1,𝑊Φ2(𝜇2, 𝜈2); 𝑠) ∶ 𝑊0 ∈ 𝒲(𝜋),Φ1,Φ2 ∈ 𝒮(𝐹2)}. On
the other hand, the map 𝑊0 ↦ 𝐵𝑊0 is an isomorphism 𝒲(𝜋) ≅ ℬΛ(𝜋), so
the fractional ideal {𝑍(𝐵𝑊0 ,Φ1,Φ2; Λ, 𝜇2, 𝑠) ∶ 𝑊0 ∈ 𝒲(𝜋),Φ1,Φ2 ∈ 𝒮(𝐹2)} is
generated by 𝐿(𝜋 × 𝜇2, 𝑠) by Theorem 4.2. □

In particular, this shows that Conjecture 𝛼 holds if 𝜎 is an irreducible princi-
pal series (this is Theorem 8.9(i) of [LPSZ21]); and we have chosen our defini-
tion of𝒲(𝜎), when 𝜎 is a reducible principal series, in order to make the same
statement also be valid in the reducible case.

6.2. Exceptional poles: the principal-series case.

Proposition 6.3. Suppose𝜎 = 𝑖(𝜇2, 𝜈2)with𝜇2∕𝜈2 ≠ |⋅|±1, so𝜎 is an irreducible
principal series.
For 𝑠0 ∈ 𝐂, we have 𝜒𝜋𝜒𝜎| ⋅ |2𝑠0 = 1 if and only if 𝐿(𝜆1𝜇2, 𝑠 +

1
2
) has a pole at

𝑠 = 𝑠0, where (𝜆1, 𝜆2) = (𝜒𝜋𝜈2| ⋅ |
𝑠0−

1
2 , 𝜈−12 | ⋅ |

1
2
−𝑠0) as above. If this condition is

satisfied, then 𝑠 = 𝑠0 is an exceptional pole of 𝐿Nov(𝜋 × 𝜎, 𝑠) if and only if it is a
subregular pole of 𝐿(𝜋 × 𝜇2, 𝑠).
Proof. This is clear from the same argument as Corollary 6.2. □

6.3. Exceptional poles: the Steinberg case. We now consider the formula
of Proposition 6.1 with 𝜇2 = 1 and 𝜈2 = | ⋅ |, so that 𝜎 = 𝑖(𝜇2, 𝜈2) is re-
ducible with 1-dimensional subrepresentation, and its unique irreducible quo-
tient is the twist St⊗| ⋅ |1∕2 of the Steinberg representation. We write𝑊Φ2 for
𝑊Φ2(𝜇2, 𝜈2); hence the space of functions𝑊Φ2 for Φ ∈ 𝒮(𝐹2) is the Whittaker
model of 𝜎′ = 𝑖(𝜈2, 𝜇2), and the𝑊Φ2 with Φ ∈ 𝒮0(𝐹2) is the Whittaker model
of St⊗| ⋅ |1∕2.
We are interested in the following three fractional ideals of 𝐂[𝑞𝑠, 𝑞−𝑠]:

𝐼 ∶= (
𝑍(𝑊0,Φ1,𝑊Φ2 ; 𝑠)
𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)

∶𝑊0 ∈𝒲(𝜋),Φ1 ∈ 𝒮(𝐹2),Φ2 ∈ 𝒮(𝐹2))

𝐽 ∶= (
𝑍(𝑊0,Φ1,𝑊Φ2 ; 𝑠)
𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)

∶𝑊0 ∈𝒲(𝜋),Φ1 ∈ 𝒮(𝐹2),Φ2 ∈ 𝒮0(𝐹2))

𝐾 ∶= (
𝑍(𝑊0,Φ1,𝑊Φ2 ; 𝑠)
𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)

∶𝑊0 ∈𝒲(𝜋),Φ1 ∈ 𝒮0(𝐹2),Φ2 ∈ 𝒮0(𝐹2))

Corollary 6.2 shows that 𝐼 is the unit ideal. On the other hand, from the
definitions of the GSp4 ×GL2 𝐿-factors, we have

𝐽 =
⎛
⎜
⎝

𝐿Nov(𝜋 × St, 𝑠 + 1
2
)

𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)
⎞
⎟
⎠
, 𝐾 =

⎛
⎜
⎝

𝐿Novreg (𝜋 × St, 𝑠 +
1
2
)

𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)
⎞
⎟
⎠
.
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Since clearly 𝐼 ⊇ 𝐽 ⊇ 𝐾, we see that 𝐽 and 𝐾 are integral ideals (not just frac-
tional ideals) of 𝐂[𝑞±𝑠].

Proposition 6.4. The ideal 𝐾 vanishes at 𝑠0 if and only if 𝑠0 is a subregular pole
of 𝐿(𝜋, 𝑠) (in the sense of Definition 4.8).

Proof. This follows from Proposition 6.1, together with the definition of sub-
regular poles. □

Remark 6.5. It is not true that the order of vanishing of 𝐾 at 𝑠0 coincides with
the order of the pole of 𝐿Λsub(𝜋, 𝑠) at 𝑠 = 𝑠0, where Λ is the Bessel character(
| ⋅ |−1∕2−𝑠0 , 𝜒𝜋| ⋅ |1∕2+𝑠0

)
. The order of pole of 𝐿Λsub(𝜋, 𝑠) is always either 0 or 1,

as we have seen; but the orders of vanishing of 𝐽 and 𝐾 can be > 1 in some
cases. (This difference arises because 𝐿sub detects the infinitesimal behaviour
of Piatetski-Shapiro’s integrals as 𝑠 varies for a fixed Λ, but the ideals 𝐽 and 𝐾
detect the behaviour along a one-parameter family in which 𝑠 andΛ both vary.)

Corollary 6.6. If 𝑠0 ∈ 𝐂 is such that 𝜒𝜋| ⋅ |2𝑠0+1 ≠ 1, then 𝑠0 is a subregular pole
of 𝐿(𝜋, 𝑠) if and only if it is a pole of the ratio 𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠 + 1)

𝐿Nov
(
𝜋 × St, 𝑠 + 1

2

) .

Proof. If 𝜒𝜋| ⋅ |2𝑠0+1 ≠ 1, then 𝑠0 cannot be a pole of 𝐿Novex (𝜋 × St, 𝑠 + 1
2
). So

the orders of vanishing of 𝐽 and 𝐾 at 𝑠 = 𝑠0 are the same, and the result follows
from the previous proposition. □

Proposition 6.7. Suppose 𝜒𝜋| ⋅ |2𝑠0+1 = 1. Then 𝐽 does not vanish identically
at 𝑠 = 𝑠0. Hence 𝑠 = 𝑠0 is a subregular pole if and only if it is a pole of 𝐿Novex (𝜋 ×
St, 𝑠 + 1

2
).

Proof. The symmetry condition on 𝑠0 shows that if 𝐽 vanishes identically, then
the same is true if we interchange Φ1 and Φ2. Hence

𝑍(𝑊0,Φ1,𝑊Φ2 ;𝑠)
𝐿(𝜋,𝑠)𝐿(𝜋,𝑠+1)

in fact van-
ishes for all Φ1,Φ2 satisfying Φ1(0, 0)Φ2(0, 0) = 0. This shows that 𝑠0 is an
exceptional pole of the Piatetski-Shapiro 𝐿-factor, and such poles cannot occur
for generic representations as we have seen above. □

Note that Proposition 6.7 shows that part (1) of Theorem C is true, assuming
Theorem A. Similarly, Corollary 6.6 shows that conditions (i) and (ii) of Theo-
rem C are equivalent.

7. Compatibility with the Langlands parameters
7.1. Langlands parameters. Let 𝜌 be a Frobenius-semisimple Weil–Deligne
representationWD(𝐹) → GL(𝑛,𝐂). Then we can write 𝜌 (uniquely up to iso-
morphism) in the form

𝜌 =
⨁

𝑖
𝜌𝑖 ⊗ sp(𝑛𝑖),
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where 𝑛𝑖 ⩾ 1 are integers and 𝜌𝑖 are irreducible representations of the Weil
group (with trivial monodromy action), such that

∑
𝑖 𝑛𝑖 dim(𝜌𝑖) = 𝑛. Here

sp(𝑗) denotes the (𝑗 − 1)-st symmetric power of the Langlands parameter of
the Steinberg representation of GL2, which is the 2-dimensional representa-
tion with Frobenius acting as

( 𝑞−1∕2
𝑞1∕2

)
and monodromy as

( 1 1
1
)
. Note that

we have
𝐿(𝜌, 𝑠) =

∏

𝑖
𝐿(𝜌𝑖, 𝑠 +

𝑛𝑖−1
2
).

Lemma 7.1. With the above notations, we have
𝐿(𝜌, 𝑠)𝐿(𝜌, 𝑠 + 1)
𝐿(𝜌 × sp(2), 𝑠 + 1

2
)
=

∏

{𝑖∶𝑛𝑖=1}
𝐿(𝜌𝑖, 𝑠),

and similarly
𝐿(𝜌 ⊗ sp(2), 𝑠)𝐿(𝜌 ⊗ sp(2), 𝑠 + 1)
𝐿
(
𝜌 ⊗ sp(2)⊗ sp(2), 𝑠 + 1

2

) =
∏

{𝑖∶𝑛𝑖=2}
𝐿(𝜌𝑖, 𝑠).

Proof. This is a straightforward computation using the fact that

sp(𝑛)⊗ sp(2) = {sp(𝑛 + 1)⊕ sp(𝑛 − 1) if 𝑛 ⩾ 2,
sp(2) if 𝑛 = 1.

□

We shall apply this to the 4-dimensional representations arising from the
local Langlands correspondence for 𝐺 [GT11]; we write 𝜙𝜋 for the Langlands
parameter of 𝜋, which we consider as a 4-dimensional Weil–Deligne represen-
tations by composing with the inclusion GSp(4,𝐂) ↪ GL(4,𝐂). We also have
the local Langlands correspondence 𝜎 ↦ 𝜙𝜎 for GL(2, 𝐹). We refer to [RS07,
§2.4] for an explicit description of 𝜙𝜋 for non-supercuspidal 𝜋.
Proposition 7.2. If 𝜋 is supercuspidal, or if 𝜎 is supercuspidal and 𝜋 is not a
subquotient of the Klingen parabolic induction of an unramified twist of 𝜎∨, then
Conjecture 𝛼 implies Conjecture 𝛽.
Proof. I claim that under these hypotheses, the Langlands 𝐿-factor 𝐿(𝜋 × 𝜎, 𝑠)
has at most simple poles, and these all arise from one-dimensional summands
of 𝜙𝜋 ⊗ 𝜙𝜎.
This claim implies the proposition, since (assuming Conjecture 𝛼), Conjec-

ture 𝛽 in this case amounts to the assertion that all poles of the Novodvorsky
𝐿-factor are exceptional, which is true by Proposition 5.11.
Let us now prove the claim. First, we suppose 𝜎 is supercuspidal. In this

case, 𝜙𝜎 is an irreducible 2-dimensional representation of the Weil group (with
trivial monodromy action). If 𝐿(𝜋 × 𝜎, 𝑠) has any poles, then 𝜙𝜋 must have one
or more direct summands isomorphic to unramified twists of 𝜙∨𝜎 ⊗ sp(𝑗), for
some 𝑗. However, if there is a summand with 𝑗 > 1, or more than one such
summand, then this implies that 𝜋 is a subquotient of the induction of some
twist of 𝜎∨ (using the explicit description of the Langlands correspondence for
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non-supercuspidal representations described in §2.4 of [RS07]), contradicting
our assumptions. In the remaining case, when there is precisely one such sum-
mand and it has 𝑗 = 1, the corresponding summand of the tensor product also
has trivial monodromy, as required.
Now let us suppose 𝜋 is supercuspidal. Then 𝜙𝜋 is either irreducible of di-

mension 4, or is the direct sum of two distinct 2-dimensional irreducible rep-
resentations (with the same determinant). So the 𝐿-factor is trivial unless 𝜎 is
also supercuspidal, and we may argue as before. □

7.2. Proof of TheoremA for Steinberg𝝈. The results of the previous section
give a complete characterisation of the poles of the ratio 𝐿(𝜋, 𝑠)𝐿(𝜋, 𝑠+1)

𝐿Nov(𝜋×St, 𝑠+
1
2
)
: they are

precisely the complex numbers 𝑠0 such that 𝜒𝜋| ⋅ |2𝑠0+1 ≠ 1 and 𝐿(𝜋, 𝑠) has a
subregular pole. We shall use this, together with the tables of subregular poles
in [RW17, RW18], to compute 𝐿Nov(𝜋 × St, 𝑠), and hence prove Theorem A of
the introduction.

Theorem 7.3 (Theorem A). Let 𝜋 be a generic irreducible representation of
GSp(4, 𝐹). Then Conjecture 𝛼 holds for 𝜎 the Steinberg representation, i.e. we
have

𝐿Nov(𝜋 × St, 𝑠) = 𝐿(𝜋 × St, 𝑠).
Proof. We can assume that 𝜋 is either supercuspidal, or that its Sally–Tadić
type is one of {IIIa, IVa, VII, IXa}, since Conjecture 𝛼 is already known in the
remaining cases by Theorem 5.3.
According to Theorem 4.9, each of these classes of representations has the

property that 𝐿(𝜋, 𝑠) has no subregular poles. For IIIa and IVa, there may be
poles, but they are never subregular; for VII, IXa and supercuspidals, there
are no poles at all. So for these representations, we have 𝐿Nov(𝜋 × St, 𝑠) =
𝐿(𝜋, 𝑠 − 1

2
)𝐿(𝜋, 𝑠 + 1

2
). On the other hand, since the Langlands parameters of

these representations have no 1-dimensional summands, we have 𝐿(𝜋×St, 𝑠) =
𝐿(𝜋, 𝑠 − 1

2
)𝐿(𝜋, 𝑠 + 1

2
) by Lemma 7.1. So Conjecture 𝛼 holds for all these repre-

sentations. □

8. Proof of Theorems B, C and D
Proof of Theorem C. Let 𝜋 and 𝑠0 be as in the theorem. If 𝜒𝜋| ⋅ |2𝑠0+1 ≠ 1,
then Corollary 6.6 shows that 𝑠0 is an exceptional pole of 𝐿(𝜋, 𝑠) if and only
if it is a pole of 𝐿(𝜋,𝑠)𝐿(𝜋,𝑠+1)

𝐿Nov (𝜋×St,𝑠+
1
2
)
. By Theorem A, which we have just proved, the

denominator agrees with the Langlands 𝐿-factor 𝐿(𝜋×St, 𝑠+ 1
2
). This completes

the proof of Theorem C when 𝜒𝜋| ⋅ |2𝑠0+1 ≠ 1.
If 𝜒𝜋| ⋅ |2𝑠0+1 = 1, then Proposition 6.7 (combined with Theorem A) shows

that 𝑠0 is not a pole of
𝐿(𝜋,𝑠)𝐿(𝜋,𝑠+1)

𝐿(𝜋×St,𝑠+
1
2
)
. So wemust check that 𝑠0 is a subregular pole
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if and only if 𝜙𝜋 has a direct summand of the form | ⋅ |−(𝑠0+1∕2) ⊗ sp(2). This
follows by a case-by-case check from Theorem 4.9 combined with the tables of
Langlands parameters in [RS07]. □

Proof of Theorem B. We first suppose 𝜎 is an irreducible principal series
𝑖(𝜇2, 𝜈2). Twisting 𝜋 appropriately, we may assume 𝜇2 = 1; and the irreducibil-
ity gives 𝜈2 ≠ | ⋅ |±1. Moreover, 𝑠0 is such that 𝜒𝜋𝜈2| ⋅ |2𝑠0 = 1, and we may
assume 𝑠0 = 0.
By Proposition 6.3, 0 is an exceptional pole of theNovodvorsky 𝐿-factor if and

only if it is a subregular pole of 𝐿(𝜋, 𝑠). Moreover, the irreducibility of 𝜎 shows
that 𝜈2 ≠ | ⋅ |, so 𝜒𝜋| ⋅ |2𝑠0+1 = 𝜈−12 | ⋅ | ≠ 1. So, by the first case of Theorem C, 0
is an exceptional pole of 𝐿(𝜋 × 𝜎, 𝑠) if and only if 𝜙𝜋 has a 1-dimensional trivial
summand; and this in turn implies that 𝜙𝜋 ⊗ 𝜙𝜎 also has such a summand,
since 𝜙𝜋 ⊗ 𝜙𝜎 = 𝜙𝜋 ⊕ 𝜙𝜋⊗𝜈.
Conversely, if 𝜙𝜋⊗𝜙𝜎 has a trivial summand, then it must come from either

𝜙𝜋 or 𝜙𝜋⊗𝜈. If the former holds, then reversing the argument shows that 𝐿(𝜋 ×
𝜎, 𝑠) has an exceptional pole at 0. However, since 𝜈 = 𝜒−1𝜋 , the two factors are
dual to each other, so 𝜙𝜋⊗𝜈 has a trivial summand if and only if 𝜙𝜋 does.
We now suppose 𝜎 is a special representation. Again, we may assume 𝜎 =

St⊗| ⋅ |1∕2, so we are now in the case 𝜒𝜋| ⋅ |2𝑠0+1 = 0. By Proposition 6.7, 𝑠0 is an
exceptional pole of 𝐿(𝜋×𝜎, 𝑠) if and only if it is a subregular pole of 𝐿(𝜋, 𝑠); and
the second case of Theorem C shows that this occurs if and only if 𝑠0 is a pole
of the 𝐿-factor of a 2-dimensional summand of 𝜙𝜋 of the form | ⋅ |−(𝑠0+1∕2) ⊗
sp(2). Since 𝜙𝜋 cannot have any 3-dimensional summands, there is a bijection
between 2-dimensional summands of𝜙𝜋 and 1-dimensional summands of𝜙𝜋⊗
𝜙𝜎, sending 𝜌⊗sp(2) to 𝜌|⋅|1∕2⊗sp(1). So we conclude that 𝑠0 is an exceptional
pole of 𝐿(𝜋 × 𝜎, 𝑠) if and only if 𝜙𝜋 ⊗ 𝜙𝜎 has a summand | ⋅ |−𝑠 ⊗ sp(1). □

Proof of Theorem D for non-supercuspidal 𝜎. Supposefirst that𝜎 = 𝑖(𝜇, 𝜈)
is an irreducible principal series representation. Twisting 𝜋 and 𝜎 appropri-
ately, we may assume that 𝑠0 = 0, so 𝜇𝜈 = 𝜒−1𝜋 .
Then we have

Hom𝐻(𝜋 ⊗ (1 ⊠𝜎),𝐂) ≅ Hom𝐻(𝜋 ⊗ (𝜎 ⊠ 1),𝐂) = Hom𝐻+(𝜋, 𝜌)

where 𝐻+ denotes the subgroup
(( ⋆ ⋆

0 ⋆
)
, ⋆
)
of 𝐻, and 𝜌 the character of 𝐻+

given by
(( 𝑎 ⋆

0 𝑑
)
, ⋆
)
↦ |𝑎∕𝑑|1∕2𝜇−1(𝑎)𝜈−1(𝑑). Our claim is that this space is

non-zero if and only if𝐿(𝜋×𝜎, 𝑠)has an exceptional pole at 0; by Proposition 6.3,
the latter is equivalent to 𝐿(𝜋 × 𝜇, 𝑠) having a subregular pole at 0.
Similarly, if 𝜎 is the Steinberg representation and 𝜒𝜋 = 1, then the natural

map
Hom𝐻(𝜋, St⊠ 1)→ Hom𝐻(𝜋,Σ⊠ 1)

is an isomorphism, by [PS97, Theorem 4.3]. Again, the right-hand side can be
interpreted as a space of 𝐻+-invariant functionals, where we take 𝜌 the char-
acter

(( 𝑎 ⋆
0 𝑑

)
, ⋆
)
↦ |𝑎∕𝑑|; and we want to show that this space is non-zero if



20 DAVID LOEFFLER

and only if 𝐿(𝜋 × St, 𝑠) has an exceptional pole at 𝑠 = 0, which is equivalent to
𝐿(𝜋, 𝑠) having a subregular pole at − 1

2
, by Proposition 6.7.

Following §4 of [RW18], we refer to elements of Hom𝐻+(𝜋, 𝜌), where 𝜌 is a
character of𝐻+, as “(𝐻+, 𝜌)-functionals”. The claim we need to prove is:

Let 𝜌 be the character
(( 𝑎 ⋆

0 𝑑
)
, ⋆
)
↦ |𝑎∕𝑑|1∕2𝜇−1(𝑎)𝜈−1(𝑑) of

𝐻+, where 𝜇, 𝜈 are characters of 𝐹× such that 𝜇𝜈 = 𝜒−1𝜋 . Then
the space of (𝐻+, 𝜌)-functionals on 𝜋 is 1-dimensional if 𝐿(𝜋 ×
𝜇, 𝑠) has a subregular pole at 𝑠 = 0, and zero otherwise.

This follows from the results of [RW18, §5]. □

9. Proof of Theorem E
9.1. Uniqueness for 𝐆𝐒𝐩(𝟒) × 𝐆𝐋(𝟐). Let 𝜋, 𝜎 be irreducible generic repre-
sentations of GSp(4, 𝐹) and GL(2, 𝐹) respectively. Then, for any 𝑠0 ∈ 𝐂, the
map �̃�𝑠0 ∶𝒲(𝜋)⊗ 𝒮(𝐹2)⊗𝒲(𝜎)→ 𝐂 defined by

(𝑊0,Φ1,𝑊2)↦
𝑍(𝑊0,Φ1,𝑊2, 𝑠)
𝐿Nov(𝜋 × 𝜎, 𝑠)

|||||||𝑠=𝑠0
satisfies �̃�𝑠0 (ℎ𝑊0, ℎ1Φ1, ℎ2𝑊2) = | detℎ|−𝑠0�̃�𝑠0(𝑊0,Φ1,𝑊2). In particular, it
factors through the maximal quotient of 𝒮(𝐹2) on which 𝐹× acts via 𝜈| ⋅ |−2𝑠0 ,
where 𝜈 = (𝜒𝜋𝜒𝜎)−1. We are interested in the case 𝑠0 = 0, 𝜈 = 1, in which case
this quotient is isomorphic to Σ = 𝑖(| ⋅ |1∕2, | ⋅ |−1∕2), viaΦ↦ 𝐹Φ. Thus we have
�̃�𝑠0(𝑊0,Φ1,𝑊2) = 𝔷(𝑊0, 𝐹Φ1 ,𝑊2) for some non-zero element 𝔷 ∈ Hom𝐻(𝜋 ⊗
(Σ⊠𝜎),𝐂).
There is a left-exact sequence

0→ Hom𝐻 (𝜋 ⊗ (1 ⊠𝜎),𝐂)
𝛼
,,→ Hom𝐻(𝜋 ⊗ (Σ⊠𝜎),𝐂)

𝛽
,,→ Hom𝐻 (𝜋 ⊗ (St⊠𝜎),𝐂)

in which the first and third terms both have dimension⩽ 1, by themultiplicity-
one results for GSpin groups proved in [ET23] and the isomorphisms 𝐺(𝐹) ≅
GSpin(5) and 𝐻 ≅ GSpin(4). Conjecture 𝜀(a) asserts that the middle group in
the above sequence is always 1-dimensional, so the element 𝔷 is a basis.

Remark 9.1. Note that there do exist examples in which the first and last terms
are both nonzero – one can construct such examples with 𝜋 and 𝜎 principal-
series.

Proposition 9.2. The element 𝔷 is in the image of 𝛼 if and only if 𝑠 = 0 is an
exceptional pole of 𝐿Nov(𝜋 × 𝜎, 𝑠).

Proof. This is essentially a restatement of the definitions, since the 𝐹Φ with
Φ(0, 0) = 0 span the generic subrepresentation St ⊂ Σ. □
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If 𝜎 is non-supercuspidal, and 𝑠 = 0 is not an exceptional pole of the Novod-
vorsky 𝐿-factor, TheoremD shows thatHom𝐻 (𝜋 ⊗ (1 ⊠𝜎),𝐂) = 0; so Conjec-
ture 𝜀(a) follows in this case (that is, we have proved Theorem E(a)(ii)). Con-
versely, if we assume Conjecture 𝜀(a), it follows that Hom𝐻 (𝜋 ⊗ (1 ⊠𝜎),𝐂) is
non-zero if and only if 𝔷 is in the image of 𝛼, so Conjecture 𝜀(a) implies Conjec-
ture 𝛿.

9.2. Proof of Theorem E(a)(i). We now prove Theorem E in the case where
𝜒𝜋 = 𝜏2 for some smooth character 𝜏. Replacing 𝜋 and 𝜎 with the twists 𝜋 × 𝜏
and 𝜎 × 𝜏−1, which does not change either the Hom-space or the zeta-integral,
we may in fact suppose that 𝜒𝜋 = 1. In this case we can regard 𝜋 as a represen-
tation of 𝐺∕𝑍𝐺 = PGSp(4, 𝐹) ≅ SO(5, 𝐹), and Σ⊠ 𝜎 as a representation of the
subgroup𝐻∕𝑍𝐺 ≅ SO(4, 𝐹).
We now apply the results of [MW12] on branching laws for representations

of special orthogonal groups. In op.cit. a branching multiplicity 𝑚(𝜎, (𝜎′)∨) is
defined for irreducible representations 𝜎 of SO(𝑑, 𝐹) and 𝜎′ of SO(𝑑′, 𝐹), where
𝑑 > 𝑑′ are any integers of differing parity. (The results of op.cit. also cover non-
split special orthogonal groups as well, but we do not need this here.) If 𝑑 =
𝑑′+1, then𝑚(𝜎, (𝜎′)∨) is just dimHomSO(𝑑′,𝐹)(𝜎, (𝜎′)∨) = dimHomSO(𝑑′,𝐹)(𝜎⊗
𝜎′,𝐂); in the other extreme case, if 𝑑′ = 0, then 𝑚(𝜎, (𝜎′)∨) is the space of
Whittaker functionals on 𝜎.
The Proposition stated in Section 1.3 of [MW12] analyses these multiplici-

ties when 𝜎 and 𝜎′ are (possibly reducible) parabolic inductions, in which case
𝑚(𝜎, (𝜎′)∨) still makes sense. For these results, suppose that 𝜎 is induced from
a representation 𝜋1| ⋅ |𝑏1 ×⋯ × 𝜋𝑡| ⋅ |𝑏𝑡 × 𝜎0 of the Levi subgroup GL(𝑑1, 𝐹) ×
⋯ × GL(𝑑𝑡, 𝐹) × SO(𝑑0, 𝐹) of SO(𝑑, 𝐹), where 𝑑 = 2(𝑑1 +⋯ + 𝑑𝑡) + 𝑑0, 𝜋𝑖 is a
tempered irreducible representation of GL(𝑑𝑖, 𝐹), 𝜎0 is a tempered irreducible
representation of SO(𝑑0, 𝐹), and 𝑏1 ⩾ … ⩾ 𝑏𝑡 ⩾ 0 are real numbers. (The
case 𝑑0 = 0 or 1 is allowed, in which case we understand SO(𝑑0) to be the triv-
ial group.) We also make the same assumptions mutatis mutandis for 𝜎′. The
Proposition stated in §1.3 of [MW12] (and proved in §1.3–1.8 of op.cit.) shows
that 𝑚(𝜎, (𝜎′)∨) is given by 𝑚(𝜎0, (𝜎′0)

∨) if 𝑑0 > 𝑑′0, or 𝑚(𝜎
′
0, (𝜎0)

∨) if 𝑑0 < 𝑑′0;
in particular, since these numbers are known to be ⩽ 1 (by the results quoted
in the introduction of op.cit.), we have𝑚(𝜎, (𝜎′)∨) ⩽ 1.
This class of parabolically-induced representations includes all generic irre-

ducible representations; but it also contains some reducible representations –
crucially, the reducible representations of SO(4, 𝐹)we are calling Σ⊠𝜎, for any
generic irreducible representation of SO(3, 𝐹) ≅ PGL(2, 𝐹), or Σ⊠Σ, both have
this form. Hence, applying this result with 𝑑 = 5, 𝑑′ = 4, and the 𝜎 and 𝜎′ of
op.cit. taken to be our 𝜋 and Σ⊠𝜎, we have dimHomSO(4,𝐹)(𝜋⊗(Σ⊠𝜎),𝐂) ⩽ 1
as required.

9.3. Uniqueness for𝐆𝐒𝐩(𝟒). Wealso have a slight strengthening of the above
result in the case when 𝜎 is itself a twist of the Steinberg representation. Via
twisting, we shall take 𝑠0 = 0 and 𝜒𝜋 trivial, and consider the spaceHom𝐻(𝜋⊗
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(Σ⊠ Σ),𝐂). The argument of Moeglin–Waldspurger quoted above also applies
in this situation, showing that shows that this space always has dimension 1.
Let us write Ξ = Σ⊠ Σ, and filter it as Ξ00 ⊂ Ξ0 ⊂ Ξ where Ξ00 = St⊠ St,

Ξ0∕Ξ00 = (St⊠ 1)⊕ (1 ⊠ St) and Ξ∕Ξ0 = 1 ⊠ 1.

Proposition 9.3. The spaceHom𝐻(𝜋⊗Ξ,𝐂) contains a canonical non-zero ho-
momorphism 𝔷 satisfying

𝔷(𝑊0, 𝐹Φ1 , 𝐹Φ2) =
𝑍(𝐵𝑊0 ,Φ1,Φ2; Λ, 𝑠)

𝐿(𝜋, 𝑠)

|||||||||𝑠=−1∕2
, Λ = (1, 1).

Its restriction to 𝜋 ⊗ Ξ00 is non-trivial if and only if 𝑠 = − 1
2
is not a subregular

pole of 𝐿(𝜋, 𝑠), in which case Hom𝐻(𝜋 ⊗ Ξ,𝐂) is 1-dimensional spanned by 𝔷,
and every non-generic subquotient 𝜉 of Ξ satisfiesHom𝐻(𝜋 ⊗ 𝜉,𝐂) = 0.

Proof. One checks easily that the zeta-integral 𝑍(�̃�𝑊0 ,… ) depends only on the
image of Φ𝑖 in the 𝐹×-coinvariants, or equivalently on 𝐹Φ𝑖 . Moreover, the fact
that 𝔷 restricts non-trivially to Ξ0 is precisely [PS97, Theorem 4.3]; and its proof
moreover shows that Hom𝐻(𝜋,𝐂) = 0 for generic 𝜋.
If 𝑠 = − 1

2
is not a subregular pole, then Theorem D shows that Hom𝐻(𝜋 ⊗

(1 ⊠ St),𝐂) and Hom𝐻(𝜋 ⊗ (St⊠ 1),𝐂) are zero. Hence the restriction map
Hom𝐻(𝜋 ⊗ Ξ,𝐂) → Hom𝐻(𝜋 ⊗ Ξ00,𝐂) is injective. Since the latter space has
dimension ⩽ 1 by [Wal12] the result follows. □
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