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Free semigroupoid algebras from
categories of paths

Juliana Bukoski

ABSTRACT. Given adirected graph G, we can define a Hilbert space #(; with
basis indexed by the path space of the graph, then represent the vertices of the
graph as projections on #(; and the edges of the graph as partial isometries
on #;. The weak operator topology closed algebra generated by these pro-
jections and partial isometries is called the free semigroupoid algebra for G.
Kribs and Power showed that these algebras are reflexive, and that they are
semisimple if and only if each path in the graph lies on a cycle. We extend
the free semigroupoid algebra construction to categories of paths, which are a
generalization of graphs, and provide examples of free semigroupoid algebras
from categories of paths that cannot arise from graphs or higher rank graphs.
We then describe conditions under which these algebras are semisimple, and
we prove reflexivity for a class of examples.
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2. Introduction

A directed graph is a set of vertices along with a set of edges, where each edge
has a source vertex and a range vertex. Such a graph can be represented by a
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collection of operators on a Hilbert space J(; each vertex is associated to a pro-
jection, and each edge is associated to a partial isometry that maps between the
subspaces corresponding to its source and range vertices. These projections and
partial isometries are used to construct a C*-algebra called the graph C*-algebra
of the directed graph. There are many examples of common C*-algebras which
can be realized as graph algebras, and many properties of graph algebras are
determined by structural properties of the graph. C*-algebras are self-adjoint,
however, so this is not a useful construction for studying non-self-adjoint oper-
ator algebras.

Free semigroupoid algebras generated by directed graphs are a class of non-
self-adjoint operator algebras introduced by Kribs and Power in 2004 [6]. The
construction of these algebras from a graph is similar to the graph C*-algebra
construction in that vertices are represented by projections and edges by partial
isometries. However, a free semigroupoid algebra is closed in the weak operator
topology, not the norm topology, and does not include adjoints.

As in the graph C*-algebra case, many previously-studied non-self-adjoint
operator algebras can be expressed as free semigroupoid algebras for some di-
rected graph, and many properties of the algebra correspond to properties of the
graph. In fact, this relationship is in some sense stronger than the self-adjoint
case; while it is possible to find two non-isomorphic graphs that produce the
same graph C*-algebra, Kribs and Power [6] showed that two free semigroupoid
algebras from graphs are unitarily equivalent if and only if their corresponding
graphs are isomorphic.

In addition to this isomorphism result, Kribs and Power characterized semi-
simplicity for free semigroupoid algebras from graphs and proved that all free
semigroupoid algebras from graphs are reflexive. In another paper on the sub-
ject [7], they extended the free semigroupoid algebra construction to higher
rank graphs, which are a generalization of graphs where edges have length in
NK and satisfy a certain factorization property. Kribs and Power then proved
the same semisimplicity result, and a slightly more limited reflexivity result,
for free semigroupoid algebras from higher rank graphs. See [3] for an overview
and examples of C*-algebras and free semigroupoid algebras from graphs and
higher rank graphs.

There is another generalization of graphs introduced by Spielberg [13], called
categories of paths, which include higher rank graphs, but also other examples
without the restrictive higher rank graph factorization property. In this paper,
we study free semigroupoid algebras generated by categories of paths (usually
assuming a degree functor) and determine how they are similar to and how
they can differ from the graph and higher rank graph cases.

In Section 3 of this paper, we look at how the free semigroupoid algebra from
a category of paths is defined and show that, under the assumption of a degree
functor, the same characterization of the commutant holds from the graph case.
In Section 4, we provide some examples of free semigroupoid algebras that arise
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from this construction and which are not isomorphic to free semigroupoid al-
gebras from graphs.

In Section 5, we study semisimplicity for free semigroupoid algebras of cate-
gories of paths with degree functors. We introduce a condition (P) on a category
of paths with a degree functor. This condition has two parts: the first is similar
to row-finiteness in a graph; the second is a restriction on which elements of
the algebra can be nilpotent, which is similar to, but more general than, the
requirement that all paths lie on a cycle. We show that the free semigroupoid
algebra of a category of paths satisfying (P) is semisimple. We then employ this
result to show that the single-vertex examples from Section 4 are semisimple.

Finally, in Section 6, we examine reflexivity for free semigroupoid algebras
from categories of paths. We define a Double Pure Cycle Property and show
that if the transpose of a category of paths with a non-degenerate degree func-
tor satisfies this property, then the free semigroupoid algebra of the category
of paths is reflexive. We also establish reflexivity for a family of single-vertex
categories of paths.

3. Definition and basic properties

The following definition of a category of paths is due to Spielberg [13]. Recall
that a small category A is a set of objects A° and morphisms between the objects,
along with two maps: a source map s : A — A° sending each morphism to its
source, and a range map r : A — A° sending each morphism to its range.

Definition 3.1 ([13], Definition 2.1). A small category A is called a category of
paths if, fora, B,y € A,

» aff = ay implies § = y (left cancellation)

» fa = ya implies § = y (right cancellation)

« aff = s(B) implies a = 3 = s(f) (no inverses)
We call the objects of A vertices.

Directed graphs are an example of categories of paths. Another example is
higher-rank graphs:

Example 3.2. A higher rank graph is a category of paths A with a degree func-
tiond : A — N¥ satisfying the factorization property that for every 1 € A and
m,n € Nk such that d(A) = m + n, there are unique paths i, v € A such that
A= uv,d(u) = m,and d(v) = n. See [8] for the original introduction of higher
rank graphs, and [10] for a good overview. For 4 in a higher rank graph, we will
write |1| to mean |d(1)[, i.e. the sum of the components of d(1) in N¥.

There are also many categories of paths which are not higher rank graphs, a
few of which we will consider in Section 4.

Let A be a category of paths. The free semigroupoid algebra for A is defined
analogously to the free semigroupoid algebra for a graph or higher rank graph,
as in [6] and [7]. Specifically, we define a Fock space Hilbert space #(, with
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orthonormal basis {§,,}, indexed by the elements of A. For u,v € A, define:

_ g/xv if s(u) = r(v)
Lyusy = { 0 else '
If x € A is a vertex of A, then L, is a projection. Note that >, L, =1.

XENO

Definition 3.3. The WOT-closed algebra generated by {L,},.c, is called the free
semigroupoid algebra for A and is written {,.

It is useful to have a notion of the length of a path in a category of paths.
A degree functor on A is a function ¢ : A — N" such that for all y,v € A
satisfying s(u) = r(v):
p(uv) = e(u) + ().

A degree functor can be defined into any abelian group (see [13], Section 9), but
we will only consider degree functors into N".

We say the degree functor is non-degenerate if p(a) # 0 when o & A°. If A
is a category of paths with a degree functor, define the length of a path u to be
1] = |e(w)l, i.e., the sum of the components of p(w) € N".

Remark 3.4. For a vertex x in a category of paths, xx = x, and thus for any
degree functor ¢, we have p(x) + ¢(x) = ¢(x). Therefore, each vertex has
degree 0.

Definition 3.5. For a category of paths A with a non-degenerate degree functor
@ : A — N", let E; be the projection onto span{§,, : |u| = ¢}. Define the Cesaro
sums of A € B(H) by, fork € Z,

(A= ) (1—%)%(14),

JEZ, |jI<k

where

D;(A) = > E;AE;,;.
teZ, ¢ > max{0,—j}

The Cesaro sums converge SOT to A as in Lemma 1.1 of [4] (the details of
the argument are written out as Proposition 2.3.2 in [2]).

Given a category of paths A and u € A, let ji be the path u oriented in the
opposite direction, i.e., s(u) = r(@) and (i) = s(ft). Note that if u = v,v,, then
[t = 7,7,. With this, we can define a new collection of linear operators.

Definition 3.6. Given u € A, define the operator R, by

Rﬂgv — { 56;1 if r(u) = s(v) )

else

Let R\ be the WOT-closed algebra generated by {Ry},cp-
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Let A" = {ft : u € A} be the category of paths with the same vertex set as
A, but with all paths are oriented in the opposite direction. This is called the
transpose of A.

The following two results are stated without proof, as they follow from the
same proofs as in the graph case. In particular, Lemma 3.7 corresponds to
Lemma4.1in [6], and Proposition 3.8 corresponds to Proposition 4.2 and Corol-
lary 4.4 in [6].

Lemma 3.7. Let A be a category of paths with a non-degenerate degree functor.
The algebras & and R . are unitarily equivalent via the map W : H e — Fp

givenby W&y =§,.

Proposition 3.8. Let A be a category of paths with a non-degenerate degree func-
tor. Then R, = 8, and &, = R,.

Remark 3.9. As in Remark 4.3 in [6], this gives us a Fourier expansion for ele-
ments of &, as follows: let A be in 8, and x a vertex. Then there are constants
{a,}wen such that

A‘);:x = ALxgx = Rx(ALx)é‘x = Z awgw-

s(w)=x

So for u € A with r(u) = x,

Ag,u = ARﬂgx = RﬂAgx = Z awgw,u'

s(w)=x

Thus, the Cesaro partial sums associated with the series ), a, L, converge in
weA
the strong operator topology to A.

Finally, we end this section with a lemma that will be useful for Example 4.1:

Lemma 3.10. Let A be a category of paths with a non-degenerate degree functor
and a finite number of vertices, |A°| = n < co. Then the number of projections in
’QA is 2",

Proof. Let P € 2, be a non-zero projection, with Fourier expansion P ~

> ayLy. Then for each vertex x € A%, either P£, = 0 or
weA

§x=P¢ = Z ayéuw-

s(w)=x

In the latter case, a, = 1 and for all other w such that s(w) = x we have a,, = 0.

SoP = > a,L, where each a, is either 1 or 0.
XEAL
Thus, every projection on &, is a sum of projections of the form L, for a

vertex x. Since every such sum is a projection, this means A has exactly 2"
projections. g
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4. Examples
Example 4.1. Consider the category of paths A given by the graph
by b,
*1 3 X2 3 X3
a; a,

with the identifications a,b, = b,a, and a,a; = b,b;, but a; # b; and a, # b,
(Example 2.9, [9]). There is no degree function that makes A a higher rank
graph. To see this, suppose A were a higher rank graph with degree function d
and let d(a,) = n and d(a,) = m. Then a,b; = b,a; implies

m + d(b,) = d(b,) + n. 1)
Likewise, a,a; = b,b; implies
m+n =d(by) + d(by). )
Solving for m in Equation (1) and substituting into Equation (2) gives
d(by) + n —d(by) + n = d(b,) + d(b,),

implying d(b,) = n. Substituting this into Equation (1) gives us d(b,) = m.
But this contradicts the uniqueness part of the factorization property for higher
rank graphs, because we have a single path 4 = a,b; = b,a; which can be
decomposed as a path of degree m concatenated with a path of degree n in two
different ways.

Thus, A isnota higher rank graph. However, it is a category of paths, with de-
gree functor equal to the number of edges in a path. This category of paths has
three vertices (x;, x,, x3), four paths of degree 1 (a;, by, a,, b,), and two paths
of degree 2 (a,a,, a,b,). The free semigroupoid algebra for A is the subalgebra
of My(C) generated by operators of the form

ViLy, + VoL, + V3L, + oLy + 1Ly, + ayLg, + BoLp, + V1La,a, + V2Layb, s

or, in matrix form corresponding to the ordered basis {§, , §+,, §x,5 §a;5 €5 §ays

gbza gazals gazbl }':

»v» 0 0 O O O O O O
o » 0 0O O O O O O
O 0 » 0 O O O O O

az 0 0 »$, 0 O O O O

/7 0 0 0 », 0 O O O
0O ab 0 0 O v 0 O O
0O B, 0 0 0 O v 0 O

71 0 0 [2%) ﬁz 0 0 V3 0

(72 0 0 B a 0 0 0 v

Proposition 4.2. The subalgebra of My(C) given by matrices of the above form
cannot arise as the free semigroupoid algebra of a higher rank graph.
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Proof. Suppose A’ is a higher rank graph such that &, consists of matrices of
the above form. For 7 € {vy,v,,v3, 41, %3, B1, B2, 71, ¥2} let T, be the operator
given by setting 7 = 1 and all the other variables to 0. Then we can see that
L, has eight projections: 0,T,,, T, ,T,,, T, + T, T, +T,,,T,, + T,,, and I.
By Lemma 3.10, A’ must have three vertices y;, y,, and y;. Furthermore, the
minimal projections must be those that correspond to projections associated to
single vertices, so, without loss of generality, T, =L,,T, =1L, and T, =
Ly, and thus the first three basis vectors in this matrix form are §y1, §y2, and

Y3N0W fori = 1,2,3, let P; be the projection onto span(§,,). We can see from
the first two columns of the matrix form that P;8,,P;, P,®,/P; and P;8,,P,
each have two-dimensional range. So there are exactly two paths from y; to
y3, two paths from y; to y,, and two paths y, to y;. Since the matrix is finite-
dimensional, there can be no paths from y, to y; or from y; to y, or y;. So the
graph looks like

w2y 2

15 Y2 —5 V3

with two identifications among the paths from y, to y;. As argued above, there
is no degree functor that makes such a graph a higher-rank graph. Thus, the
matrix cannot correspond to the free semigroupoid algebra of a higher-rank
graph. O

Example 4.3. Let A, be the category with one vertex x, two edges e and f, and
the identification e? = f2:

eCx Of

Any path in A, can be written as a concatenation of e’s and f’s, and since
e’f = f3 = fe?, it follows that e commutes with every other path. Thus,
each path in A, can be written uniquely in the standard form e"(fe)* f!, where
r,s eNU{0},t €{0,1}and e® = (fe)* = [0 = x.

Proposition 4.4. The category A\, described above is a category of paths.

Proof. First, since the length of a path always increases when concatenated
with e or f, the category has a degree functor equal to the length of the path
and has no inverses.

To see that cancellation holds in this category, let «t, § € A,. We can write a
and B in standard form, a = e"1(fe)* f1 and B = e"2(fe)* fr.

Ifea = ef, then

er1+1(fe)slft1 — er2+1(fe)s2ft2’
so by the uniqueness of the standard form, r; = r,,8; = s,, and t; = t,. So
a=f.

Now suppose fa = f[. Note that in addition to the standard form where
all f2 are converted to e? and moved all the way to the left, we also have an
alternate standard form where all e are converted to f2 and moved left, giving
each path a unique form f"(ef)%e! wherer,s € NU{0}, t € {0, 1}. We can write
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a and B in this form, say a = f"3(ef)%e" and B = f™(ef)*e". Then fa = fB
implies
fr3+1(ef)s3et3 — fr4+1(ef)s4et4’
so by the uniqueness of the alternate standard form, r; = ry4, 83 = 54, and t5 = £,.
Soa = B.
This proves left cancellation. A similar argument using standard forms shows
right cancellation. |

Note that, in a graph with edges e and f, the operators L, and L always have
orthogonal ranges. However, in this example, L, and L do not have orthogonal
ranges, since L,(§,) = &, = Ly(§f). The path space of A, can be expressed by
a tree diagram as follows:

fef

ININENIN

Notice that the path space of the graph with one vertex and two edges has 2"
paths of length n for each n, whereas A, has only n + 1 paths of length n for
each n.

Define Hilbert spaces based on the rows of the tree diagram:

H, = span{§,}

H, = span{{,, &}

H, = span{§ s, &2, §o 1}

Hsy = span{&,fe, €3, Sz s Eper}

Each path in A, can be uniquely denoted by p(m, k) where k is the length
of the path and m is the “f-degree” of the path, defined as follows: |m]| is the
number of times f appears in the standard form e’ (fe)* f*, with m > 0ift = 1
andm < 0ift =0.

For example, efefef = p(3,6) and e®fe = p(—1,8). When k is clear from
context, we write p(m) for brevity.

Using this notation, we can write out in a general way the orthogonal basis
described above via the path diagram. First consider paths of even length 2k.
Define an ordered basis for H,; by

{P(_k), p(_k + 1)5 ety P(_l)’ P(O)a p(l)’ ser p(k)}
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For paths of odd length 2k — 1, define an ordered basis for H,,_; by
{p(=k + 1), ..., p(=1), p(0), p(1), ..., p(k)}.

oo
Let P, be the projection onto Hy. Then ), P, = I. The following lemma
k=0
describes the matrix representation of L, and Ly with respect to this decompo-
sition; it will be helpful in Example 5.12 when we study this free semigroupoid

algebra further in order to prove that it is semisimple.

Lemma 4.5. In the matrix decomposition described above, L, and Ly are repre-
sented by

0 0 0 0 0 0 0 0

J, 0 0 0 S, 0 0 0
[ |0 S5 0 0 -0 oo
e=lo o J, 0 ..|”7]o o0 S, 0
0 0 0 S5 .. 0 0 0 Js

where Jy is the k X (k — 1) matrix that is a (k — 1) X (k — 1) identity matrix with
an extra row of 0’s at the bottom (i.e., the inclusion map from H,._; to Hy, sending
each basis element of H,_; to the corresponding basis element of Hy), and S is
the k x (k — 1) matrix that is a (k — 1) X (k — 1) identity matrix with an extra
row of 0’s at the top (i.e., the right shift map from Hy._, to H,, sending each basis
element in Hy_, to the next basis element of Hy).

Proof. First note that composing e with any path in standard form adds one to
the length of the path but does not change the “f-degree” of the path:

()" (fe)' f*) = e (fe)y f!

Thatis, eop(m, k) = p(m, k+1). By the way the bases for these Hilbert spaces
are defined, this means that L, acts as the right shift operator from H,,_; to
H,;, and the inclusion map from H,, to H,; . This gives us the desired matrix
representation of L,.

For Ly, consider a basis element p(m,2k) € Hy. By checking the cases
when m > 0,m < 0, and m = 0, it is straightforward to show that

« if k is even, then fop(m,k) = p(m + 1,k + 1); and
« ifkis odd, then fop(m,k) = p(m — 1,k + 1).
Again, by the way that the bases are defined, this means that L acts as the right

shift operator from H,, to Hy; and the inclusion map from H,y_; to Hy. This
gives us the desired matrix representation of L. O

The next example is a single-vertex category of paths for which the free semi-
groupoid algebra contains a non-zero nilpotent element. Before introducing
this example, we show that this cannot occur in the higher rank graph case.
We use the following ordering of paths in a higher rank graph: given 1 € A,
with degree (n,, n,, ..., n;) and u € Awith degree (m;, m,, ..., my),wesayA > u
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if (ny, ny,...,n) > (Mmy, m,, ..., my) with respect to lexicographical ordering in
NK.

Proposition 4.6. If A is a single-vertex higher rank graph, then 2 5 does not have
a non-zero nilpotent.

Proof. Let T € R, be non-zero, with Fourier expansion ), a,L,. Letn =
weA

min{|lw| : «a, # O}, andletT = {w € A : |w| = n,a, # 0}. Lety € T

be maximal with respect to lexicographic ordering. Then for any k € N, the

expansion of T¥ contains the non-zero term oc’}fLyk. This term can only cancel

out with other non-zero terms associated to paths of length kn, and by the min-

imality of n, such a path must have the form w;w, ... w, with |w;| = n for all
i =1,..,k. However, Lemma 7.1 of [7], implies that w; = y foralli = 1, ..., k.
So the non-zero term oc’;Lyk cannot cancel out, and T is not nilpotent. O

Example 4.7. Let A; be the category with one vertex x, three edges a, b, and c,
and the following identifications:
[ a2 = b2 = CZ
e ab=bc=ca
s ac=cb=ba
Using these relations, any non-vertex path can be written uniquely in the
form ya" fory € {a,b,c} and n € N U {0}.

Proposition 4.8. The category A5 described above is a category of paths.

Proof. We will show that A; satisfies the conditions of a category of paths by
means of a matrix semigroup representation.
Consider the matrices
1 0 0 010 0 01
A=|0 0 1|,B=|1 0 0], C=]0 1 O

010 0 01 1 0 O
and the subsemigroup S of (N U {0}, +) @& M; generated by (1, A), (1, B), (1,C),
and (0, 1), where I is the 3 X 3 identity matrix. These elements satisfy:

« (1,X)(0,I)=(0,1)(1,X) =(1,X) for X € {A,B,C}

« (LAY =(1,B) =(1,0)? =(2,])

010
. (1,A)(1,B)=(1,B)(1,0)=(1,0)1,A)=(2,]0 0 1))
(1 0 0]
[0 0 1]
. (1,A)(1,C)=(1,0)1,B)=(1,B)(1,C)=(@2,|1 0 0.
010

Furthermore, because the matrices A, B, and C are invertible, this semigroup
has left and right cancellation, and because the first coordinate of the direct sum
is always positive, there are no inverses. So S is a category of paths.
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Now consider the mapping ¢ : A; — Sgivenbya — (1,A),b — (1,B),c —
(1,C),x ~ (0,I), which defines a surjective semigroup homomorphism. To
see that g is injective, suppose ¢(ya") = p(za*), for y,z € {a,b,c} and n,k €
N U {0}. Then ¢(y)(n, A") = ¢(z)(k, A¥). So n = k and by cancellation, ¢(y) =
@(2). Soy = z, and ya" = za.

Thus, the category A; is isomorphic to the category of paths S, implying that
A; is a category of paths. O

Note that this category of paths has a non-zero nilpotent element given by
T = L, + wLy + w?L,, where w is a primitive third root of unity; if we expand
T? and use the identifications in A5 to simplify, we get

T’=(1+w+w’)Le+Q+w+w?)Ly, + (14 o+ w?)L,, = 0.

Next, we consider matrix representations for L,, Ly, and L. based on the
Hilbert spaces {Hk}kZOa where Hy = {gx}a H, = {gas gbs gc}, and

Hy = {ga"’ gbak—l’ gcak—l}
for k > 2. ThenI = ), P, where Py is the projection onto Hy.
k=0

Lemma 4.9. In this matrix decomposition, L,, L, and L. are represented by

0 0 0 O 0 000 0 0 0 0
A, 0 0 O B, 00 0 C, 0 0 0O
0 A0 O 0 B OO 0 C 0 0
0 0 A O 'lo 0o B o o o Cc o
0 0 0 A 0 0 0 B 0 0 0C

0 1
above. (So all the blocks in the block decompositions are 3 X 3, except the 1,1-block,
which is 1 X 1, the rest of the first column of blocks, which are 3 X 1, and the rest
of the first row of blocks, which are 1 X 3.)

1 0 0
respectively, where A, = \0] ,B; = \1], C, = [0 ,and A, B, and C are defined
0

Proof. First, note that L,(§,) = &,, giving us A, in the 2,1-block. Next, for all
neN,

La(ga") = ga"*'l; La(gba"—l) = gca"; La(gca"—l) = gba"'
which gives us the matrix A in the (n + 1, n)-block, for all n. The calculations
for L, and L, are similar. O

So 8, is the WOT-closed algebra generated by L, L, L., and the identity.

As a similar example, consider the category of paths A,, with one vertex x, n
edges ey, ey, ..., €,_1, and the identifications e;e; = ¢;,¢ej,, forall i, j, ¢, taken
mod n.

Similar to the case for A; above, this can be shown to be a category of paths
using a matrix representation: Let e, be the n-dimensional vector with 1 in the
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kth coordinate and zeroes elsewhere, and let E; be the n X n matrix with kth
column equal to e;_;, with all subscripts taken mod n. Then the kth row of E;
is also e;_y, so E; is a symmetric matrix for every i, and E;E; = E;,¢E,, for
all i, j, ¢, taken mod n. Thus the subsemigroup of (N U {0}, +) & M,, gener-
ated by (0,1) and {(1,E;) : i = 1,...,n} is equivalent to A, and so A, satisfies
cancellation and has no inverses.

Note that the relations on A, imply that e = ejz. for all i, j, and thus e; com-
mutes with every path in A. Thus, this category of paths has n paths of length
k for any k > 2, which can be written as ¥, e;ef ™, e,ef ™1, .. e, ek Addi-
tionally, it has a non-zero nilpotent

T=¢§, +wé, +a?, +---+a" ¢, ,

where w is a primitive nth root of unity.

In the case where n = 3, this construction gives the category of paths A;
described above. When n = 2, we get a category of paths with one vertex, two
loops, and the relations eg = ef and eye; = e;ey, which is different than the
two-loop example described in Example 4.3.

5. Semisimplicity

An operator T € B(HK) is called nilpotent if T* = 0. We say that T is
quasinilpotent if the spectrum of T is 0, or, equivalently, if lim ||T"||'/" = o.
n—oo

The Jacobson radical rad(A) of a Banach algebra A is the intersection of the
kernels of all algebraically irreducible representations. It is a well-known fact
(for example, Theorem 2.3.5(ii) in [11]), that the Jacobson radical of an algebra
of operators is the largest quasinilpotent ideal in the algebra. An algebra A is
called semisimple if rad(A) = 0.

A cycle in A is a path uyp, ... 4, & A° with s(u,,) = r(y). Say that u € A
lies on a cycle if there is some v € A such that uv is a cycle. Let B(A) be the
collection of paths u € A which do not lie on a cycle. The set B(A) is empty if
and only if every path in A lies on a cycle. Kribs and Power showed that for a
graph G, the Jacobson radical of £ is determined by these paths:

Theorem 5.1 ([6], Theorem 5.1). Let G be a graph. Then L is semisimple if
and only if every path in G lies on a cycle. When G has finitely many vertices,
|[V(G)| = M < oo, then the radical is nilpotent of degree at most M and is equal
to the WOT-closed two-sided ideal generated by {L, : u € B(A)}

They also proved the same theorem for higher rank graphs in [7]. To obtain
a similar result for categories of paths, we will use an extra assumption.

Throughout this section, the category of paths A is assumed to have a non-
degenerate degree functor ¢ : A — N". For w € A, let |[w| = |p(w)|, i.e. the
sum of the components of p(w) € N".

Definition 5.2. We call a path u € A minimal if for v,n € A, u = vy implies
u=voru=n.
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Definition 5.3. Say that a category of paths A satisfies property (P) if:

(i) Foreachvertexv € A°, the set of minimal paths in vA is finite; and

(i) IfA #0and A = a;L, +a,L, ++--+ai Ly, forsomek € N, wy, ..., wy €
A with lwy| = |wy| = -+ = |wg|, and a4, ..., a, € C, then there is some
M € A such that L, A is not nilpotent.

If A is a graph or higher rank graph, then the second condition, (P)(ii), is
equivalent to saying that each edge lies on a cycle, as shown in the next propo-
sition. Notice the similarity to the proof of Proposition 4.6.

Proposition 5.4. If A is a higher rank graph, then each path in A lies on a cycle
if and only if A satisfies (P)(ii).

Proof. First suppose A satisfies (P)(ii) and let v € A. By (P)(ii), there is some
u € A such that L, L, is not nilpotent. Thus, wa = Ly, is not equal to 0. So
uv must be a cycle. Thus, every path lies on a cycle.

Now assume that every path in A lies on a cycle, and let A € &, such that
A#0and A = a,L,, +a,L, +--+aiL,, € 8 forsomek € N,wy,...,w €A
with |w;| = |w,| = -+ = |wi|, and a4,...,q; € C. Assume without loss
of generality that a; # O fori = 1, ..., k. Choose u so that uw, is a cycle. Let
I ={uw; : r(w;) =s(u),i =1,...,k},andlety € I'be maximal in T with respect
to lexicographic ordering, say y = uw; . Then for any n € N, the expansion of
(L,T)" contains the term al’},iOLyn with a{},io # 0. By Lemma 7.1 of [7], no other

path associated to a term in the expansion of (L, T)" can be identified with y".
So the non-zero term a{‘U[OLyn cannot cancel out. So T is not nilpotent. O

Lemma 5.5. If A satisfies (P)(i), then for any vertex v, there are at most finitely
many paths in A of degree n with range v.

Proof. Letv € A°. By (P)(i), there are only a finite number, say N, of minimal
paths in vA. For each of those paths u, there are a finite number of minimal
paths in s(u)A. Let N, be the maximum of those finite numbers. Continue this
n times, up to N,,. Then the total number of paths in A of degree less than or
equal to n with range v is at most

Nl +N1N2 + .- +N1N2N3 ...Nn,
which is finite. O

The following theorem corresponds to Lemma 5.2 in [6].

Theorem 5.6. If A satisfies (P), then R, is semisimple. In particular, for every
non-zero A in 8, there is a path w € A such that L, A is not quasinilpotent.

Proof. Let A € &,, with Fourier expansion A ~ )} a,L,. Letn = min{|w| :

weA
a, # 0}.
LetA’ = ) a,L,. By condition (ii) of (P), there is some u € A such that
lw|=n
L,A’ is not nilpotent. Therefore, since only minimal-degree terms can cancel
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out other minimal-degree terms, the minimal-degree terms of (L“A)" do not
cancel out for any k. So for any k, (LMA)" will have a non-zero term in its Fourier
expansion of the form b, L, where |v;| = k(n + |u|). By the minimality of n,
such a path v, must be equal to pw; pwy_; ... yw,uw; where each w; has degree
n.

Now, by Lemma 5.5, there are only finitely many paths of degree n that end
at s(u). So the following minimum is well defined:

a :=min{|a,| : |w| = n,r(w) = s(u), a, # 0}.

Then |b,, | > ak. So for k > 1, we have

1/k
LA 2 (LA e & )| = by [V 2 (@) = a> 0.

Thus, L, A has a positive spectral radius and is not quasinilpotent. But recall
the radical rad &, is equal to the largest quasinilpotent ideal in &,. So A is not
in the radical for A # 0. O

Next, we will show a partial converse to this result, namely, that if &, is
semisimple, then each path in A must lie on a cycle. First, the following Lemma
corresponds to Lemma 5.3 from [6]:

Lemma 5.7. The following are equivalent for u € A:

(i) L, € rad 8,
(ii) u € B(A)
(iii) (AL#)2 =0forall A e g,
(iv) L2 = Ly = Owhenever w € A is a path which includes u (i.e., there exists
a, € Asuch that w = auf).

Proof. The proof for graphs also works for categories of paths, but the details
for the equivalence of (iii) and (iv) are not explicitly given in Lemma 5.3 in [6],
so we provide them here.

(iii) = (iv) Assume that (AL#)2 = 0forall A € &, and let w be a path
containing u. So w = auf for some a, 5 € A. Suppose w is a cycle. Then
s(B) = r(a). Letting A = Lg,, we have

2 _ — _ —
LgLi, = Lgww = Lgaypaup = (AL,)*Lg = 0.

But LgL, # 0 since LgLg (£4)) = £gue- This contradiction shows that w is not
acycle. So L. = 0.

(iv) = (iii) Now assume that L2 = L,. = 0 whenever w € A is a path
which includes u. Letv € A such thats(v) = r(u). Then vu is a path containing
U, SO L,Z,M = 0 by assumption. If it were also true that s(u) = r(v), then Lﬁﬂ =
Ly # 0. So it must be that s(u) # r(v) for all v € A with s(v) = r(uw).



FREE SEMIGROUPOID ALGEBRAS FROM CATEGORIES OF PATHS 465

Nowlet A € &, and leta,, bethe coefficientssuch that A&,y = 3 a,éy.
s(w)=r(w)
Then

2 —
(ALu) é’S(u) - AL#A§#

=AL, Y apbuy
s(w)=r(u)
=A Z awéwp-
s(w)=r(n)
But, by the previous paragraph, uwu is not a path for any w with s(w) = r(w).
So (AL#)ng(m = 0. And for any other vertex y # s(u), we have

(AL, ¢, = (AL,A)L,E, = 0.

Theorem 5.8. If &, is semisimple, then every path in A lies on a cycle.

Proof. Suppose that there is a path in A which does not lie on a cycle. Then
the set B(A) is nonempty, and Lemma 5.7 gives us a path u € B(A) such that
L, € rad £,. Thus £, has nonzero radical and £ is not semisimple. (This does
not require the assumption that A satisfies (P), and is the same as the graph case
[6].) O

We next consider a block diagonal decomposition of ,. As in [6], we say
that a subset I" of A is maximally transitive if :

(a) there are paths in both directions between every pair of vertices in T’
(b) if u €T, then s(u) and r(u) are in T

(c) if u € A such that s(u) and r(u) arein T, thenu € T

(d) ' is maximal with respect to these properties.

Let {A;};cs be the maximally transitive components of A, and let {S;};c5 be the

projections S; = ), L,. Note that if A has M vertices, then |J| < M, since
xeA?

every maximally transitive component must have at least one vertex and every

vertex is in exactly one maximally transitive component (though that compo-

nent could be just a vertex with no paths). Thus, we have

I = ®iesS;

Note that paths in B(A) are not contained in any maximally transitive com-
ponents, since paths in B(A) do notlie on a cycle. Therefore, B(A) = A\ U;eqA;.

Now we may consider the block matrix form of &, with respect to the above
decomposition. Note that, fori # j, if the (i, j)-block is non-zero, then the (j, i)-
block must be 0, because if there were a path from A; to A; and a path from A;
to A;, it would violate the maximality of the maximally transitive components.

A graph version of the following lemma was stated but not explicitly proved
in [6], so we include a proof here for the category of paths case even though the
same proof would apply to graphs:
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Lemma 5.9. Let J be the WOT-closed two-sided ideal in 8 s generated by {L,, :
U € B(A)}. Then J is given by the off-diagonal entries of  , in the decomposition
described above; that is, J = ), S;&S;.
i#]j
Proof. Let A € R,. For each vertex x, there exist constants {a,, : w €
A, s(w) = x} such that
Agx = Z Ay gw-

s(w)=x
In the block diagonal form of A described above, the coefficient a,, will be in
the column block corresponding to s(w) and the row block corresponding to
r(w).

So if A € &, and the diagonal blocks are 0 in this decomposition, then the
Fourier coefficients a,, are 0 for all w ¢ B(A). Thus, the Cesaro sums of A are
in g, and since they converge SOT to A, that means A € J.

Conversely, if A € J, we know A is a WOT limit of operators in span{L,, :
1 € B(A)}. Note that any path u € B(A) has at most one endpoint in any given
maximally transitive component A;. Thus, the block diagonals in this matrix
decomposition will be 0 for every L, for u € B(A), and hence also for A. O

The following theorem is similar to Theorem 5.1 in [6], but the proofis slightly
more complicated in the category of paths case.

Theorem 5.10. If A has M < oo maximally transitive components, and each
maximally transitive component satisfies (P), then the radical is nilpotent of de-
gree at most M and is equal to the WOT-closed two-sided ideal generated by {L,, :
U € B(A)}

Proof. Let J be the WOT-closed two-sided ideal in 8 generated by {L, : u €
B(A)}. We will first show that the radical contains this ideal. By Lemma 5.9, J
is given by the off-diagonal entries of 8, in the decomposition

I =®iesSi,
where S; is the projection onto the subspace ¢2(A;) corresponding to the maxi-
mally transitive component A;.

Now, since there are M blocks in each row and column, and only one of the
(i, j)- and the (j, i)-block can be non-zero for i # j, it follows that J¥ = {0}.
Since J is an ideal, we have for all X € 8, and A € g, that (XA)" = 0. Hence
d is contained in rad &, and is nilpotent of degree at most M.

Finally, we need to show that rad &, is contained in J. So suppose A €
rad &, with Fourier expansion scalars {a,,},,ex. We will show that a coefficient
a,, is non-zero only if w € B(A). Suppose by way of contradiction that there is
a path v with a,, # 0 and v ¢ B(A). Choose v so that |v| is minimal with this
property. Let A’ be the maximally transitive component of A that contains v.

LetS = {w € A" : |w| = |v|,r(w) = r(v)}. Note that this set is finite by
Lemma 5.5. Let A’ be the operator of terms of A corresponding to paths in S;
thatis, A’ = )] a,L,.

wes
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Note that this means A’ € 8,. Since we are assuming that (P) holds on A/,
there is some u € A’ such that L, A’ is not nilpotent. We now want to show
that L, A has positive spectral radius.

The Fourier series of the operator L, A is given by > ayLy,. Taking this to
weA
the kth power formally gives us

Z awl awz awk—l anL/,twl/xwz...,uwk_l,un-
w;,nEA
But in fact, we know each wj is in A’ because s(u) and r(u) are in A’.

Let M = {uu puu, ... uup_ My - u; € S}. We will show that it is impossible
for all the terms associated to paths in M to cancel out in the product (L“A)" .
Let wy, Wy, ..., Wg_; € A’ with a,, # 0, and let uy,u,, ..., u, € S with @, # 0.
In what follows, we will determine for which paths n € A it is possible that
a, #0and

MW HW) ... YW M47) = HULUU ... LU
First, suppose |n| < |v|. Since |v| is minimal with the property that a, # 0
and v & B(A), this implies € B(A). Thus, either s(n) € A’ orr(n) & A’. So
since u;, € S, then either s(») # s(uy ), implying

W1 W, .. MW _1 7] F AUy Gl .. LTk

or r(n) # s(u), implying the path on the left is undefined.

Now suppose || > |v|. Then pyw,uw; ... uwy_;un has degree larger than
(lu| + |v])¥, since each w; is in A/, and thus by the minimality of |v|, satisfies
|w;| > |v| for all i. So pw,uw; ... UW_1 4N F Ul YUy ... LU

Finally, suppose |n| = |v|. If n & A/, then, as above, either s() # s(uy),
implying

MWy W, .. YWk 1 A7) F UL AU .. U
or r(n) # s(u), implying the path on the left is undefined. If || = |v| and 7 is
in A/, then uw; uw, ... uwy_; un is in M.

Therefore, only terms corresponding to paths in M can cancel out other
terms in M, and we know they do not all cancel out because LMA’ is not nilpo-
tent.

Thus, for any k, (LMA)" will have a non-zero term in its Fourier expansion of
the form b, L,, where wy is the result of concatenating k paths of the form uu
foru € S. Let a = min{|a,| : u € S}, which is well defined since S is a finite
set. Then |by, | > a*.

So for k > 1, we have

1/k
LAY 2 [(LpA) s )| = 1bu |V 2 (@)VE =a> 0.

This contradicts that A € rad &,, thus proving the claim. So a coefficient a,,
in the Fourier expansion of A is non-zero only if w € B(A). Thus, the Cesaro
sums for A are in J, and they converge SOT to A. So A € J. O
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Before turning to examples, we give one further result on the nilpotency
degree of the ideal J. Given a category of paths A, let a chain of length n
be a set of maximally transitive components {A;, A,, ..., A,} of A with paths
Wy, Wy, ..., W,_1 in B(A) such that w; begins in A and ends in A . If there are
a finite number of maximally transitive components, then all chains are finite.

Proposition 5.11. Let A be a category of paths with M maximally transitive com-
ponents, where M < oo. Let J be the WOT-closed ideal generated by {L,, : u €
B(A)}. The nilpotency degree of J is equal to the length of the largest chain of
maximally transitive components, which is at most M.

Proof. Let{A;};<), be the maximally transitive components of A, and let{S;};<)s
be the projections S; = ), L,. ThenI = @®;<yS;.
x€A?

Lemma 5.9 says that the ideal J is given by the off-diagonal entries of £, in
this decomposition. Let B; ; be the block in the ith row and jth column of this
decomposition. Let n be the length of the largest chain of maximally transitive
components. A chain of length n of maximally transitive components corre-
sponds to a sequence of blocks B;, ;. ,Bj, ;.,..,B; | ; suchthateachB; ; . is
non-zero and all ji, ..., j, are distinct. Since there are no chains of length bigger
than n, J" = 0, and J is nilpotent of degree less than or equal to n.

Suppose {A4, ..., A,} with paths {w,...,w,_;} is a maximum length chain.
Since each component A; is transitive, there are paths u; € A;forl <i < n
with s(u;) = r(w;_;) and r(i;) = s(w;). SO Wy,_; ty_1 - H3Wo oW, iS a path in A.
Thus,

A= Lwn—l,“n—l Tt stlls + szliz + Lwl
is an element of J such that A" &,y = &, wuw, # 0. So the nilpo-
tency degree of g is equal to n. O

Example 5.12. Recall that A, is the category of paths with one vertex x and two
edges e and f satisfying e? = f2. The degree functor for A, is given by the length
of the path. We will show that £, is semisimple by showing that A, satisfies
Property (P). Clearly, A, satisfies (P)(i) since there are only three minimal paths
in xA (namely, x, e, and f). So we must show A, satisfies (P)(ii).

Asin Example 4.3, each path in A can be uniquely denoted by p(m, k) where
k is the length of the path and m is the “f-degree” of the path: |m| is the number
of times f appears, with m > 0 if the path ends in f and m < 0 if the path ends
in e. Using this, we can show that the following concatenation formula holds:

Lemma 5.13. Two paths in A, are concatenated according to the following rule:
_ p(my + my, kg + ky), ifk,iseven
p(ml’ kl)p(mZ’ k2) - { p(m2 —my, kl + kz), lsz is odd
Example 5.14. (a) Consider concatenating fe = p(—1,2)ande3f = p(1,4).
Using Lemma 5.13,

p(=1,2)p(1,4) = (=1 + 1,2+ 4) = (0,6) = €°.
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(b) Consider concatenating e*fe = p(—1,5) and e?fef = p(2,5). Using
Lemma 5.13,

p(=1,5)p(2,5) = (2 — (=1),5 + 5) = (3,10) = e fefef.

Proof. (of Lemma 5.13)

Since the second component is the length of the path, the second component
of the concatenations will clearly be the sum of the second components of the
individual paths.

For the first component, note that p(m,, k;) can be written as a sequence of
e’sand f’s. Thus, when we apply p(m, k;) to p(m,, k,), we can do the calcula-
tion by applying e and f sequentially.

Concatenating with e on the left does not change the number of times f ap-
pears in the standard representation, so eop(m,, k,) = p(m,, k, + 1).

The effect of concatenating with f on the left depends on whether k, is odd
or even. As in Lemma 4.5, one can check the cases when m, > 0, m, < 0, and
m, = 0 to show that

« if k, is even, then fop(m,, k,) = p(m, + 1,k, + 1); and
« ifk, is odd, then fop(m,,k,) = p(m, — 1, k, + 1).
Applying these repeatedly proves the lemma. O

Proposition 5.15. The free semigroupoid algebra £ 5, does not contain any nilpo-
tent elements.

Proof. Let A € A, with A # 0. By the Fourier expansion of A, there are
constants a,, such that A ~ ) a,L,. Forevery k € N, let
weA

Sy ={w €A : |w| =kand q, # 0}

Since A # 0, there must be at least one Sy # @. Let n = min{k : Sy # @}.
Suppose that A?> = 0. This means A%£, = 0, so

Z Z awazgzw = 0.

wWEA zEA
In particular, all terms associated to paths of length 2n must cancel out. By
the minimality of n, any path of length 2n associated to a non-zero term in A2
can only result from the product of two paths of length n associated to non-zero
terms in A. We will show that it is impossible for all terms associated to paths of
length 2n to cancel out by looking at the terms associated to paths with minimal
“f-degree”, as defined above Lemma 5.13.

First suppose n = 2k is even. The paths of length n are

{p(=k,n), p(=k + 1,n), ..., p(0,n), ..., p(k, n)}

By the concatenation rule for even-length paths in Lemma 5.13, the smallest
f-degree among paths of length 2n is —2k = (—k) + (—k), uniquely obtained
from the product p(—k, n)p(—k, n). Thus, the coefficient of p(—2k, 2n) in A? is
(Ap(—kn))*- SO (p(—im)* = 0, implying a,_y ) = 0. So p(=k,n) & S,.
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Thus, only the elements

{p(=k +1,n), ..., p(0,n), ..., p(k,n)}
could have non-zero coefficients. The minimal f-degree among products of
pairs of these paths is —2k + 2, uniquely obtained as p(—k + 1) p(—k + 1). Using
the same reasoning as above, we can show that p(—k + 1,n) ¢ S,. Continuing
in this manner shows that S,, = @, a contradiction.
Now suppose n = 2k + 1 is odd. The paths of length n are

{p(=k,n), p(=k + 1,n), ..., p(0, n), ..., p(k,n), p(k + 1, n)}.

By the concatenation rule for odd-length paths in Lemma 5.13, the minimal
f-degree among products of these paths is —2k — 1, which can be uniquely
obtained from the product p(k+1, n)p(—k, n). Thus, the coefficient of p(—2k —
1,2n) 1S Qp(k41,0)Ap(—k,n)- SO €ither apgey1ny = 0, Or ap_y ») = 0. That is, either
plk+1,n) &S, or p(—k,n) & S,,.

This means the non-zero terms of A associated to paths of length n are either
associated to paths from the set

{p(=k,n),..., p(0,n), ..., p(k,n)}
or from the set

{p(=k +1,n), ..., p(0,n), ..., p(k + 1, n)}.

Either way, the minimal f-degree among non-zero term in the product will be
—2k, uniquely obtained from the product of the highest f-degree term with the
lowest f-degree term. Once again, either the highest or lowest f-degree term
must have coefficient 0, and can be removed from the list. Proceeding in like
fashion, we again obtain S,, = #, a contradiction.

Thus, A% # 0, and by induction A2 # 0 for all k. Furthermore, if m € N,
then there is some k with 2 > m and A2" # 0. So A™ # 0. Thus, A is not
nilpotent. u

Corollary 5.16. The free semigroupoid algebra 8, is semisimple.

Proof. Asmentioned at the beginning of this section, A, satisfies (P)(i) because
there are only three minimal paths in xA (namely, x, e, and f). Also, Propo-
sition 5.15 shows that A, satisfies (P)(ii). Thus A, satisfies (P), and so &, is
semisimple by Theorem 5.6. O

Example 5.17. Recall the 3-loop example, Example 4.7, where A; is the category
of paths given by the graph with one vertex x, three edges a, b, and ¢, and the
identifications:

e a®=p? =2

e ab=bc=ca

e ac=cb=ba
We saw that 8, has a non-zero nilpotent T = L, + wL; + w?L., where w
is a primitive third root of unity. We will now show that £, is nonetheless
semisimple.
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Proposition 5.18. The free semigroupoid algebra 8, is semisimple.

Proof. We will show that A; satisfies (P). First note that A5 satisfies (P)(i) be-
cause there are only four minimal paths in xA (namely, x, a, b, and c).

To show let A; satisfies (P)(ii), let T = a; Ly, + ayLy, + -+ + a,Ly,, € L4,
be non-zero, where a; € C and w; € A with |w;| = --- = |w,|. Since A; has
only three distinct paths of any given length, we know in fact that T = oL,
or T = XLyn + YLpgn-1 + zLogn-1 for x,y,z € C. Clearly L, is not nilpotent, so
assume T = xLyu + YLpgn-1 + ZLogn for x,y,z € Cand n > 1.

Assume first that n is even. We have the following multiplication table:

| a" ba" ! ca™!

a a2n ba2n—1 caZn—l
ban—l ba2n—1 caZn—l a2n

can—l ca2n—1 a2n baZn—l

Soif T = xLgn + yLpgn1 + zLogn1, then
T? = (x? 4+ 2yz)Lyon + (2xy + z*)Lpgen-1 + (2xz + y*)Logon-1.
Thus, T? = 0 if and only if

x2+2yz=0
2xy+2z2=0
2xz +y? =0,

which impliesx =y =z =0.

Thus, T? # 0, and T2 has the form x'Lyn + y'Lpgen-1 + 2'L,g2n-1, and thus
is still a sum of terms with even-length paths. So the same argument applies
repeatedly, showing that for all k, 72" # 0. If T™ = 0for any m, then for 2k > m,
we would have T2 = 0, a contradiction. So T is not nilpotent.

Now suppose again that T = XL » +yLpgn-1 +2zL.4n-1, but now n is odd. Then
L,T = xLyn+1 + yLegn + zLpyn is a sum of even length terms, so by the previous
argument, L, T is not nilpotent. Thus, A5 satisfies (P)(ii).

Therefore, A5 satisfies Property (P) and is semisimple by Theorem 5.6. [

The previous argument can be generalized in the following way:
Proposition 5.19. The free semigroupoid algebra £ is semisimple forn < 8.

Proof. Recall that A,, is the category of paths from Example 4.7 with one vertex
X, n edges ey, ey, ... ,e,_;, and the identifications eej = € 1r€jip for all i, j, ¢,
taken mod n. If k is even, then the product of two standard-form elements

k-1 k-1 ;
eie,” andeje;” is
eieklejek™ = ejepe 02k
_ 2k—2
= eien_jeo

— 2k—1
= ei+jeo .
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n—1
Thus, given the element T = ), ot;Le Lok for a; € C and k even, we have
i=0 0

n—1

2

T =3, 2, aiajLe, L.
£=0i+j=t

So T? = 0 if the system of equations given by

n—1
Z aae_; =0:¢=0,1,..,n—1; subscripts taken mod n
i=0

has only the trivial solution. When this is the case, the same argument for the
n = 3 case shows that A, is semisimple. One can verify with computational
software that this is true for at least n < 8. O

6. Reflexivity

A subspace M of a Hilbert space J( is invariant for an operator A € B(H)
if A(M) C M. For a subalgebra A of B(H), the set of all subspaces that are
invariant for all operators in A forms a lattice, written Lat(A). The set of all
operators in B(H) for which all subspaces in Lat(A) are invariant forms an
algebra, written Alg Lat(A). It is immediate that A C Alg Lat(A). When the
opposite containment holds, A is called reflexive. See [3] for an overview of
reflexivity in operator algebras.

In this section, we will first prove some general results for reflexivity which
are based on those in Kribs and Power’s papers [6], [7]. We then prove reflexiv-
ity for the family of single-vertex categories of paths from Example 4.7.

The following definition is an adjustment of the Double Pure Cycle Property
for higher rank graphs, defined in Section 6 of [7].

Definition 6.1. Say that a vertex x in a category of paths A has double pure cycles
if there exist cycles 1| # A, at x such that A, # A, for all yuy, p, € A. Then A
satisfies the Double Pure Cycle Property for Categories of Paths if for every w € A°,
there exists 1, € A such that s(4,,) = w and r(1,,) has double pure cycles.

Remark 6.2. A higher rank graph that satisfies the Double Pure Cycle Property
from Section 6 of [ 7] also satisfies this version, including any single-vertex graph
with two or more edges and any single-vertex higher-rank graph with at least
two edges of the same color.

Example 6.3. An example of a category of paths that is not a higher rank graph
and satisfies this Double Pure Cycle Property is the category of paths A with
one vertex x, three edges e, f, and g, and the identification e? = f2. Then e and
g are non-equal cycles satisfying ey, # gu, for all u;, u, € A.

Neither the free semigroupoid algebra from Example 4.3 nor the free semi-
groupoid algebras from Example 4.7 satisfy the Double Pure Cycle Property,
however.
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Proposition 6.4. Suppose that A is a countable category of paths which satis-
fies the Double Pure Cycle Property. Then £, contains a pair of isometries with
mutually orthogonal ranges.

Proof. This follows by the same proof as Lemma 6.1 in [7]. The key step is
showing that, for vertex v with double pure cycles 4, # 4,, the operators L 1,

and L/lg" 1, are orthogonal for k # m. That is, for all u;, u, € A, we must show

/1’1‘/12;41 # A7 A, But this follows directly from the adjusted definition of dou-
ble pure cycles. (|

As in [7], this gives us:

Theorem 6.5. If A is a countable category of paths with a non-degenerate degree
functor such that A satisfies the Double Pure Cycle Property, then R, is reflexive.

Proof. Since ) isunitarily equivalentto R, = &/ by the unitary from Lemma
3.7, we know that 25\ contains a pair of isometries with mutually orthogonal
ranges. Thus, by Bercovici’s Hyper-Reflexivity Theorem [1], 8, is reflexive. [

One more result from [7] can be adjusted to the category of paths case:

Definition 6.6. We say x is a radiating vertex if for all 1 € A, r(1) = x implies
s(1) = x.

Proposition 6.7. Suppose that A is a category of paths with a non-degenerate
degree functor such that each radiating vertex x satisfies

(a) for the single-vertex category of paths A’ consisting of x and all paths u €
Awith s(u) = r(u) = x, we have that &, is reflexive

(b) if uy and u, are loops at x with u; # u,, and w, and w, are paths with
source x, then wy iy # Woly.

Then &, is reflexive.

Proof. With the restrictions given here, the proof of Theorem 6.4 from [7] ap-
plies with only slight modification. O

Corollary 6.8. If A is a finite category of paths with a non-degenerate degree
functor, then 8, is reflexive.

Proof. Since A is finite, A does not contain any loops or cycles. The semi-
groupoid algebra of a single vertex with no paths is C, which is reflexive. Thus,
all vertices of A satisfy the conditions of Proposition 6.7. O

Unlike in the graph and higher rank graph cases, we do not know whether
all single-vertex categories of paths have reflexive free semigroupoid algebras,
even assuming a degree functor. However, one example where reflexivity holds
is the family of single-vertex categories of paths described in Example 4.7. In
what follows, we prove the n = 3 case, but the same proof generalizes to all
n € N (see [2]).

As in Example 4.7, let A; be the category of paths with one vertex x, three
edges a, b, and ¢, and the identifications a> = b?> = ¢%, ab = bc = ca, and
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ac = cb = ba. In order to show that & A, 1S reflexive, we will characterize the
structure of elements of 8, with respect to a particular basis, then show that
T € Alg Lat(2,,) has the same structure. To this end, let w be a primitive third
root of unity. Note that w + w? + 1 = 0. Then an orthogonal basis for #,, is

{gx} ) {hi, ji, ki}ieNa where

h, = Ean + Epan1 + &g

. Egn + w&pgn-1 + W& gn-1, for n odd
Jn = { Egn + w?Epgn1 + w&ogna, for neven
= { Egn + w?Epgn1 + wégna, for nodd
n Egn + w€pgn-1 + w?E4n1, for neven

[o¢]
Lemma 6.9. Foranarbitraryelement A = tL,+ ), (anan +YpLpgn-1 +ancan_1)
n=1

in 8, the matrix form of A| e with respect to the basis above is:

tI 0 0 0 0
S, tI 0 0 0
A Z|mmoa 00
Er Sy S, s, oo

T, Ty T, T, tI

where I is the 3 X 3 identity matrix,

X, +y,t2z, 0 0
S, = 0 X, + @y, + w’z, 0
0 0 X, + 0%y, + wz,
and
Xp+Yn+2y 0 0
T, = 0 X, + 0%y, + wz, 0
0 0 X, + Wy, + vz,

Proof. For n > 1, let Q, be the projection onto paths of length n. Then, with
respect to the above basis, we have

1 0 O] 1 00
QonLgQop-1 =10 1 0, Qp41L,Qz =0 1 O
0 0 1} |0 0 1
1 0 0] [1 0 O
QnLpQop—1 = |0 @ 0 [, Qppy1LpQry = 1|0 w® 0
0 0 w?] [0 0 w
1 0 O 1 0 O
QZnLcQZn—l =10 w* 0 ’ Q2n+1LcQ2n =0 w O
0 0 0 0 w?
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Furthermore, for k € Nand e € {a, b, c}:

Qn+k+1Leaan = Qn+k+1LeLaan = Qn+k+1LeQn+k'
Thus Q,,AQ,,—1 = S,, and Q,,,,1AQ,, = T,, with T, and S,, as defined in the
statement of the lemma. O

Remark 6.10. Notice that given any constants x, 1, u € C, the system of equa-
tions

x=x+y+z
A=Xx+wy+w’z
U=x+w’y+awz
has a unique solution for x, y, and z. Thus, the above form of A is equivalent

to saying that for all m > n, there exist constants a,, ,, 8, »» and y,,, ,, in C such
that

ayn O 0 Aun O 0
Q,AQ, = 0 Xn,n 0 |, QrAQ, = 0 6m,n 0
0 0 au, 0 0  ¥Ymn

and &y = Amrrnsts B = Ymatntl> Ymn = Bmains1- Our next goal is to
show that elements of Alg Lat 8, have this same form.

Lemma 6.11. LetT € Alg Lat(8,,). Then the matrix form of T‘ gL with respect
to the basis above is: ’

tl 0 0 0 0

S,y tI 0 0 0

A _|Sa S o 0 0
& | Sa1 Saz Sanz tI O

Ssq1 Ssp Ss3z Ssa

Ann O 0
where I is the 3 X 3 identity matrix and S, , = 0 Bun 0 |forsome

0 0 Ym,n
CONSLants ey, n, Bm.n>¥Ymn € C.

Proof. Since T € Alg Lat(%,,), the 8, -invariant subspaces M), = spanth,, :
n > 1}, M; = span{j, : n > 1}, My = span{k,, : n > 1} are each also invariant
for T. So for m > n, there exist constants a,, ,;, B> ¥m.» Such that

QmT(hn) = am,nhm

QnT(jn) = Bm,njm

QmT(kn) = Ym,nkm'
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Thus
A 0 0
QnTQ, = 0 6m,n 0
0 0 Vmn

Furthermore, the subspace M, generated by h,, + j, +k, is also £, -invariant
and thus invariant for T. For all { € M,,,

<§s hn> = <§ajn> = (g’kn>

Thus
<T(hn + jn+ kn)’ hn> = <T(hn + jn + kn)’jn> = <T(hn + jn + kn)’ kn>’
ie., Ann = ﬁn,n =VYnn- O

The next step is to prove that forany T € Alg Lat(R,,), thereissome A € £,,

such that T e A gL This will be shown in Lemma 6.13. However, an
important piece of the proof of that lemma is the following lemma:

Lemma 6.12. Let A be a subalgebra of B(J(). If M € Lat(A) such that A|M is
reflexive, then for all T € Alg Lat(A), there exists A € A such that T ’M = A|M.

Proof. Let T € Alg Lat A, and suppose that M; C M is an invariant subspace
for A|M. This implies that M, is an invariant subspace for .A. Hence, T(M,) C
M,. Since M, C M, this means T#M(Mo) C M,. So M, is invariant for T'M, for
all My, € LatA| . Since A‘ is reflexive, this implies that T| € /l| . Thus,

M M M M
there is some operator A € A such that T|M = A|M. U

Lemma 6.13. Let T € Alg Lat(8,,). There is some A € &, such that T g =

A

&

Proof. Let T € Alg Lat(8,). Given the block matrix form for T from Lemma
6.11, we need to show for all m > n, that a,, ,, = Q10415 Bmn = Ymtlntls
and ¥y, = Bm+1.0+1- We Will first show that o, , = Apyy1.041-

Let M, be the 8 -invariant subspace of #(,, generated by h,. Then M, has
orthogonal basis {h;, h,, hs, ...}, and L,, Ly, and L, all act as the unilateral shift
on Mp,. So £,, |Mh isisomorphic to &;, the analytic Toeplitz algebra, and thus is

reflexive [12]. By Lemma 6.12, there is some A € £, such that A|Mh = T|Mh.
Since A € &,,, there are constants 1, such that

QuirAhy,) = Aghyyp foralln>1,¢ > 0.
Thus,

Qui¢T(hy,) = Aphyyp forallnm>1,¢ > 0.

This means ¢'th diagonal of 3 X 3 blocks in the matrix decomposition of T all
have the same (1, 1)-entries. In particular, «,, , = Q41,41 for allm > n.
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Now consider the subspace of #(,, given by

M, = { Z An(jn + knt1) Z |1,% < oo}.
n=0 n=1

This space is invariant for 8, because
Lo(jn + kng1) = Jnp1 + knya € My,
and for n odd,
Ly(n + kny1) = @(jng1 + Kpyz) € My

Lc(jn + kn+1) = C‘)2(]‘n+1 + kn+2) € Ml;

whereas if n is even, then
Ly(jn + kpy1) = wz(jn+1 + kny2) € My

Le(jn +kpt1) = @(fps1 + ki) € M;.

Thus, M; is also invariant for T. Notice that for all { € M;, and n > 1,
(&, jn) = (¢, kyyq). It follows that

(T(jn + kn+1)’ Jm> = <T(jn + kn+l)’ km+1>’

that is to say, Symn = Vm+1.n+1-
Similarly, using the £, -invariant subspace

M, = { Z Ao(ky + Jng1) Z VHERS oo},
n=1

n=0

we can show that y,, , = 8,11 »+1- This proves the lemma. O

The last result we need concerns the following vectors, for 0 < || < 1:

(even length terms); (odd length terms)
A =8+ Z €2n§a2n; Aé = Z 52n—1§a2n71
n=1 n=1
o (o]

B, =&+ Z Ezngbam—l; Bé = Z Ezn_lgbazn—z
n=1 n=1

oo o0
C.=¢& + Z Ezngmzn—l; Cé = Z Ezn_lgcazn—z
n=1 n=1

Lemma 6.14. For 0 < |¢| < 1, the subspace M = span{A,, B, C,, AL, B, Cl} is
invariant for Alg Lat(B;“\S).
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Proof. Note that

Li(A) = €Al Li(AD = €A,
Li(B) = <C!, Li(B) = <C,
Li(C.) = B! Li(Ch) = ¢B,
L (A,) = B} L¥(Al) = €B,
Li(B,) = €A} Li(B]) = €A,
Li(C,) = eC{ Li(C)) = eC,
Li(A,) = C! Li(A]) = eC,
L:(B,) = B! Li(B)) = ¢B,
Li(C,) = eA! Li(C) = ¢A,
Thus, M is invariant for L}, Lz, and L}, and hence for 27\3. O

Finally we can prove that this free semigroupoid algebra is reflexive:
Theorem 6.15. £, is reflexive.

Proof. LetT € £,,. Lemma 6.13 implies that there is some A € Alg Lat £,
such that T — Aisequal to 0 on {£,}*. Let R =T — A. Then R € Alg Lat(£,,),

R g = 0, and there are constants {0, },,ea, such that
RE, = Z Puwéw-
WEA;

We want to show that p,, = 0 for all w € A;.

Since R is a rank one operator, R* is also a rank one operator, and range(R*) is
closed. Thus, by Proposition 4.6 from [5], range R* = (ker R)*, soif R # 0, then
range R* = span{{,}. Thus, with A, defined as in Lemma 6.14, R*(A;) = k&,
for some k. But also, R* € Alg Lat(ﬂj‘\s), so by Lemma 6.14, R*(A,) = 144, +
AgB: + AcC, + /lqué + 3Bl + A’CCQ for some constants A4, 15, A¢, /1:4, A, /lé. So
forw € A, w # x:

e, fw=a*
£2n—1/1f4 W= a2n—1
0= (R*(As)’ §w> =1 Ez:ﬁ; ’ W= bazn:;
e Ay w = ba™"
"¢ T w=ca®!
eI T w=ca??

Sody =g =Ac =2, =, = =0,and so R*(4,) = 0.
Now we will find R* explicitly. Let u € A; and h € J(,, be arbitrary, and let
A =(h,&,). Then

(R*E,,h) = (£, Rh) = (£,,RAE,) = ME,LRE) = Ap, = (0,&., h).
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Thus, R*, = p,&,, for any path u € A;. So, for 0 < [¢| < 1:

R*(A,) = R*(gx + Z Ezngaz")

n=1
o]
= (Px + D € Pam )&+
n=1
But we've already shown that R*(A,) = 0. So in fact

(o]
Px + D, & Pgm = 0.

n=1

This holds for all 0 < |¢] < 1. So we have a power series equal to 0 on the set
D \ {0}. This implies that p,, = p,2» = 0 for all n.

Similarly, by looking at R* applied to A’, B,, B, C,, and C., we can show that
Pan = Ppan-t = Pegn-t = 0foralln > 0. Thus,R=0.S0T = A € 8. O

The same proof can be generalized (see [2] for details) to show:

Theorem 6.16. For all n € N, the free semigroupoid algebra £, defined in
Example 4.7 is reflexive.
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