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Free semigroupoid algebras from
categories of paths

Juliana Bukoski

Abstract. Given a directed graph𝐺, we can define aHilbert spaceℋ𝐺 with
basis indexed by the path space of the graph, then represent the vertices of the
graph as projections onℋ𝐺 and the edges of the graph as partial isometries
onℋ𝐺 . The weak operator topology closed algebra generated by these pro-
jections and partial isometries is called the free semigroupoid algebra for 𝐺.
Kribs and Power showed that these algebras are reflexive, and that they are
semisimple if and only if each path in the graph lies on a cycle. We extend
the free semigroupoid algebra construction to categories of paths, which are a
generalization of graphs, and provide examples of free semigroupoid algebras
from categories of paths that cannot arise from graphs or higher rank graphs.
We then describe conditions under which these algebras are semisimple, and
we prove reflexivity for a class of examples.
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2. Introduction
Adirected graph is a set of vertices alongwith a set of edges, where each edge

has a source vertex and a range vertex. Such a graph can be represented by a
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collection of operators on a Hilbert spaceℋ; each vertex is associated to a pro-
jection, and each edge is associated to a partial isometry that maps between the
subspaces corresponding to its source and range vertices. These projections and
partial isometries are used to construct a𝐶∗-algebra called the graph𝐶∗-algebra
of the directed graph. There are many examples of common 𝐶∗-algebras which
can be realized as graph algebras, and many properties of graph algebras are
determined by structural properties of the graph. 𝐶∗-algebras are self-adjoint,
however, so this is not a useful construction for studying non-self-adjoint oper-
ator algebras.
Free semigroupoid algebras generated by directed graphs are a class of non-

self-adjoint operator algebras introduced by Kribs and Power in 2004 [6]. The
construction of these algebras from a graph is similar to the graph 𝐶∗-algebra
construction in that vertices are represented by projections and edges by partial
isometries. However, a free semigroupoid algebra is closed in theweak operator
topology, not the norm topology, and does not include adjoints.
As in the graph 𝐶∗-algebra case, many previously-studied non-self-adjoint

operator algebras can be expressed as free semigroupoid algebras for some di-
rected graph, andmany properties of the algebra correspond to properties of the
graph. In fact, this relationship is in some sense stronger than the self-adjoint
case; while it is possible to find two non-isomorphic graphs that produce the
same graph𝐶∗-algebra, Kribs and Power [6] showed that two free semigroupoid
algebras from graphs are unitarily equivalent if and only if their corresponding
graphs are isomorphic.
In addition to this isomorphism result, Kribs and Power characterized semi-

simplicity for free semigroupoid algebras from graphs and proved that all free
semigroupoid algebras from graphs are reflexive. In another paper on the sub-
ject [7], they extended the free semigroupoid algebra construction to higher
rank graphs, which are a generalization of graphs where edges have length in
ℕ𝑘 and satisfy a certain factorization property. Kribs and Power then proved
the same semisimplicity result, and a slightly more limited reflexivity result,
for free semigroupoid algebras fromhigher rank graphs. See [3] for an overview
and examples of 𝐶∗-algebras and free semigroupoid algebras from graphs and
higher rank graphs.
There is another generalization of graphs introduced by Spielberg [13], called

categories of paths, which include higher rank graphs, but also other examples
without the restrictive higher rank graph factorization property. In this paper,
we study free semigroupoid algebras generated by categories of paths (usually
assuming a degree functor) and determine how they are similar to and how
they can differ from the graph and higher rank graph cases.
In Section 3 of this paper, we look at how the free semigroupoid algebra from

a category of paths is defined and show that, under the assumption of a degree
functor, the same characterization of the commutant holds from the graph case.
In Section 4, we provide some examples of free semigroupoid algebras that arise
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from this construction and which are not isomorphic to free semigroupoid al-
gebras from graphs.
In Section 5, we study semisimplicity for free semigroupoid algebras of cate-

gories of pathswith degree functors. We introduce a condition (P) on a category
of paths with a degree functor. This condition has two parts: the first is similar
to row-finiteness in a graph; the second is a restriction on which elements of
the algebra can be nilpotent, which is similar to, but more general than, the
requirement that all paths lie on a cycle. We show that the free semigroupoid
algebra of a category of paths satisfying (P) is semisimple. We then employ this
result to show that the single-vertex examples from Section 4 are semisimple.
Finally, in Section 6, we examine reflexivity for free semigroupoid algebras

from categories of paths. We define a Double Pure Cycle Property and show
that if the transpose of a category of paths with a non-degenerate degree func-
tor satisfies this property, then the free semigroupoid algebra of the category
of paths is reflexive. We also establish reflexivity for a family of single-vertex
categories of paths.

3. Definition and basic properties
The following definition of a category of paths is due to Spielberg [13]. Recall

that a small categoryΛ is a set of objectsΛ0 andmorphisms between the objects,
along with two maps: a source map 𝑠 ∶ Λ → Λ0 sending each morphism to its
source, and a range map 𝑟 ∶ Λ→ Λ0 sending each morphism to its range.

Definition 3.1 ([13], Definition 2.1). A small category Λ is called a category of
paths if, for 𝛼, 𝛽, 𝛾 ∈ Λ,

∙ 𝛼𝛽 = 𝛼𝛾 implies 𝛽 = 𝛾 (left cancellation)
∙ 𝛽𝛼 = 𝛾𝛼 implies 𝛽 = 𝛾 (right cancellation)
∙ 𝛼𝛽 = 𝑠(𝛽) implies 𝛼 = 𝛽 = 𝑠(𝛽) (no inverses)

We call the objects of Λ vertices.

Directed graphs are an example of categories of paths. Another example is
higher-rank graphs:

Example 3.2. A higher rank graph is a category of paths Λ with a degree func-
tion 𝑑 ∶ Λ → ℕ𝑘 satisfying the factorization property that for every 𝜆 ∈ Λ and
𝑚, 𝑛 ∈ ℕ𝑘 such that 𝑑(𝜆) = 𝑚 + 𝑛, there are unique paths 𝜇, 𝜈 ∈ Λ such that
𝜆 = 𝜇𝜈, 𝑑(𝜇) = 𝑚, and 𝑑(𝜈) = 𝑛. See [8] for the original introduction of higher
rank graphs, and [10] for a good overview. For 𝜆 in a higher rank graph, we will
write |𝜆| to mean |𝑑(𝜆)|, i.e. the sum of the components of 𝑑(𝜆) in ℕ𝑘.

There are also many categories of paths which are not higher rank graphs, a
few of which we will consider in Section 4.
Let Λ be a category of paths. The free semigroupoid algebra for Λ is defined

analogously to the free semigroupoid algebra for a graph or higher rank graph,
as in [6] and [7]. Specifically, we define a Fock space Hilbert space ℋΛ with
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orthonormal basis {𝜉𝜇}𝜇∈Λ indexed by the elements of Λ. For 𝜇, 𝜈 ∈ Λ, define:

𝐿𝜇𝜉𝜈 = {
𝜉𝜇𝜈 if 𝑠(𝜇) = 𝑟(𝜈)

0 else .

If 𝑥 ∈ Λ0 is a vertex of Λ, then 𝐿𝑥 is a projection. Note that
∑

𝑥∈Λ0
𝐿𝑥 = 𝐼.

Definition 3.3. The WOT-closed algebra generated by {𝐿𝜇}𝜇∈Λ is called the free
semigroupoid algebra for Λ and is written 𝔏Λ.

It is useful to have a notion of the length of a path in a category of paths.
A degree functor on Λ is a function 𝜑 ∶ Λ → ℕ𝑛 such that for all 𝜇, 𝜈 ∈ Λ

satisfying 𝑠(𝜇) = 𝑟(𝜈):
𝜑(𝜇𝜈) = 𝜑(𝜇) + 𝜑(𝜈).

Adegree functor can be defined into any abelian group (see [13], Section 9), but
we will only consider degree functors into ℕ𝑛.
We say the degree functor is non-degenerate if 𝜑(𝛼) ≠ 0 when 𝛼 ∉ Λ0. If Λ

is a category of paths with a degree functor, define the length of a path 𝜇 to be
|𝜇| = |𝜑(𝜇)|, i.e., the sum of the components of 𝜑(𝑤) ∈ ℕ𝑛.

Remark 3.4. For a vertex 𝑥 in a category of paths, 𝑥𝑥 = 𝑥, and thus for any
degree functor 𝜑, we have 𝜑(𝑥) + 𝜑(𝑥) = 𝜑(𝑥). Therefore, each vertex has
degree 0.

Definition 3.5. For a category of paths Λ with a non-degenerate degree functor
𝜑 ∶ Λ → ℕ𝑛, let 𝐸𝓁 be the projection onto span{𝜉𝜇 ∶ |𝜇| = 𝓁}. Define the Cesaro
sums of 𝐴 ∈ ℬ(ℋ) by, for 𝑘 ∈ ℤ,

Σ𝑘(𝐴) =
∑

𝑗∈ℤ, |𝑗|<𝑘

(1 −
|𝑗|

𝑘
)Φ𝑗(𝐴),

where
Φ𝑗(𝐴) =

∑

𝓁∈ℤ, 𝓁 ≥ max{0,−𝑗}

𝐸𝓁𝐴𝐸𝓁+𝑗.

The Cesaro sums converge SOT to 𝐴 as in Lemma 1.1 of [4] (the details of
the argument are written out as Proposition 2.3.2 in [2]).
Given a category of paths Λ and 𝜇 ∈ Λ, let �̃� be the path 𝜇 oriented in the

opposite direction, i.e., 𝑠(𝜇) = 𝑟(�̃�) and 𝑟(𝜇) = 𝑠(�̃�). Note that if 𝜇 = 𝜈1𝜈2, then
�̃� = �̃�2�̃�1. With this, we can define a new collection of linear operators.

Definition 3.6. Given 𝜇 ∈ Λ, define the operator 𝑅�̃� by

𝑅�̃�𝜉𝜈 = {
𝜉𝜈𝜇 if 𝑟(𝜇) = 𝑠(𝜈)

0 else .

LetℜΛ be the WOT-closed algebra generated by {𝑅�̃�}𝜇∈Λ.
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Let Λ𝑡 = {�̃� ∶ 𝜇 ∈ Λ} be the category of paths with the same vertex set as
Λ, but with all paths are oriented in the opposite direction. This is called the
transpose of Λ.
The following two results are stated without proof, as they follow from the

same proofs as in the graph case. In particular, Lemma 3.7 corresponds to
Lemma 4.1 in [6], and Proposition 3.8 corresponds to Proposition 4.2 andCorol-
lary 4.4 in [6].

Lemma 3.7. Let Λ be a category of paths with a non-degenerate degree functor.
The algebras 𝔏Λ andℜΛ𝑡 are unitarily equivalent via the map𝑊 ∶ ℋΛ𝑡 → ℋΛ

given by𝑊𝜉�̃� = 𝜉𝜇.

Proposition 3.8. LetΛ be a category of paths with a non-degenerate degree func-
tor. Thenℜ′

Λ
= 𝔏Λ and 𝔏′Λ = ℜΛ.

Remark 3.9. As in Remark 4.3 in [6], this gives us a Fourier expansion for ele-
ments of 𝔏Λ as follows: let 𝐴 be in 𝔏Λ and 𝑥 a vertex. Then there are constants
{𝑎𝑤}𝑤∈Λ such that

𝐴𝜉𝑥 = 𝐴𝐿𝑥𝜉𝑥 = 𝑅𝑥(𝐴𝐿𝑥)𝜉𝑥 =
∑

𝑠(𝑤)=𝑥

𝑎𝑤𝜉𝑤.

So for 𝜇 ∈ Λ with 𝑟(𝜇) = 𝑥,

𝐴𝜉𝜇 = 𝐴𝑅�̃�𝜉𝑥 = 𝑅�̃�𝐴𝜉𝑥 =
∑

𝑠(𝑤)=𝑥

𝑎𝑤𝜉𝑤𝜇.

Thus, the Cesaro partial sums associated with the series
∑

𝑤∈Λ

𝑎𝑤𝐿𝑤 converge in

the strong operator topology to 𝐴.

Finally, we end this section with a lemma that will be useful for Example 4.1:

Lemma 3.10. Let Λ be a category of paths with a non-degenerate degree functor
and a finite number of vertices, |Λ0| = 𝑛 <∞. Then the number of projections in
𝔏Λ is 2𝑛.

Proof. Let 𝑃 ∈ 𝔏Λ be a non-zero projection, with Fourier expansion 𝑃 ∼
∑

𝑤∈Λ

𝑎𝑤𝐿𝑤. Then for each vertex 𝑥 ∈ Λ0, either 𝑃𝜉𝑥 = 0 or

𝜉𝑥 = 𝑃𝜉𝑥 =
∑

𝑠(𝑤)=𝑥

𝑎𝑤𝜉𝑤.

In the latter case, 𝑎𝑥 = 1 and for all other𝑤 such that 𝑠(𝑤) = 𝑥we have 𝑎𝑤 = 0.
So 𝑃 =

∑

𝑥∈Λ0
𝑎𝑥𝐿𝑥 where each 𝑎𝑥 is either 1 or 0.

Thus, every projection on 𝔏Λ is a sum of projections of the form 𝐿𝑥 for a
vertex 𝑥. Since every such sum is a projection, this means Λ has exactly 2𝑛
projections. □
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4. Examples
Example 4.1. Consider the category of paths Λ given by the graph

𝑥1 𝑥2 𝑥3
𝑎1

𝑏1

𝑎2

𝑏2

with the identifications 𝑎2𝑏1 = 𝑏2𝑎1 and 𝑎2𝑎1 = 𝑏2𝑏1, but 𝑎1 ≠ 𝑏1 and 𝑎2 ≠ 𝑏2
(Example 2.9, [9]). There is no degree function that makes Λ a higher rank
graph. To see this, suppose Λ were a higher rank graph with degree function 𝑑
and let 𝑑(𝑎1) = 𝑛 and 𝑑(𝑎2) = 𝑚. Then 𝑎2𝑏1 = 𝑏2𝑎1 implies

𝑚 + 𝑑(𝑏1) = 𝑑(𝑏2) + 𝑛. (1)

Likewise, 𝑎2𝑎1 = 𝑏2𝑏1 implies

𝑚 + 𝑛 = 𝑑(𝑏2) + 𝑑(𝑏1). (2)

Solving for𝑚 in Equation (1) and substituting into Equation (2) gives

𝑑(𝑏2) + 𝑛 − 𝑑(𝑏1) + 𝑛 = 𝑑(𝑏2) + 𝑑(𝑏1),

implying 𝑑(𝑏1) = 𝑛. Substituting this into Equation (1) gives us 𝑑(𝑏2) = 𝑚.
But this contradicts the uniqueness part of the factorization property for higher
rank graphs, because we have a single path 𝜆 = 𝑎2𝑏1 = 𝑏2𝑎1 which can be
decomposed as a path of degree𝑚 concatenated with a path of degree 𝑛 in two
different ways.
Thus,Λ is not a higher rank graph. However, it is a category of paths, with de-

gree functor equal to the number of edges in a path. This category of paths has
three vertices (𝑥1, 𝑥2, 𝑥3), four paths of degree 1 (𝑎1, 𝑏1, 𝑎2, 𝑏2), and two paths
of degree 2 (𝑎2𝑎1, 𝑎2𝑏1). The free semigroupoid algebra for Λ is the subalgebra
of𝑀9(ℂ) generated by operators of the form

𝜈1𝐿𝑥1 + 𝜈2𝐿𝑥2 + 𝜈3𝐿𝑥3 + 𝛼1𝐿𝑎1 + 𝛽1𝐿𝑏1 + 𝛼2𝐿𝑎2 + 𝛽2𝐿𝑏2 + 𝛾1𝐿𝑎2𝑎1 + 𝛾2𝐿𝑎2𝑏1 ,

or, in matrix form corresponding to the ordered basis {𝜉𝑥1 , 𝜉𝑥2 , 𝜉𝑥3 , 𝜉𝑎1 , 𝜉𝑏1 , 𝜉𝑎2 ,
𝜉𝑏2 , 𝜉𝑎2𝑎1 , 𝜉𝑎2𝑏1}:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

𝜈1 0 0 0 0 0 0 0 0

0 𝜈2 0 0 0 0 0 0 0

0 0 𝜈3 0 0 0 0 0 0

𝛼1 0 0 𝜈2 0 0 0 0 0

𝛽1 0 0 0 𝜈2 0 0 0 0

0 𝛼2 0 0 0 𝜈3 0 0 0

0 𝛽2 0 0 0 0 𝜈3 0 0

𝛾1 0 0 𝛼2 𝛽2 0 0 𝜈3 0

𝛾2 0 0 𝛽2 𝛼2 0 0 0 𝜈3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

.

Proposition 4.2. The subalgebra of𝑀9(ℂ) given by matrices of the above form
cannot arise as the free semigroupoid algebra of a higher rank graph.
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Proof. Suppose Λ′ is a higher rank graph such that 𝔏Λ′ consists of matrices of
the above form. For 𝜂 ∈ {𝜈1, 𝜈2, 𝜈3, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2}, let 𝑇𝜂 be the operator
given by setting 𝜂 = 1 and all the other variables to 0. Then we can see that
𝔏Λ′ has eight projections: 0, 𝑇𝜈1 , 𝑇𝜈2 , 𝑇𝜈3 , 𝑇𝜈1 + 𝑇𝜈2 , 𝑇𝜈1 + 𝑇𝜈3 , 𝑇𝜈2 + 𝑇𝜈3 , and 𝐼.
By Lemma 3.10, Λ′ must have three vertices 𝑦1, 𝑦2, and 𝑦3. Furthermore, the
minimal projections must be those that correspond to projections associated to
single vertices, so, without loss of generality, 𝑇𝜈1 = 𝐿𝑦1 , 𝑇𝜈2 = 𝐿𝑦2 , and 𝑇𝜈3 =
𝐿𝑦3 , and thus the first three basis vectors in this matrix form are 𝜉𝑦1 , 𝜉𝑦2 , and
𝜉𝑦3 .
Now for 𝑖 = 1, 2, 3, let 𝑃𝑖 be the projection onto span(𝜉𝑦𝑖 ). We can see from

the first two columns of the matrix form that 𝑃3𝔏Λ′𝑃1, 𝑃2𝔏Λ′𝑃1 and 𝑃3𝔏Λ′𝑃2
each have two-dimensional range. So there are exactly two paths from 𝑦1 to
𝑦3, two paths from 𝑦1 to 𝑦2, and two paths 𝑦2 to 𝑦3. Since the matrix is finite-
dimensional, there can be no paths from 𝑦2 to 𝑦1 or from 𝑦3 to 𝑦2 or 𝑦1. So the
graph looks like

𝑦1 𝑦2 𝑦3

with two identifications among the paths from 𝑦1 to 𝑦3. As argued above, there
is no degree functor that makes such a graph a higher-rank graph. Thus, the
matrix cannot correspond to the free semigroupoid algebra of a higher-rank
graph. □

Example 4.3. Let Λ2 be the category with one vertex 𝑥, two edges 𝑒 and 𝑓, and
the identification 𝑒2 = 𝑓2:

𝑥𝑒 𝑓

Any path in Λ2 can be written as a concatenation of 𝑒’s and 𝑓’s, and since
𝑒2𝑓 = 𝑓3 = 𝑓𝑒2, it follows that 𝑒2 commutes with every other path. Thus,
each path in Λ2 can be written uniquely in the standard form 𝑒𝑟(𝑓𝑒)𝑠𝑓𝑡, where
𝑟, 𝑠 ∈ ℕ ∪ {0}, 𝑡 ∈ {0, 1} and 𝑒0 = (𝑓𝑒)0 = 𝑓0 = 𝑥.

Proposition 4.4. The category Λ2 described above is a category of paths.

Proof. First, since the length of a path always increases when concatenated
with 𝑒 or 𝑓, the category has a degree functor equal to the length of the path
and has no inverses.
To see that cancellation holds in this category, let 𝛼, 𝛽 ∈ Λ2. We can write 𝛼

and 𝛽 in standard form, 𝛼 = 𝑒𝑟1(𝑓𝑒)𝑠1𝑓𝑡1 and 𝛽 = 𝑒𝑟2(𝑓𝑒)𝑠2𝑓𝑡2 .
If 𝑒𝛼 = 𝑒𝛽, then

𝑒𝑟1+1(𝑓𝑒)𝑠1𝑓𝑡1 = 𝑒𝑟2+1(𝑓𝑒)𝑠2𝑓𝑡2 ,

so by the uniqueness of the standard form, 𝑟1 = 𝑟2, 𝑠1 = 𝑠2, and 𝑡1 = 𝑡2. So
𝛼 = 𝛽.
Now suppose 𝑓𝛼 = 𝑓𝛽. Note that in addition to the standard form where

all 𝑓2 are converted to 𝑒2 and moved all the way to the left, we also have an
alternate standard form where all 𝑒2 are converted to 𝑓2 and moved left, giving
each path a unique form 𝑓𝑟(𝑒𝑓)𝑠𝑒𝑡 where 𝑟, 𝑠 ∈ ℕ∪ {0}, 𝑡 ∈ {0, 1}. We can write
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𝛼 and 𝛽 in this form, say 𝛼 = 𝑓𝑟3(𝑒𝑓)𝑠3𝑒𝑡3 and 𝛽 = 𝑓𝑟4(𝑒𝑓)𝑠4𝑒𝑡4 . Then 𝑓𝛼 = 𝑓𝛽

implies
𝑓𝑟3+1(𝑒𝑓)𝑠3𝑒𝑡3 = 𝑓𝑟4+1(𝑒𝑓)𝑠4𝑒𝑡4 ,

so by the uniqueness of the alternate standard form, 𝑟3 = 𝑟4, 𝑠3 = 𝑠4, and 𝑡3 = 𝑡4.
So 𝛼 = 𝛽.
This proves left cancellation. A similar argument using standard forms shows

right cancellation. □

Note that, in a graph with edges 𝑒 and 𝑓, the operators 𝐿𝑒 and 𝐿𝑓 always have
orthogonal ranges. However, in this example, 𝐿𝑒 and 𝐿𝑓 do not have orthogonal
ranges, since 𝐿𝑒(𝜉𝑒) = 𝜉𝑒2 = 𝐿𝑓(𝜉𝑓). The path space of Λ2 can be expressed by
a tree diagram as follows:

𝑥

𝑒 𝑓

𝑓𝑒 𝑒2 𝑒𝑓

𝑒𝑓𝑒 𝑒3 𝑒2𝑓 𝑓𝑒𝑓

⋮ ⋮ ⋮ ⋮ ⋮

Notice that the path space of the graphwith one vertex and two edges has 2𝑛
paths of length 𝑛 for each 𝑛, whereas Λ2 has only 𝑛 + 1 paths of length 𝑛 for
each 𝑛.
Define Hilbert spaces based on the rows of the tree diagram:

𝐻0 = span{𝜉𝑥}
𝐻1 = span{𝜉𝑒, 𝜉𝑓}
𝐻2 = span{𝜉𝑓𝑒, 𝜉𝑒2 , 𝜉𝑒𝑓}
𝐻3 = span{𝜉𝑒𝑓𝑒, 𝜉𝑒3 , 𝜉𝑒2𝑓, 𝜉𝑓𝑒𝑓}

⋮

Each path in Λ2 can be uniquely denoted by 𝑝(𝑚, 𝑘) where 𝑘 is the length
of the path and 𝑚 is the “𝑓-degree" of the path, defined as follows: |𝑚| is the
number of times 𝑓 appears in the standard form 𝑒𝑟(𝑓𝑒)𝑠𝑓𝑡, with𝑚 > 0 if 𝑡 = 1

and𝑚 < 0 if 𝑡 = 0.
For example, 𝑒𝑓𝑒𝑓𝑒𝑓 = 𝑝(3, 6) and 𝑒6𝑓𝑒 = 𝑝(−1, 8). When 𝑘 is clear from

context, we write 𝑝(𝑚) for brevity.
Using this notation, we can write out in a general way the orthogonal basis

described above via the path diagram. First consider paths of even length 2𝑘.
Define an ordered basis for𝐻2𝑘 by

{𝑝(−𝑘), 𝑝(−𝑘 + 1),… , 𝑝(−1), 𝑝(0), 𝑝(1),… , 𝑝(𝑘)}.
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For paths of odd length 2𝑘 − 1, define an ordered basis for𝐻2𝑘−1 by

{𝑝(−𝑘 + 1),… , 𝑝(−1), 𝑝(0), 𝑝(1),… , 𝑝(𝑘)}.

Let 𝑃𝑘 be the projection onto 𝐻𝑘. Then
∞∑

𝑘=0

𝑃𝑘 = 𝐼. The following lemma

describes the matrix representation of 𝐿𝑒 and 𝐿𝑓 with respect to this decompo-
sition; it will be helpful in Example 5.12 when we study this free semigroupoid
algebra further in order to prove that it is semisimple.

Lemma 4.5. In the matrix decomposition described above, 𝐿𝑒 and 𝐿𝑓 are repre-
sented by

𝐿𝑒 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 …

𝐽2 0 0 0 …

0 𝑆3 0 0 …

0 0 𝐽4 0 …

0 0 0 𝑆5 …

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

; 𝐿𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 …

𝑆2 0 0 0 …

0 𝐽3 0 0 …

0 0 𝑆4 0 …

0 0 0 𝐽5 …

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

where 𝐽𝑘 is the 𝑘 × (𝑘 − 1)matrix that is a (𝑘 − 1) × (𝑘 − 1) identity matrix with
an extra row of 0’s at the bottom (i.e., the inclusion map from𝐻𝑘−1 to𝐻𝑘, sending
each basis element of 𝐻𝑘−1 to the corresponding basis element of 𝐻𝑘), and 𝑆𝑘 is
the 𝑘 × (𝑘 − 1) matrix that is a (𝑘 − 1) × (𝑘 − 1) identity matrix with an extra
row of 0’s at the top (i.e., the right shift map from𝐻𝑘−1 to𝐻𝑘, sending each basis
element in𝐻𝑘−1 to the next basis element of𝐻𝑘).

Proof. First note that composing 𝑒 with any path in standard form adds one to
the length of the path but does not change the “𝑓-degree" of the path:

(𝑒)(𝑒𝑟(𝑓𝑒)𝑛𝑓𝑡) = 𝑒𝑟+1(𝑓𝑒)𝑛𝑓𝑡

That is, 𝑒◦𝑝(𝑚, 𝑘) = 𝑝(𝑚, 𝑘+1). By theway the bases for theseHilbert spaces
are defined, this means that 𝐿𝑒 acts as the right shift operator from 𝐻2𝑘−1 to
𝐻2𝑘, and the inclusionmap from𝐻2𝑘 to𝐻2𝑘+1. This gives us the desired matrix
representation of 𝐿𝑒.
For 𝐿𝑓, consider a basis element 𝑝(𝑚, 2𝑘) ∈ 𝐻2𝑘. By checking the cases

when𝑚 > 0, 𝑚 < 0, and𝑚 = 0, it is straightforward to show that
∙ if 𝑘 is even, then 𝑓◦𝑝(𝑚, 𝑘) = 𝑝(𝑚 + 1, 𝑘 + 1); and
∙ if 𝑘 is odd, then 𝑓◦𝑝(𝑚, 𝑘) = 𝑝(𝑚 − 1, 𝑘 + 1).

Again, by the way that the bases are defined, this means that 𝐿𝑓 acts as the right
shift operator from𝐻2𝑘 to𝐻2𝑘+1 and the inclusionmap from𝐻2𝑘−1 to𝐻2𝑘. This
gives us the desired matrix representation of 𝐿𝑓. □

The next example is a single-vertex category of paths for which the free semi-
groupoid algebra contains a non-zero nilpotent element. Before introducing
this example, we show that this cannot occur in the higher rank graph case.
We use the following ordering of paths in a higher rank graph: given 𝜆 ∈ Λ,
with degree (𝑛1, 𝑛2,… , 𝑛𝑘) and𝜇 ∈ Λwith degree (𝑚1, 𝑚2,… , 𝑚𝑘), we say 𝜆 ≥ 𝜇
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if (𝑛1, 𝑛2,… , 𝑛𝑘) ≥ (𝑚1, 𝑚2,… , 𝑚𝑘) with respect to lexicographical ordering in
ℕ𝑘.

Proposition 4.6. IfΛ is a single-vertex higher rank graph, then𝔏Λ does not have
a non-zero nilpotent.

Proof. Let 𝑇 ∈ 𝔏Λ be non-zero, with Fourier expansion
∑

𝑤∈Λ

𝛼𝑤𝐿𝑤. Let 𝑛 =

min{|𝑤| ∶ 𝛼𝑤 ≠ 0}, and let Γ = {𝑤 ∈ Λ ∶ |𝑤| = 𝑛, 𝛼𝑤 ≠ 0}. Let 𝛾 ∈ Γ

be maximal with respect to lexicographic ordering. Then for any 𝑘 ∈ ℕ, the
expansion of 𝑇𝑘 contains the non-zero term 𝛼𝑘𝛾𝐿𝛾𝑘 . This term can only cancel
out with other non-zero terms associated to paths of length 𝑘𝑛, and by themin-
imality of 𝑛, such a path must have the form 𝑤1𝑤2…𝑤𝑘 with |𝑤𝑖| = 𝑛 for all
𝑖 = 1,… , 𝑘. However, Lemma 7.1 of [7], implies that 𝑤𝑖 = 𝛾 for all 𝑖 = 1,… , 𝑘.
So the non-zero term 𝛼𝑘𝛾𝐿𝛾𝑘 cannot cancel out, and 𝑇 is not nilpotent. □

Example 4.7. Let Λ3 be the category with one vertex 𝑥, three edges 𝑎, 𝑏, and 𝑐,
and the following identifications:

∙ 𝑎2 = 𝑏2 = 𝑐2

∙ 𝑎𝑏 = 𝑏𝑐 = 𝑐𝑎

∙ 𝑎𝑐 = 𝑐𝑏 = 𝑏𝑎

Using these relations, any non-vertex path can be written uniquely in the
form 𝑦𝑎𝑛 for 𝑦 ∈ {𝑎, 𝑏, 𝑐} and 𝑛 ∈ ℕ ∪ {0}.

Proposition 4.8. The category Λ3 described above is a category of paths.

Proof. We will show that Λ3 satisfies the conditions of a category of paths by
means of a matrix semigroup representation.
Consider the matrices

𝐴 =
⎡
⎢

⎣

1 0 0

0 0 1

0 1 0

⎤
⎥

⎦

, 𝐵 =
⎡
⎢

⎣

0 1 0

1 0 0

0 0 1

⎤
⎥

⎦

, 𝐶 =
⎡
⎢

⎣

0 0 1

0 1 0

1 0 0

⎤
⎥

⎦

and the subsemigroup 𝑆 of (ℕ ∪ {0},+)⊕𝑀3 generated by (1, 𝐴), (1, 𝐵), (1, 𝐶),
and (0, 𝐼), where 𝐼 is the 3 × 3 identity matrix. These elements satisfy:

∙ (1, 𝑋)(0, 𝐼) = (0, 𝐼)(1, 𝑋) = (1, 𝑋) for 𝑋 ∈ {𝐴, 𝐵, 𝐶}

∙ (1, 𝐴)2 = (1, 𝐵)2 = (1, 𝐶)2 = (2, 𝐼)

∙ (1, 𝐴)(1, 𝐵) = (1, 𝐵)(1, 𝐶) = (1, 𝐶)(1, 𝐴) = (2,
⎡
⎢

⎣

0 1 0

0 0 1

1 0 0

⎤
⎥

⎦

)

∙ (1, 𝐴)(1, 𝐶) = (1, 𝐶)(1, 𝐵) = (1, 𝐵)(1, 𝐶) = (2,
⎡
⎢

⎣

0 0 1

1 0 0

0 1 0

⎤
⎥

⎦

).

Furthermore, because thematrices𝐴, 𝐵, and𝐶 are invertible, this semigroup
has left and right cancellation, and because the first coordinate of the direct sum
is always positive, there are no inverses. So 𝑆 is a category of paths.
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Now consider the mapping 𝜑 ∶ Λ3 → 𝑆 given by 𝑎 ↦ (1, 𝐴), 𝑏 ↦ (1, 𝐵), 𝑐 ↦

(1, 𝐶), 𝑥 ↦ (0, 𝐼), which defines a surjective semigroup homomorphism. To
see that 𝜑 is injective, suppose 𝜑(𝑦𝑎𝑛) = 𝜑(𝑧𝑎𝑘), for 𝑦, 𝑧 ∈ {𝑎, 𝑏, 𝑐} and 𝑛, 𝑘 ∈
ℕ ∪ {0}. Then 𝜑(𝑦)(𝑛,𝐴𝑛) = 𝜑(𝑧)(𝑘,𝐴𝑘). So 𝑛 = 𝑘 and by cancellation, 𝜑(𝑦) =
𝜑(𝑧). So 𝑦 = 𝑧, and 𝑦𝑎𝑛 = 𝑧𝑎𝑘.
Thus, the categoryΛ3 is isomorphic to the category of paths 𝑆, implying that

Λ3 is a category of paths. □

Note that this category of paths has a non-zero nilpotent element given by
𝑇 = 𝐿𝑎 + 𝜔𝐿𝑏 + 𝜔2𝐿𝑐, where 𝜔 is a primitive third root of unity; if we expand
𝑇2 and use the identifications in Λ3 to simplify, we get

𝑇2 = (1 + 𝜔 + 𝜔2)𝐿𝑎2 + (1 + 𝜔 + 𝜔2)𝐿𝑏𝑎 + (1 + 𝜔 + 𝜔2)𝐿𝑐𝑎 = 0.

Next, we consider matrix representations for 𝐿𝑎, 𝐿𝑏, and 𝐿𝑐 based on the
Hilbert spaces {𝐻𝑘}𝑘≥0, where𝐻0 = {𝜉𝑥},𝐻1 = {𝜉𝑎, 𝜉𝑏, 𝜉𝑐}, and

𝐻𝑘 = {𝜉𝑎𝑘 , 𝜉𝑏𝑎𝑘−1 , 𝜉𝑐𝑎𝑘−1}

for 𝑘 ≥ 2. Then 𝐼 =
∞∑

𝑘=0

𝑃𝑘, where 𝑃𝑘 is the projection onto𝐻𝑘.

Lemma 4.9. In this matrix decomposition, 𝐿𝑎, 𝐿𝑏, and 𝐿𝑐 are represented by

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 …

𝐴1 0 0 0 …

0 𝐴 0 0 …

0 0 𝐴 0 …

0 0 0 𝐴 …

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 …

𝐵1 0 0 0 …

0 𝐵 0 0 …

0 0 𝐵 0 …

0 0 0 𝐵 …

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 …

𝐶1 0 0 0 …

0 𝐶 0 0 …

0 0 𝐶 0 …

0 0 0 𝐶 …

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

respectively, where 𝐴1 =
⎡
⎢

⎣

1

0

0

⎤
⎥

⎦

, 𝐵1 =
⎡
⎢

⎣

0

1

0

⎤
⎥

⎦

, 𝐶1 =
⎡
⎢

⎣

0

0

1

⎤
⎥

⎦

, and 𝐴, 𝐵, and 𝐶 are defined

above. (So all the blocks in the block decompositions are 3×3, except the 1,1-block,
which is 1 × 1, the rest of the first column of blocks, which are 3 × 1, and the rest
of the first row of blocks, which are 1 × 3.)

Proof. First, note that 𝐿𝑎(𝜉𝑥) = 𝜉𝑎, giving us 𝐴1 in the 2,1-block. Next, for all
𝑛 ∈ ℕ,

𝐿𝑎(𝜉𝑎𝑛) = 𝜉𝑎𝑛+1 ; 𝐿𝑎(𝜉𝑏𝑎𝑛−1) = 𝜉𝑐𝑎𝑛 ; 𝐿𝑎(𝜉𝑐𝑎𝑛−1) = 𝜉𝑏𝑎𝑛 .

which gives us the matrix 𝐴 in the (𝑛 + 1, 𝑛)-block, for all 𝑛. The calculations
for 𝐿𝑏 and 𝐿𝑐 are similar. □

So 𝔏Λ3 is the WOT-closed algebra generated by 𝐿𝑎, 𝐿𝑏, 𝐿𝑐, and the identity.
As a similar example, consider the category of paths Λ𝑛 with one vertex 𝑥, 𝑛

edges 𝑒0, 𝑒1,… , 𝑒𝑛−1, and the identifications 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝓁𝑒𝑗+𝓁 for all 𝑖, 𝑗,𝓁, taken
mod 𝑛.
Similar to the case for Λ3 above, this can be shown to be a category of paths

using a matrix representation: Let 𝑒𝑘 be the 𝑛-dimensional vector with 1 in the
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𝑘th coordinate and zeroes elsewhere, and let 𝐸𝑖 be the 𝑛 × 𝑛 matrix with 𝑘th
column equal to 𝑒𝑖−𝑘, with all subscripts taken mod 𝑛. Then the 𝑘th row of 𝐸𝑖
is also 𝑒𝑖−𝑘, so 𝐸𝑖 is a symmetric matrix for every 𝑖, and 𝐸𝑖𝐸𝑗 = 𝐸𝑖+𝓁𝐸𝑗+𝓁 for
all 𝑖, 𝑗,𝓁, taken mod 𝑛. Thus the subsemigroup of (ℕ ∪ {0},+) ⊕ 𝑀𝑛 gener-
ated by (0, 1) and {(1, 𝐸𝑖) ∶ 𝑖 = 1,… , 𝑛} is equivalent to Λ𝑛, and so Λ𝑛 satisfies
cancellation and has no inverses.
Note that the relations on Λ𝑛 imply that 𝑒2𝑖 = 𝑒2

𝑗
for all 𝑖, 𝑗, and thus 𝑒2

𝑖
com-

mutes with every path in Λ. Thus, this category of paths has 𝑛 paths of length
𝑘 for any 𝑘 ≥ 2, which can be written as 𝑒𝑘

0
, 𝑒1𝑒

𝑘−1
0

, 𝑒2𝑒
𝑘−1
0

,… , 𝑒𝑛−1𝑒
𝑘−1
0

. Addi-
tionally, it has a non-zero nilpotent

𝑇 = 𝜉𝑒0 + 𝜔𝜉𝑒1 + 𝜔2𝜉𝑒2 +⋯ + 𝜔𝑛−1𝜉𝑒𝑛−1 ,

where 𝜔 is a primitive 𝑛th root of unity.
In the case where 𝑛 = 3, this construction gives the category of paths Λ3

described above. When 𝑛 = 2, we get a category of paths with one vertex, two
loops, and the relations 𝑒2

0
= 𝑒2

1
and 𝑒0𝑒1 = 𝑒1𝑒0, which is different than the

two-loop example described in Example 4.3.

5. Semisimplicity
An operator 𝑇 ∈ ℬ(ℋ) is called nilpotent if 𝑇𝑛 = 0. We say that 𝑇 is

quasinilpotent if the spectrum of 𝑇 is 0, or, equivalently, if lim
𝑛→∞

‖𝑇𝑛‖1∕𝑛 = 0.

The Jacobson radical rad(𝒜) of a Banach algebra 𝒜 is the intersection of the
kernels of all algebraically irreducible representations. It is a well-known fact
(for example, Theorem 2.3.5(ii) in [11]), that the Jacobson radical of an algebra
of operators is the largest quasinilpotent ideal in the algebra. An algebra 𝒜 is
called semisimple if rad(𝒜) = 0.
A cycle in Λ is a path 𝜇1𝜇2…𝜇𝑛 ∉ Λ0 with 𝑠(𝜇𝑛) = 𝑟(𝜇1). Say that 𝜇 ∈ Λ

lies on a cycle if there is some 𝜈 ∈ Λ such that 𝜇𝜈 is a cycle. Let 𝐵(Λ) be the
collection of paths 𝜇 ∈ Λ which do not lie on a cycle. The set 𝐵(Λ) is empty if
and only if every path in Λ lies on a cycle. Kribs and Power showed that for a
graph 𝐺, the Jacobson radical of 𝔏𝐺 is determined by these paths:

Theorem 5.1 ([6], Theorem 5.1). Let 𝐺 be a graph. Then 𝔏𝐺 is semisimple if
and only if every path in 𝐺 lies on a cycle. When 𝐺 has finitely many vertices,
|𝑉(𝐺)| = 𝑀 < ∞, then the radical is nilpotent of degree at most𝑀 and is equal
to the WOT-closed two-sided ideal generated by {𝐿𝜇 ∶ 𝜇 ∈ 𝐵(Λ)}.

They also proved the same theorem for higher rank graphs in [7]. To obtain
a similar result for categories of paths, we will use an extra assumption.
Throughout this section, the category of paths Λ is assumed to have a non-

degenerate degree functor 𝜑 ∶ Λ → ℕ𝑛. For 𝑤 ∈ Λ, let |𝑤| = |𝜑(𝑤)|, i.e. the
sum of the components of 𝜑(𝑤) ∈ ℕ𝑛.

Definition 5.2. We call a path 𝜇 ∈ Λ minimal if for 𝜈, 𝜂 ∈ Λ, 𝜇 = 𝜈𝜂 implies
𝜇 = 𝜈 or 𝜇 = 𝜂.
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Definition 5.3. Say that a category of paths Λ satisfies property (P) if:
(i) For each vertex 𝑣 ∈ Λ0, the set of minimal paths in 𝑣Λ is finite; and
(ii) If𝐴 ≠ 0 and𝐴 = 𝑎1𝐿𝑤1

+𝑎2𝐿𝑤2
+⋯+𝑎𝑘𝐿𝑤𝑘

for some 𝑘 ∈ ℕ,𝑤1,… , 𝑤𝑘 ∈

Λ with |𝑤1| = |𝑤2| = ⋯ = |𝑤𝑘|, and 𝑎1,… , 𝑎𝑘 ∈ ℂ, then there is some
𝜇 ∈ Λ such that 𝐿𝜇𝐴 is not nilpotent.

If Λ is a graph or higher rank graph, then the second condition, (P)(ii), is
equivalent to saying that each edge lies on a cycle, as shown in the next propo-
sition. Notice the similarity to the proof of Proposition 4.6.

Proposition 5.4. If Λ is a higher rank graph, then each path in Λ lies on a cycle
if and only if Λ satisfies (P)(ii).

Proof. First suppose Λ satisfies (P)(ii) and let 𝜈 ∈ Λ. By (P)(ii), there is some
𝜇 ∈ Λ such that 𝐿𝜇𝐿𝜈 is not nilpotent. Thus, 𝐿2𝜇𝜈 = 𝐿𝜇𝜈𝜇𝜈 is not equal to 0. So
𝜇𝜈 must be a cycle. Thus, every path lies on a cycle.
Now assume that every path in Λ lies on a cycle, and let 𝐴 ∈ 𝔏Λ such that

𝐴 ≠ 0 and𝐴 = 𝑎1𝐿𝑤1
+𝑎2𝐿𝑤2

+⋯+𝑎𝑘𝐿𝑤𝑘
∈ 𝔏Λ for some 𝑘 ∈ ℕ,𝑤1,… , 𝑤𝑘 ∈ Λ

with |𝑤1| = |𝑤2| = ⋯ = |𝑤𝑘|, and 𝑎1,… , 𝑎𝑘 ∈ ℂ. Assume without loss
of generality that 𝑎𝑖 ≠ 0 for 𝑖 = 1,… , 𝑘. Choose 𝜇 so that 𝜇𝑤1 is a cycle. Let
Γ = {𝜇𝑤𝑖 ∶ 𝑟(𝑤𝑖) = 𝑠(𝜇), 𝑖 = 1,… , 𝑘}, and let 𝛾 ∈ Γ bemaximal inΓwith respect
to lexicographic ordering, say 𝛾 = 𝜇𝑤𝑖0

. Then for any 𝑛 ∈ ℕ, the expansion of
(𝐿𝜇𝑇)

𝑛 contains the term 𝑎𝑛𝑤𝑖0
𝐿𝛾𝑛 with 𝑎𝑛𝑤𝑖0

≠ 0. By Lemma 7.1 of [7], no other
path associated to a term in the expansion of (𝐿𝜇𝑇)𝑛 can be identified with 𝛾𝑛.
So the non-zero term 𝑎𝑛𝑤𝑖0

𝐿𝛾𝑛 cannot cancel out. So 𝑇 is not nilpotent. □

Lemma 5.5. If Λ satisfies (P)(i), then for any vertex 𝑣, there are at most finitely
many paths in Λ of degree 𝑛 with range 𝑣.

Proof. Let 𝑣 ∈ Λ0. By (P)(i), there are only a finite number, say𝑁1, of minimal
paths in 𝑣Λ. For each of those paths 𝜇, there are a finite number of minimal
paths in 𝑠(𝜇)Λ. Let𝑁2 be the maximum of those finite numbers. Continue this
𝑛 times, up to 𝑁𝑛. Then the total number of paths in Λ of degree less than or
equal to 𝑛 with range 𝑣 is at most

𝑁1 +𝑁1𝑁2 +⋯ +𝑁1𝑁2𝑁3…𝑁𝑛,

which is finite. □

The following theorem corresponds to Lemma 5.2 in [6].

Theorem 5.6. If Λ satisfies (P), then 𝔏Λ is semisimple. In particular, for every
non-zero 𝐴 in 𝔏Λ, there is a path 𝑤 ∈ Λ such that 𝐿𝑤𝐴 is not quasinilpotent.

Proof. Let𝐴 ∈ 𝔏Λ, with Fourier expansion𝐴 ∼
∑

𝑤∈Λ

𝑎𝑤𝐿𝑤. Let 𝑛 = min{|𝑤| ∶

𝑎𝑤 ≠ 0}.
Let 𝐴′ =

∑

|𝑤|=𝑛

𝑎𝑤𝐿𝑤. By condition (ii) of (P), there is some 𝜇 ∈ Λ such that

𝐿𝜇𝐴
′ is not nilpotent. Therefore, since only minimal-degree terms can cancel
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out other minimal-degree terms, the minimal-degree terms of (𝐿𝜇𝐴)𝑘 do not
cancel out for any 𝑘. So for any 𝑘, (𝐿𝜇𝐴)𝑘 will have a non-zero term in its Fourier
expansion of the form 𝑏𝜈𝑘𝐿𝜈𝑘 where |𝜈𝑘| = 𝑘(𝑛 + |𝜇|). By the minimality of 𝑛,
such a path 𝜈𝑘 must be equal to 𝜇𝑤𝑘𝜇𝑤𝑘−1…𝜇𝑤2𝜇𝑤1 where each𝑤𝑖 has degree
𝑛.
Now, by Lemma 5.5, there are only finitely many paths of degree 𝑛 that end

at 𝑠(𝜇). So the following minimum is well defined:

𝑎 ∶= min{|𝑎𝑤| ∶ |𝑤| = 𝑛, 𝑟(𝑤) = 𝑠(𝜇), 𝑎𝑤 ≠ 0}.

Then |𝑏𝜈𝑘 | ≥ 𝑎𝑘. So for 𝑘 ≥ 1, we have

‖(𝐿𝜇𝐴)
𝑘‖1∕𝑘 ≥

||||

⟨
(𝐿𝜇𝐴)

𝑘𝜉𝑠(𝜈𝑘), 𝜉𝜈𝑘

⟩||||

1∕𝑘
= |𝑏𝜈𝑘 |

1∕𝑘 ≥ (𝑎𝑘)1∕𝑘 = 𝑎 > 0.

Thus, 𝐿𝜇𝐴 has a positive spectral radius and is not quasinilpotent. But recall
the radical rad 𝔏Λ is equal to the largest quasinilpotent ideal in 𝔏Λ. So 𝐴 is not
in the radical for 𝐴 ≠ 0. □

Next, we will show a partial converse to this result, namely, that if 𝔏Λ is
semisimple, then each path inΛmust lie on a cycle. First, the following Lemma
corresponds to Lemma 5.3 from [6]:

Lemma 5.7. The following are equivalent for 𝜇 ∈ Λ:

(i) 𝐿𝜇 ∈ rad 𝔏Λ
(ii) 𝜇 ∈ 𝐵(Λ)

(iii) (𝐴𝐿𝜇)2 = 0 for all 𝐴 ∈ 𝔏Λ

(iv) 𝐿2𝑤 = 𝐿𝑤2 = 0whenever𝑤 ∈ Λ is a path which includes 𝜇 (i.e., there exists
𝛼, 𝛽 ∈ Λ such that 𝑤 = 𝛼𝜇𝛽).

Proof. The proof for graphs also works for categories of paths, but the details
for the equivalence of (iii) and (iv) are not explicitly given in Lemma 5.3 in [6],
so we provide them here.
(iii) ⟹ (iv) Assume that (𝐴𝐿𝜇)2 = 0 for all 𝐴 ∈ 𝔏Λ and let 𝑤 be a path

containing 𝜇. So 𝑤 = 𝛼𝜇𝛽 for some 𝛼, 𝛽 ∈ Λ. Suppose 𝑤 is a cycle. Then
𝑠(𝛽) = 𝑟(𝛼). Letting 𝐴 = 𝐿𝛽𝛼, we have

𝐿𝛽𝐿
2
𝑤 = 𝐿𝛽𝑤𝑤 = 𝐿𝛽𝛼𝜇𝛽𝛼𝜇𝛽 = (𝐴𝐿𝜇)

2𝐿𝛽 = 0.

But 𝐿𝛽𝐿2𝑤 ≠ 0 since 𝐿𝛽𝐿2𝑤(𝜉𝑠(𝑤)) = 𝜉𝛽𝑤2 . This contradiction shows that 𝑤 is not
a cycle. So 𝐿𝑤2 = 0.
(iv) ⟹ (iii) Now assume that 𝐿2𝑤 = 𝐿𝑤2 = 0 whenever 𝑤 ∈ Λ is a path

which includes𝜇. Let 𝜈 ∈ Λ such that 𝑠(𝜈) = 𝑟(𝜇). Then 𝜈𝜇 is a path containing
𝜇, so 𝐿2𝜈𝜇 = 0 by assumption. If it were also true that 𝑠(𝜇) = 𝑟(𝜈), then 𝐿2𝜈𝜇 =
𝐿𝜈𝜇𝜈𝜇 ≠ 0. So it must be that 𝑠(𝜇) ≠ 𝑟(𝜈) for all 𝜈 ∈ Λ with 𝑠(𝜈) = 𝑟(𝜇).
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Now let𝐴 ∈ 𝔏Λ and let𝑎𝑤 be the coefficients such that𝐴𝜉𝑟(𝜇) =
∑

𝑠(𝑤)=𝑟(𝜇)

𝑎𝑤𝜉𝑤.

Then

(𝐴𝐿𝜇)
2𝜉𝑠(𝜇) = 𝐴𝐿𝜇𝐴𝜉𝜇

= 𝐴𝐿𝜇

∑

𝑠(𝑤)=𝑟(𝜇)

𝑎𝑤𝜉𝑤𝜇

= 𝐴
∑

𝑠(𝑤)=𝑟(𝜇)

𝑎𝑤𝜉𝜇𝑤𝜇.

But, by the previous paragraph, 𝜇𝑤𝜇 is not a path for any 𝑤 with 𝑠(𝑤) = 𝑟(𝜇).
So (𝐴𝐿𝜇)2𝜉𝑠(𝜇) = 0. And for any other vertex 𝑦 ≠ 𝑠(𝜇), we have

(𝐴𝐿𝜇)
2𝜉𝑦 = (𝐴𝐿𝜇𝐴)𝐿𝜇𝜉𝑦 = 0.

□

Theorem 5.8. If 𝔏Λ is semisimple, then every path in Λ lies on a cycle.

Proof. Suppose that there is a path in Λ which does not lie on a cycle. Then
the set 𝐵(Λ) is nonempty, and Lemma 5.7 gives us a path 𝜇 ∈ 𝐵(Λ) such that
𝐿𝜇 ∈ rad 𝔏Λ. Thus𝔏Λ has nonzero radical and𝔏Λ is not semisimple. (This does
not require the assumption thatΛ satisfies (P), and is the same as the graph case
[6].) □

We next consider a block diagonal decomposition of 𝔏Λ. As in [6], we say
that a subset Γ of Λ ismaximally transitive if :

(a) there are paths in both directions between every pair of vertices in Γ
(b) if 𝜇 ∈ Γ, then 𝑠(𝜇) and 𝑟(𝜇) are in Γ
(c) if 𝜇 ∈ Λ such that 𝑠(𝜇) and 𝑟(𝜇) are in Γ, then 𝜇 ∈ Γ

(d) Γ is maximal with respect to these properties.
Let {Λ𝑖}𝑖∈ℐ be the maximally transitive components of Λ, and let {𝑆𝑖}𝑖∈ℐ be the
projections 𝑆𝑖 =

∑

𝑥∈Λ0
𝑖

𝐿𝑥. Note that if Λ has 𝑀 vertices, then |ℐ| ≤ 𝑀, since

every maximally transitive component must have at least one vertex and every
vertex is in exactly one maximally transitive component (though that compo-
nent could be just a vertex with no paths). Thus, we have

𝐼 = ⊕𝑖∈ℐ𝑆𝑖.

Note that paths in 𝐵(Λ) are not contained in any maximally transitive com-
ponents, since paths in𝐵(Λ) do not lie on a cycle. Therefore, 𝐵(Λ) = Λ⧵∪𝑖∈ℐΛ𝑖.
Now we may consider the block matrix form of 𝔏Λ with respect to the above

decomposition. Note that, for 𝑖 ≠ 𝑗, if the (𝑖, 𝑗)-block is non-zero, then the (𝑗, 𝑖)-
block must be 0, because if there were a path from Λ𝑖 to Λ𝑗 and a path from Λ𝑗

to Λ𝑖, it would violate the maximality of the maximally transitive components.
A graph version of the following lemma was stated but not explicitly proved

in [6], so we include a proof here for the category of paths case even though the
same proof would apply to graphs:
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Lemma 5.9. Let 𝒥 be the WOT-closed two-sided ideal in 𝔏Λ generated by {𝐿𝜇 ∶
𝜇 ∈ 𝐵(Λ)}. Then 𝒥 is given by the off-diagonal entries of 𝔏Λ in the decomposition
described above; that is, 𝒥 =

∑

𝑖≠𝑗

𝑆𝑖𝔏Λ𝑆𝑗 .

Proof. Let 𝐴 ∈ 𝔏Λ. For each vertex 𝑥, there exist constants {𝑎𝑤 ∶ 𝑤 ∈

Λ, 𝑠(𝑤) = 𝑥} such that
𝐴𝜉𝑥 =

∑

𝑠(𝑤)=𝑥

𝑎𝑤𝜉𝑤.

In the block diagonal form of 𝐴 described above, the coefficient 𝑎𝑤 will be in
the column block corresponding to 𝑠(𝑤) and the row block corresponding to
𝑟(𝑤).
So if 𝐴 ∈ 𝔏Λ and the diagonal blocks are 0 in this decomposition, then the

Fourier coefficients 𝑎𝑤 are 0 for all 𝑤 ∉ 𝐵(Λ). Thus, the Cesaro sums of 𝐴 are
in 𝒥, and since they converge SOT to 𝐴, that means 𝐴 ∈ 𝒥.
Conversely, if 𝐴 ∈ 𝒥, we know 𝐴 is a WOT limit of operators in span{𝐿𝜇 ∶

𝜇 ∈ 𝐵(Λ)}. Note that any path 𝜇 ∈ 𝐵(Λ) has at most one endpoint in any given
maximally transitive component Λ𝑖. Thus, the block diagonals in this matrix
decomposition will be 0 for every 𝐿𝜇 for 𝜇 ∈ 𝐵(Λ), and hence also for 𝐴. □

The following theorem is similar to Theorem5.1 in [6], but the proof is slightly
more complicated in the category of paths case.
Theorem 5.10. If Λ has 𝑀 < ∞ maximally transitive components, and each
maximally transitive component satisfies (P), then the radical is nilpotent of de-
gree at most𝑀 and is equal to theWOT-closed two-sided ideal generated by {𝐿𝜇 ∶
𝜇 ∈ 𝐵(Λ)}.

Proof. Let 𝒥 be the WOT-closed two-sided ideal in 𝔏Λ generated by {𝐿𝜇 ∶ 𝜇 ∈
𝐵(Λ)}. We will first show that the radical contains this ideal. By Lemma 5.9, 𝒥
is given by the off-diagonal entries of 𝔏Λ in the decomposition

𝐼 = ⊕𝑖∈ℐ𝑆𝑖,

where 𝑆𝑖 is the projection onto the subspace 𝓁2(Λ𝑖) corresponding to the maxi-
mally transitive component Λ𝑖.
Now, since there are𝑀 blocks in each row and column, and only one of the

(𝑖, 𝑗)- and the (𝑗, 𝑖)-block can be non-zero for 𝑖 ≠ 𝑗, it follows that 𝒥𝑀 = {0}.
Since 𝒥 is an ideal, we have for all 𝑋 ∈ 𝔏Λ and 𝐴 ∈ 𝒥, that (𝑋𝐴)𝑀 = 0. Hence
𝒥 is contained in rad 𝔏Λ and is nilpotent of degree at most𝑀.
Finally, we need to show that rad 𝔏Λ is contained in 𝒥. So suppose 𝐴 ∈

rad 𝔏Λ with Fourier expansion scalars {𝑎𝑤}𝑤∈Λ. We will show that a coefficient
𝑎𝑤 is non-zero only if 𝑤 ∈ 𝐵(Λ). Suppose by way of contradiction that there is
a path 𝜈 with 𝑎𝜈 ≠ 0 and 𝜈 ∉ 𝐵(Λ). Choose 𝜈 so that |𝜈| is minimal with this
property. Let Λ′ be the maximally transitive component of Λ that contains 𝜈.
Let 𝑆 = {𝑤 ∈ Λ′ ∶ |𝑤| = |𝜈|, 𝑟(𝑤) = 𝑟(𝜈)}. Note that this set is finite by

Lemma 5.5. Let 𝐴′ be the operator of terms of 𝐴 corresponding to paths in 𝑆;
that is, 𝐴′ =

∑

𝑤∈𝑆

𝑎𝑤𝐿𝑤.
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Note that this means 𝐴′ ∈ 𝔏Λ′ . Since we are assuming that (P) holds on Λ′,
there is some 𝜇 ∈ Λ′ such that 𝐿𝜇𝐴′ is not nilpotent. We now want to show
that 𝐿𝜇𝐴 has positive spectral radius.
The Fourier series of the operator 𝐿𝜇𝐴 is given by

∑

𝑤∈Λ

𝑎𝑤𝐿𝜇𝑤. Taking this to

the 𝑘th power formally gives us
∑

𝑤𝑖 ,𝜂∈Λ

𝑎𝑤1
𝑎𝑤2

… 𝑎𝑤𝑘−1
𝑎𝜂𝐿𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂

.

But in fact, we know each 𝑤𝑖 is in Λ′ because 𝑠(𝜇) and 𝑟(𝜇) are in Λ′.
Letℳ = {𝜇𝑢1𝜇𝑢2…𝜇𝑢𝑘−1𝜇𝑢𝑘 ∶ 𝑢𝑖 ∈ 𝑆}. We will show that it is impossible

for all the terms associated to paths inℳ to cancel out in the product (𝐿𝜇𝐴)𝑘.
Let 𝑤1, 𝑤2,… , 𝑤𝑘−1 ∈ Λ′ with 𝑎𝑤𝑖

≠ 0, and let 𝑢1, 𝑢2,… , 𝑢𝑘 ∈ 𝑆 with 𝑎𝑢𝑖 ≠ 0.
In what follows, we will determine for which paths 𝜂 ∈ Λ it is possible that
𝑎𝜂 ≠ 0 and

𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂 = 𝜇𝑢1𝜇𝑢2…𝜇𝑢𝑘.

First, suppose |𝜂| < |𝜈|. Since |𝜈| is minimal with the property that 𝑎𝜈 ≠ 0

and 𝜈 ∉ 𝐵(Λ), this implies 𝜂 ∈ 𝐵(Λ). Thus, either 𝑠(𝜂) ∉ Λ′ or 𝑟(𝜂) ∉ Λ′. So
since 𝑢𝑘 ∈ 𝑆, then either 𝑠(𝜂) ≠ 𝑠(𝑢𝑘), implying

𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂 ≠ 𝜇𝑢1𝜇𝑢2…𝜇𝑢𝑘

or 𝑟(𝜂) ≠ 𝑠(𝜇), implying the path on the left is undefined.
Now suppose |𝜂| > |𝜈|. Then 𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂 has degree larger than

(|𝜇| + |𝜈|)𝑘, since each 𝑤𝑖 is in Λ′, and thus by the minimality of |𝜈|, satisfies
|𝑤𝑖| ≥ |𝜈| for all 𝑖. So 𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂 ≠ 𝜇𝑢1𝜇𝑢2…𝜇𝑢𝑘.
Finally, suppose |𝜂| = |𝜈|. If 𝜂 ∉ Λ′, then, as above, either 𝑠(𝜂) ≠ 𝑠(𝑢𝑘),

implying
𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂 ≠ 𝜇𝑢1𝜇𝑢2…𝜇𝑢𝑘

or 𝑟(𝜂) ≠ 𝑠(𝜇), implying the path on the left is undefined. If |𝜂| = |𝜈| and 𝜂 is
in Λ′, then 𝜇𝑤1𝜇𝑤2…𝜇𝑤𝑘−1𝜇𝜂 is inℳ.
Therefore, only terms corresponding to paths in ℳ can cancel out other

terms inℳ, and we know they do not all cancel out because 𝐿𝜇𝐴′ is not nilpo-
tent.
Thus, for any 𝑘, (𝐿𝜇𝐴)𝑘 will have a non-zero term in its Fourier expansion of

the form 𝑏𝑤𝑘
𝐿𝑤𝑘

where𝑤𝑘 is the result of concatenating 𝑘 paths of the form 𝜇𝑢

for 𝑢 ∈ 𝑆. Let 𝑎 = min{|𝑎𝑢| ∶ 𝑢 ∈ 𝑆}, which is well defined since 𝑆 is a finite
set. Then |𝑏𝑤𝑘

| ≥ 𝑎𝑘.
So for 𝑘 ≥ 1, we have

‖(𝐿𝜇𝐴)
𝑘‖1∕𝑘 ≥

||||

⟨
(𝐿𝜇𝐴)

𝑘𝜉𝑠(𝑤𝑘)
, 𝜉𝑤𝑘

⟩||||

1∕𝑘
= |𝑏𝑤𝑘

|1∕𝑘 ≥ (𝑎𝑘)1∕𝑘 = 𝑎 > 0.

This contradicts that𝐴 ∈ rad 𝔏Λ, thus proving the claim. So a coefficient 𝑎𝑤
in the Fourier expansion of 𝐴 is non-zero only if 𝑤 ∈ 𝐵(Λ). Thus, the Cesaro
sums for 𝐴 are in 𝒥, and they converge SOT to 𝐴. So 𝐴 ∈ 𝒥. □
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Before turning to examples, we give one further result on the nilpotency
degree of the ideal 𝒥. Given a category of paths Λ, let a chain of length 𝑛

be a set of maximally transitive components {Λ1,Λ2,… ,Λ𝑛} of Λ with paths
𝑤1, 𝑤2,… , 𝑤𝑛−1 in 𝐵(Λ) such that𝑤𝑗 begins inΛ𝑗 and ends inΛ𝑗+1. If there are
a finite number of maximally transitive components, then all chains are finite.

Proposition 5.11. LetΛ be a category of paths with𝑀maximally transitive com-
ponents, where𝑀 < ∞. Let 𝒥 be the WOT-closed ideal generated by {𝐿𝜇 ∶ 𝜇 ∈

𝐵(Λ)}. The nilpotency degree of 𝒥 is equal to the length of the largest chain of
maximally transitive components, which is at most𝑀.

Proof. Let {Λ𝑖}𝑖≤𝑀 be themaximally transitive components ofΛ, and let {𝑆𝑖}𝑖≤𝑀
be the projections 𝑆𝑖 =

∑

𝑥∈Λ0
𝑖

𝐿𝑥. Then 𝐼 = ⊕𝑖≤𝑀𝑆𝑖.

Lemma 5.9 says that the ideal 𝒥 is given by the off-diagonal entries of 𝔏Λ in
this decomposition. Let 𝐵𝑖,𝑗 be the block in the 𝑖th row and 𝑗th column of this
decomposition. Let 𝑛 be the length of the largest chain of maximally transitive
components. A chain of length 𝑛 of maximally transitive components corre-
sponds to a sequence of blocks 𝐵𝑗1,𝑗2 , 𝐵𝑗2,𝑗3 ,… , 𝐵𝑗𝑛−1,𝑗𝑛 such that each 𝐵𝑗𝑘 ,𝑗𝑘+1 is
non-zero and all 𝑗1,… , 𝑗𝑛 are distinct. Since there are no chains of length bigger
than 𝑛, 𝒥𝑛 = 0, and 𝒥 is nilpotent of degree less than or equal to 𝑛.
Suppose {Λ1,… ,Λ𝑛} with paths {𝑤1,… , 𝑤𝑛−1} is a maximum length chain.

Since each component Λ𝑖 is transitive, there are paths 𝜇𝑖 ∈ Λ𝑖 for 1 < 𝑖 < 𝑛

with 𝑠(𝜇𝑖) = 𝑟(𝑤𝑖−1) and 𝑟(𝜇𝑖) = 𝑠(𝑤𝑖). So𝑤𝑛−1𝜇𝑛−1…𝜇3𝑤2𝜇2𝑤1 is a path inΛ.
Thus,

𝐴 ∶= 𝐿𝑤𝑛−1𝜇𝑛−1
+⋯ + 𝐿𝑤3𝜇3

+ 𝐿𝑤2𝜇2
+ 𝐿𝑤1

is an element of 𝒥 such that 𝐴𝑛−1𝜉𝑠(𝑤1)
= 𝜉𝑤𝑛−1𝜇𝑛−1…𝜇3𝑤2𝜇2𝑤1

≠ 0. So the nilpo-
tency degree of 𝒥 is equal to 𝑛. □

Example 5.12. Recall thatΛ2 is the category of paths with one vertex 𝑥 and two
edges 𝑒 and𝑓 satisfying 𝑒2 = 𝑓2. The degree functor forΛ2 is given by the length
of the path. We will show that 𝔏Λ2 is semisimple by showing that Λ2 satisfies
Property (P). Clearly,Λ2 satisfies (P)(i) since there are only threeminimal paths
in 𝑥Λ (namely, 𝑥, 𝑒, and 𝑓). So we must show Λ2 satisfies (P)(ii).
As in Example 4.3, each path inΛ can be uniquely denoted by 𝑝(𝑚, 𝑘)where

𝑘 is the length of the path and𝑚 is the “f-degree" of the path: |𝑚| is the number
of times 𝑓 appears, with𝑚 > 0 if the path ends in 𝑓 and𝑚 < 0 if the path ends
in 𝑒. Using this, we can show that the following concatenation formula holds:

Lemma 5.13. Two paths inΛ2 are concatenated according to the following rule:

𝑝(𝑚1, 𝑘1)𝑝(𝑚2, 𝑘2) = {
𝑝(𝑚1 +𝑚2, 𝑘1 + 𝑘2), if 𝑘2 is even
𝑝(𝑚2 −𝑚1, 𝑘1 + 𝑘2), if 𝑘2 is odd

Example 5.14. (a) Consider concatenating𝑓𝑒 = 𝑝(−1, 2) and 𝑒3𝑓 = 𝑝(1, 4).
Using Lemma 5.13,

𝑝(−1, 2)𝑝(1, 4) = (−1 + 1, 2 + 4) = (0, 6) = 𝑒6.
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(b) Consider concatenating 𝑒3𝑓𝑒 = 𝑝(−1, 5) and 𝑒2𝑓𝑒𝑓 = 𝑝(2, 5). Using
Lemma 5.13,

𝑝(−1, 5)𝑝(2, 5) = (2 − (−1), 5 + 5) = (3, 10) = 𝑒5𝑓𝑒𝑓𝑒𝑓.

Proof. (of Lemma 5.13)
Since the second component is the length of the path, the second component

of the concatenations will clearly be the sum of the second components of the
individual paths.
For the first component, note that 𝑝(𝑚1, 𝑘1) can be written as a sequence of

𝑒’s and 𝑓’s. Thus, when we apply 𝑝(𝑚1, 𝑘1) to 𝑝(𝑚2, 𝑘2), we can do the calcula-
tion by applying 𝑒 and 𝑓 sequentially.
Concatenating with 𝑒 on the left does not change the number of times 𝑓 ap-

pears in the standard representation, so 𝑒◦𝑝(𝑚2, 𝑘2) = 𝑝(𝑚2, 𝑘2 + 1).
The effect of concatenating with 𝑓 on the left depends on whether 𝑘2 is odd

or even. As in Lemma 4.5, one can check the cases when𝑚2 > 0,𝑚2 < 0, and
𝑚2 = 0 to show that

∙ if 𝑘2 is even, then 𝑓◦𝑝(𝑚2, 𝑘2) = 𝑝(𝑚2 + 1, 𝑘2 + 1); and
∙ if 𝑘2 is odd, then 𝑓◦𝑝(𝑚2, 𝑘2) = 𝑝(𝑚2 − 1, 𝑘2 + 1).

Applying these repeatedly proves the lemma. □

Proposition 5.15. The free semigroupoid algebra𝔏Λ2 does not containanynilpo-
tent elements.

Proof. Let 𝐴 ∈ Λ2 with 𝐴 ≠ 0. By the Fourier expansion of 𝐴, there are
constants 𝑎𝑤 such that 𝐴 ∼

∑

𝑤∈Λ

𝑎𝑤𝐿𝑤. For every 𝑘 ∈ ℕ, let

𝑆𝑘 = {𝑤 ∈ Λ ∶ |𝑤| = 𝑘 and 𝑎𝑤 ≠ 0}.

Since 𝐴 ≠ 0, there must be at least one 𝑆𝑘 ≠ ∅. Let 𝑛 = min{𝑘 ∶ 𝑆𝑘 ≠ ∅}.
Suppose that 𝐴2 = 0. This means 𝐴2𝜉𝑥 = 0, so

∑

𝑤∈Λ

∑

𝑧∈Λ

𝑎𝑤𝑎𝑧𝜉𝑧𝑤 = 0.

In particular, all terms associated to paths of length 2𝑛 must cancel out. By
the minimality of 𝑛, any path of length 2𝑛 associated to a non-zero term in 𝐴2

can only result from the product of two paths of length 𝑛 associated to non-zero
terms in𝐴. Wewill show that it is impossible for all terms associated to paths of
length 2𝑛 to cancel out by looking at the terms associated to pathswithminimal
“𝑓-degree", as defined above Lemma 5.13.
First suppose 𝑛 = 2𝑘 is even. The paths of length 𝑛 are

{𝑝(−𝑘, 𝑛), 𝑝(−𝑘 + 1, 𝑛),… , 𝑝(0, 𝑛),… , 𝑝(𝑘, 𝑛)}

By the concatenation rule for even-length paths in Lemma 5.13, the smallest
𝑓-degree among paths of length 2𝑛 is −2𝑘 = (−𝑘) + (−𝑘), uniquely obtained
from the product 𝑝(−𝑘, 𝑛)𝑝(−𝑘, 𝑛). Thus, the coefficient of 𝑝(−2𝑘, 2𝑛) in𝐴2 is
(𝑎𝑝(−𝑘,𝑛))

2. So (𝑎𝑝(−𝑘,𝑛))2 = 0, implying 𝑎𝑝(−𝑘,𝑛) = 0. So 𝑝(−𝑘, 𝑛) ∉ 𝑆𝑛.
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Thus, only the elements
{𝑝(−𝑘 + 1, 𝑛),… , 𝑝(0, 𝑛),… , 𝑝(𝑘, 𝑛)}

could have non-zero coefficients. The minimal 𝑓-degree among products of
pairs of these paths is−2𝑘+2, uniquely obtained as 𝑝(−𝑘+1)𝑝(−𝑘+1). Using
the same reasoning as above, we can show that 𝑝(−𝑘 + 1, 𝑛) ∉ 𝑆𝑛. Continuing
in this manner shows that 𝑆𝑛 = ∅, a contradiction.
Now suppose 𝑛 = 2𝑘 + 1 is odd. The paths of length 𝑛 are

{𝑝(−𝑘, 𝑛), 𝑝(−𝑘 + 1, 𝑛),… , 𝑝(0, 𝑛),… , 𝑝(𝑘, 𝑛), 𝑝(𝑘 + 1, 𝑛)}.

By the concatenation rule for odd-length paths in Lemma 5.13, the minimal
𝑓-degree among products of these paths is −2𝑘 − 1, which can be uniquely
obtained from the product 𝑝(𝑘+1, 𝑛)𝑝(−𝑘, 𝑛). Thus, the coefficient of 𝑝(−2𝑘−
1, 2𝑛) is 𝑎𝑝(𝑘+1,𝑛)𝑎𝑝(−𝑘,𝑛). So either 𝑎𝑝(𝑘+1,𝑛) = 0, or 𝑎𝑝(−𝑘,𝑛) = 0. That is, either
𝑝(𝑘 + 1, 𝑛) ∉ 𝑆𝑛 or 𝑝(−𝑘, 𝑛) ∉ 𝑆𝑛.
This means the non-zero terms of𝐴 associated to paths of length 𝑛 are either

associated to paths from the set
{𝑝(−𝑘, 𝑛),… , 𝑝(0, 𝑛),… , 𝑝(𝑘, 𝑛)}

or from the set
{𝑝(−𝑘 + 1, 𝑛),… , 𝑝(0, 𝑛),… , 𝑝(𝑘 + 1, 𝑛)}.

Either way, the minimal 𝑓-degree among non-zero term in the product will be
−2𝑘, uniquely obtained from the product of the highest 𝑓-degree termwith the
lowest 𝑓-degree term. Once again, either the highest or lowest 𝑓-degree term
must have coefficient 0, and can be removed from the list. Proceeding in like
fashion, we again obtain 𝑆𝑛 = ∅, a contradiction.
Thus, 𝐴2 ≠ 0, and by induction 𝐴2𝑘 ≠ 0 for all 𝑘. Furthermore, if 𝑚 ∈ ℕ,

then there is some 𝑘 with 2𝑘 > 𝑚 and 𝐴2𝑘 ≠ 0. So 𝐴𝑚 ≠ 0. Thus, 𝐴 is not
nilpotent. □

Corollary 5.16. The free semigroupoid algebra 𝔏Λ2 is semisimple.

Proof. Asmentioned at the beginning of this section,Λ2 satisfies (P)(i) because
there are only three minimal paths in 𝑥Λ (namely, 𝑥, 𝑒, and 𝑓). Also, Propo-
sition 5.15 shows that Λ2 satisfies (P)(ii). Thus Λ2 satisfies (P), and so 𝔏Λ2 is
semisimple by Theorem 5.6. □

Example 5.17. Recall the 3-loop example, Example 4.7, whereΛ3 is the category
of paths given by the graph with one vertex 𝑥, three edges 𝑎, 𝑏, and 𝑐, and the
identifications:

∙ 𝑎2 = 𝑏2 = 𝑐2

∙ 𝑎𝑏 = 𝑏𝑐 = 𝑐𝑎

∙ 𝑎𝑐 = 𝑐𝑏 = 𝑏𝑎

We saw that 𝔏Λ3 has a non-zero nilpotent 𝑇 = 𝐿𝑎 + 𝜔𝐿𝑏 + 𝜔2𝐿𝑐, where 𝜔
is a primitive third root of unity. We will now show that 𝔏Λ3 is nonetheless
semisimple.
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Proposition 5.18. The free semigroupoid algebra 𝔏Λ3 is semisimple.

Proof. We will show that Λ3 satisfies (P). First note that Λ3 satisfies (P)(i) be-
cause there are only four minimal paths in 𝑥Λ (namely, 𝑥, 𝑎, 𝑏, and 𝑐).
To show let Λ3 satisfies (P)(ii), let 𝑇 = 𝛼1𝐿𝑤1

+ 𝛼2𝐿𝑤2
+⋯ + 𝛼𝑛𝐿𝑤𝑛

∈ 𝔏Λ3
be non-zero, where 𝛼𝑖 ∈ ℂ and 𝑤𝑖 ∈ Λ with |𝑤1| = ⋯ = |𝑤𝑛|. Since Λ3 has
only three distinct paths of any given length, we know in fact that 𝑇 = 𝛼1𝐿𝑥
or 𝑇 = 𝑥𝐿𝑎𝑛 + 𝑦𝐿𝑏𝑎𝑛−1 + 𝑧𝐿𝑐𝑎𝑛−1 for 𝑥, 𝑦, 𝑧 ∈ ℂ. Clearly 𝐿𝑥 is not nilpotent, so
assume 𝑇 = 𝑥𝐿𝑎𝑛 + 𝑦𝐿𝑏𝑎𝑛−1 + 𝑧𝐿𝑐𝑎𝑛−1 for 𝑥, 𝑦, 𝑧 ∈ ℂ and 𝑛 ≥ 1.
Assume first that 𝑛 is even. We have the following multiplication table:

𝑎𝑛 𝑏𝑎𝑛−1 𝑐𝑎𝑛−1

𝑎𝑛 𝑎2𝑛 𝑏𝑎2𝑛−1 𝑐𝑎2𝑛−1

𝑏𝑎𝑛−1 𝑏𝑎2𝑛−1 𝑐𝑎2𝑛−1 𝑎2𝑛

𝑐𝑎𝑛−1 𝑐𝑎2𝑛−1 𝑎2𝑛 𝑏𝑎2𝑛−1

So if 𝑇 = 𝑥𝐿𝑎𝑛 + 𝑦𝐿𝑏𝑎𝑛−1 + 𝑧𝐿𝑐𝑎𝑛−1 , then

𝑇2 = (𝑥2 + 2𝑦𝑧)𝐿𝑎2𝑛 + (2𝑥𝑦 + 𝑧2)𝐿𝑏𝑎2𝑛−1 + (2𝑥𝑧 + 𝑦2)𝐿𝑐𝑎2𝑛−1 .

Thus, 𝑇2 = 0 if and only if

𝑥2 + 2𝑦𝑧 = 0

2𝑥𝑦 + 𝑧2 = 0

2𝑥𝑧 + 𝑦2 = 0,

which implies 𝑥 = 𝑦 = 𝑧 = 0.
Thus, 𝑇2 ≠ 0, and 𝑇2 has the form 𝑥′𝐿𝑎2𝑛 + 𝑦′𝐿𝑏𝑎2𝑛−1 + 𝑧′𝐿𝑐𝑎2𝑛−1 , and thus

is still a sum of terms with even-length paths. So the same argument applies
repeatedly, showing that for all 𝑘, 𝑇2𝑘 ≠ 0. If𝑇𝑚 = 0 for any𝑚, then for 2𝑘 > 𝑚,
we would have 𝑇2𝑘 = 0, a contradiction. So 𝑇 is not nilpotent.
Now suppose again that 𝑇 = 𝑥𝐿𝑎𝑛+𝑦𝐿𝑏𝑎𝑛−1+𝑧𝐿𝑐𝑎𝑛−1 , but now 𝑛 is odd. Then

𝐿𝑎𝑇 = 𝑥𝐿𝑎𝑛+1 + 𝑦𝐿𝑐𝑎𝑛 + 𝑧𝐿𝑏𝑎𝑛 is a sum of even length terms, so by the previous
argument, 𝐿𝑎𝑇 is not nilpotent. Thus, Λ3 satisfies (P)(ii).
Therefore, Λ3 satisfies Property (P) and is semisimple by Theorem 5.6. □

The previous argument can be generalized in the following way:

Proposition 5.19. The free semigroupoid algebra 𝔏Λ𝑛 is semisimple for 𝑛 ≤ 8.

Proof. Recall thatΛ𝑛 is the category of paths fromExample 4.7 with one vertex
𝑥, 𝑛 edges 𝑒0, 𝑒1,… , 𝑒𝑛−1, and the identifications 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝓁𝑒𝑗+𝓁 for all 𝑖, 𝑗,𝓁,
taken mod 𝑛. If 𝑘 is even, then the product of two standard-form elements
𝑒𝑖𝑒

𝑘−1
0

and 𝑒𝑗𝑒𝑘−10
is

𝑒𝑖𝑒
𝑘−1
0

𝑒𝑗𝑒
𝑘−1
0

= 𝑒𝑖𝑒0𝑒𝑗𝑒
2𝑘−3
0

= 𝑒𝑖𝑒𝑛−𝑗𝑒
2𝑘−2
0

= 𝑒𝑖+𝑗𝑒
2𝑘−1
0

.
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Thus, given the element 𝑇 =

𝑛−1∑

𝑖=0

𝛼𝑖𝐿𝑒𝑖𝐿𝑒𝑘−10
for 𝛼𝑖 ∈ ℂ and 𝑘 even, we have

𝑇2 =

𝑛−1∑

𝓁=0

∑

𝑖+𝑗=𝓁

𝛼𝑖𝛼𝑗𝐿𝑒𝑖+𝑗𝐿𝑒2𝑘−10
.

So 𝑇2 = 0 if the system of equations given by

⎧

⎨

⎩

𝑛−1∑

𝑖=0

𝛼𝑖𝛼𝓁−𝑖 = 0 ∶ 𝓁 = 0, 1,… , 𝑛 − 1; subscripts taken mod 𝑛
⎫

⎬

⎭

has only the trivial solution. When this is the case, the same argument for the
𝑛 = 3 case shows that Λ𝑛 is semisimple. One can verify with computational
software that this is true for at least 𝑛 ≤ 8. □

6. Reflexivity
A subspace 𝑀 of a Hilbert spaceℋ is invariant for an operator 𝐴 ∈ ℬ(ℋ)

if 𝐴(𝑀) ⊆ 𝑀. For a subalgebra 𝒜 of ℬ(ℋ), the set of all subspaces that are
invariant for all operators in 𝒜 forms a lattice, written Lat(𝒜). The set of all
operators in ℬ(ℋ) for which all subspaces in Lat(𝒜) are invariant forms an
algebra, written Alg Lat(𝒜). It is immediate that 𝒜 ⊆ Alg Lat(𝒜). When the
opposite containment holds, 𝒜 is called reflexive. See [3] for an overview of
reflexivity in operator algebras.
In this section, we will first prove some general results for reflexivity which

are based on those in Kribs and Power’s papers [6], [7]. We then prove reflexiv-
ity for the family of single-vertex categories of paths from Example 4.7.
The following definition is an adjustment of the Double Pure Cycle Property

for higher rank graphs, defined in Section 6 of [7].
Definition 6.1. Say that a vertex𝑥 in a category of pathsΛhas double pure cycles
if there exist cycles 𝜆1 ≠ 𝜆2 at 𝑥 such that 𝜆1𝜇1 ≠ 𝜆2𝜇2 for all 𝜇1, 𝜇2 ∈ Λ. Then Λ
satisfies the Double Pure Cycle Property for Categories of Paths if for every𝑤 ∈ Λ0,
there exists 𝜆𝑤 ∈ Λ such that 𝑠(𝜆𝑤) = 𝑤 and 𝑟(𝜆𝑤) has double pure cycles.
Remark 6.2. A higher rank graph that satisfies the Double Pure Cycle Property
fromSection 6 of [7] also satisfies this version, including any single-vertex graph
with two or more edges and any single-vertex higher-rank graph with at least
two edges of the same color.
Example 6.3. An example of a category of paths that is not a higher rank graph
and satisfies this Double Pure Cycle Property is the category of paths Λ with
one vertex 𝑥, three edges 𝑒, 𝑓, and 𝑔, and the identification 𝑒2 = 𝑓2. Then 𝑒 and
𝑔 are non-equal cycles satisfying 𝑒𝜇1 ≠ 𝑔𝜇2 for all 𝜇1, 𝜇2 ∈ Λ.
Neither the free semigroupoid algebra from Example 4.3 nor the free semi-

groupoid algebras from Example 4.7 satisfy the Double Pure Cycle Property,
however.
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Proposition 6.4. Suppose that Λ is a countable category of paths which satis-
fies the Double Pure Cycle Property. Then 𝔏Λ contains a pair of isometries with
mutually orthogonal ranges.

Proof. This follows by the same proof as Lemma 6.1 in [7]. The key step is
showing that, for vertex 𝑣 with double pure cycles 𝜆1 ≠ 𝜆2, the operators 𝐿𝜆𝑘

1
𝜆2

and 𝐿𝜆𝑚
1
𝜆2
are orthogonal for 𝑘 ≠ 𝑚. That is, for all 𝜇1, 𝜇2 ∈ Λ, we must show

𝜆𝑘
1
𝜆2𝜇1 ≠ 𝜆𝑚

1
𝜆2𝜇2. But this follows directly from the adjusted definition of dou-

ble pure cycles. □

As in [7], this gives us:

Theorem 6.5. IfΛ is a countable category of paths with a non-degenerate degree
functor such that Λ𝑡 satisfies the Double Pure Cycle Property, then 𝔏Λ is reflexive.

Proof. Since𝔏Λ𝑡 is unitarily equivalent toℜΛ = 𝔏′
Λ
by theunitary fromLemma

3.7, we know that 𝔏′
Λ
contains a pair of isometries with mutually orthogonal

ranges. Thus, by Bercovici’s Hyper-Reflexivity Theorem [1],𝔏Λ is reflexive. □

One more result from [7] can be adjusted to the category of paths case:

Definition 6.6. We say 𝑥 is a radiating vertex if for all 𝜆 ∈ Λ, 𝑟(𝜆) = 𝑥 implies
𝑠(𝜆) = 𝑥.

Proposition 6.7. Suppose that Λ is a category of paths with a non-degenerate
degree functor such that each radiating vertex 𝑥 satisfies

(a) for the single-vertex category of paths Λ′ consisting of 𝑥 and all paths 𝜇 ∈
Λ with 𝑠(𝜇) = 𝑟(𝜇) = 𝑥, we have that 𝔏Λ′ is reflexive

(b) if 𝜇1 and 𝜇2 are loops at 𝑥 with 𝜇1 ≠ 𝜇2, and 𝑤1 and 𝑤2 are paths with
source 𝑥, then 𝑤1𝜇1 ≠ 𝑤2𝜇2.

Then 𝔏Λ is reflexive.

Proof. With the restrictions given here, the proof of Theorem 6.4 from [7] ap-
plies with only slight modification. □

Corollary 6.8. If Λ is a finite category of paths with a non-degenerate degree
functor, then 𝔏Λ is reflexive.

Proof. Since Λ is finite, Λ does not contain any loops or cycles. The semi-
groupoid algebra of a single vertex with no paths isℂ, which is reflexive. Thus,
all vertices of Λ satisfy the conditions of Proposition 6.7. □

Unlike in the graph and higher rank graph cases, we do not know whether
all single-vertex categories of paths have reflexive free semigroupoid algebras,
even assuming a degree functor. However, one example where reflexivity holds
is the family of single-vertex categories of paths described in Example 4.7. In
what follows, we prove the 𝑛 = 3 case, but the same proof generalizes to all
𝑛 ∈ ℕ (see [2]).
As in Example 4.7, let Λ3 be the category of paths with one vertex 𝑥, three

edges 𝑎, 𝑏, and 𝑐, and the identifications 𝑎2 = 𝑏2 = 𝑐2, 𝑎𝑏 = 𝑏𝑐 = 𝑐𝑎, and
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𝑎𝑐 = 𝑐𝑏 = 𝑏𝑎. In order to show that 𝔏Λ3 is reflexive, we will characterize the
structure of elements of 𝔏Λ3 with respect to a particular basis, then show that
𝑇 ∈ Alg Lat(𝔏Λ3) has the same structure. To this end, let 𝜔 be a primitive third
root of unity. Note that 𝜔 + 𝜔2 + 1 = 0. Then an orthogonal basis forℋΛ3

is
{𝜉𝑥} ∪ {ℎ𝑖, 𝑗𝑖, 𝑘𝑖}𝑖∈ℕ, where

ℎ𝑛 = 𝜉𝑎𝑛 + 𝜉𝑏𝑎𝑛−1 + 𝜉𝑐𝑎𝑛−1

𝑗𝑛 = {
𝜉𝑎𝑛 + 𝜔𝜉𝑏𝑎𝑛−1 + 𝜔2𝜉𝑐𝑎𝑛−1 , for 𝑛 odd
𝜉𝑎𝑛 + 𝜔2𝜉𝑏𝑎𝑛−1 + 𝜔𝜉𝑐𝑎𝑛−1 , for 𝑛 even

𝑘𝑛 = {
𝜉𝑎𝑛 + 𝜔2𝜉𝑏𝑎𝑛−1 + 𝜔𝜉𝑎𝑛−1 , for 𝑛 odd
𝜉𝑎𝑛 + 𝜔𝜉𝑏𝑎𝑛−1 + 𝜔2𝜉𝑎𝑛−1 , for 𝑛 even

Lemma6.9. For anarbitrary element𝐴 = 𝑡𝐿𝑥+

∞∑

𝑛=1

(
𝑥𝑛𝐿𝑎𝑛+𝑦𝑛𝐿𝑏𝑎𝑛−1+𝑧𝑛𝐿𝑐𝑎𝑛−1

)

in 𝔏Λ3 , the matrix form of 𝐴||||{𝜉𝑥}⟂
with respect to the basis above is:

𝐴
||||{𝜉𝑥}⟂

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

𝑡𝐼 0 0 0 0 …

𝑆1 𝑡𝐼 0 0 0 …

𝑇2 𝑇1 𝑡𝐼 0 0 …

𝑆3 𝑆2 𝑆1 𝑡𝐼 0 …

𝑇4 𝑇3 𝑇2 𝑇1 𝑡𝐼 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

where 𝐼 is the 3 × 3 identity matrix,

𝑆𝑛 =
⎡
⎢

⎣

𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 0 0

0 𝑥𝑛 + 𝜔𝑦𝑛 + 𝜔2𝑧𝑛 0

0 0 𝑥𝑛 + 𝜔2𝑦𝑛 + 𝜔𝑧𝑛

⎤
⎥

⎦

and

𝑇𝑛 =
⎡
⎢

⎣

𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 0 0

0 𝑥𝑛 + 𝜔2𝑦𝑛 + 𝜔𝑧𝑛 0

0 0 𝑥𝑛 + 𝜔𝑦𝑛 + 𝜔2𝑧𝑛

⎤
⎥

⎦

.

Proof. For 𝑛 ≥ 1, let 𝑄𝑛 be the projection onto paths of length 𝑛. Then, with
respect to the above basis, we have

𝑄2𝑛𝐿𝑎𝑄2𝑛−1 =
⎡
⎢

⎣

1 0 0

0 1 0

0 0 1

⎤
⎥

⎦

, 𝑄2𝑛+1𝐿𝑎𝑄2𝑛 =
⎡
⎢

⎣

1 0 0

0 1 0

0 0 1

⎤
⎥

⎦

𝑄2𝑛𝐿𝑏𝑄2𝑛−1 =
⎡
⎢

⎣

1 0 0

0 𝜔 0

0 0 𝜔2

⎤
⎥

⎦

, 𝑄2𝑛+1𝐿𝑏𝑄2𝑛 =
⎡
⎢

⎣

1 0 0

0 𝜔2 0

0 0 𝜔

⎤
⎥

⎦

𝑄2𝑛𝐿𝑐𝑄2𝑛−1 =
⎡
⎢

⎣

1 0 0

0 𝜔2 0

0 0 𝜔

⎤
⎥

⎦

, 𝑄2𝑛+1𝐿𝑐𝑄2𝑛 =
⎡
⎢

⎣

1 0 0

0 𝜔 0

0 0 𝜔2

⎤
⎥

⎦

.
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Furthermore, for 𝑘 ∈ ℕ and 𝑒 ∈ {𝑎, 𝑏, 𝑐}:

𝑄𝑛+𝑘+1𝐿𝑒𝑎𝑘𝑄𝑛 = 𝑄𝑛+𝑘+1𝐿𝑒𝐿𝑎𝑘𝑄𝑛 = 𝑄𝑛+𝑘+1𝐿𝑒𝑄𝑛+𝑘.

Thus 𝑄2𝑛𝐴𝑄2𝑛−1 = 𝑆𝑛 and 𝑄2𝑛+1𝐴𝑄2𝑛 = 𝑇𝑛, with 𝑇𝑛 and 𝑆𝑛 as defined in the
statement of the lemma. □

Remark 6.10. Notice that given any constants 𝜅, 𝜆, 𝜇 ∈ ℂ, the system of equa-
tions

𝜅 = 𝑥 + 𝑦 + 𝑧

𝜆 = 𝑥 + 𝜔𝑦 + 𝜔2𝑧

𝜇 = 𝑥 + 𝜔2𝑦 + 𝜔𝑧

has a unique solution for 𝑥, 𝑦, and 𝑧. Thus, the above form of 𝐴 is equivalent
to saying that for all𝑚 > 𝑛, there exist constants 𝛼𝑚,𝑛, 𝛽𝑚,𝑛, and 𝛾𝑚,𝑛 in ℂ such
that

𝑄𝑛𝐴𝑄𝑛 =
⎡
⎢

⎣

𝛼𝑛,𝑛 0 0

0 𝛼𝑛,𝑛 0

0 0 𝛼𝑛,𝑛

⎤
⎥

⎦

; 𝑄𝑚𝐴𝑄𝑛 =
⎡
⎢

⎣

𝛼𝑚,𝑛 0 0

0 𝛽𝑚,𝑛 0

0 0 𝛾𝑚,𝑛

⎤
⎥

⎦

and 𝛼𝑚,𝑛 = 𝛼𝑚+1,𝑛+1, 𝛽𝑚,𝑛 = 𝛾𝑚+1,𝑛+1, 𝛾𝑚,𝑛 = 𝛽𝑚+1,𝑛+1. Our next goal is to
show that elements of Alg Lat 𝔏Λ3 have this same form.

Lemma 6.11. Let 𝑇 ∈ Alg Lat(𝔏Λ3). Then thematrix form of 𝑇||||{𝜉𝑥}⟂
with respect

to the basis above is:

𝑇
||||{𝜉𝑥}⟂

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

𝑡𝐼 0 0 0 0 …

𝑆2,1 𝑡𝐼 0 0 0 …

𝑆3,1 𝑆3,2 𝑡𝐼 0 0 …

𝑆4,1 𝑆4,2 𝑆4,3 𝑡𝐼 0 …

𝑆5,1 𝑆5,2 𝑆5,3 𝑆5,4 𝑡𝐼 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

where 𝐼 is the 3 × 3 identity matrix and 𝑆𝑚,𝑛 =
⎡
⎢

⎣

𝛼𝑚,𝑛 0 0

0 𝛽𝑚,𝑛 0

0 0 𝛾𝑚,𝑛

⎤
⎥

⎦

for some

constants 𝛼𝑚,𝑛, 𝛽𝑚,𝑛, 𝛾𝑚,𝑛 ∈ ℂ.

Proof. Since 𝑇 ∈ Alg Lat(𝔏Λ3), the 𝔏Λ3-invariant subspacesℳℎ = span{ℎ𝑛 ∶
𝑛 ≥ 1},ℳ𝑗 = span{𝑗𝑛 ∶ 𝑛 ≥ 1},ℳ𝑘 = span{𝑘𝑛 ∶ 𝑛 ≥ 1} are each also invariant
for 𝑇. So for𝑚 ≥ 𝑛, there exist constants 𝛼𝑚,𝑛, 𝛽𝑚,𝑛, 𝛾𝑚,𝑛 such that

𝑄𝑚𝑇(ℎ𝑛) = 𝛼𝑚,𝑛ℎ𝑚

𝑄𝑚𝑇(𝑗𝑛) = 𝛽𝑚,𝑛𝑗𝑚

𝑄𝑚𝑇(𝑘𝑛) = 𝛾𝑚,𝑛𝑘𝑚.
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Thus

𝑄𝑚𝑇𝑄𝑛 =
⎡
⎢

⎣

𝛼𝑚,𝑛 0 0

0 𝛽𝑚,𝑛 0

0 0 𝛾𝑚,𝑛

⎤
⎥

⎦

.

Furthermore, the subspaceℳ𝑛 generated by ℎ𝑛+𝑗𝑛+𝑘𝑛 is also𝔏Λ3-invariant
and thus invariant for 𝑇. For all 𝜁 ∈ℳ𝑛,

⟨𝜁, ℎ𝑛⟩ = ⟨𝜁, 𝑗𝑛⟩ = ⟨𝜁, 𝑘𝑛⟩.

Thus

⟨𝑇(ℎ𝑛 + 𝑗𝑛 + 𝑘𝑛), ℎ𝑛⟩ = ⟨𝑇(ℎ𝑛 + 𝑗𝑛 + 𝑘𝑛), 𝑗𝑛⟩ = ⟨𝑇(ℎ𝑛 + 𝑗𝑛 + 𝑘𝑛), 𝑘𝑛⟩,

i.e., 𝛼𝑛,𝑛 = 𝛽𝑛,𝑛 = 𝛾𝑛,𝑛. □

Thenext step is to prove that for any𝑇 ∈ Alg Lat(𝔏Λ3), there is some𝐴 ∈ 𝔏Λ3
such that 𝑇||||{𝜉𝑥}⟂

= 𝐴
||||{𝜉𝑥}⟂

. This will be shown in Lemma 6.13. However, an
important piece of the proof of that lemma is the following lemma:

Lemma 6.12. Let 𝒜 be a subalgebra of ℬ(ℋ). If𝑀 ∈ Lat(𝒜) such that 𝒜||||𝑀 is
reflexive, then for all 𝑇 ∈ Alg Lat(𝒜), there exists 𝐴 ∈ 𝒜 such that 𝑇||||𝑀 = 𝐴

||||𝑀
.

Proof. Let 𝑇 ∈ Alg Lat 𝒜, and suppose that𝑀0 ⊆ 𝑀 is an invariant subspace
for 𝒜||||𝑀 . This implies that𝑀0 is an invariant subspace for 𝒜. Hence, 𝑇(𝑀0) ⊆

𝑀0. Since𝑀0 ⊆ 𝑀, this means 𝑇||||𝑀(𝑀0) ⊆ 𝑀0. So𝑀0 is invariant for 𝑇
||||𝑀
, for

all𝑀0 ∈ Lat 𝒜||||𝑀 . Since 𝒜
||||𝑀

is reflexive, this implies that 𝑇||||𝑀 ∈ 𝒜
||||𝑀
. Thus,

there is some operator 𝐴 ∈ 𝒜 such that 𝑇||||𝑀 = 𝐴
||||𝑀
. □

Lemma 6.13. Let 𝑇 ∈ Alg Lat(𝔏Λ3). There is some 𝐴 ∈ 𝔏Λ3 such that 𝑇
||||{𝜉𝑥}⟂

=

𝐴
||||{𝜉𝑥}⟂

.

Proof. Let 𝑇 ∈ Alg Lat(𝔏Λ). Given the block matrix form for 𝑇 from Lemma
6.11, we need to show for all 𝑚 ≥ 𝑛, that 𝛼𝑚,𝑛 = 𝛼𝑚+1,𝑛+1, 𝛽𝑚,𝑛 = 𝛾𝑚+1,𝑛+1,
and 𝛾𝑚,𝑛 = 𝛽𝑚+1,𝑛+1. We will first show that 𝛼𝑚,𝑛 = 𝛼𝑚+1,𝑛+1.
Letℳℎ be the 𝔏Λ3-invariant subspace ofℋΛ3

generated by ℎ1. Thenℳℎ has
orthogonal basis {ℎ1, ℎ2, ℎ3,… }, and 𝐿𝑎, 𝐿𝑏, and 𝐿𝑐 all act as the unilateral shift
onℳℎ. So𝔏Λ3

||||ℳℎ

is isomorphic to𝔏1, the analytic Toeplitz algebra, and thus is

reflexive [12]. By Lemma 6.12, there is some 𝐴 ∈ 𝔏Λ3 such that 𝐴
||||ℳℎ

= 𝑇
||||ℳℎ

.
Since 𝐴 ∈ 𝔏Λ3 , there are constants 𝜆𝓁 such that

𝑄𝑛+𝓁𝐴(ℎ𝑛) = 𝜆𝓁ℎ𝑛+𝓁 for all 𝑛 ≥ 1,𝓁 ≥ 0.

Thus,
𝑄𝑛+𝓁𝑇(ℎ𝑛) = 𝜆𝓁ℎ𝑛+𝓁 for all 𝑛 ≥ 1,𝓁 ≥ 0.

This means 𝓁th diagonal of 3 × 3 blocks in the matrix decomposition of 𝑇 all
have the same (1, 1)-entries. In particular, 𝛼𝑚,𝑛 = 𝛼𝑚+1,𝑛+1 for all𝑚 > 𝑛.
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Now consider the subspace ofℋΛ3
given by

ℳ1 = {

∞∑

𝑛=0

𝜆𝑛(𝑗𝑛 + 𝑘𝑛+1) ∶

∞∑

𝑛=1

|𝜆𝑛|
2 <∞}.

This space is invariant for 𝔏Λ3 because

𝐿𝑎(𝑗𝑛 + 𝑘𝑛+1) = 𝑗𝑛+1 + 𝑘𝑛+2 ∈ℳ1,

and for 𝑛 odd,
𝐿𝑏(𝑗𝑛 + 𝑘𝑛+1) = 𝜔(𝑗𝑛+1 + 𝑘𝑛+2) ∈ℳ1

𝐿𝑐(𝑗𝑛 + 𝑘𝑛+1) = 𝜔2(𝑗𝑛+1 + 𝑘𝑛+2) ∈ℳ1;

whereas if 𝑛 is even, then

𝐿𝑏(𝑗𝑛 + 𝑘𝑛+1) = 𝜔2(𝑗𝑛+1 + 𝑘𝑛+2) ∈ℳ1

𝐿𝑐(𝑗𝑛 + 𝑘𝑛+1) = 𝜔(𝑗𝑛+1 + 𝑘𝑛+2) ∈ℳ1.

Thus, ℳ1 is also invariant for 𝑇. Notice that for all 𝜁 ∈ ℳ1, and 𝑛 ≥ 1,
⟨𝜁, 𝑗𝑛⟩ = ⟨𝜁, 𝑘𝑛+1⟩. It follows that

⟨𝑇(𝑗𝑛 + 𝑘𝑛+1), 𝑗𝑚⟩ = ⟨𝑇(𝑗𝑛 + 𝑘𝑛+1), 𝑘𝑚+1⟩,

that is to say, 𝛽𝑚,𝑛 = 𝛾𝑚+1,𝑛+1.
Similarly, using the 𝔏Λ3-invariant subspace

ℳ2 = {

∞∑

𝑛=0

𝜆𝑛(𝑘𝑛 + 𝑗𝑛+1) ∶

∞∑

𝑛=1

|𝜆𝑛|
2 <∞},

we can show that 𝛾𝑚,𝑛 = 𝛽𝑚+1,𝑛+1. This proves the lemma. □

The last result we need concerns the following vectors, for 0 < |𝜀| < 1:

(even length terms); (odd length terms)

𝐴𝜀 = 𝜉𝑥 +

∞∑

𝑛=1

𝜀2𝑛𝜉𝑎2𝑛 ; 𝐴′
𝜀 =

∞∑

𝑛=1

𝜀2𝑛−1𝜉𝑎2𝑛−1

𝐵𝜀 = 𝜉𝑥 +

∞∑

𝑛=1

𝜀2𝑛𝜉𝑏𝑎2𝑛−1 ; 𝐵′𝜀 =

∞∑

𝑛=1

𝜀2𝑛−1𝜉𝑏𝑎2𝑛−2

𝐶𝜀 = 𝜉𝑥 +

∞∑

𝑛=1

𝜀2𝑛𝜉𝑐𝑎2𝑛−1 ; 𝐶′𝜀 =

∞∑

𝑛=1

𝜀2𝑛−1𝜉𝑐𝑎2𝑛−2

Lemma 6.14. For 0 < |𝜀| < 1, the subspace𝑀 = span{𝐴𝜀, 𝐵𝜀, 𝐶𝜀, 𝐴
′
𝜀, 𝐵

′
𝜀, 𝐶

′
𝜀} is

invariant for Alg Lat(𝔏∗
Λ3
).
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Proof. Note that

𝐿∗𝑎(𝐴𝜀) = 𝜀𝐴′
𝜀 𝐿∗𝑎(𝐴

′
𝜀) = 𝜀𝐴𝜀

𝐿∗𝑎(𝐵𝜀) = 𝜀𝐶′𝜀 𝐿∗𝑎(𝐵
′
𝜀) = 𝜀𝐶𝜀

𝐿∗𝑎(𝐶𝜀) = 𝜀𝐵′𝜀 𝐿∗𝑎(𝐶
′
𝜀) = 𝜀𝐵𝜀

𝐿∗
𝑏
(𝐴𝜀) = 𝜀𝐵′𝜀 𝐿∗

𝑏
(𝐴′

𝜀) = 𝜀𝐵𝜀

𝐿∗
𝑏
(𝐵𝜀) = 𝜀𝐴′

𝜀 𝐿∗
𝑏
(𝐵′𝜀) = 𝜀𝐴𝜀

𝐿∗
𝑏
(𝐶𝜀) = 𝜀𝐶′𝜀 𝐿∗

𝑏
(𝐶′𝜀) = 𝜀𝐶𝜀

𝐿∗𝑐 (𝐴𝜀) = 𝜀𝐶′𝜀 𝐿∗𝑐 (𝐴
′
𝜀) = 𝜀𝐶𝜀

𝐿∗𝑐 (𝐵𝜀) = 𝜀𝐵′𝜀 𝐿∗𝑐 (𝐵
′
𝜀) = 𝜀𝐵𝜀

𝐿∗𝑐 (𝐶𝜀) = 𝜀𝐴′
𝜀 𝐿∗𝑐 (𝐶

′
𝜀) = 𝜀𝐴𝜀

Thus,𝑀 is invariant for 𝐿∗𝑎, 𝐿∗𝑏 , and 𝐿
∗
𝑐 , and hence for 𝔏∗Λ3 . □

Finally we can prove that this free semigroupoid algebra is reflexive:

Theorem 6.15. 𝔏Λ3 is reflexive.

Proof. Let 𝑇 ∈ 𝔏Λ3 . Lemma 6.13 implies that there is some 𝐴 ∈ Alg Lat 𝔏Λ3
such that 𝑇 − 𝐴 is equal to 0 on {𝜉𝑥}⟂. Let 𝑅 = 𝑇 − 𝐴. Then 𝑅 ∈ Alg Lat(𝔏Λ3),
𝑅
||||{𝜉𝑥}⟂

= 0, and there are constants {𝜌𝑤}𝑤∈Λ3 such that

𝑅𝜉𝑥 =
∑

𝑤∈Λ3

𝜌𝑤𝜉𝑤.

We want to show that 𝜌𝑤 = 0 for all 𝑤 ∈ Λ3.
Since𝑅 is a rank one operator, 𝑅∗ is also a rank one operator, and range(𝑅∗) is

closed. Thus, by Proposition 4.6 from [5], range 𝑅∗ = (ker 𝑅)⟂, so if 𝑅 ≠ 0, then
range 𝑅∗ = span{𝜉𝑥}. Thus, with 𝐴𝜀 defined as in Lemma 6.14, 𝑅∗(𝐴𝜀) = 𝑘𝜉𝑥
for some 𝑘. But also, 𝑅∗ ∈ Alg Lat(𝔏∗

Λ3
), so by Lemma 6.14, 𝑅∗(𝐴𝜀) = 𝜆𝐴𝐴𝜀 +

𝜆𝐵𝐵𝜀 + 𝜆𝐶𝐶𝜀 + 𝜆
′
𝐴
𝐴′
𝜀 + 𝜆

′
𝐵
𝐵′𝜀 + 𝜆

′
𝐶
𝐶′𝜀 for some constants 𝜆𝐴, 𝜆𝐵, 𝜆𝐶 , 𝜆′𝐴, 𝜆

′
𝐵
, 𝜆′

𝐶
. So

for 𝑤 ∈ Λ3, 𝑤 ≠ 𝑥:

0 = ⟨𝑅∗(𝐴𝜀), 𝜉𝑤⟩ =

⎧
⎪
⎪

⎨
⎪
⎪

⎩

𝜀2𝑛𝜆𝐴 ∶ 𝑤 = 𝑎2𝑛

𝜀2𝑛−1𝜆′
𝐴

∶ 𝑤 = 𝑎2𝑛−1

𝜀2𝑛𝜆𝐵 ∶ 𝑤 = 𝑏𝑎2𝑛−1

𝜀2𝑛−1𝜆′
𝐵

∶ 𝑤 = 𝑏𝑎2𝑛−2

𝜀2𝑛𝜆𝐶 ∶ 𝑤 = 𝑐𝑎2𝑛−1

𝜀2𝑛−1𝜆′
𝐶

∶ 𝑤 = 𝑐𝑎2𝑛−2

.

So 𝜆𝐴 = 𝜆𝐵 = 𝜆𝐶 = 𝜆′
𝐴
= 𝜆′

𝐵
= 𝜆′

𝐶
= 0, and so 𝑅∗(𝐴𝜀) = 0.

Now we will find 𝑅∗ explicitly. Let 𝜇 ∈ Λ3 and ℎ ∈ℋΛ3
be arbitrary, and let

𝜆 = ⟨ℎ, 𝜉𝑥⟩. Then

⟨𝑅∗𝜉𝜇, ℎ⟩ = ⟨𝜉𝜇, 𝑅ℎ⟩ = ⟨𝜉𝜇, 𝑅𝜆𝜉𝑥⟩ = 𝜆⟨𝜉𝜇, 𝑅𝜉𝑥⟩ = 𝜆𝜌𝜇 = ⟨𝜌𝜇𝜉𝑥, ℎ⟩.
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Thus, 𝑅∗𝜉𝜇 = 𝜌𝜇𝜉𝑥, for any path 𝜇 ∈ Λ3. So, for 0 < |𝜀| < 1:

𝑅∗(𝐴𝜀) = 𝑅∗
(
𝜉𝑥 +

∞∑

𝑛=1

𝜀2𝑛𝜉𝑎2𝑛
)

=
(
𝜌𝑥 +

∞∑

𝑛=1

𝜀2𝑛𝜌𝑎2𝑛
)
𝜉𝑥

But we’ve already shown that 𝑅∗(𝐴𝜀) = 0. So in fact

𝜌𝑥 +

∞∑

𝑛=1

𝜀2𝑛𝜌𝑎2𝑛 = 0.

This holds for all 0 < |𝜀| < 1. So we have a power series equal to 0 on the set
𝔻 ⧵ {0}. This implies that 𝜌𝑥 = 𝜌𝑎2𝑛 = 0 for all 𝑛.
Similarly, by looking at 𝑅∗ applied to𝐴′

𝜀, 𝐵𝜀, 𝐵
′
𝜀, 𝐶𝜀, and 𝐶′𝜀, we can show that

𝜌𝑎𝑛 = 𝜌𝑏𝑎𝑛−1 = 𝜌𝑐𝑎𝑛−1 = 0 for all 𝑛 > 0. Thus, 𝑅 = 0. So 𝑇 = 𝐴 ∈ 𝔏Λ3 . □

The same proof can be generalized (see [2] for details) to show:

Theorem 6.16. For all 𝑛 ∈ ℕ, the free semigroupoid algebra 𝔏Λ𝑛 defined in
Example 4.7 is reflexive.
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