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On the invertibility of operators
on a model space

Mubariz Garayev

Abstract. For a scalar inner function 𝜃, the model space of Sz.-Nagy and
Foias is the subspace𝐾𝜃 = 𝐻2⊖𝜃𝐻2 of the classical Hardy space𝐻2 = 𝐻2(𝔻)
over the unit disc𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1} . For a bounded linear operator𝐴 on
the model space 𝐾𝜃 , its Berezin symbol is the function 𝐴𝐾𝜃 defined on 𝔻 by
𝐴𝐾𝜃 (𝜆) =

⟨
𝐴𝑘𝜃,𝜆, 𝑘𝜃,𝜆

⟩
, where

𝑘𝜃,𝜆(𝑧) = ( 1 − |𝜆|2

1 − |||𝜃(𝜆)|||
2 )

1∕2
1 − 𝜃(𝜆)𝜃(𝑧)

1 − 𝜆𝑧
is the normalized reproducing kernel of the subspace 𝐾𝜃 .We shall consider
the following question: Let 𝐴 ∶ 𝐾𝜃 → 𝐾𝜃 be an operator for which there
exists a constant 𝛿 > 0 such that ||||𝐴

𝐾𝜃 (𝜆)|||| ≥ 𝛿 > 0, for all 𝜆 ∈ 𝔻. Under
which additional conditions is𝐴 invertible? In this article we investigate this
question in the case when 𝜃 is an interpolation Blaschke product. In particu-
lar, the invertibility property of functions of model operators is investigated.
Some other problems are also discussed.
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1. Introduction
In this paper we continue the investigation of a generalizedDouglas problem

started by the author in [18]. We consider the question of invertibility of oper-
ators on the model space 𝐾𝜃 = 𝐻2 ⊖ 𝜃𝐻2 of Sz.-Nagy and Foias, where 𝐻2 =
𝐻2(𝔻) is the Hardy space of all analytic functions in the unit disk

𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1}
for which

‖𝑓‖22
𝑑𝑒𝑓= sup

0≤𝑟<1
∫
𝕋

|||𝑓(𝑟𝜁)|||
2 𝑑𝑚(𝜁) <∞,

where 𝕋 = 𝜕𝔻 = {𝜁 ∶ |||𝜁||| = 1} is the unit circle, 𝑚 is the normalized Lebesgue
measure on𝕋, and 𝜃 is an inner function (i.e., 𝜃 ∈ 𝐻2 and |||𝜃(𝜁)||| = 1 a.a. 𝜁 ∈ 𝕋).
Recall that𝐻2 is a reproducing kernel Hilbert space, with the kernel

𝑘𝜆(𝑧) =
1

1 − 𝜆𝑧
, 𝜆, 𝑧 ∈ 𝔻,

known as the Szegö kernel. Thus ⟨𝑓, 𝑘𝜆⟩ = 𝑓(𝜆) for all 𝑓 ∈ 𝐻2 and 𝜆 ∈ 𝔻.
Therefore the function

𝑘𝜃,𝜆(𝑧)
𝑑𝑒𝑓= 𝑃𝜃𝑘𝜆(𝑧) =

1 − 𝜃(𝜆)𝜃(𝑧)
1 − 𝜆𝑧

, 𝜆, 𝑧 ∈ 𝔻,

where 𝑃𝜃 is the orthogonal projection from𝐻2 onto 𝐾𝜃, is the reproducing ker-
nel for the space𝐾𝜃. For any bounded linear operator𝐴 ∶ 𝐾𝜃 → 𝐾𝜃, the Berezin
symbol of 𝐴 is the function 𝐴𝐾𝜃 (𝜆) on 𝔻 defined by the formula

𝐴𝐾𝜃 (𝜆) 𝑑𝑒𝑓=
⟨
𝐴𝑘𝜃,𝜆, 𝑘𝜃,𝜆

⟩
, 𝜆 ∈ 𝔻,

where

𝑘𝜃,𝜆(𝑧)
𝑑𝑒𝑓=

𝑘𝜃,𝜆(𝑧)
‖‖‖‖𝑘𝜃,𝜆(𝑧)

‖‖‖‖
= ( 1 − |𝜆|2

1 − |||𝜃(𝜆)|||
2)

1∕2
1 − 𝜃(𝜆)𝜃(𝑧)

1 − 𝜆𝑧
denotes the normalized reproducing kernel of 𝐾𝜃. Let ℬ(𝐾𝜃) denote the alge-
bra of all bounded linear operators on the space 𝐾𝜃. In this article we shall
investigate the following question: Let 𝐴 ∈ ℬ(𝐾𝜃) satisfying

||||𝐴
𝐾𝜃 (𝜆)|||| ≥ 𝛿 > 0 (∀𝜆 ∈ 𝔻)

for some 𝛿 > 0. Under which conditions is 𝐴 invertible in 𝐾𝜃?
This question is closely related to a problemofDouglas andworks of Tolokon-

nikov, Nikolski and Wolff (see [21]), and author’s paper [18]. Moreover, the
Douglas type question for Bergman-Toeplitz operator with bounded harmonic
symbols also has been widely investigated in resent years. For relevant refer-
ences on this topic, one can consult Zhao-Zheng [28, 29], Guo-Zhao-Zheng [15]
and Yoneda [27]. It is worth nothing that the Tolokonnikov-Nikolski type con-
dition for Bergman-Toeplitz operators with bounded harmonic symbols was es-
tablished in [28, 29]. In the present article, using the techniques of reproducing
kernels and Berezin symbols, and an interpolation theorem of Shvedenko [22],
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we obtain sufficient conditions ensuring the invertibility of a linear bounded
operators on themodel space𝐾𝐵 with a suitable interpolation Blaschke product
𝐵 (see Theorem 3.1 below). In particular, we give a new proof for invertibility of
some functions of model operators 𝜑 (𝑀𝐵) , which does not use the Carleson’s
Corona Theorem (see Theorem 3.3 below). We also characterize in terms of
Berezin symbols the normal operators on the Hardy space 𝐻2, and study the
compactness property of some products of Toeplitz operators on the Hardy and
Bergman spaces.

2. Notations and Preliminaries
2.1. Berezin symbol. The Berezin symbol of a linear bounded operator 𝑇 act-
ing on a functional Hilbert spaceℋ =ℋ(𝔻) over the unit disk𝔻, with a repro-
ducing kernel 𝑘𝜆 (𝑧) is the complex-valued function

𝑇(𝜆) 𝑑𝑒𝑓=
⟨
𝑇𝑘𝜆, 𝑘𝜆

⟩
, 𝜆 ∈ 𝔻,

where 𝑘𝜆 ∶= 𝑘𝜆∕ ‖𝑘𝜆‖ denotes the normalized reproducing kernel ofℋ. This
notion has been introduced for the first time by Berezin [4, 5]. It is well known
(see [9], [30]) that for a Toeplitz operator 𝑇𝜑, with symbol 𝜑 ∈ 𝐿∞(𝕋), defined
on𝐻2 by 𝑇𝜑𝑓 = 𝑃+𝜑𝑓, where 𝑃+ is the orthogonal projection from 𝐿2(𝕋) onto
𝐻2, known as the Riesz projection, its Berezin symbol 𝑇𝜑 is the harmonic ex-
tension 𝜑 of 𝜑 ∈ 𝐿∞(𝕋) into 𝔻.
It is natural to define the following two numerical characteristics for the op-

erator 𝑇 ∈ ℬ(ℋ)

𝐵𝑒𝑟(𝑇) 𝑑𝑒𝑓= 𝑅𝑎𝑛𝑔𝑒(𝑇) is the so-called Berezin set
and

𝑏𝑒𝑟(𝑇) 𝑑𝑒𝑓= sup{|𝜆| ∶ 𝜆 ∈ 𝐵𝑒𝑟(𝑇)} is the so-called Berezin number.

Obviously, 𝐵𝑒𝑟(𝑇) ⊂ 𝑊(𝑇), where𝑊(𝑇) is the numerical range of 𝑇. Also it is
easy to see that 𝑏𝑒𝑟(𝑇) ≤ 𝑤(𝑇), where 𝑤(𝑇) denotes the numerical radius of 𝑇.
When 𝑇 = 𝑇𝜑, where 𝜑 is bounded, it is clear that 𝐵𝑒𝑟(𝑇𝜑) = {𝜑(𝑧) ∶ 𝑧 ∈ 𝔻}

and 𝑏𝑒𝑟(𝑇𝜑) = ‖𝜑‖∞ . In particular, 𝐵𝑒𝑟(𝑇𝑧) = 𝔻 and 𝑏𝑒𝑟(𝑇𝑧) = 1.
Note that on themost familiar functionalHilbert spaces, including theHardy

space and the Bergman space, the Berezin symbol uniquely determines the op-
erator. In fact, if 𝑇1(𝜆) = 𝑇2(𝜆) for all 𝜆, then 𝑇1 = 𝑇2. See for instance, Yang
[26]; and formore general cases, see Fricain [10, Theorem1.1.1]. In otherwords
the Berezin symbol of a bounded operator contains a lot of information about
the operator. It is one of the most useful tools in the study of Toeplitz operators.
The Berezin notion is motivated by its connections with quantum physics and
noncommutative geometry. For more details and references see [4, 5]. Other
properties and applications of Berezin symbols and reproducing kernels can be
found in [2, 3, 6, 7, 11, 12, 13].
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2.2. Carleson condition. We now recall some well-known facts (see, for in-
stance [21]) concerning reproducing kernels in 𝐻2(𝔻). Let Λ = {𝜆𝑛}𝑛≥1 be a
sequence of distinct points in 𝔻.We denote by

𝐵 = 𝐵Λ = Π𝑛≥1𝑏𝜆𝑛 ,
where

𝑏𝜆𝑛(𝑧) =
|||𝜆𝑛|||
𝜆𝑛

𝜆𝑛 − 𝑧
1 − 𝜆𝑛𝑧

,

the corresponding Blaschke product. Then we have
(i) If {𝜆𝑛}𝑛≥1 satisfies the Blaschke condition, i.e.,

∑∞
𝑛=1

(
1 − |||𝜆𝑛|||

2) < ∞,
then

{
𝑘𝜆𝑛

}
𝑛≥1 is a complete system in the model space 𝐾𝐵.

(ii) The family𝒦 𝑑𝑒𝑓=
{
𝑘𝜆𝑛 ∶ 𝑛 ≥ 1

}
is a Riesz basis of𝐾𝐵 if and only if {𝜆𝑛}𝑛≥1

satisfies the Carleson condition, namely

inf
𝑛≥1

|||𝐵𝑛(𝜆𝑛)||| > 0,

where 𝐵𝑛
𝑑𝑒𝑓= 𝐵

𝑏𝜆𝑛
. In this case, we will write Λ ∈ (𝐶).

2.3. Riesz constant. We recall (see [21]) that if𝐻 is a complex Hilbert space,

and {𝑥𝑛}𝑛≥1 ⊂ 𝐻, then the set 𝑋 𝑑𝑒𝑓= {𝑥𝑛 ∶ 𝑛 ≥ 1} is called a Riesz basis of 𝐻 if
there exists an isomorphism 𝑈 mapping 𝑋 onto an orthonormal basis of 𝐻. In
this case the operator𝑈 will be called the orthogonalizer of 𝑋. It is well known
(see [21]) that𝑋 is a Riesz basis in its closed linear span if there are two positive
constants 𝐶1, 𝐶2 such that

𝐶1
⎛
⎜
⎝

∑

𝑛≥1

|||𝑎𝑛|||
2⎞
⎟
⎠

1∕2

≤
‖‖‖‖‖‖‖‖‖‖

∑

𝑛≥1
𝑎𝑛𝑥𝑛

‖‖‖‖‖‖‖‖‖‖
≤ 𝐶2

⎛
⎜
⎝

∑

𝑛≥1

|||𝑎𝑛|||
2⎞
⎟
⎠

1∕2

(2.1)

for all finite complex sequences {𝑎𝑛}𝑛≥1 . Note that if 𝑈 is an orthogonalizer of
the set 𝑋, then 𝐶1 =∥ 𝑈 ∥−1 and 𝐶2 =∥ 𝑈−1 ∥ are the best constants possible
in the inequality (2.1). The product 𝑟(𝑋) 𝑑𝑒𝑓= ‖𝑈‖ ‖‖‖‖𝑈

−1‖‖‖‖ characterizes the de-
viation of the basis 𝑋 from an orthonormal one. 𝑟(𝑋) will be referred to as the
Riesz constant of the family 𝑋. Clearly, 𝑟(𝑋) ≥ 1. For more detail, see [14, 21].

2.4. Shvedenko constant. Let {𝐿𝑘}
∞
𝑘=1 be a sequence of linear continuous

functionals on the Hardy space 𝐻𝑝, 1 < 𝑝 < ∞, (see Hoffman [16]). It is
natural to try to describe the space of sequences

𝐻𝑝{𝐿𝑘}
𝑑𝑒𝑓=

{
{𝐿𝑘(𝑓)}∞𝑘=1 ∶ 𝑓 ∈ 𝐻𝑝} .

In particular, it is not without interest to try to find conditions under which the
inclusion 𝑆 ⊂ 𝐻𝑝 {𝐿𝑘} is satisfied for a given space 𝑆 of sequences of complex
numbers. For some class of Banach spaces 𝑆 of sequences, Shvedenko [22] gave
a general criterion for such inclusion.
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For 1 < 𝑝 < ∞, it is well known that the functionals 𝐿𝑘 have the following
representation

𝐿𝑘 (𝑓) =
1
2𝜋 ∫

𝜋

−𝜋
𝑓
(
𝑒𝑖𝑡
)
𝑙𝑘
(
𝑒𝑖𝑡
)
𝑑𝑡, 𝑓 ∈ 𝐻𝑝,

where the functions 𝑙𝑘 (𝑧) ∈ 𝐻𝑞 ( 1
𝑝
+ 1

𝑞
= 1) depend only on 𝐿𝑘. Notice that

for the evaluation functionals

𝐿𝑘 (𝑓) = 𝑓 (𝜆𝑘) , 𝑘 = 1, 2, ...,
where {𝜆𝑘}

∞
𝑘=1 is a sequence of different points of𝔻, it is easy to see that 𝑙𝑘 (𝑧) =

1
1−𝜆𝑘𝑧

, which is the Szegö kernel.
Let 𝑆 be a Banach space of sequences satisfying the following conditions
(S1) 𝑆 be a 𝐵𝐾-space [23], i.e., the map 𝑤 → 𝑤𝑘, 𝑤 = {𝑤𝑘}

∞
𝑘=1 ∈ 𝑆, is con-

tinuous. This is equivalent to the inequality |||𝑤𝑘
||| ≤ 𝑐𝑘 ‖𝑤‖𝑆 ,where ‖𝑤‖𝑆 is the

norm in 𝑆 and 𝑐𝑘 > 0, 𝑘 = 1, 2, .... In particular, this condition implies the in-
clusion 𝐸∞ ⊂ 𝑆∗, where 𝐸∞ is the space of sequences containing only a finite
number of nonzero terms.
(S2) 𝑆 is complexly conjugated, i.e., both of 𝑤 = {𝑤𝑘}

∞
𝑘=1 and 𝑤 =

{
𝑤𝑘

}∞
𝑘=1

belong to 𝑆 and ‖‖‖‖𝑤
‖‖‖‖𝑆 = ‖𝑤‖𝑆 .

It is not difficult to verify that the classical weighted spaces 𝑙𝑝(𝑤𝑛), 𝑝 ≥ 1,
satisfy conditions (S1) and (S2). The following key lemma is due to Shvedenko
[22].

Lemma 2.1. For the Banach spaces 𝑆 of sequences satisfying conditions (S1) and
(S2), the inclusion 𝑆 ⊂ 𝐻𝑝 {𝐿𝑘} , 1 < 𝑝 <∞, is fulfilled if and only if

inf
<𝑎𝑘>∈𝐸∞

‖‖‖‖
∑

𝑘 𝑎𝑘𝑘𝜆𝑘 (𝑧)
‖‖‖‖𝑞

‖< 𝑎𝑘 >‖𝑆∗
> 0, where 1𝑝 + 1

𝑞 = 1.

In what follows we will call the number

𝜂Λ
𝑑𝑒𝑓= inf

<𝑎𝑘>∈𝐸∞

‖‖‖‖
∑

𝑘 𝑎𝑘𝑘𝜆𝑘 (𝑧)
‖‖‖‖𝑞

‖< 𝑎𝑘 >‖𝑆∗

the Shvedenko constant corresponding to the sequence Λ 𝑑𝑒𝑓= {𝜆𝑘}
∞
𝑘=1 .

3. Invertibility of operators on the model space 𝑲𝑩

3.1. Main result. Themain result of this article is the following theorem,which
essentially improves [18, Theorem 3.1 p. 185].

Theorem 3.1. Suppose Λ = {𝜆𝑛}𝑛≥1 is a Carleson sequence of distinct points of
𝔻,𝐵 is the interpolationBlaschke product associated to {𝜆𝑛}𝑛≥1 ,𝒦 =

{
𝑘𝜆𝑛 ∶ 𝑛 ≥ 1

}

is a corresponding Riesz basis of the space𝐾𝐵, and 𝑟(𝒦) is the corresponding Riesz
constant associated the family𝒦.For any𝐴 ∈ ℬ (𝐾𝐵) and any bounded sequence
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𝑏 = {𝑏𝑛}𝑛≥1 of complex numbers 𝑏𝑛, for which there exists a constant 𝛿 > 0 such
that |𝑏𝑛| ≥ 𝛿 for all 𝑛 ≥ 1, we denote

𝜏𝐴,𝑏 ∶= (
∞∑

𝑛=1

(
1 − |||𝜆𝑛|||

2) ‖‖‖‖‖(𝐴 − 𝑏𝑛𝐼) 𝑘𝜆𝑛
‖‖‖‖‖
2
)
1∕2

and

𝜏∗𝐴,𝑏 ∶= (
∞∑

𝑛=1

(
1 − |||𝜆𝑛|||

2) ‖‖‖‖‖(𝐴 − 𝑏𝑛𝐼)
∗ 𝑘𝜆𝑛

‖‖‖‖‖
2
)
1∕2

.

If
𝑟 (𝒦)
𝜂Λ𝛿

max
{
𝜏𝐴,𝑏, 𝜏∗𝐴,𝑏

}
< 1, (H)

then 𝐴 is an invertible operator in 𝐾𝐵. Moreover
‖‖‖‖𝐴

−1‖‖‖‖ ≤
𝑟 (𝒦) 𝜂Λ

𝛿𝜂Λ − 𝑟 (𝒦) 𝜏𝐴,𝑏
,

where 𝜂Λ is the Shvedenko constant corresponding to the sequence Λ = {𝜆𝑛}𝑛≥1 .

Proof. Since
{‖‖‖‖‖𝐴𝑘𝜆𝑛 − 𝑏𝑛𝑘𝜆𝑛

‖‖‖‖‖
}
𝑛≥1

and
{‖‖‖‖‖𝐴

∗𝑘𝜆𝑛 − 𝑏𝑛𝑘𝜆𝑛
‖‖‖‖‖
}
𝑛≥1

are bounded se-
quences and Λ is a Blaschke sequence, the numbers 𝜏𝐴,𝑏 and 𝜏∗𝐴,𝑏 are finite.
Also, the family𝒦 =

{
𝑘𝜆𝑛 ∶ 𝑛 ≥ 1

}
is a Riesz basis in 𝐾𝐵, because Λ ∈ (𝐶). If𝑈

is an orthogonalizer of𝒦, then

‖𝑈‖−1
⎛
⎜
⎝

∑

𝑛≥1

|||𝑎𝑛|||
2⎞
⎟
⎠

1∕2

≤
‖‖‖‖‖‖‖‖‖‖

∑

𝑛≥1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≤ ‖‖‖‖𝑈

−1‖‖‖‖
⎛
⎜
⎝

∑

𝑛≥1

|||𝑎𝑛|||
2⎞
⎟
⎠

1∕2

(3.1)

for any finite complex sequence {𝑎𝑛}𝑛≥1 . Hence by considering the condition|||𝑏𝑛||| ≥ 𝛿 > 0, 𝑛 ≥ 1, we have that for any 𝑁 > 0
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑏𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ ‖𝑈‖−1

⎛
⎜
⎝

𝑁∑

𝑛=1

|||𝑎𝑛𝑏𝑛|||
2⎞
⎟
⎠

1∕2

≥ 𝛿 ‖𝑈‖−1
⎛
⎜
⎝

𝑁∑

𝑛=1

|||𝑎𝑛|||
2⎞
⎟
⎠

1∕2

≥ 𝛿
‖𝑈‖ ‖𝑈−1‖

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
.

Since 𝑟(𝒦) = ‖𝑈‖‖𝑈−1‖, we obtain
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑏𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ 𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
. (3.2)
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Now
‖‖‖‖‖‖‖‖‖‖
𝐴

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
=
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝐴𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖

=
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛
(
𝐴𝑘𝜆𝑛 − 𝑏𝑛𝑘𝜆𝑛 + 𝑏𝑛𝑘𝜆𝑛

)‖‖‖‖‖‖‖‖‖‖

≥
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑏𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
−

𝑁∑

𝑛=1

|||𝑎𝑛|||
‖‖‖‖‖𝐴𝑘𝜆𝑛 − 𝑏𝑛𝑘𝜆𝑛

‖‖‖‖‖ .

From inequality (3.2), it follows that
‖‖‖‖‖‖‖‖‖‖
𝐴

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ 𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖

−
𝑁∑

𝑛=1

|||𝑎𝑛|||
(
1 − |||𝜆𝑛|||

2)1∕2
(
1 − |||𝜆𝑛|||

2)1∕2 ‖‖‖‖‖𝐴𝑘𝜆𝑛 − 𝑏𝑛𝑘𝜆𝑛
‖‖‖‖‖ .

Using the Hölder inequality, we obtain
‖‖‖‖‖‖‖‖‖‖
𝐴

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ 𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖

−
⎛
⎜
⎝

𝑁∑

𝑛=1

|||𝑎𝑛|||
2

(
1 − |||𝜆𝑛|||

2)
⎞
⎟
⎠

1∕2
⎛
⎜
⎝

‖‖‖‖‖𝐴𝑘𝜆𝑛 − 𝑏𝑛𝑘𝜆𝑛
‖‖‖‖‖
2 𝑁∑

𝑛=1

(
1 − |||𝜆𝑛|||

2)⎞
⎟
⎠

1∕2

≥ 𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
−
⎛
⎜
⎜
⎝

𝑁∑

𝑛=1

|||𝑎𝑛|||
2 (1 − |||𝜆𝑛|||

2)

(
1 − |||𝜆𝑛|||

2)2

⎞
⎟
⎟
⎠

1∕2

𝜏𝐴,𝑏.

Writing that

⎛
⎜
⎜
⎝

𝑁∑

𝑛=1

|||𝑎𝑛|||
2 (1 − |||𝜆𝑛|||

2)

(
1 − |||𝜆𝑛|||

2)2

⎞
⎟
⎟
⎠

1∕2

=
‖‖‖‖‖‖
{
𝑎𝑛(1 − |𝜆|2)1∕2

}𝑁
𝑛=1

‖‖‖‖‖‖𝑙2((1−|𝜆𝑛|2)−1))
,

we have
‖‖‖‖‖‖‖‖‖‖
𝐴

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥

𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
−
‖‖‖‖‖‖
{
𝑎𝑛(1 − |𝜆|2)1∕2

}𝑁
𝑛=1

‖‖‖‖‖‖𝑙2((1−|𝜆𝑛|2)−1))
𝜂Λ𝜂−1Λ 𝜏𝐴,𝑏.
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Because {𝜆𝑛}𝑛≥1 is assumed to be a Carleson sequence, it is well-known in this
case that

𝐻2 {𝐿𝑛} = 𝑙2
(
1 − |||𝜆𝑛|||

2) .

Thus, by considering the obvious inclusion 𝑙2 (
(
1 − |||𝜆𝑛|||

2)−1) ⊂ 𝑙2
(
1 − |||𝜆𝑛|||

2) ,

we have that 𝑙2 (
(
1 − |||𝜆𝑛|||

2)−1) ⊂ 𝐻2 {𝐿𝑛} . Therefore, by setting 𝑝 = 2 and

𝑆 = 𝑙2 (
(
1 − |||𝜆𝑛|||

2)−1) in Lemma 2.1, we obtain

‖‖‖‖‖‖‖‖‖‖
𝐴

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ 𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
−
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛
(
1 − |||𝜆𝑛|||

2)1∕2 𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
𝜂−1Λ 𝜏𝐴,𝑏

= 𝛿
𝑟 (𝒦)

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
− 𝜂−1Λ 𝜏𝐴,𝑏

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
.

Finally, we arrive to the following inequality
‖‖‖‖‖‖‖‖‖‖
𝐴

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ ( 𝛿

𝑟 (𝒦)
−
𝜏𝐴,𝑏
𝜂Λ

)
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
(3.3)

for any complex numbers 𝑎𝑛, 𝑛 = 1, 2,⋯ , 𝑁, and all𝑁 > 0. Since the Carleson
condition implies the Blaschke condition, Span (𝒦) = 𝐾𝐵, i.e.,𝒦 is a complete
system in 𝐾𝐵. Therefore, we deduce from (3.3) that

‖𝐴𝑓‖ ≥ ( 𝛿
𝑟 (𝒦)

− 𝜏𝐴
𝜂Λ
) ‖𝑓‖ , (3.4)

for any 𝑓 ∈ 𝐾𝐵.
By a similar arguments, we prove that

‖‖‖‖‖‖‖‖‖‖
𝐴∗

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
≥ ( 𝛿

𝑟 (𝒦)
−
𝜏∗𝐴,𝑏
𝜂Λ

)
‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑛=1
𝑎𝑛𝑘𝜆𝑛

‖‖‖‖‖‖‖‖‖‖
,

which yields that

‖𝐴∗𝑓‖ ≥ ( 𝛿
𝑟 (𝒦)

−
𝜏∗𝐴,𝑏
𝜂Λ

) ‖𝑓‖ (3.5)

for any 𝑓 ∈ 𝐾𝐵. Now, combining hypothesis (H) with both inequalities (3.4)
and (3.5), implies that 𝐴 is invertible in 𝐾𝐵 and that

‖‖‖‖𝐴
−1‖‖‖‖ ≤

𝑟 (𝒦) 𝜂Λ
𝜂Λ𝛿 − 𝑟 (𝒦) 𝜏𝐴,𝑏

,

which completes the proof. □

Since 𝐴∗
𝐾𝐵 (𝜆) = 𝐴𝐾𝐵 (𝜆) and

||||||
𝐴∗

𝐾𝐵 (𝜆)
||||||
= ||||𝐴

𝐾𝐵 (𝜆)|||| ≤ ‖𝐴‖ for every 𝐴 in
ℬ (𝒦𝐵) , the following is an immediate corollary of Theorem 3.1.
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Corollary 3.2. Under the same hypothesis as in Theorem 3.1, if the sequence 𝑏
is chosen to be 𝑏 =

{
𝐴𝐾𝐵 (𝜆𝑛)

}
with ||||𝐴

𝐾𝐵 (𝜆𝑛)
|||| ≥ 𝛿 > 0, for all 𝑛 ≥ 1. Then 𝐴 is

invertible in 𝐾𝐵 and
‖‖‖‖𝐴

−1‖‖‖‖ ≤
𝑟 (𝒦) 𝜂Λ

𝛿𝜂Λ − 𝑟 (𝒦) 𝜏𝐴,𝑏
.

3.2. Model operators. Consider themodel operator𝑀𝜃 of Sz.-Nagy andFoias,
acting on the subspace 𝐾𝜃 in the following way

𝑀𝜃𝑓 = 𝑃𝜃𝑆𝑓,
where𝑆 is the unilateral shift operator in theHardy space𝐻2 definedby𝑆𝑔 (𝑧) =
𝑧𝑔 (𝑧) , 𝜃 is an inner function and 𝑃𝜃 = 𝐼 − 𝑇𝜃𝑇∗𝜃 is the orthogonal projection
from𝐻2 onto𝐾𝜃. It is well-known [24] that the operator𝑀𝜃 admits a functional
calculus in the class 𝐻∞, i.e., for any function 𝜑 ∈ 𝐻∞, the operator 𝜑 (𝑀𝜃) is
defined by

𝜑 (𝑀𝜃)𝑓 = 𝑃𝜃𝜑𝑓, 𝑓 ∈ 𝐾𝜃.
It is also known [21] that the operator 𝜑 (𝑀𝜃) is invertible if and only if there
exists a constant 𝛿 > 0 such that

|||𝜑 (𝑧)||| + |𝜃 (𝑧)| ≥ 𝛿, (3.6)

for all 𝑧 ∈ 𝔻. The proof of this statement is based on the classical Carleson’s
Corona Theorem [21]. When 𝜃 is an interpolation Blaschke product 𝐵, i.e.,
Blaschke product with zeros Λ = {𝜆𝑛}𝑛≥1 ∈ (𝐶), it is also known (see, for in-
stance, Hoffman [16, Chapter 10] that condition (3.6) becomes

|||𝜑 (𝜆𝑛)||| ≥ 𝛿, for all 𝑛 ≥ 1.
In the next proposition, we present a new proof of the invertibility of the oper-
ator 𝜑 (𝑀𝐵) , which does not use the Carleson’s corona theorem.

Theorem 3.3. Let Λ = {𝜆𝑛}𝑛≥1 , 𝜂Λ, 𝐵 and 𝑟 (𝒦) be as in Theorem 3.1. Let 𝜑 ∈
𝐻∞ be a function satisfying ‖𝜑‖∞ ≤ 1, for which there exists a constant 𝛿 > 0
such that

|||𝜑 (𝜆𝑛)||| ≥ 𝛿 > 𝑟 (𝒦)𝑤Λ

√
√√√ 1

𝜂2Λ + 𝑟 (𝒦)2𝑤2
Λ

, for all 𝑛 ≥ 1, (3.7)

for some 𝛿 > 0, where 𝑤Λ
𝑑𝑒𝑓=

(∑∞
𝑛=1

(
1 − |||𝜆𝑛|||

2))1∕2 . Then the operator 𝜑 (𝑀𝐵)
is invertible in 𝐾𝐵 and

‖‖‖‖‖(𝜑 (𝑀𝐵))
−1‖‖‖‖‖ ≤

𝑟 (𝒦)
𝛿 .

Proof. The proof uses the following formula

𝜑 (𝑀𝐵)
𝐾𝐵 (𝑧) =

𝜑 (𝑧) − 𝐵 (𝑧)𝜑𝐵 (𝑧)
1 − |𝐵 (𝑧)|2

(𝑧 ∈ 𝔻) ,
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from the author’s paper [17, formula (1)], which implies that

𝑏𝑛 ∶= 𝜑 (𝑀𝐵)
𝐾𝐵 (𝜆𝑛) = 𝜑 (𝜆𝑛) , for all 𝑛 ≥ 1.

This shows that the inequality |||𝜑 (𝜆𝑛)||| ≥ 𝛿 is in fact equivalent to
|||||||
𝜑 (𝑀𝐵)

𝐾𝐵 (𝜆𝑛)
|||||||
≥ 𝛿 > 0, for all 𝑛 ≥ 1.

Moreover, using the fact that 𝑃𝐵𝑘𝜆𝑛 = 𝑘𝜆𝑛 , we have
‖‖‖‖‖𝜑 (𝑀𝐵) 𝑘𝜆𝑛 − 𝜑 (𝜆𝑛) 𝑘𝜆𝑛

‖‖‖‖‖
2
=
⟨
𝑃𝐵𝑇𝜑𝑘𝜆𝑛 , 𝑃𝐵𝑇𝜑𝑘𝜆𝑛

⟩
− 𝜑 (𝜆𝑛)

⟨
𝑃𝐵𝑇𝜑𝑘𝜆𝑛 , 𝑘𝜆𝑛

⟩

− 𝜑 (𝜆𝑛)
⟨
𝑘𝜆𝑛 , 𝑃𝐵𝑇𝜑𝑘𝜆𝑛

⟩
+ |||𝜑 (𝜆𝑛)|||

2

= 𝑇𝜑𝑃𝐵𝑇𝜑 (𝜆𝑛) − 𝜑 (𝜆𝑛)
⟨
𝑇𝜑𝑘𝜆𝑛 , 𝑘𝜆𝑛

⟩

− 𝜑 (𝜆𝑛)
⟨
𝑘𝜆𝑛 , 𝑇𝜑𝑘𝜆𝑛

⟩
+ |||𝜑 (𝜆𝑛)|||

2

= 𝑇𝜑𝑃𝐵𝑇𝜑 (𝜆𝑛) − |||𝜑 (𝜆𝑛)|||
2

≤ 𝑏𝑒𝑟
(
𝑇𝜑𝑃𝐵𝑇𝜑

)
− 𝛿2

≤ ‖‖‖‖𝑇𝜑𝑃𝐵𝑇𝜑
‖‖‖‖ − 𝛿2

≤ ‖𝜑‖2∞ − 𝛿2

≤ 1 − 𝛿2.
Thus

‖‖‖‖‖‖‖
𝜑 (𝑀𝐵) 𝑘𝜆𝑛 − 𝜑 (𝑀𝐵)

𝐾𝐵 (𝜆𝑛) 𝑘𝜆𝑛
‖‖‖‖‖‖‖

2
≤ 1 − 𝛿2. (3.8)

Inequality (3.8) implies that (after rewriting the definition of 𝜏𝐴,𝑏 in Theorem
3.1, with 𝐴 = 𝜑 (𝑀𝐵) and 𝑏𝑛 = 𝜑 (𝑀𝐵)

𝐾𝐵 (𝜆𝑛) )

𝜏𝜑(𝑀𝐵),𝑏 ≤ 𝑤Λ
(
1 − 𝛿2

)1∕2 .

Since (𝜑 (𝑀𝐵))
∗ = 𝑇𝜑 ∣ 𝐾𝐵, it is easy to see that

(𝜑 (𝑀𝐵))
∗ 𝑘𝜆𝑛 − 𝜑 (𝑀𝐵)

∗𝐾𝐵 (𝜆𝑛) 𝑘𝜆𝑛 = 0.
Thus,

𝜏∗𝜑(𝑀𝐵),𝑏
= 0.

Now, combining the equation above with the inequality (3.8) and using the
same argument as in the proof of Theorem 3.1, one can show that

‖𝜑 (𝑀𝐵)𝑓‖ ≥ [ 𝛿
𝑟 (𝒦)

− 𝑤Λ
𝜂Λ

(
1 − 𝛿2

)1∕2] ‖𝑓‖

and
‖‖‖‖𝜑 (𝑀𝐵)

∗ 𝑓‖‖‖‖ ≥
𝛿

𝑟 (𝒦)
‖𝑓‖ ,
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for any 𝑓 ∈ 𝐾𝐵. Therefore Corollary 3.2 implies that 𝜑 (𝑀𝐵) is invertible, and
since

‖‖‖‖‖(𝜑 (𝑀𝐵))
−1‖‖‖‖‖ =

‖‖‖‖‖‖
(
𝜑 (𝑀𝐵)

∗)−1‖‖‖‖‖‖
, we have that

‖‖‖‖‖(𝜑 (𝑀𝐵))
−1‖‖‖‖‖ ≤

𝑟 (𝒦)
𝛿 ,

which completes the proof. □

Remark 3.4. If Λ = {𝜆𝑛} ∈ (𝐶) is a sequence such that
𝜂2Λ + 𝑟 (𝒦)2𝑤2

Λ = (𝑟 (𝒦)𝑤Λ + 1)2

(i.e., if 𝜂Λ =
√
1 + 2𝑟 (𝒦)𝑤Λ), then condition (3.7), satisfied by 𝛿 in Theorem 3.3,

becomes
𝛿 > 𝑟 (𝒦)𝑤Λ

𝑟 (𝒦)𝑤Λ + 1 . (3.9)

In particular, if 𝑟 (𝒦)𝑤Λ = 45, then 𝜂Λ =
√
91. Therefore condition (3.9) be-

comes
𝛿 > 45

46 , which is a "Tolokonnikov type" condition [25].
If 𝑟 (𝒦)𝑤Λ = 23, we obtain that

𝛿 > 23
24 , which is a "Nikolski type" condition [21].

More details about "Tolokonnikov-Nikolski type" invertibility conditions for the
Toeplitz operators on the Hardy space𝐻2 can be found in [21].

4. Further Results
4.1. Normal and Toeplitz operators. We shall characterize normal opera-
tors on the Hardy space𝐻2 in terms of Berezin symbols. Also, we shall discuss
compactness properties of products of some Toeplitz operators acting in Hardy
and Bergman spaces.

Theorem 4.1. Let𝐴 be a bounded operator on𝐻2 and𝐴 (𝜆) =
⟨
𝐴𝑘𝜆 (𝑧) , 𝑘𝜆 (𝑧)

⟩

be its Berezin symbol, where 𝑘𝜆 (𝑧) =
√
1−|𝜆|2

1−𝜆𝑧
is a normalized reproducing kernel

of𝐻2. Then
(i) 𝐴 is a normal operator on𝐻2 if and only if

‖‖‖‖‖
(
𝐴 − 𝐴 (𝜆) 𝐼

)
𝑘𝜆
‖‖‖‖‖ =

‖‖‖‖‖
(
𝐴 − 𝐴 (𝜆) 𝐼

)∗
𝑘𝜆
‖‖‖‖‖ , for all 𝜆 ∈ 𝔻.

(ii) In particular, if 𝐴 = 𝑇𝜑, where 𝜑 ∈ 𝐿∞, then the product 𝑇∗𝜑𝑇𝜑
(
or 𝑇𝜑𝑇∗𝜑

)
is

compact if and only if 𝜑 = 0.
Proof. An easy computation shows that

‖‖‖‖‖𝐴𝑘𝜆 − 𝐴 (𝜆) 𝑘𝜆
‖‖‖‖‖
2
= 𝐴∗𝐴 (𝜆) − ||||𝐴 (𝜆)

||||
2

(4.1)

and
‖‖‖‖‖𝐴

∗𝑘𝜆 − 𝐴∗ (𝜆) 𝑘𝜆
‖‖‖‖‖
2
= 𝐴𝐴∗ (𝜆) − ||||𝐴 (𝜆)

||||
2
. (4.2)
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Since the Berezin symbol uniquely determines the operator 𝐴, it follows from
formulas (4.1), (4.2) that 𝐴 is a normal operator on𝐻2 if and only if

‖‖‖‖‖
(
𝐴 − 𝐴 (𝜆) 𝐼

)
𝑘𝜆
‖‖‖‖‖ =

‖‖‖‖‖
(
𝐴 − 𝐴 (𝜆) 𝐼

)∗
𝑘𝜆
‖‖‖‖‖ (∀𝜆 ∈ 𝔻) ,

which proves (i).
On the other hand, it is known that (see Engliš [9] and Karaev [19])

‖‖‖‖‖𝑇𝜑𝑘𝜆 − 𝜑 (𝜆) 𝑘𝜆
‖‖‖‖‖→ 0 as 𝜆 → 𝕋 radially.

In fact, the functions 𝑘𝜆 (𝜆 ∈ 𝔻) are "loosely speaking" asymptotic eigenfunc-
tions for the Toeplitz operator 𝑇𝜑, with asymptotic eigenvalues 𝜑 (𝜆). Since
𝑇𝜑 (𝜆) = 𝜑 (𝜆) is the harmonic extension of 𝜑 onto unit disk 𝔻, it follows from
equalities (4.1) and (4.2) that

‖‖‖‖‖𝑇𝜑𝑘𝜆 − 𝜑 (𝜆) 𝑘𝜆
‖‖‖‖‖
2
= 𝑇∗𝜑𝑇𝜑 (𝜆) − |||𝜑 (𝜆)|||

2 (4.3)

and
‖‖‖‖‖𝑇

∗
𝜑𝑘𝜆 − �̃� (𝜆) 𝑘𝜆

‖‖‖‖‖
2
= 𝑇𝜑𝑇∗𝜑 (𝜆) − |||𝜑 (𝜆)|||

2 . (4.4)

Now, using the fact that the Berezin symbol of any compact operator on 𝐻2

vanishes at the boundary 𝕋, and considering the above mentioned facts, we
deduce from (4.3) and (4.4) that if 𝑇∗𝜑𝑇𝜑 (or 𝑇𝜑𝑇∗𝜑) is a compact operator on𝐻2

then
lim
𝑟→1−

||||𝜑
(
𝑟𝑒𝑖𝑡

)||||
2 = ||||𝜑

(
𝑒𝑖𝑡
)||||
2 = 0,

for almost all 𝑡 ∈ [0, 2𝜋), and hence 𝜑 = 0. This proves (ii) and the proposition
is then proved. □

In the Bergman space, as usual, things are much more complicated. The
analogous of assertion (ii) of Theorem 4.1 is not true for the Bergman space
Toeplitz operators. In Example 4.2, we were able to find a nonzero radial sym-
bol 𝑓 such that the product 𝑇2𝑓 is equal to a compact Toeplitz operator 𝑇𝑔.
Let 𝑑𝐴 = 𝑟𝑑𝑟 𝑑𝜃

𝜋
, where (𝑟, 𝜃) are the polar coordinates in the complex plane

ℂ, denote the normalized Lebesgue areameasure on the unit disk𝔻, so that the
measure of𝔻 equals 1.The Bergman space 𝐿2𝑎(𝔻) is theHilbert space consisting
of the analytic functions on 𝔻 that are also square integrable with respect to
the measure 𝑑𝐴. We denote the inner product in 𝐿2(𝔻, 𝑑𝐴) by <,>. It is well
known that 𝐿2𝑎(𝔻) is a closed subspace of the Hilbert space 𝐿2(𝔻, 𝑑𝐴), and has
the set {

√
𝑛 + 1𝑧𝑛 ∣ 𝑛 ≥ 0} as an orthonormal basis. We let 𝑃 be the orthogonal

projection from 𝐿2(𝔻, 𝑑𝐴) onto 𝐿2𝑎(𝔻). For a bounded function 𝑓 on 𝔻, the
Toeplitz operator 𝑇𝑓 with symbol 𝑓 is defined by

𝑇𝑓(ℎ) = 𝑃(𝜙ℎ) for ℎ ∈ 𝐿2𝑎(𝔻).
It is well known that if the symbol 𝑓 is a radial function, i.e. 𝑓(𝑧) = 𝑓(|𝑧|),

then the matrix of the Toeplitz operator 𝑇𝑓, with respect to the orthonormal
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basis {
√
𝑛 + 1𝑧𝑛 ∣ 𝑛 ≥ 0} of 𝐿2𝑎(𝔻), is a diagonal matrix with the sequence{

2(𝑛 + 1) ∫ 10 𝑓(𝑟)𝑟2𝑛+1 𝑑𝑟
}
𝑛≥0

as elements of the main diagonal. In fact

⟨𝑇𝑓(
√
𝑛 + 1𝑧𝑛),

√
𝑚 + 1𝑧𝑚⟩ = ⟨𝑃(𝑓

√
𝑛 + 1𝑧𝑛),

√
𝑚 + 1𝑧𝑚⟩

=
√
𝑛 + 1

√
𝑚 + 1⟨𝑓𝑧𝑛, 𝑧𝑚⟩

=
√
𝑛 + 1

√
𝑚 + 1 ∫

1

0
∫

2𝜋

0
𝑓(𝑟)𝑟𝑛−𝑚+1𝑒𝑖(𝑛−𝑚)𝜃 𝑑𝜃2𝜋𝑑𝑟

= { 2(𝑛 + 1)∫ 10 𝑓(𝑟)𝑟2𝑛+1 𝑑𝑟 if 𝑛 = 𝑚
0 if 𝑛 ≠ 𝑚

Moreover, it has been shown in [20, Proposition 4.3. p 530], that the product
𝑇2𝑓 is equal to a Toeplitz operator 𝑇𝑔 if and only if there exist a radial symbol 𝑔
solution to the following Mellin convolution equation

∫
1

𝑟
𝑔(𝑡)𝑑𝑡𝑡 = ∫

1

𝑟
𝑓
(𝑟
𝑡
)
𝑓(𝑡)𝑑𝑡𝑡 . (4.5)

Now we are ready to present our counter example to condition (ii) of Theorem
4.1 in the case of Bergman space Toeplitz operators.

Example 4.2. Let 𝑓 (𝑟) = 𝑟 ln 𝑟. By solving equation (4.5)) for 𝑔, we obtain

𝑔 (𝑟) = 𝑟
2 (

1
3 ln 𝑟 − 1) (ln 𝑟)2 .

Hence 𝑇2𝑓 = 𝑇𝑔. Obviously 𝑓 and 𝑔 are not bounded but they are the so-called
"nearly bounded functions" [1, p.204]. Thus the Toeplitz operators associated to
these two symbols are bounded. Since 𝑔 is a radial symbol, 𝑇𝑔 is a diagonal op-
erator with the sequence

{
2 (𝑛 + 1) ∫ 10 𝑔 (𝑟) 𝑟2𝑛+1𝑑𝑟

}
𝑛≥0

as elements of the main
diagonal. In this case, it is well known that 𝑇𝑔 will be compact if and only if

lim
𝑛→+∞

2 (𝑛 + 1)
|||||||||
∫

1

0
𝑔 (𝑟) 𝑟2𝑛+1𝑑𝑟

|||||||||
= 0.

Now since 𝑇𝑔 = 𝑇2𝑓 , a direct calculation shows that

2 (𝑛 + 1) ∫
1

0
𝑔 (𝑟) 𝑟2𝑛+1𝑑𝑟 = (2 (𝑛 + 1) ∫

1

0
𝑓 (𝑟) 𝑟2𝑛+1𝑑𝑟)

2

= 4 (𝑛 + 1)2

(2𝑛 + 3)4
, for all 𝑛 ≥ 0.

It is clear that the fraction above will tend to zero as 𝑛 goes to infinity. Hence 𝑇𝑔
and therefore 𝑇2𝑓 is compact. But 𝑓 is not the zero function.
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