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Bounds on torsion of CM abelian varieties
over a 𝒑-adic field with values in

a field of 𝒑-power roots

Yoshiyasu Ozeki

Abstract. Let 𝑝 be a prime number and 𝑀 the extension field of a 𝑝-adic
field 𝐾 obtained by adjoining all 𝑝-power roots of all elements of 𝐾. In this
paper, we show that there exists a constant𝐶, depending only on𝐾 and an in-
teger 𝑔 > 0, which satisfies the following property: If 𝐴∕𝐾 is a 𝑔-dimensional
CMabelian variety, then the order of the torsion subgroup of𝐴(𝑀) is bounded
by 𝐶.
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1. Introduction
Let 𝑝 be a prime number. Let 𝐾 be a number field (= a finite extension of

ℚ) or a 𝑝-adic field (= a finite extension of ℚ𝑝). Let 𝐴 be an abelian variety
defined over 𝐾 of dimension 𝑔. It follows from the Mordell-Weil theorem and
the main theorem of [Ma] that the torsion subgroup 𝐴(𝐾)tors of 𝐴(𝐾) is finite.
The following question is quite natural and has been studied extensively:

Question. What can be said about the size of the order of 𝐴(𝐾)tors?

If 𝐾 is a number field of degree 𝑑 and 𝐴 is an elliptic curve (i.e., 𝑔 = 1), it is
really surprising that there exists a constant𝐵(𝑑), depending only on the degree
𝑑, such that #𝐴(𝐾)tors < 𝐵(𝑑). An explicit formula for such a constant 𝐵(𝑑) is
first given byMerel [Me]. After that, Oesterlé and Parent [Pa] give a refinement
of Merel’s bound, independently. (Oesterlé’s proof was unpublished until Der-
ickx transcribed it in his Ph.D Thesis; see [DKSS, Section 6] for the published
article). The amazing point here is that the constant 𝐵(𝑑) is uniform in the
sense that it depends not on the number field𝐾 but on the degree 𝑑 = [𝐾 ∶ ℚ].
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Such uniform boundedness results are not known for abelian varieties of di-
mension greater than one. Next we consider the case where 𝐾 is a 𝑝-adic field.
As remarked by Cassels, the “uniform boundedness theorem" for 𝑝-adic base
fields would be false (cf. Lemma 17.1 and p.264 of [Ca]). For abelian varieties𝐴
over 𝐾 with anisotropic reduction, Clark and Xarles [CX] give an upper bound
of the order of 𝐴(𝐾)tors in terms of 𝑔, 𝑝 and some numerical invariants of 𝐾.
This includes the case in which 𝐴 has potentially good reduction.
We are interested in the order of 𝐴(𝐿)tors for certain algebraic extensions 𝐿

of 𝐾 of infinite degree. Now we suppose that 𝐾 is a 𝑝-adic field. There are not
so many known 𝐿 so that 𝐴(𝐿)tors is finite. Imai [Im] showed that 𝐴(𝐿)tors is
finite if 𝐴 has potential good reduction and 𝐿 = 𝐾(𝜇𝑝∞), where 𝜇𝑝∞ is the set
of 𝑝-power root of unity. The author [Oz] showed that Imai’s finiteness result
holds even if we replace 𝐾(𝜇𝑝∞) with a certain type of a Lubin-Tate extension
field of a 𝑝-adic field. The result [KT] of Kubo and Taguchi is also interesting.
They showed that the torsion subgroup of 𝐴(𝐾( 𝑝∞

√
𝐾)) is finite, where 𝐴 is an

abelian variety over 𝐾 with potential good reduction and 𝐾( 𝑝∞
√
𝐾) is the exten-

sion field of𝐾 obtained by adjoining all 𝑝-power roots of all elements of𝐾. Our
main theorem is motivated by the result of Kubo and Taguchi. The goal of this
paper is to show that, under the assumption that𝐴 has complexmultiplication,
the order of 𝐴(𝐾( 𝑝∞

√
𝐾))tors is “uniformly" bounded. (Here we say that 𝐴 has

complexmultiplication if there exists a ring homomorphism 𝐹 → ℚ⊗ℤEnd𝐾𝐴
for some algebraic number field 𝐹 of degree 2𝑔.)

Theorem1.1. There exists a constant𝐶(𝐾, 𝑔), depending only on a𝑝-adic field𝐾
andan integer𝑔 > 0, which satisfies the following property: If𝐴 is a𝑔-dimensional
abelian variety over 𝐾 with complex multiplication, then we have

#𝐴
(
𝐾( 𝑝∞

√
𝐾)
)

tors
< 𝐶(𝐾, 𝑔).

The theorem above gives a global result: For any integer 𝑑 > 0, we denote by
ℚ≤𝑑 the composite of all number fields of degree ≤ 𝑑. If we fix an embedding
ℚ ↪ ℚ𝑝, then ℚ≤𝑑 is embedded into the composite field of all 𝑝-adic fields
of degree ≤ 𝑑, which is a finite extension of ℚ𝑝. If we denote by ℚ≤𝑑,𝑝 the
extension field of ℚ≤𝑑 obtained by adjoining all 𝑝-power roots of all elements
ofℚ≤𝑑, then the following is an immediate consequence of our main theorem.

Corollary 1.2. There exists a constant 𝐶(𝑑, 𝑔, 𝑝), depending only on positive in-
tegers 𝑑, 𝑔 and a prime number 𝑝, which satisfies the following property: If 𝐴 is
a 𝑔-dimensional abelian variety over ℚ≤𝑑 with complex multiplication, then we
have

#𝐴(ℚ≤𝑑,𝑝)tors < 𝐶(𝑑, 𝑔, 𝑝).

The organization of the paper is as follows. Section 2.1 is a preliminary of the
proof of Theorem 1.1. Some results related with characters and 𝑝-adic Hodge
theory are given there. In Section 2.2, we give a proof of Theorem 1.1. Here is
a sketch of our proof: If we denote by 𝜌 the Galois representation given by the
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𝑝-adic Tate module of 𝐴, we will find that it is enough to give an upper bound
of the minimal value of 𝑣𝑝(det(𝜌− 𝐼)) (here, 𝑣𝑝 is the normalized 𝑝-adic valua-
tion). For this, we first reduce an argument to the case where 𝐴 has both good
reduction and complex multiplication over the base field. If this is the case, the
(semi-simplification of the) representation 𝜌 is given by some crystalline char-
acters 𝜓1,… , 𝜓2𝑔, and then we see that it suffices to give a bound of theminimal
value of

∑2𝑔
𝑖=1 𝑣𝑝(𝜓𝑖 − 1). We obtain this bound by applying the results given in

Section 2.1 with careful treatments for the Hodge-Tate type of 𝜓𝑖.

Notation : Throughout this paper, a 𝑝-adic field means a finite extension of
ℚ𝑝 in a fixed algebraic closure ℚ𝑝 of ℚ𝑝. If 𝐹 is an algebraic extension of ℚ𝑝,
we denote by 𝒪𝐹 and 𝔽𝐹 the ring of integers of 𝐹 and the residue field of 𝐹,
respectively. We denote by 𝐺𝐹 the absolute Galois group of 𝐹 and also denote
by Γ𝐹 the set of ℚ𝑝-algebra embeddings of 𝐹 into ℚ𝑝. We put 𝑑𝐹 = [𝐹 ∶ ℚ𝑝].
For an algebraic extension 𝐹′∕𝐹, we denote by 𝑒𝐹′∕𝐹 and 𝑓𝐹′∕𝐹 the ramification
index of 𝐹′∕𝐹 and the extension degree of the residue field extension of 𝐹′∕𝐹,
respectively. We set 𝑒𝐹 ∶= 𝑒𝐹∕ℚ𝑝

and 𝑓𝐹 ∶= 𝑓𝐹∕ℚ𝑝
, and also set 𝑞𝐹 ∶= 𝑝𝑓𝐹 . If

𝐹 is a 𝑝-adic field, we denote by 𝐹ab and 𝐹ur the maximal abelian extension of
𝐹 and the maximal unramified extension of 𝐹, respectively.

2. Proof
2.1. Some technical tools. We denote by 𝑣𝑝 the 𝑝-adic valuation on a fixed
algebraic closure ℚ𝑝 of ℚ𝑝 normalized by 𝑣𝑝(𝑝) = 1. Let 𝐾 be a 𝑝-adic field.
For any continuous character 𝜒 of 𝐺𝐾 , we often regard 𝜒 as a character of
Gal(𝐾ab∕𝐾). We denote by Art𝐾 the local Artin map 𝐾× → Gal(𝐾ab∕𝐾) with
arithmetic normalization. We set 𝜒𝐾 ∶= 𝜒◦Art𝐾 . We denote by 𝐾× the profi-
nite completion of 𝐾×. Note that the local Artin map induces a topological iso-
morphism Art𝐾 ∶ 𝐾× ∼

→ Gal(𝐾ab∕𝐾). For a finite extension 𝐾′∕𝐾, we denote
by N𝐾′∕𝐾 the norm map from 𝐾′ to 𝐾.

Proposition 2.1. Let 𝐾 and 𝑘 be 𝑝-adic fields. We denote by 𝑘𝜋 the Lubin-Tate
extension1 of 𝑘 associated with a uniformizer 𝜋 of 𝑘. (If 𝑘 = ℚ𝑝 and 𝜋 = 𝑝, then

we have 𝑘𝜋 = ℚ𝑝(𝜇𝑝∞).) Let 𝜒1,… , 𝜒𝑛 ∶ 𝐺𝐾 → ℚ
×
𝑝 be continuous characters.

Then we have

Min {
𝑛∑

𝑖=1
𝑣𝑝(𝜒𝑖(𝜎) − 1) ∣ 𝜎 ∈ 𝐺𝐾𝑘𝜋}

≤Min {
𝑛∑

𝑖=1
𝑣𝑝(𝜒𝑖,𝐾◦N𝐾𝑘∕𝐾(𝜔) − 1) ∣ 𝜔 ∈ N−1

𝐾𝑘∕𝑘(𝜋
𝑓𝐾𝑘∕𝑘ℤ)} .

1See [Yo] for Lubin-Tate extensions.
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Proof. We have a topological isomorphism Art−1𝑘 ∶ Gal(𝑘ab∕𝑘)
∼
→ 𝑘× and

Art−1𝑘 (Gal(𝑘ab∕𝑘ur)) = 𝒪×
𝑘 . We denote by 𝑀 the maximal unramified exten-

sion of 𝑘 contained in𝐾𝑘. Since the groupArt−1𝑘 (Gal(𝑘ab∕𝑀)) contains𝒪×
𝑘 and

is a subgroup of 𝑘× = 𝜋ℤ̂ × 𝒪×
𝑘 of index [𝑀 ∶ 𝑘], we see Art−1𝑘 (Gal(𝑘ab∕𝑀)) =

𝜋[𝑀∶𝑘]ℤ̂ × 𝒪×
𝑘 . (Here, 𝜋

ℤ̂ is the closure of the subgroup 𝜋ℤ of 𝑘× generated by
𝜋, which is topologically isomorphic to ℤ̂. We write 𝜋𝑛ℤ̂ for the 𝑛-th power of
𝜋ℤ̂ for any integer 𝑛.) On the other hand, we have Art−1𝑘 (Gal(𝑘ab∕𝑘𝜋)) = 𝜋ℤ̂.
Thus we obtain Art−1𝑘 (Gal(𝑘ab∕𝑀𝑘𝜋)) = 𝜋[𝑀∶𝑘]ℤ̂. Denote by Res𝐾𝑘∕𝑘 the nat-
ural restriction map Gal((𝐾𝑘)ab∕𝐾𝑘) → Gal(𝑘ab∕𝑘). Then one can check that
it follows Res−1𝐾𝑘∕𝑘(Gal(𝑘

ab∕𝑀𝑘𝜋)) = Gal((𝐾𝑘)ab∕𝐾𝑘𝜋). Thus it follows that

the group Art−1𝐾𝑘(Gal((𝐾𝑘)
ab∕𝐾𝑘𝜋)) coincides with N−1

𝐾𝑘∕𝑘(𝜋
[𝑀∶𝑘]ℤ̂). Therefore,

if we take any 𝜔 ∈ N−1
𝐾𝑘∕𝑘(𝜋

[𝑀∶𝑘]ℤ), we have

Min {
𝑛∑

𝑖=1
𝑣𝑝(𝜒𝑖(𝜎) − 1) ∣ 𝜎 ∈ 𝐺𝐾𝑘𝜋}

=Min {
𝑛∑

𝑖=1
𝑣𝑝(𝜒𝑖(𝜎) − 1) ∣ 𝜎 ∈ Gal((𝐾𝑘)ab∕𝐾𝑘𝜋)}

=Min {
𝑛∑

𝑖=1
𝑣𝑝(𝜒𝑖,𝐾◦N𝐾𝑘∕𝐾◦Art

−1
𝐾𝑘(𝜎) − 1) ∣ 𝜎 ∈ Gal((𝐾𝑘)ab∕𝐾𝑘𝜋)}

≤
𝑛∑

𝑖=1
𝑣𝑝(𝜒𝑖,𝐾◦N𝐾𝑘∕𝐾(𝜔) − 1).

□

We recall an observation of Conrad for crystalline characters. We often use
𝑝-adic Hodge theory. For the basic notion of 𝑝-adic Hodge theory, it is helpful
for the reader to refer [Fo1] and [Fo2]. Let 𝐵cris be the Fontain’s 𝑝-adic pe-
riod ring and set 𝐷𝐾

cris(𝑉) ∶= (𝐵cris ⊗ℚ𝑝
𝑉)𝐺𝐾 for any ℚ𝑝-representation 𝑉 of

𝐺𝐾 . Let us denote by 𝐾0 the maximal unramified subextension of 𝐾∕ℚ𝑝 and
denote by 𝜑𝐾0 the Frobenius map of 𝐾0, that is, the (unique) lift of the 𝑝-th
power map on the residue field of 𝐾0. Since 𝐵

𝐺𝐾
cris = 𝐾0, 𝐷𝐾

cris(𝑉) is a 𝐾0-vector
space. Moreover, 𝐷𝐾

cris(𝑉) is a filtered 𝜑-module over 𝐾; it is of finite dimen-
sion over 𝐾0, it is equipped with a bijective 𝜑𝐾0-semi-linear Frobenius operator
𝜑 and it is equipped with with a decreasing exhaustive and separated filtration
on 𝐷𝐾

cris(𝑉) ⊗𝐾0 𝐾. On the other hand, we denote by 𝐾
× the Weil restriction

Res𝐾∕ℚ𝑝
(𝔾𝑚). This is an algebraic torus such that, for a ℚ𝑝-algebra 𝑅, the 𝑅-

valued points 𝐾×(𝑅) of 𝐾× is 𝔾𝑚(𝑅 ⊗ℚ𝑝
𝐾).

Proposition 2.2 ([Co, Proposition B.4]). Let 𝐾 and 𝐹 be 𝑝-adic fields, and let
𝜒∶ 𝐺𝐾 → 𝐹× be a continuous character. Wedenote by𝐹(𝜒) theℚ𝑝-representation
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of 𝐺𝐾 underlying a 1-dimensional 𝐹-vector space endowed with an 𝐹-linear ac-
tion by 𝐺𝐾 via 𝜒.

(1) 𝜒 is crystalline2 if and only if there exists a (necessarily unique)ℚ𝑝-homo-
morphism 𝜒alg∶ 𝐾

× → 𝐹× such that 𝜒𝐾 and 𝜒alg (on ℚ𝑝-points) coin-
cides on 𝒪×

𝐾 (⊂ 𝐾× = 𝐾×(ℚ𝑝)).
(2) Let𝐾0 be the maximal unramified subextension of𝐾∕ℚ𝑝. Assume that 𝜒

is crystalline and let 𝜒alg be as in (1). (Note that 𝜒−1 is also crystalline.)
Then, the filtered 𝜑-module 𝐷𝐾

cris(𝐹(𝜒
−1)) = (𝐵cris ⊗ℚ𝑝

𝐹(𝜒−1))𝐺𝐾 over
𝐾 is free of rank 1 over 𝐾0⊗ℚ𝑝

𝐹 and its 𝐾0-linear endomorphism 𝜑𝑓𝐾 is
given by the action of the product 𝜒𝐾(𝜋𝐾) ⋅ 𝜒−1alg(𝜋𝐾) ∈ 𝐹×. Here, 𝜋𝐾 is
any uniformizer of 𝐾.

We define some notations for later use. It is helpful for the readers to refer
[Se, Section III, A4 and A5] and [Co, Appendix B]. Assume that 𝐾 is a Galois
extension of ℚ𝑝. Let 𝜒∶ 𝐺𝐾 → 𝐾× be a crystalline character. Let 𝜒LT∶ 𝐼𝐾 →
𝐾× be the restriction to the inertia 𝐼𝐾 of the Lubin-Tate character3 associated
with any choice of uniformizer of 𝐾 (it depends on the choice of a uniformizer
of 𝐾, but its restriction to the inertia subgroup does not). By definition, the
character 𝜒LT is characterlized by 𝜒LT◦Art𝐾(𝑥) = 𝑥−1 for any 𝑥 ∈ 𝒪×

𝐾 . (We
remark that 𝜒LT is the restriction to 𝐼𝐾 of the 𝑝-adic cyclotomic character if
𝐾 = ℚ𝑝.) Then, since 𝜒 is crystalline, we have

𝜒 =
∏

𝜎∈Γ𝐾

𝜎−1◦𝜒ℎ𝜎LT

on the inertia 𝐼𝐾 for some (unique) integer ℎ𝜎. Equivalently, the character 𝜒alg
(appeared in Proposition 2.2) on ℚ𝑝-points is given by

𝜒alg(𝑥) =
∏

𝜎∈Γ𝐾

(𝜎−1𝑥)−ℎ𝜎

for 𝑥 ∈ 𝐾×. We say that 𝐡 = (ℎ𝜎)𝜎∈Γ𝐾 is the Hodge-Tate type of 𝜒. Note that
{ℎ𝜎 ∣ 𝜎 ∈ Γ𝐾} as a set is the set of Hodge-Tate weights of 𝐾(𝜒), that is, 𝐶 ⊗ℚ𝑝

𝐾(𝜒) ≃ ⊕𝜎∈Γ𝐾𝐶(ℎ𝜎) where 𝐶 is the completion of ℚ𝑝 (cf. [Se, Chapter III, A5,
Lemma 1 and Theorem 2]).
For any set of integers 𝐡 = (ℎ𝜎)𝜎∈Γ𝐾 indexed by Γ𝐾 , we define a continuous

character 𝜓𝐡∶ 𝒪×
𝐾 → 𝒪×

𝐾 by

𝜓𝐡(𝑥) =
∏

𝜎∈Γ𝐾

(𝜎−1𝑥)−ℎ𝜎 . (1)

Lemma 2.3. For 1 ≤ 𝑖 ≤ 𝑟, let 𝐡𝑖 = (ℎ𝑖,𝜎)𝜎∈Γ𝐾 be a set of integers. For each 𝑖,
assume that

2This means that the ℚ𝑝-representation 𝐹(𝜒) of 𝐺𝐾 is crystalline.
3Our Lubin-Tate character here is the character “𝜒𝐸" in [Se, Section III, A4]. See also Propo-

sition 4 of loc., cit.
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(a)
∑

𝜎∈Γ𝐾
ℎ𝑖,𝜎 is not zero, and

(b) ℎ𝑖,𝜎 ≠ ℎ𝑖,𝜏 for some 𝜎, 𝜏 ∈ Γ𝐾 .
Then, there exists an element 𝜔 of kerN𝐾∕ℚ𝑝

such that 𝜓𝐡1(𝜔),… , 𝜓𝐡𝑟(𝜔) are of
infinite orders.

Proof. For any character 𝜒 on 𝒪×
𝐾 , we denote by 𝜒

′ the restriction of 𝜒 to 1 +
𝑝2𝒪𝐾 . To show the lemma, it suffices to show

kerN′
𝐾∕ℚ𝑝

⊄
𝑟⋃

𝑖=1
ker𝜓′𝐡𝑖 . (2)

(In fact, any non-trivial element of Im 𝜓′𝐡𝑖 is of infinite order since Im 𝜓′𝐡𝑖 is a
subgroup of a torsion free group 1 + 𝑝2𝒪𝐾 .) Since𝑁′

𝐾∕ℚ𝑝
(1 + 𝑝2𝒪𝐾) is an open

subgroup of ℤ×
𝑝 , we see that the dimension

4 of ker𝑁′
𝐾∕ℚ𝑝

is 𝑑𝐾 − 1. We claim
that dimker𝜓𝐡𝑖 < 𝑑𝐾−1. By the assumption (a), we see that Im𝜓′𝐡𝑖 contains an
open subgroup𝐻 ofℤ×

𝑝 . Thus we have dimker𝜓′𝐡𝑖 = 𝑑𝐾−dim Im 𝜓′𝐡𝑖 ≤ 𝑑𝐾−1.
If we assume dimker𝜓′𝐡𝑖 = 𝑑𝐾 − 1, then dim Im 𝜓′𝐡𝑖 = 1 and thus 𝐻 is a finite
index subgroup of Im 𝜓′𝐡𝑖 . It follows that there exists an open subgroup𝑈 of𝒪×

𝐾
such that 𝜓𝐡𝑖 restricted to 𝑈 has values in ℤ×

𝑝 . By [Oz, Lemma 2.4], we obtain
that ℎ𝑖,𝜎 = ℎ𝑖,𝜏 for any 𝜎, 𝜏 ∈ Γ𝐾 but this contradicts the assumption (b) in the
statement of the lemma. Thus we conclude that dimker𝜓′𝐡𝑖 < 𝑑𝐾 − 1.

Now we fix an isomorphism 𝜄∶ 1 + 𝑝2𝒪𝐾 ≃ ℤ⊕𝑑𝐾
𝑝 of topological groups. We

define vector subspaces 𝑁 and 𝑃𝑖 of ℚ
⊕𝑑𝐾
𝑝 by 𝑁 ∶= 𝜄(kerN′

𝐾∕ℚ𝑝
) ⊗ℤ𝑝

ℚ𝑝 and
𝑃𝑖 ∶= 𝜄(ker𝜓′𝐡𝑖 )⊗ℤ𝑝

ℚ𝑝. Weknow thatdimℚ𝑝
𝑁 = 𝑑𝐾−1 anddimℚ𝑝

𝑃𝑖 < 𝑑𝐾−1.
Assume that (2) does not hold, that is, kerN′

𝐾∕ℚ𝑝
⊂

⋃𝑟
𝑖=1 ker𝜓

′
𝐡𝑖
. Then we

have 𝑁 ⊂
⋃𝑟

𝑖=1 𝑃𝑖. This implies 𝑁 =
⋃𝑟

𝑖=1(𝑁 ∩ 𝑃𝑖). By the lemma below,
we find that 𝑁 = 𝑁 ∩ 𝑃𝑖 ⊂ 𝑃𝑖 for some 𝑖 but this contradicts the fact that
dimℚ𝑝

𝑁 > dimℚ𝑝
𝑃𝑖. □

Lemma 2.4. Let 𝑉 be a vector space over a field 𝐹 of characteristic zero. Let
𝑊1,… ,𝑊𝑟 be vector subspaces of 𝑉. If 𝑉 =

⋃𝑟
𝑖=1𝑊𝑖 , then 𝑉 =𝑊𝑖 for some 𝑖.

Proof. We show by induction on 𝑟. The cases 𝑟 = 1, 2 are clear. Assume that
the lemma holds for 𝑟 and suppose 𝑉 =

⋃𝑟+1
𝑖=1 𝑊𝑖. We assume both 𝑊1 ⊄

⋃𝑟+1
𝑖=2 𝑊𝑖 and 𝑊𝑟+1 ⊄

⋃𝑟
𝑖=1𝑊𝑖 holds. Then there exist elements 𝐱1 ∈ 𝑊1 ∖⋃𝑟+1

𝑖=2 𝑊𝑖 and 𝐱𝑟+1 ∈ 𝑊𝑟+1 ∖
⋃𝑟

𝑖=1𝑊𝑖. It is not difficult to check that we have
𝜆𝐱1+𝐱𝑟+1 ∉𝑊1

⋃
𝑊𝑟+1 for any 𝜆 ∈ 𝐹×. Hence there exists an integer 2 ≤ 𝑗𝑛 ≤

4If a profinite group 𝐺 has an open subgroup𝑈 which is isomorphic to ℤ⊕𝑑
𝑝 , then 𝑑 does not

depend on the choice of 𝑈 and we say that 𝑑 is the dimension of 𝐺. For example, dimℤ⊕𝑑
𝑝 = 𝑑.

Note that the dimension of 𝐺 is zero if and only if 𝐺 is finite. See [DDMS] for general theories of
dimensions of 𝑝-adic analytic groups.
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𝑟 for each integer𝑛 > 0 such that𝑛𝐱1+𝐱𝑟+1 ∈𝑊𝑗𝑛 . Take any integers 0 < 𝓁 < 𝑘
so that 𝑗𝓁 = 𝑗𝑘(=∶ 𝑗). Then (𝑘 − 𝓁)𝐱1 = (𝑘𝐱1 + 𝐱𝑟+1) − (𝓁𝐱1 + 𝐱𝑟+1) ∈ 𝑊𝑗.
Since 𝐹 is of characteristic zero, we have 𝐱1 ∈ 𝑊𝑗 but this contradicts the fact
that 𝐱1 ∉

⋃𝑟+1
𝑖=2 𝑊𝑖. Therefore, either𝑊1 ⊂

⋃𝑟+1
𝑖=2 𝑊𝑖 or𝑊𝑟+1 ⊂

⋃𝑟
𝑖=1𝑊𝑖 holds.

This shows that 𝑉 =
⋃𝑟+1

𝑖=2 𝑊𝑖 or 𝑉 =
⋃𝑟

𝑖=1𝑊𝑖 and the induction hypothesis
implies 𝑉 =𝑊𝑖 for some 𝑖. □

Finallywedescribe the following consequence of𝑝-adicHodge theory, which
is well-known for experts.

Proposition 2.5. Let 𝑋 be a proper smooth variety with good reduction over a
𝑝-adic field 𝐾. Then we have

det(𝑇 − 𝜑𝑓𝐾 ∣ 𝐷𝐾
cris(𝐻

𝑖
ét(𝑋𝐾 ,ℚ𝑝)) = det(𝑇 − Frob−1𝐾 ∣ 𝐻𝑖

ét(𝑋𝐾 ,ℚ𝓁))

for any prime 𝓁 ≠ 𝑝. Here, Frob𝐾 stands for the arithmetic Frobenius of 𝐾.

Proof. Let𝑌 be the special fiber of a proper smoothmodel of𝑋 over the integer
ring of 𝐾. By the crystalline conjecture shown by Faltings [Fa] (cf. [Ni], [Tsu]),
we have an isomorphism 𝐷𝐾

cris(𝐻
𝑖
ét(𝑋𝐾 ,ℚ𝑝)) ≃ 𝐾0 ⊗𝑊(𝔽𝑞𝐾 )

𝐻𝑖
cris(𝑌∕𝑊(𝔽𝑞𝐾 )) of

𝜑-modules over 𝐾0. It follows from Corollary 1.3 of [CLS] (cf. [KM, Theorem
1] and [Na, Remark 2.2.4 (4)]) that the characteristic polynomial of 𝐾0⊗𝑊(𝔽𝑞𝐾 )

𝐻𝑖
cris(𝑌∕𝑊(𝔽𝑞𝐾 )) for the (𝑓𝐾-iterate) Frobenius action coincides with det(𝑇 −

Frob−1𝐾 ∣ 𝐻𝑖
ét(𝑋𝐾 ,ℚ𝓁)) for any prime 𝓁 ≠ 𝑝. Thus the result follows. □

2.2. Proof of the main theorem. Let 𝐴 be a 𝑔-dimensional abelian variety
over 𝐾 with complex multiplication. We denote by 𝐿 the field obtained by ad-
joining to𝐾 all points of𝐴[12]. It follows from [Si, Theorem 4.1] that endomor-
phisms of𝐴 are defined over 𝐿. By Raynaud’s criterion of semi-stable reduction
[Gr, Proposition 4.7],𝐴 has semi-stable reduction over 𝐿. Moreover,𝐴 has good
reduction over 𝐿 since 𝐴 has complex multiplication [ST, Section 2, Corollary
1]. Since the extension degree of 𝐿 over 𝐾 is at most the order of 𝐺𝐿2𝑔(ℤ∕12ℤ)
and there exist only finitely many 𝑝-adic fields of a given degree, we immedi-
ately reduce a proof of Theorem 1.1 to showing the following:

Proposition 2.6. There exists a constant �̂�(𝐾, 𝑔), depending only on a 𝑝-adic
field 𝐾 and an integer 𝑔 > 0, which satisfies the following property: Let 𝐴 be a 𝑔-
dimensional abelian variety over 𝐾 with the properties that𝐴 has good reduction
over 𝐾 and End𝐾(𝐴)⊗ℤ ℚ is a CM field of degree 2𝑔. Then we have

#𝐴
(
𝐾( 𝑝∞

√
𝐾)
)

tors
< �̂�(𝐾, 𝑑).

Proof. Since there exist only finitely many 𝑝-adic field of a given degree, re-
placing 𝐾 by a finite extension, we may assume the following hypothesis:

(H) 𝐾 is a Galois extension of ℚ𝑝 and 𝐾 contains all 𝑝-adic fields of degree
≤ 2𝑔.
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In the rest of the proof, we set𝑀 ∶= 𝐾( 𝑝∞
√
𝐾). Let𝐴 be a 𝑔-dimensional abelian

variety over 𝐾 with the properties that 𝐴 has good reduction over 𝐾 and 𝐹 ∶=
End𝐾(𝐴) ⊗ℤ ℚ is a CM field of degree 2𝑔. Let 𝑇 = 𝑇𝑝(𝐴) ∶= lim←,,𝑛 𝐴[𝑝

𝑛] be
the 𝑝-adic Tate module of 𝐴 and 𝑉 = 𝑉𝑝(𝐴) ∶= 𝑇𝑝(𝐴) ⊗ℤ𝑝

ℚ𝑝. Then 𝑉 is
a free 𝐹𝑝 ∶= 𝐹 ⊗ ℚ𝑝-module of rank one and the representation 𝜌∶ 𝐺𝐾 →
𝐺𝐿ℤ𝑝

(𝑇)(⊂ 𝐺𝐿ℚ𝑝
(𝑉)) defined by the 𝐺𝐾-action on 𝑇 has values in 𝐺𝐿𝐹𝑝(𝑉) =

𝐹×𝑝 . In particular, 𝜌 is an abelian representation. The representation 𝑉 is a
Hodge-Tate representation with Hodge-Tate weights 0 (multiplicity 𝑔) and 1
(multiplicity 𝑔). Moreover, 𝑉 is crystalline since 𝐴 has good reduction over 𝐾.
Fix an isomorphism 𝜄∶ 𝑇

∼
→ ℤ⊕2𝑔

𝑝 of ℤ𝑝-modules. We have an isomorphism
𝜄∶ 𝐺𝐿ℤ𝑝

(𝑇) ≃ 𝐺𝐿2𝑔(ℤ𝑝) relative to 𝜄. We abuse notation by writing 𝜌 for the
composite map 𝐺𝐾 → 𝐺𝐿ℤ𝑝

(𝑇) ≃ 𝐺𝐿2𝑔(ℤ𝑝) of 𝜌 and 𝜄. Now let 𝑃 ∈ 𝑇 and
denote by �̄� the image of 𝑃 in 𝑇∕𝑝𝑛𝑇. By definition, we have 𝜄(𝜎𝑃) = 𝜌(𝜎)𝜄(𝑃)
for 𝜎 ∈ 𝐺𝐾 . Suppose that �̄� ∈ (𝑇∕𝑝𝑛𝑇)𝐺𝑀 . This implies 𝜎𝑃 − 𝑃 ∈ 𝑝𝑛𝑇 for any
𝜎 ∈ 𝐺𝑀 . This is equivalent to saying that (𝜌(𝜎)−𝐼)𝜄(𝑃) ∈ 𝑝𝑛ℤ⊕2𝑔

𝑝 where 𝐼 is the
identity matrix, and this in particular implies det(𝜌(𝜎) − 𝐼)𝜄(𝑃) ∈ 𝑝𝑛ℤ⊕2𝑔

𝑝 for
any 𝜎 ∈ 𝐺𝑀 . If we denote by𝑀ab themaximal abelian extension of𝐾 contained
in𝑀, it holds that 𝜌(𝐺𝑀) = 𝜌(𝐺𝑀ab

) since 𝜌(𝐺𝐾) is abelian. Thus we have

det(𝜌(𝜎) − 𝐼)𝜄(𝑃) ∈ 𝑝𝑛ℤ⊕2𝑔
𝑝 for any 𝜎 ∈ 𝐺𝑀ab

. (3)

On the other hand, we set 𝐺 ∶= Gal(𝑀∕𝐾) and 𝐻 ∶= Gal(𝑀∕𝐾(𝜇𝑝∞)). Let
𝜒𝑝 ∶ 𝐺𝐾 → ℤ×

𝑝 be the 𝑝-adic cyclotomic character. Since we have 𝜎𝜏𝜎−1 =
𝜏𝜒𝑝(𝜎) for any 𝜎 ∈ 𝐺 and 𝜏 ∈ 𝐻, we see (𝐺,𝐺) ⊃ (𝐺,𝐻) ⊃ 𝐻𝜒𝑝(𝜎)−1 (here, (⋅, ⋅)
stands for the commutator). Hence we have a natural surjection

𝐻∕𝐻𝜒𝑝(𝜎)−1 ↠ 𝐻∕(𝐺,𝐺) = Gal(𝑀ab∕𝐾(𝜇𝑝∞)) for any 𝜎 ∈ 𝐺. (4)

Let 𝜈 be the smallest 𝑝-power integer with the properties that 𝜈 > 1 and
𝜒𝑝(𝐺𝐾) ⊃ 1+𝜈ℤ𝑝. Then (4) gives the fact thatGal(𝑀ab∕𝐾(𝜇𝑝∞)) is of exponent
𝜈, that is, 𝜎 ∈ 𝐺𝐾(𝜇𝑝∞ ) implies 𝜎

𝜈 ∈ 𝐺𝑀ab
. Hence it follows from (3) that, for

any point 𝑃 ∈ 𝑇 such that its image �̄� in 𝑇∕𝑝𝑛𝑇 is fixed by 𝐺𝑀 , we have

det(𝜌(𝜎)𝜈 − 𝐼)𝜄(𝑃) ∈ 𝑝𝑛ℤ⊕2𝑔
𝑝 for any 𝜎 ∈ 𝐺𝐾(𝜇𝑝∞ ). (5)

Claim. There exists a constant 𝐶0(𝐾, 𝑔), depending only on 𝐾 and 𝑔 such that

𝑣𝑝(det(𝜌(𝜎0)𝜈 − 𝐼)) ≤ 𝐶0(𝐾, 𝑔)

for some 𝜎0 ∈ 𝐺𝐾(𝜇𝑝∞ ).

Admitting this claim, we can finish the proof of Proposition 2.6 immediately:
It follows from Claim 2.2 and (5) that (𝑇∕𝑝𝑛𝑇)𝐺𝑀 ⊂ 𝑝𝑛−𝐶0(𝐾,𝑔)𝑇∕𝑝𝑛𝑇 for 𝑛 >
𝐶0(𝐾, 𝑔). Setting 𝐶(𝐾, 𝑔)𝑝 ∶= 𝑝𝐶0(𝐾,𝑔)2𝑔, we obtain

#𝐴(𝑀)[𝑝𝑛] = #(𝑇∕𝑝𝑛𝑇)𝐺𝑀 ≤ #(𝑇∕𝑝𝐶0(𝐾,𝑔)𝑇) = 𝐶(𝐾, 𝑔)𝑝,
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which shows#𝐴(𝑀)[𝑝∞] ≤ 𝐶(𝐾, 𝑔)𝑝, On the other hand, we remark that Kubo
and Taguchi showed in [KT, Lemma 2.3] that the residue field 𝔽𝑀 of𝑀 is finite.
The reduction map indues an injection from the prime-to-𝑝 part of 𝐴(𝑀) into
𝐴(𝔽𝑀) where 𝐴 is the reduction of 𝐴. If we denote by 𝑞 the order of 𝔽𝑀 , it
follows from the Weil bound that #𝐴(𝔽𝑀) ≤ (1 +

√
𝑞)2𝑔. Therefore, setting

𝐶(𝐾, 𝑔) ∶= 𝐶(𝐾, 𝑔)𝑝 ⋅ (1 +
√
𝑞)2𝑔, we conclude that #𝐴(𝑀)tors ≤ 𝐶(𝐾, 𝑔). This

finishes the proof of the proposition.
It suffices to show Claim 2.2. Since the action of 𝐺𝐾 on 𝑉 factors through an

abelian quotient of 𝐺𝐾 , it follows from Schur’s lemma that each Jordan Hölder
factor of 𝑉 ⊗ℚ𝑝

ℚ𝑝 is of dimension one. Let 𝜓1,… , 𝜓2𝑔 ∶ 𝐺𝐾 → ℚ
×
𝑝 be the

characters associated with the Jordan Hölder factors of 𝑉 ⊗ℚ𝑝
ℚ𝑝. Since 𝐾

contains all 𝑝-adic fields of degree ≤ 2𝑔, we know that each 𝜓𝑖 has values in
𝐾× (in fact, for any 𝜎 ∈ 𝐺𝐾 , we know that 𝜓1(𝜎),… , 𝜓2𝑔(𝜎) are the roots of the
polynomial det(𝑇 − 𝜎 ∣ 𝑉) ∈ ℚ𝑝[𝑇] of degree 2𝑔). In the rest of the proof, we
regard 𝜓𝑖 as a character 𝐺𝐾 → 𝐾× of 𝐺𝐾 with values in 𝐾×. We remark that
each 𝜓𝑖 is a crystalline character since 𝑉 is crystalline. Furthermore, we have

𝑣𝑝(det(𝜌(𝜎)𝜈 − 𝐼)) = 𝑣𝑝
⎛
⎜
⎝

2𝑔∏

𝑖=1
(𝜓𝜈𝑖 (𝜎) − 1)

⎞
⎟
⎠
=

2𝑔∑

𝑖=1
𝑣𝑝(𝜓𝜈𝑖 (𝜎) − 1)

for any 𝜎 ∈ 𝐺𝐾(𝜇𝑝∞ ). Hence it follows from Proposition 2.1 that we have

Min
{
𝑣𝑝(det(𝜌(𝜎)𝜈 − 𝐼) ∣ 𝜎 ∈ 𝐺𝐾(𝜇𝑝∞ )

}

≤Min
⎧

⎨
⎩

2𝑔∑

𝑖=1
𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔)

−1 − 1) ∣ 𝜔 ∈ kerN𝐾∕ℚ𝑝

⎫

⎬
⎭

. (6)

Note that we have
𝜓𝑖,𝐾(𝑝𝜔)−1 = 𝜓𝑖,𝐾(𝜋

−𝑒𝐾
𝐾 ⋅ 𝜋𝑒𝐾𝐾 𝑝

−1) ⋅ 𝜓𝑖,𝐾(𝜔)−1

= 𝜓𝑖,𝐾(𝜋𝐾)−𝑒𝐾𝜓𝑖,alg(𝜋
𝑒𝐾
𝐾 𝑝

−1) ⋅ 𝜓𝑖,𝐾(𝜔)−1

= 𝛼−𝑒𝐾𝑖 ⋅ 𝜓𝑖,alg(𝑝)−1 ⋅ 𝜓𝑖,𝐾(𝜔)−1 (7)

for 𝜔 ∈ kerN𝐾∕ℚ𝑝
where 𝛼𝑖 ∶= 𝜓𝑖,𝐾(𝜋𝐾)𝜓𝑖,alg(𝜋𝐾)−1.

Lemma 2.7. Let the notation be as above. Let 𝐴∨ be the dual abelian variety of
𝐴, and let 𝐴 and 𝐴∨ be the reductions of 𝐴 and 𝐴∨, respectively.
(1) 𝛼𝑖 is a root of the characteristic polynomial of the geometric Frobenius endo-
morphism of 𝐴∕𝔽𝐾 .
(2) 𝛼−1𝑖 𝑞𝐾 is a root of the characteristic polynomial of the geometric Frobenius
endomorphism of 𝐴∨∕𝔽𝐾 .

Proof. In this proof, we denote by𝑊∨ the dual representation
𝑊∨ = Homℚ𝑝

(𝑊,ℚ𝑝)
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for any 𝑝-adic representation𝑊. As 𝐾(𝜓−1𝑖 ) is a subquotient of 𝑉𝑝(𝐴)∨⊗ℚ𝑝
𝐾,

it follows from Proposition 2.2 that 𝛼𝑖 is a root of the characteristic polynomial
𝑓(𝑇) ∶= det(𝑇 − 𝜑𝑓𝐾 ∣ 𝐷𝐾

cris(𝑉𝑝(𝐴)
∨)) of the 𝐾0-linear endomorphism 𝜑𝑓𝐾 , the

𝑓𝐾-th iterate of the Frobenius 𝜑, on the 𝐾0-vector space 𝐷𝐾
cris(𝑉𝑝(𝐴)

∨). We find
that

𝑓(𝑇) = det(𝑇 − 𝜑𝑓𝐾 ∣ 𝐷𝐾
cris(𝐻

1
ét(𝐴𝐾 ,ℚ𝑝))

= det(𝑇 − Frob−1𝐾 ∣ 𝐻1
ét(𝐴𝐾 ,ℚ𝓁) = det(𝑇 − Frob𝐾 ∣ 𝑉𝓁(𝐴))

for any prime 𝓁 ≠ 𝑝 where Frob𝐾 stands for the arithmetic Frobenius. The
second equality follows from Proposition 2.5. The last term above coincides
with the characteristic polynomial of the geometric Frobenius endomorphism
of 𝐴∕𝔽𝐾 . This shows (1). On the other hand, it follows from Proposition 2.2
again that 𝛼−1𝑖 is a root of det(𝑇 − 𝜑𝑓𝐾 ∣ 𝐷𝐾

cris(𝑉𝑝(𝐴))). Since 𝑉𝑝(𝐴)(−1) ≃
𝑉𝑝(𝐴∨)∨, we see that 𝛼−1𝑖 𝑞𝐾 is a root of 𝑓∨(𝑇) ∶= det(𝑇−𝜑𝑓𝐾 ∣ 𝐷𝐾

cris(𝑉𝑝(𝐴
∨)∨)).

Now the same argument of the proof of (1) with replacing𝐴 by𝐴∨ gives a proof
of (2). □

We continue the proof of Proposition 2.6. Let 𝐡𝑖 = (ℎ𝑖,𝜎)𝜎∈Γ𝐾 be the Hodge-
Tate type of 𝜓𝑖. Then we have ℎ𝑖,𝜎 ∈ {0, 1} for any 𝑖 and 𝜎. Reordering, we may
suppose there is an 𝑟 for which we have the following:

(I) 𝐡𝑖 ≠ (0)𝜎∈Γ𝐾 , (1)𝜎∈Γ𝐾 for 1 ≤ 𝑖 ≤ 𝑟, and
(II) 𝐡𝑖 = (0)𝜎∈Γ𝐾 or 𝐡𝑖 = (1)𝜎∈Γ𝐾 for 𝑟 + 1 ≤ 𝑖 ≤ 2𝑔.

Consider the case𝐡𝑖 = (0)𝜎∈Γ𝐾 . If this is the case, 𝜓𝑖 is unramified. This implies
that 𝜓𝑖,alg on (ℚ𝑝-points) is trivial. Take any 𝜔 ∈ kerN𝐾∕ℚ𝑝

and consider the
𝑝-adic value 𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔)

−1 − 1). By (7), we have

𝜓𝜈𝑖,𝐾(𝑝𝜔)
−1 = 𝛼−𝜈𝑒𝐾𝑖 . (8)

We remark that the right hand side is independent of the choice of𝜔 ∈ kerN𝐾∕ℚ𝑝

and 𝛼𝑖 must be a 𝑝-adic unit (since so is the left hand side).
Next, consider the case 𝐡𝑖 = (1)𝜎∈Γ𝐾 . If this is the case, we have 𝜓𝑖 = 𝜒𝑝 on

𝐼𝐾 , that is, 𝜓𝑖,alg (onℚ𝑝-points) isN−1
𝐾∕ℚ𝑝

. Take any 𝜔 ∈ kerN𝐾∕ℚ𝑝
and consider

the 𝑝-adic value 𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔)
−1 − 1). By (7), we have

𝜓𝜈𝑖,𝐾(𝑝𝜔)
−1 = (𝛼−𝑒𝐾𝑖 ⋅N𝐾∕ℚ𝑝

(𝑝))𝜈 = (𝛼−1𝑖 𝑞𝐾)𝜈𝑒𝐾 . (9)

We remark that the last term is independent of the choice of 𝜔 ∈ kerN𝐾∕ℚ𝑝
.

Suppose 𝑟+1 ≤ 𝑖 ≤ 2𝑔. Let 𝐿 be the unramified extension of𝐾 of degree 𝜈𝑒𝐾 .
Denote by 𝑓𝑖(𝑇) the characteristic polynomial of the Frobenius endomorphism
of𝐴∕𝔽𝐿 or that of𝐴∨∕𝔽𝐿 if 𝐡𝑖 = (0)𝜎∈Γ𝐾 or 𝐡𝑖 = (1)𝜎∈Γ𝐾 , respectively. We also set
𝛼 ∶= 𝜓𝜈𝑖,𝐾(𝑝𝜔) or 𝛼 ∶= 𝜓𝜈𝑖,𝐾(𝑝𝜔)

−1 if 𝐡𝑖 = (0)𝜎∈Γ𝐾 or 𝐡𝑖 = (1)𝜎∈Γ𝐾 , respectively.
It follows from (8), (9) and Lemma 2.7 that 𝛼 is a unit root of 𝑓𝑖(𝑇). Writing
𝑓𝑖(𝑇) = (𝑇 − 1)𝑔𝑖(𝑇) + 𝑓𝑖(1) for some 𝑔𝑖(𝑇) ∈ ℤ[𝑇], we obtain 0 = 𝑓𝑖(𝛼) =
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(𝛼 − 1)𝑔𝑖(𝛼) + 𝑓𝑖(1). This gives

𝑣𝑝(𝛼−1 − 1) = 𝑣𝑝(𝛼 − 1) ≤ 𝑣𝑝((𝛼 − 1)𝑔𝑖(𝛼)) = 𝑣𝑝(𝑓𝑖(1)).

On the other hand, 𝑓𝑖(1) coincides with the order of 𝐴(𝔽𝑞𝐿) or 𝐴∨(𝔽𝑞𝐿). Hence

it follows from the Weil bound that 𝑓𝑖(1) ≤ (1 +
√
𝑞𝐿)2𝑔 ≤ (1 +

√
𝑝
𝜈𝑑𝐾 )2𝑔,

which gives an inequality 𝑣𝑝(𝑓𝑖(1)) ≤ log𝑝(1 +
√
𝑝
𝜈𝑑𝐾 )2𝑔. Therefore, setting

𝐶2(𝐾, 𝑔) ∶= log𝑝(1 +
√
𝑝
𝜈𝑑𝐾 )2𝑔, we obtain

𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔)
−1 − 1) ≤ 𝐶2(𝐾, 𝑔)

for 𝑟 + 1 ≤ 𝑖 ≤ 2𝑔.
Suppose 1 ≤ 𝑖 ≤ 𝑟. We define a subset ℛ = ℛ(𝐾, 𝑔) of ℚ𝑝 by taking the set

consisting of all 𝛼 ∈ ℚ𝑝 that are a root of a polynomial inℤ[𝑇] of degree atmost
2𝑔 and also a 𝑞𝐾-Weil integer5 of weight 1. We also define ℛ′ = ℛ′(𝐾, 𝑔) ∶=
{(𝛼−𝑒𝐾𝑝ℎ)𝜈 ∣ 𝛼 ∈ ℛ, 0 < ℎ < 𝑑𝐾}. Then, both ℛ and ℛ′ are finite sets and
depend only on 𝐾 and 𝑔. Furthermore, Lemma 2.7 and the Weil Conjecture
imply that each 𝛼𝑖 is an element of ℛ. Thus, setting

𝛾𝑖 ∶= 𝛼−𝑒𝐾𝑖 ⋅ 𝜓𝑖,alg(𝑝)−1 = 𝛼−𝑒𝐾𝑖 ⋅ 𝑝
∑

𝜎∈Γ𝐾
ℎ𝑖,𝜎 ,

we have 𝛾𝜈𝑖 ∈ ℛ′. We consider the continuous character 𝜓𝐡𝑖 ∶ 𝒪
×
𝐾 → 𝒪×

𝐾 de-
fined in (1). The character 𝜓𝑖,alg (onℚ𝑝-points) restricted to 𝒪×

𝐾 coincides with
𝜓𝐡𝑖 . By Lemma 2.3, there exists an element 𝜔 = 𝜔(𝐾;𝐡1,…𝐡𝑟) of kerN𝐾∕ℚ𝑝

such that 𝜓𝜈𝐡1(𝜔),… , 𝜓
𝜈
𝐡𝑟
(𝜔) are of infinite order. Since ℛ′ is finite, there ex-

ists an integer 𝑟 such that 𝜓𝜈𝐡1(𝜔
𝑟),… , 𝜓𝜈𝐡𝑟(𝜔

𝑟) are not contained in ℛ′. Putting
𝜔0 = 𝜔𝑟, it holds that

∙ 𝜔0 is an element of kerN𝐾∕ℚ𝑝
. Furthermore, 𝜔0 depends only on 𝐾, 𝑔

and 𝐡1,… ,𝐡𝑟, and
∙ 𝜓𝜈𝐡1(𝜔0),… , 𝜓

𝜈
𝐡𝑟
(𝜔0) are not contained in ℛ′.

Now we define a constant 𝐶(𝐾, 𝑔,𝐡1,… ,𝐡𝑟) by

𝐶(𝐾, 𝑔,𝐡1,… ,𝐡𝑟) = Max {
𝑟∑

𝑖=1
𝑣𝑝(𝛾′𝑖𝜓

𝜈
𝐡𝑖
(𝜔0)−1 − 1) ∣ 𝛾′𝑖 ∈ ℛ′} .

5We say that𝛼 is a 𝑞𝐾-Weil integer of weight𝑤 if𝛼 is an algebraic integer such that |𝜄(𝛼)| = 𝑞𝑤∕2𝐾

for any embedding 𝜄∶ ℚ↪ ℂ.
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By construction of 𝜔0, we see that the constant above is finite and depends only
on 𝐾, 𝑔,𝐡1,… ,𝐡𝑟. We find that

Min
⎧

⎨
⎩

2𝑔∑

𝑖=1
𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔)

−1 − 1) ∣ 𝜔 ∈ kerN𝐾∕ℚ𝑝

⎫

⎬
⎭

≤
2𝑔∑

𝑖=1
𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔0)

−1 − 1)

=
𝑟∑

𝑖=1
𝑣𝑝(𝛾𝜈𝑖 𝜓

𝜈
𝐡𝑖
(𝜔0)−1 − 1) +

2𝑔∑

𝑖=𝑟+1
𝑣𝑝(𝜓𝜈𝑖,𝐾(𝑝𝜔0)

−1 − 1)

≤𝐶(𝐾, 𝑔,𝐡1,… ,𝐡𝑟) + (2𝑔 − 𝑟)𝐶2(𝐾, 𝑔) ≤ 𝐶0(𝐾, 𝑔). (10)

Here,

𝐶0(𝐾, 𝑔) ∶= Max{𝐶(𝐾, 𝑔,𝐡1,… ,𝐡𝑟) + (2𝑔 − 𝑟)𝐶2(𝐾, 𝑔)
∣ 0 ≤ 𝑟 ≤ 2𝑔, 𝐡1,… ,𝐡𝑟 ∶ Case (I)}

(if 𝑟 = 0, we consider the constant 𝐶(𝐾, 𝑔,𝐡1,… ,𝐡𝑟) as zero). By construction,
the constant 𝐶0(𝐾, 𝑔) is finite and depends only on𝐾 and 𝑔. By (6) and (10), we
conclude that 𝐶0(𝐾, 𝑔) defined here satisfies the desired property of Claim 2.2.
This is the end of the proof of Proposition 2.6. □

We end this paper with the following remarks.

Remark 2.8. (1) We do not know the explicit description of the bound 𝐶(𝐾, 𝑔)
in Theorem 1.1.
(2) We do not know whether we can remove the sentence “with complex mul-
tiplication" from the statement of Theorem 1.1 or not.
(3) Let 𝐾 be a 𝑝-adic field. Let 𝜋 = 𝜋0 be a uniformizer of 𝐾 and 𝜋𝑛 a 𝑝𝑛-th
root of 𝜋 such that 𝜋𝑝𝑛+1 = 𝜋𝑛 for any 𝑛 ≥ 0. We set 𝐾∞ ∶= 𝐾(𝜋𝑛 ∣ 𝑛 ≥ 0). The
field 𝐾∞ is clearly a subfield of 𝐾( 𝑝∞

√
𝐾). It is well-known that 𝐾∞ is one of key

ingredients in (integral) 𝑝-adic Hodge theory since 𝐾∞ is familiar to the theory
of norm fields. We can check the equality

𝐴(𝐾∞)tors = 𝐴(𝐾)tors

holds for any abelian variety 𝐴 over 𝐾 with good reduction. It should be re-
marked that we do not need CM assumption here and the main theorem of
[CX] gives an explicit bound on the order of 𝐴(𝐾)tors. The proof for the above
equality is as follows: It follows from the criterion of Néron-Ogg-Shafarevich
[ST, Theorem 1] that the inertia subgroup 𝐼𝐾 of 𝐺𝐾 acts trivially on the prime-
to-𝑝 part of𝐴(𝐾)tors. Since𝐾∞ is totally ramified over𝐾, we obtain the fact that
the prime-to-𝑝 parts of𝐴(𝐾)tors and𝐴(𝐾∞)tors coincide with each other. On the
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other hand, we consider the following natural maps.

𝐴(𝐾)[𝑝𝑛] ≃ Hom𝐺𝐾 (ℤ∕𝑝
𝑛ℤ, 𝐴(𝐾)[𝑝𝑛])

𝜄
↪ Hom𝐺𝐾∞

(ℤ∕𝑝𝑛ℤ, 𝐴(𝐾)[𝑝𝑛]) ≃ 𝐴(𝐾∞)[𝑝𝑛].

Since 𝐴 has good reduction, the injection 𝜄 above is bijective (cf. [Br, Theo-
rem 3.4.3] for 𝑝 > 2; [Ki], [La], [Li] for 𝑝 = 2). This implies 𝐴(𝐾∞)[𝑝∞] =
𝐴(𝐾)[𝑝∞].
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