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Singly generated radical operator algebras

Justin R. Peters

Abstract. We examine two nonselfadjoint operator algebras: the weighted
shift algebra, and the Volterra operator algebra. In both cases, the operator
algebra is the norm closure of the polynomials in the operator norm. In the
case of the weighted shift algebra, the existence of a gauge action allows us
to apply Fourier analysis to study the ideals of the algebra. In the case of the
Volterra operator algebra, there is no gauge action, and other methods are
needed to study the norm structure and the ideals.
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1. Introduction
Here we consider commutative operator algebras, which need not be self-

adjoint. In the case of semi-simple commutative operator algebras, the Gelfand
theory provides a complete description. At the other extreme, there is at this
point no comprehensive theory of commutative radical operator algebras. This
paper deals primarily with two types of commutative radical operator alge-
bras: namely, those generated by weighted shifts, and the one generated by
the Volterra integral operator.
Given a bounded linear operator 𝑇 on a complex Hilbert space 𝐻, there are

various topologies inwhich one take the closure of the polynomials in𝑇 to form
an operator algebra. In this paper, we deal with the operator-norm closure.
Thus, by the operator algebra 𝒜𝑇 we mean the operator-norm closure of the
linear subspace of ℬ(𝐻) generated by {𝑇, 𝑇2, 𝑇3,… }.
If 𝑇 is a bounded linear operator on the Hilbert space 𝐻, then by defini-

tion the operator algebra𝒜𝑇 is completely isometrically represented on𝐻, and
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C∗(𝑇), the C∗-algebra generated by 𝑇 in ℬ(𝐻), is a C∗-cover. The coordinate-
free study of 𝒜𝑇 would include, say, the determination of the closed ideals of
𝒜𝑇, rather than the invariant subspaces arising from the action of 𝒜𝑇 on the
Hilbert space 𝐻, or, say, the existence of certain automorphisms, which is a
property of the abstract operator algebra and not a particular representation.
The coordinate-free study of operator algebras was stimulated by [1], which
gave internal ‘matrix-norm’ conditions for a Banach algebra to be an operator
algebra. Our approach here is necessarily a hybrid, as most properties of the
operator algebra can only be deduced from the given representation, at least
with the tools we have available.
One automorphism that has proved fruitful in the C∗-theory is the gauge

automorphism. For example, this is useful in proving the simplicity of the
Cuntz algebras 𝒪𝑛 (e.g., [3], Theorem V.4.6). However, gauge actions have
been employed in nonselfadjoint operator algebras as well ([5]). For an op-
erator 𝑇 ∈ ℬ(𝐻), we say that the operator algebra 𝒜𝑇 admits a gauge action
if the map 𝑇 ↦ 𝑧𝑇 (|𝑧| = 1) extends to an isometric isomorphism of 𝒜𝑇. (See
Definition 2.1.) The existence of a gauge action on𝒜𝑇 allows for the application
of Fourier analysis on the elements 𝑆 ∈ 𝒜𝑇, which in turn has application to
the ideal structure of the algebra. For some operators 𝑇 ∈ ℬ(𝐻) the associated
operator algebra 𝒜𝑇 will admit a gauge action, while others will not. We show
that if 𝑇 is a weighted shift operator, then 𝒜𝑇 admits a gauge action. However
if𝑉 is the Volterra integral operator, then𝒜𝑉 fails to admit a gauge action. This
distinction implies that 𝒜𝑇 and 𝒜𝑉 are not isomorphic as operator algebras.
(Corollary 4.7)
Section 2 provides some background results regarding gauge actions and ap-

plications of gauge automorphisms to singly generated operator algebras 𝒜𝑇,
and some basic examples of operators 𝑇 for which the associated algebra 𝒜𝑇
either does, or does not, admit a gauge action.
In Section 3 we consider operator algebras generated by weighted shift oper-

ators 𝑇. In addition to the operator norm on 𝒜𝑇, there is a norm arising from
a cyclic and separating unit vector for 𝒜𝑇. But in general, the Hilbert space
norm and the operator norm are inequivalent. (Remark 3.6) But if the weight
sequence is square summable, then the two norms are equivalent. (Proposi-
tion 3.7) Proposition 3.5 gives a sufficient condition for an element 𝑆 in the
unit ball of 𝒜𝑇 to be an extreme point. In particular, the normalized powers of
𝑇, 𝑇𝑛 =

1
||𝑇𝑛||

𝑇𝑛 are extreme points of the unit ball of𝒜𝑇.Under the same con-
ditions on the weights, there is an isomorphism of the lattice of closed ideals
of 𝒜𝑇 and closed invariant subspaces. (Proposition 3.10) We give two results
describing which elements 𝑆 ∈ 𝒜𝑇 generate gauge-invariant ideals. We con-
clude this section showing that the operator algebra𝒜𝑇 is a (nonunital) integral
domain.
The final section of the paper deals with𝒜𝑉 , the operator algebra generated

by the classical Volterra integral operator on 𝐿2[0, 1]. The closure of the poly-
nomials in 𝑉 in the strong operator topology turns out to be the commutant of
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𝑉, and hence corresponds also to the weak and weak∗ closed algebras gener-
ated by 𝑉. ([2] Theorem 5.10) Another weakly closed algebra associated with
𝑉 is Alg(Lat𝑉), the weakly closed algebra of operators in ℬ(𝐿2[0, 1]) which
leaves the lattice of subspaces Lat𝑉 invariant. This algebra, which contains
the commutant {𝑉}𝑐, is non-commutative ([2] Theorem 5.12). The operator
norm closed algebra generated by 𝑉, 𝒜𝑉 by contrast is composed of operators
which share important properties of 𝑉: any 𝑆 ∈ 𝒜𝑉 is quasinilpotent and com-
pact. Furthermore, given 𝑆 ∈ 𝒜𝑉 there is a measurable function 𝑓 on [0, 1],
integrable over compact subsets of [0, 1), such that if 𝜌 ∈ 𝐿2[0, 1],

𝑆𝜌(𝑥) = ∫
𝑥

0
𝑓(𝑥 − 𝑡)𝜌(𝑡)𝑑𝑡 for almost all 𝑥 ∈ [0, 1].(Theorem 4.1)

However, 𝑓 need not be integrable over [0, 1], as shown in Example 4.2. If 𝑓 is
in 𝐿1[0, 1], then the 𝐿1 norm of 𝑓 dominates the operator norm ||𝑆||.
While Theorem 4.1 allows us to represent an arbitrary 𝑆 ∈ 𝒜𝑉 as a operator

defined by a kernel, it does not provide another tool to calculate or estimate
the norm. Even in the case of polynomials of low degree in 𝑉 little is known.
Remarkably, the recent paper [12] appears to be the first to have obtained an
exact value for ||𝑉2||, expressed as the solution to a transcendental equation
([12], Corollary 3.2 1). Their computations are limited to polynomials of degree
2 in 𝑉. As a consequence of this lack of computational tools, we are not able to
make any assertions as to the extreme points of the unit ball of 𝒜𝑉 , as we did
for the unit ball of the radical weighted shift algebra.
In [11] it is shown that the nilpotent elements are dense in 𝒜𝑉 . We obtain

the same result here as a consequence of Theorem 4.1. The last result is an
extension of Titschmarsh’s theorem on zero divisors of 𝐿1[0, 1] to the operator
algebra 𝒜𝑉 (Corollary 4.14).

2. Background, notation and examples
2.1. Gauge actions and Fourier analysis on singly generated algebras.
Let 𝑇 be a bounded linear operator on a complex Hilbert space 𝐻, and 𝒜𝑇 the
operator algebra inℬ(𝐻)which is the operator norm closure of the polynomials
in 𝑇 which vanish at the origin. Let 𝕋 = {𝑧 ∈ ℂ ∶ |𝑧| = 1}.
Definition 2.1. Let 𝐴𝑢𝑡(𝒜𝑇) denote the group of isometric automorphisms of
𝒜𝑇. We say that 𝒜𝑇 admits a gauge action if there exists a continuous homo-
morphism 𝛾 ∶ 𝕋 → 𝐴𝑢𝑡(𝒜𝑇) such that 𝛾𝜆(𝑇) = 𝜆𝑇 (𝜆 ∈ 𝕋). By a continuous
homomorphism we mean that for each 𝜆0 ∈ 𝕋 and 𝑆 ∈ 𝒜𝑇,

||𝛾𝜆(𝑆) − 𝛾𝜆0(𝑆)||→ 0 as 𝜆 → 𝜆0 in 𝕋.
Remark 2.2. In the examples of gauge actions that arise here, the gauge auto-
morphisms are completely isometric.

1||𝑉2|| = 𝜂−20 , where 𝜂0 is the least positive solution 𝜂 to the equation cosh(𝜂) cos(𝜂) = −1.
I recall many years ago hearing that Paul Halmos had obtained an expression for ||𝑉2|| as the
solution of a transcendental equation, but cannot find a reference for it.
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Assume that 𝒜𝑇 admits a gauge action. Then if 𝑝 is any polynomial with
𝑝(0) = 0, 𝛾𝜆(𝑝(𝑇)) = 𝑝(𝜆𝑇). Since, by definition, the algebra 𝒜𝑇 is the norm
closure of such polynomials in 𝑇, it follows that the action of 𝛾𝜆 on polynomials
in 𝑇 determines the action of 𝛾𝜆 on 𝒜𝑇.
Now if 𝑝 is a polynomial, 𝑝(𝑧) =

∑𝑛
𝑗=1 𝑎𝑗𝑧

𝑗, then

�̂�(𝑘)𝑇𝑘 = ∫
𝕋
𝛾𝜆(𝑝(𝑇)) 𝜆−𝑘 𝑑|𝜆| = {

𝑎𝑘𝑇𝑘 if 1 ≤ 𝑘 ≤ 𝑛
0 otherwise

Thus, for 𝑆 ∈ 𝒜𝑇,

�̂�(𝑘)𝑇𝑘 = ∫
𝕋
𝛾𝜆(𝑆) 𝜆−𝑘 𝑑|𝜆|

is well-defined. We say that �̂�(𝑘) ∈ ℂ is the 𝑘th Fourier coefficient of 𝑆.

Lemma 2.3. If 𝒜𝑇 admits a gauge action then 𝑆 ∈ 𝒜𝑇 is uniquely determined
by its Fourier series.

Proof. It is enough to prove that if 𝑆 ∈ 𝒜𝑇 is nonzero, then {�̂�(𝑘)} is not the
zero sequence.
Suppose 𝑆 ≠ 0, and that �̂�(𝑘) = 0 for all 𝑘. There is a continuous linear

functional 𝜑 on 𝒜𝑇 for which 𝜑(𝑆) ≠ 0, and hence the continuous function
𝑓(𝜆) = 𝜑(𝛾𝜆(𝑆)) is nonzero. However,

𝑓(𝑘) = ∫
𝕋
𝜑(𝛾𝜆(𝑆)) 𝜆−𝑘 𝑑|𝜆|

= 𝜑(∫
𝕋
𝛾𝜆(𝑆) 𝜆−𝑘 𝑑|𝜆|)

= 𝜑(�̂�(𝑘)𝑇𝑘)

= �̂�(𝑘)𝜑(𝑇𝑘)
= 0

This holds for 𝑘 = 1, 2… , but also for 𝑘 ≤ 0, since the Fourier coefficients
�̂�(𝑘) = 0 for all polynomials 𝑆 and hence for all 𝑆 ∈ 𝒜𝑇.
This implies 𝑓 is identically zero, which is a contradiction. □

Just as with classical Fourier series, we associate with 𝑆 ∈ 𝒜𝑇 the formal
series

𝑆 ∼
∞∑

𝑗=1
�̂�(𝑗)𝑇𝑗 (1)

We would like to construct a sequence of polynomials in 𝑇 which converges to
𝑆 in some sense. To this end, let 𝜑 be a continuous linear functional on𝒜𝑇 and
𝑝(𝑧) =

∑𝑛
𝑗=1 𝑎𝑗𝑧

𝑗 a polynomial. Then

𝜑(𝑝(𝑇))(𝑘) = ∫
𝕋
𝜑(𝛾𝜆(𝑝(𝑇))) 𝜆−𝑘 𝑑|𝜆| = 𝑎𝑘𝜑(𝑇𝑘)
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Since an arbitrary 𝑆 ∈ 𝒜𝑇 is a norm limit of polynomials, we have that

𝜑(𝑆)(𝑘) ∶= ∫
𝕋
𝜑(𝛾𝜆(𝑆)) 𝜆−𝑘 𝑑|𝜆| = 𝑎𝑘𝜑(𝑇𝑘)

where 𝑆 ∼
∑∞

𝑗=1 𝑎𝑗𝑇
𝑗.

Proposition 2.4. With notation as in the above paragraph, define the function
𝑓 ∶ 𝕋→ ℂ, 𝑓(𝜆) = 𝜑(𝛾𝜆(𝑆)). Then

1 𝑓 is a continuous function on 𝕋 with 𝑓(𝑛) = 0 for 𝑛 ≤ 0.
2 The sequence of functions

𝑠𝑛(𝜆) =
𝑛∑

𝑗=1

𝑛 − 𝑗
𝑛 𝑓(𝑗)𝜆𝑗

=
𝑛∑

𝑗=1

𝑛 − 𝑗
𝑛 𝑎𝑗𝜑(𝑇𝑗)𝜆𝑗 (𝜆 ∈ 𝕋)

converges uniformly in 𝜆 to 𝑓.
3 The sequence {𝑆𝑛(𝜆) =

∑𝑛
𝑗=1

𝑛−𝑗
𝑛
𝑎𝑗𝑇𝑗𝜆𝑗} converges weakly to 𝛾𝜆(𝑆), uni-

formly in 𝜆 ∈ 𝕋.
4 There is a sequence 𝑅𝑛 in the convex hull of the sequences {𝑆𝑛(1) ∶ 𝑛 =
1, 2,… } which converges in norm to 𝑆.

Proof. 1. By assumption, the map 𝜆 ∈ 𝕋 ↦ 𝛾𝜆(𝑆) ∈ 𝒜𝑇 is norm continuous,
and since 𝜑 is norm continuous, it follows that 𝑓 ∶ 𝕋→ ℂ is continuous. Now
�̂�(𝑘) = 0 for 𝑘 ≤ 0, so the same holds for 𝑓.
2. By Fejer’s Theorem, the sequence of arithmetic means of the partial sums

of the Fourier series for 𝑓 converges uniformly to 𝑓 on 𝕋.
3. Since, for an arbitrary continuous linear functional 𝜑, 𝜑(𝑆𝑛(𝜆)) = 𝑠𝑛(𝜆),

this is just a restatement of [2].
4. Follows from [3] by taking 𝜆 = 1 and applying the Hahn-Banach separa-

tion theorem. □

Notation. The unitization of 𝒜𝑇 will be denoted 𝒜𝑇.

At times it will be convenient to work in 𝒜𝑇. The gauge action 𝛾 extends
naturally to 𝒜𝑇 with 𝛾𝜆(𝐼) = 1. Of course for 𝑆 ∈ 𝒜𝑇, �̂�(0)may be nonzero.

2.2. Nonselfadjoint operator algebras which admit a gauge action.

Example 2.5. Letℳ2 be the C∗-algebra of 2 × 2matrices, with standard matrix
units 𝑒𝑖,𝑗, 1 ≤ 𝑖, 𝑗 ≤ 2. Let 𝑇 = 𝑒1,2. Then 𝒜𝑇 admits a gauge action. Indeed,
since 𝑇2 = 0, the operator space 𝒜𝑇 = ℂ ⋅ 𝑇 is one-dimensional, and the map
𝛾𝜆 is a linear map with 𝛾𝜆(𝑎𝑇) = 𝜆𝑎𝑇, 𝑎 ∈ ℂ.
To see that 𝛾 is completely isometric, it suffices to show that it extends toℳ2.

Define𝑈 = 𝑒1,1+𝜆𝑒2,2. Then 𝛾𝜆(𝐴) = 𝑈∗𝐴𝑈 𝐴 ∈ℳ2, 𝜆 ∈ 𝕋 extends the action
of 𝛾 on 𝒜𝑇 to the C∗-envelope,ℳ2.
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Alternatively, we can invoke the description ofℳ2 as the universal C∗-algebra
generated by an operator 𝑇 which is nilpotent of index 2 satisfying

𝑇∗𝑇 + 𝑇𝑇∗ = 𝐼

𝑇 ∈ ℬ(𝐻) for some Hilbert space𝐻, and 𝐼 the identity inℬ(𝐻). Since 𝜆𝑇 satis-
fies these same conditions for 𝜆 ∈ 𝕋, it follows from the universal property that
𝑇 ↦ 𝜆𝑇 is automorphism ofℳ2.

Example 2.6. Let𝑇 be themultiplication operator on 𝐿2(𝕋), 𝑇𝜉(𝑧) = 𝑧𝜉(𝑧).The
unital algebra𝒜𝑇 is the disc algebra𝒜(𝔻), and the algebra𝒜𝑇 is the subalgebra
of functions 𝑓 satisfying 𝑓 ⟂ 1, where 1 is the constant function in 𝐿2(𝕋).
The gauge action 𝛾𝜆 is given by

𝛾𝜆(𝑇)𝜉(𝑧) = 𝜆𝑧𝜉(𝑧).

Thus for 𝑓 ∈ 𝒜(𝔻), 𝛾𝜆𝑓(𝑧) = 𝑓(𝜆𝑧). This is isometric, even completely isomet-
ric. Indeed, the C∗−envelope of𝒜(𝔻) is 𝐶(𝕋), and the gauge action on the disc
algebra is the restriction of the gauge action on 𝐶(𝑇), 𝛾𝜆(𝑓)(𝑧) = 𝑓(𝜆𝑧).
The Fourier series (as defined in equation 1 ) of𝑓 ∈ 𝒜(𝔻) is the usual Fourier

series of the function 𝑓.

Example 2.7. Let {𝑆1,… 𝑆𝑑} be isometries which satisfy the Cuntz relation
𝑑∑

𝑗=1
𝑆𝑗𝑆∗𝑗 = 𝐼.

Now if 𝑖1,… , 𝑖𝑛 ∈ {1,… , 𝑑} and 𝜇 = (𝑖1,… , 𝑖𝑛) we write 𝑆𝜇 = 𝑆𝑖1 … 𝑆𝑖𝑛 and |𝜇| =
𝑛. Let𝒜 be theDirichlet algebra generated by the “monomials” 𝑆𝜇𝑆∗𝜈 with |𝜇| ≥
|𝜈|. Then 𝒜 is a nonself-adjoint subalgebra of the Cuntz algebra 𝒪𝑑. Note that
𝒜 is invariant under the canonical gauge action on𝒪𝑑. Thus,𝒜 admits a gauge
action. The gauge action on this subalgebra of𝔒𝑛 was considered in [5].

Example 2.8. Let {𝑆1,… , 𝑆𝑑} be the isometries of Example 2.7. If𝒜 is the nonself-
adjoint algebra generated by {𝑆1,… , 𝑆𝑑} ⊂ 𝔒𝑛, then 𝒜 admits a gauge action,
since it is invariant under the canonical gauge action on 𝒪𝑑. This algebra is
known as Popescu’s noncommutative disc algebra.

Example 2.9. Let {𝑆1,… , 𝑆𝑑} be as in Example 2.7. Here we assume that these
operators are represented in someHilbert spaceℬ(𝐻).Choose one of the isome-
tries, say 𝑆1, and let 𝛾 be the canonical gauge action on 𝒪𝑑. Since 𝛾𝜆(𝑆1) = 𝜆𝑆1,
it follows that the subalgebra 𝒜𝑆1 generated by 𝑆1 of the Cuntz algebra 𝒪𝑑 is
invariant under 𝛾. Hence the gauge action on the Cuntz algebra 𝒪𝑑 restricts to
a gauge action on 𝒜𝑆1 .

Example 2.10. A variety of examples can be constructed as subalgebras of graph
C∗-algebras which admit gauge actions. In this context one can obtain exam-
ples which are analogues of examples 2.7, 2.8 and 2.9, andwhere the generating
isometries are replaced by Cuntz-Krieger partial isometries.
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Let𝒜 be an operator algebra, and𝔄 = C∗𝑒𝑛𝑣(𝒜) be its C∗-envelope. Then𝒜∗

is an operator algebra defined as a subalgebra of𝔄.

Proposition 2.11. If 𝛾 is a gauge action on the operator algebra𝒜, then the ad-
joint algebra𝒜∗ admits a gauge action, also denoted by 𝛾 defined by

𝛾𝜆(𝐴∗) = (𝛾�̄�(𝐴))∗ 𝜆 ∈ 𝕋, 𝐴 ∈ 𝒜

The proof is routime.

Proposition 2.12. Every completely isometric automorphismof a unital operator
algebra𝒜 lifts to a ∗-automorphism of the C∗-envelope C∗env(𝒜), which fixes𝒜 as
a set.

This is Proposition 10.1 of [4]. This tells us that if a unital operator algebra𝒜
admits a gauge action 𝛾, then each 𝛾𝜆 extends to an automorphism, which we
also denote by 𝛾𝜆, of the C∗-envelope, but does not immediately imply that the
map 𝜆 ∈ 𝕋↦ 𝛾𝜆 is continuous on the C∗-envelope.

2.3. Examples of operators in Hilbert space which do not admit a gauge
action.

Example 2.13. Let 0 ≠ 𝑃 be a projection in ℬ(𝐻). As in Example 2.5 𝒜𝑃 is
one-dimensional, but in this case does not admit a gauge action. Indeed, since
𝑃 = 𝑃2, if 𝛾 were a gauge action on 𝒜𝑃 we would have

𝜆𝑃 = 𝛾𝜆(𝑃) = 𝛾𝜆(𝑃2) = 𝛾𝜆(𝑃)𝜆𝜆(𝑃) = 𝜆2𝑃, 𝜆 ∈ 𝕋
which is absurd.

Example 2.14. More generally, suppose that 𝑇 ∈ ℬ(𝐻) is such that, for some
𝑛 > 1, 0 ≠ 𝑇𝑛 and the set {𝑇, 𝑇2,…𝑇𝑛} is linearly dependent. Then𝒜𝑇 does not
admit a gauge action.
Indeed, suppose to the contrary that𝒜𝑇 admits a gauge action 𝛾, and, choos-

ing a dependence relation of minimal degree, we can assume that 𝑎1𝑇 +⋯ +
𝑎𝑚𝑇𝑚 = 0, 𝑚 ≤ 𝑛 and 𝑎𝑚 ≠ 0.
Then

0 = ∫
𝕋
𝛾𝜆(

𝑚∑

𝑘=1
(𝑎𝑘𝑇𝑘)𝜆−𝑚 𝑑|𝜆| = 𝑎𝑚𝑇𝑚

Since 𝑇𝑚 ≠ 0, it follows that 𝑎𝑚 = 0, a contradiction.

Example 2.15. Let𝐻 be a Hilbert space with orthonormal basis {𝑒𝑛}∞𝑛=1, and let
𝑇 ∈ ℬ(𝐻) be the operator defined by 𝑇𝑒𝑛 = 1

𝑛
𝑒𝑛, 𝑛 ≥ 1. We claim that the

operator algebra 𝒜𝑇 does not admit a gauge action.
Consider the operator 𝑇 − 𝑇2 ∈ 𝒜𝑇. This is a compact, self-adjoint operator

inℬ(𝐻), so its norm is the maximum of the absolute values of the eigenvalues.
||𝑇 − 𝑇2|| = ||(𝑇 − 𝑇2)𝑒2||2 =

1
4
.

Suppose that 𝒜𝑇 admits a gauge action 𝛾. Then 𝛾𝜆(𝑇 − 𝑇2) = 𝜆𝑇 − 𝜆2𝑇2, so
for 𝜆 = −1we obtain−𝑇−𝑇2. Computing ||−𝑇−𝑇2||we have ||−𝑇−𝑇2|| =
||(−𝑇 − 𝑇2)𝑒1||2 = 2.



SINGLY GENERATED RADICAL OPERATOR ALGEBRAS 405

This is a contradiction, since by definition the gauge action is isometric on
𝒜𝑇.

2.4. Gauge invariant Ideals inOperator algebraswithgaugeactions. Let
𝒜𝑇 be the operator algebra generated by an operator𝑇 ∈ ℬ(𝐻), and suppose𝒜𝑇
admits a gauge action 𝛾. A closed ideal 𝒥 ⊂ 𝒜𝑇 is gauge invariant if, whenever
𝑆 ∈ 𝒥, then 𝛾𝜆(𝑆) ∈ 𝒥 (𝜆 ∈ 𝕋).

Proposition 2.16. Let 𝒥 ≠ (0) be a gauge invariant ideal in𝒜𝑇.Then there exists
𝑛 ∈ ℕ such that 𝒥 = <𝑇𝑛>. That is, 𝒥 is the closed ideal in𝒜𝑇 generated by 𝑇𝑛.

Proof. Let 𝑛 = inf {𝑘 ≥ 1 ∶ �̂�(𝑘) ≠ 0 for some 𝑆 ∈ 𝒥}. Thus, there exists
𝑆 ∈ 𝒥 with ∫𝕋 𝛾𝜆(𝑆)𝜆

−𝑛 𝑑|𝜆| = 𝑎𝑛𝑇𝑛 ≠ 0. Since 𝒥 is closed and gauge invariant,
𝑇𝑛 ∈ 𝒥. It follows that any 𝑆 ∈ 𝒜𝑇 with Fourier series 𝑆 ∼

∑∞
𝑘=𝑛 𝑐𝑘𝑇

𝑘 ∈ 𝒥.
Thus, <𝑇𝑛> ⊂ 𝒥. That is, the closed ideal generated by 𝑇𝑛 is contained in 𝒥.
On the other hand, let 𝑆 ∈ 𝒥. Then, by definition of 𝑛, 𝑆 has Fourier series

of the form
∑∞

𝑘=𝑛 𝑐𝑘𝑇
𝑘, so that 𝒥 ⊂ <𝑇𝑛>. □

One ideal which is invariant under the gauge action is the Jacobson radical;
indeed, it is invariant under all isometric automorphisms.

Corollary 2.17. Let 𝑇 ∈ ℬ(𝐻) be an operator such that 𝒜𝑇 admits a gauge
action. Then either𝒜𝑇 is semi-simple, or𝒜𝑇 is radical.

Proof. Let 𝒥 ≠ (0) denote the Jacobson radical of 𝒜𝑇. Since the Jacobson
radical is invariant under all isometric automorphisms, by Proposition 2.16 it
follows that if the Jacobson radical is nonzero, there is an 𝑛 ∈ ℕ such that
𝒥 = <𝑇𝑛>. But if 𝑇𝑛 is quasinilpotent, that is, has spectrum {0}, it follows from
the Spectral Mapping Theorem that 𝑇 has spectrum {0}. Hence, the ideal gen-
erated by 𝑇, which is 𝒜𝑇 is in the Jacobson radical. □

Example 2.18. Here we note that it can happen that if 𝑇 ∈ ℬ(𝐻) does not admit
a gauge action, then we can have (0) ≠ 𝑅𝑎𝑑(𝒜𝑇) ≠ 𝒜𝑇.
Let 𝐻 = 𝐻1 ⊕ 𝐻2 and 𝑇 = 𝐼1 ⊕ 𝑁, where 𝐼1 is the identity on 𝐻1 and

𝑁 ∈ ℬ(𝐻2) is a nonzero nilpotent, with 𝑁2 = 0. Let 𝑝(𝑧) = 𝑧 − 𝑧2. Then
𝑝(𝑇) = 0 ⊕ 𝑁 ∈ 𝑅𝑎𝑑(𝒜𝑇), so that while 𝒜𝑇 is not a radical algebra, it has a
non-trival Jacobson radical.

The disc algebra 𝒜(𝔻) has a rich lattice of ideals. ([6]) Not unexpectedly,
there are few gauge invariant ideals.

Corollary 2.19. If 𝒥 is a gauge invariant closed ideal of𝒜(𝔻), then (in the nota-
tion of Example 2.6) 𝒥 = <𝑧𝑛> for some 𝑛 ∈ ℕ.

Proof. The conclusion follows immediately from Proposition 2.16. □

3. Operator algebras generated by weighted shifts
In this section, 𝑇 will denote a weighted shift operator. Let {𝑒𝑛}𝑛≥0 be an

orthonormal basis for the Hilbert space 𝐻, with 𝑇𝑒𝑛 = 𝑎𝑛𝑒𝑛+1, 𝑛 ≥ 0, and
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𝑎𝑛 ≠ 0 for all 𝑛. Since 𝑇 is bounded, the sequence {𝑎𝑛} is bounded, and ||𝑇|| =
sup𝑛 |𝑎𝑛|.
We begin by showing that the operator algebra admits a gauge action.

Lemma 3.1. Let 𝑇 be as above. Then𝒜𝑇 admits a gauge action.

Proof. With {𝑒𝑛}𝑛≥0 as above, define the unitary𝑊𝜆, 𝜆 ∈ 𝕋, by𝑊𝜆𝑒𝑛 = 𝜆𝑛𝑒𝑛.
Now

𝑊𝜆𝑇𝑊∗
𝜆𝑒𝑛 =𝑊𝜆𝑇(𝜆𝑛𝑒𝑛) = 𝜆𝑛𝑎𝑛𝑊𝜆𝑒𝑛+1 = 𝜆𝑛𝜆𝑛+1𝑎𝑛𝑒𝑛+1 = 𝜆𝑇𝑒𝑛

holds for any 𝑛 ≥ 0, and since the {𝑒𝑛}𝑛≥0 form a basis, we have 𝑊𝜆𝑇𝑊∗
𝜆 =

𝜆𝑇. Thus the map 𝜆 ∈ 𝕋 ↦ 𝑊𝜆𝑇𝑊∗
𝜆 ∈ ℬ(𝐻) is continuous., and so 𝜆 ↦

(𝑊𝜆𝑇𝑊∗
𝜆)
𝑛 = 𝑊𝜆𝑇𝑛𝑊∗

𝜆 is continuous, and hence 𝜆 ↦ 𝑊𝜆𝑝(𝑇)𝑊∗
𝜆 for any

polynomial 𝑝 with 𝑝(0) = 0. Now if 𝑆 ∈ 𝒜𝑇 and 𝜖 > 0 is given, there is a
polynomial 𝑝 with ||𝑝(𝑇) − 𝑆|| < 𝜖∕3. Now let 𝜆0 ∈ 𝕋 and 𝛿 > 0 be such that
if |𝜆 − 𝜆0| < 𝛿, then ||𝑊𝜆𝑝(𝑇)𝑊∗

𝜆 −𝑊𝜆0𝑝(𝑇)𝑊
∗
𝜆0
|| < 𝜖∕3. Then

||𝑊𝜆𝑆𝑊∗
𝜆 −𝑊𝜆0𝑆𝑊

∗
𝜆0
|| ≤ ||𝑊𝜆(𝑆 − 𝑝(𝑇))𝑊∗

𝜆||+

||𝑊𝜆𝑝(𝑇)𝑊∗
𝜆 −𝑊𝜆0𝑝(𝑇)𝑊

∗
𝜆0
|| + ||𝑊𝜆0(𝑝(𝑇) − 𝑆)𝑊∗

𝜆0
||

< 𝜖∕3 + 𝜖∕3 + 𝜖∕3

Thus 𝛾𝜆(𝑆) =𝑊𝜆𝑆𝑊∗
𝜆 is a gauge action on 𝒜𝑇. □

Remark 3.2. We claim, furthermore, that the action is completely isometric.
Now the C∗-algebra generated by 𝑇 in ℬ(𝐻), 𝐶∗(𝑇), is a C∗-cover for 𝒜𝑇, and
the action of 𝛾𝜆 on𝒜𝑇 is the restriction to𝒜𝑇 of the automorphism 𝑆 ∈ C∗(𝑇)↦
𝛾𝜆(𝑆) ∶=𝑊𝜆𝑆𝑊∗

𝜆 .
While it is clear that 𝛾𝜆 is isometric on the C∗-cover, it is not obvious that the

map 𝜆 ∈ 𝕋↦ 𝛾𝜆 is continuous, since 𝜆 ↦𝑊𝜆 is not continuous.
It is more convenient to work with the unital algebras𝒜𝑇, 𝒜∗

𝑇. The C
∗ cover

of 𝒜𝑇 ⊂ ℬ(𝐻) is the closure in ℬ(𝐻) of the union
∞⋃

𝑛=1
(𝒜∗

𝑇𝒜𝑇)𝑛 ⊂ ℬ(𝐻)

Now since the action is continuous on 𝒜𝑇 and 𝒜∗
𝑇, (Proposition 2.11) it is

continuous on (𝒜∗
𝑇𝒜𝑇)𝑛. And since it is isometric, it is thus continuous on the

closure of the union.
Thus, the gauge action on 𝒜𝑇 is the restriction of a gauge action on a C∗-

cover.

Lemma 3.3. Let 𝑇 be as in Lemma 3.1 If 𝑆 ∈ 𝒜𝑇, and

𝑆𝑒0 =
∞∑

𝑛=1
𝑐𝑛𝑒𝑛, then 𝑐𝑛 = �̂�(𝑛)𝑎0… 𝑎𝑛−1
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Proof. Let 𝑊𝜆 (𝜆 ∈ 𝕋) be the family of unitary operators from Lemma 3.1,
so that 𝑊𝜆𝑒𝑛 = 𝜆𝑛𝑒𝑛. Let 𝑣 be a linear combination of basis vectors. Since
∫𝕋 𝜆

−𝑛𝑊𝜆𝑣 𝑑|𝜆| is a multiple of 𝑒𝑛, it follows that,

∫
𝕋
𝜆−𝑛𝑊𝜆𝑣 𝑑|𝜆| =< 𝑣, 𝑒𝑛 > 𝑒𝑛

This holds for arbitrary vectors in𝐻.
Suppose 𝑆𝑒0 =

∑∞
𝑘=1 𝑐𝑘𝑒𝑘. Then

𝑐𝑛𝑒𝑛 =< 𝑆𝑒0, 𝑒𝑛 > 𝑒𝑛

= ∫
𝕋
𝑊𝜆(𝑆𝑒0) 𝜆−𝑛 𝑑|𝜆|

= ∫
𝕋
𝑊𝜆𝑆𝑊∗

𝜆𝑒0 𝜆
−𝑛 𝑑|𝜆|

= (∫
𝕋
𝑊𝜆𝑆𝑊∗

𝜆𝜆
−𝑛 𝑑|𝜆|)𝑒0

= (∫
𝕋
𝛾𝜆(𝑆) 𝜆−𝑛 𝑑|𝜆|)𝑒0

= �̂�(𝑛)𝑇𝑛𝑒0
where we have used that𝑊∗

𝜆𝑒0 = 𝑒0.
Thus, 𝑐𝑛𝑒𝑛 = �̂�(𝑛)𝑇𝑛𝑒0, so that 𝑐𝑛 = �̂�(𝑛)(𝑎0𝑎1⋯ 𝑎𝑛−1). □

Remark 3.4. Let 𝑇 be as above, and 𝒜𝑇 the unitization of 𝒜𝑇. Then the vector
𝑒0 is a cyclic and separating vector for𝒜𝑇. That it is cyclic is clear, for if 𝑣 is any
finite linear combination of basis vectors 𝑣 =

∑𝑁
𝑛=0 𝑐𝑛𝑒𝑛, let 𝑝 be the polyno-

mial 𝑝(𝑧) =
∑𝑁

𝑛=0
𝑐𝑛

𝑎0⋯𝑎𝑛−1
𝑧𝑛 (where the empty product is defined to be 1), then

𝑝(𝑇)𝑒0 = 𝑣.
That 𝑒0 is separating is also straightforward. First note that if 𝑆 ∈ 𝒜𝑇, there is

a sequence of polynomials {𝑝𝑛}with {𝑝𝑛(𝑇)} converging to 𝑆 in the norm of𝒜𝑇,
so that by definition of the norm,𝑝𝑛(𝑇)𝑣 → 𝑆𝑣 for every 𝑣 ∈ 𝐻 and in particular
for 𝑣 = 𝑒0. By Proposition 2.4 these polynomials can be taken to be convex
combinations of Fejer polynomials, so that �̂�𝑛(𝑘) → �̂�(𝑘) for every 𝑘 = 0, 1,… .
So if 𝑆 ≠ 0, there is some 𝑘with �̂�(𝑘) ≠ 0, and so 𝑆𝑒0 =

∑∞
𝑗=0 �̂�(𝑗)𝑎0⋯ 𝑎𝑗−1𝑒𝑗 ≠

0.

It is natural to ask for a description of the extreme points of the unit ball of
𝒜𝑇. While that seems out of reach in our context, a sufficient condition is at
hand.

Proposition 3.5. Let the weighteds of 𝑇 satisfy |𝑎1| ≥ |𝑎2| ≥ ⋯ and let ℬ =
{𝑆 ∈ 𝒜𝑇 ∶ ||𝑆|| ≤ 1} be the closed unit ball. Then 𝑆 ∈ ℬ is an extreme point of
ℬ if ||𝑆|| = ||𝑆𝑒0||2 = 1. In particular, the elements 𝑇𝑛 ∶=

1
||𝑇𝑛||

𝑇𝑛 are extreme
points ofℬ.
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Proof. As noted in Remark 3.4, the map 𝑆 ∈ 𝒜𝑇 ↦ ||𝑆𝑒0||2 is a norm on 𝒜𝑇,
satisfying ||𝑆𝑒0||2 ≤ ||𝑆||, and thus the map 𝑆 ↦ 𝑆𝑒0 maps the unit ball of 𝒜𝑇
into the unit ball of the Hilbert space𝐻. Since every unit vector in Hilbert space
is an extreme point of the unit ball in 𝐻, it follows that if ||𝑆|| = ||𝑆𝑒0||2 = 1,
then 𝑆𝑒0 is extreme in the unit ball of 𝐻, and a fortori 𝑆 is extreme in the unit
ball of 𝒜𝑇. In particular, the condition on the weights |𝑎1| ≥ |𝑎2| ≥ ⋯ guar-
antees that the monomials 𝑇𝑛 assume their norm at 𝑒0, hence the normalized
monomials 𝑇𝑛 are extreme points of the unit ball of 𝒜𝑇. □

Remark 3.6. If the weights satisfy |𝑎0| ≥ |𝑎1| ≥ |𝑎2| ≥ ⋯ then, as noted in
the proof of Proposition 3.5, the norms ||𝑇𝑛||, ||𝑇𝑛𝑒0||2 coincide. However, it
need not be the case that the two norms coincide, or even are equivalent, on
the operator algebra 𝒜𝑇.
To see this, let the weights satisfy 𝑎0 = 𝑎1 = ⋯ = 1, and take 𝑝𝑛(𝑇) =

𝑇 + 𝑇2 +⋯𝑇𝑛 (𝑛 ∈ ℕ), and let 𝑣𝑛 =
1
√
𝑛
(𝑒0 + 𝑒1 +⋯ 𝑒𝑛−1). One calculates that

||𝑝𝑛(𝑇)𝑣𝑛||2 =

√
2𝑛2 + 1
√
3

while ||𝑝𝑛(𝑇)𝑒0||2 =
√
𝑛.

Thus,
||𝑝𝑛(𝑇)||

||𝑝𝑛(𝑇)𝑒0||2
≥

√
2

√
3

√
𝑛

so the norms are inequivalent on 𝒜𝑇.

While the operator norm is not in general equivalent to the norm𝑆 ↦ ||𝑆𝑒0||2
on 𝒜𝑇, under certain restrictions the two norms are equivalent.

Proposition 3.7. Let {𝑎𝑛}𝑛≥0 be a sequence satisfying |𝑎0| ≥ |𝑎1| ≥ |𝑎2| ≥ ⋯
with

∑∞
𝑛=0 |𝑎𝑛|

2 ∶= 𝑀2 < ∞, and 𝑎𝑛 ≠ 0 for all 𝑛. Then the operator norm on
𝒜𝑇 is equivalent to the norm 𝑆 ↦ ||𝑆𝑒0||2.

Proof. Let 𝑝(𝑧) =
∑𝑟

𝑗=1 𝑐𝑗𝑧
𝑗. Then

||𝑝(𝑇)𝑒𝑘||22 =
𝑟∑

𝑗=1
|𝑐𝑗|2 |𝑎𝑘𝑎𝑘+1⋯ 𝑎𝑘+𝑗−1|2

≤
𝑟∑

𝑗=1
|𝑐𝑗|2 (

|𝑎𝑘|
|𝑎0|

)2 |𝑎0𝑎1⋯ 𝑎𝑗−1|2

≤ (
|𝑎𝑘|
|𝑎0|

)2||𝑝(𝑇)𝑒0||22

Now let 𝑣 be a unit vectorwhich is a finite linear combination of basis vectors,
so 𝑣 =

∑𝑁
𝓁=0 𝛽𝓁𝑒𝓁 with

∑𝑁
𝓁=0 |𝛽𝓁|

2 = 1. Thus

||𝑝(𝑇)𝑣||2 ≤
𝑁∑

𝓁=0
|𝛽𝓁|||𝑝(𝑇)𝑒𝓁||2
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≤
𝑁∑

𝓁=0
|𝛽𝓁|

|𝑎𝓁|
|𝑎0|

||𝑝(𝑇)𝑒0||2

≤ 1
|𝑎0|

||𝑝(𝑇)𝑒0||2(
𝑁∑

𝓁=0
|𝛽𝓁| |𝑎𝓁|)

≤ 1
|𝑎0|

||𝑝(𝑇)𝑒0||2(
𝑁∑

𝓁=0
|𝛽𝓁|2)

1
2 )(

𝑁∑

𝑘=0
|𝑎𝑘|2)

1
2

≤ 1
|𝑎0|

||𝑝(𝑇)𝑒0||2(
𝑁∑

𝓁=0
|𝛽𝓁|2)

1
2 )(

∞∑

𝑘=0
|𝑎𝑘|2)

1
2

≤ 𝑀
|𝑎0|

||𝑝(𝑇)𝑒0||2

Now since ||𝑝(𝑇)𝑣||2 ≤ 𝑀
|𝑎0|

||𝑝(𝑇)𝑒0||2 for a dense set of unit vectors 𝑣, it

follows that ||𝑝(𝑇)|| ≤ 𝑀
|𝑎0|

||𝑝(𝑇)𝑒0||2. Finally, since we can approximate an

arbitrary 𝑆 ∈ 𝒜𝑇 by polynomials in 𝑇, so we conclude that ||𝑆|| ≤
𝑀
|𝑎0|

||𝑆𝑒0||2
for all 𝑆 ∈ 𝒜𝑇. □

As a result of the equivalence of the two norms, several results follow imme-
diately.

Corollary 3.8. Let the weighted shift𝑇 be as in Proposition 3.7. Then for 𝑆 ∈ 𝒜𝑇,
the partial sums of the Fourier series,

𝑛∑

𝑘=1
�̂�(𝑘)𝑇𝑘

converge in norm to 𝑆.

Corollary 3.9. Let theweighted shift𝑇 be as inProposition 3.7. Then the sequence

𝑝𝑛(𝑇) ∶=
𝑛∑

𝑘=1
𝑐𝑘𝑇𝑘

converges in norm to an element 𝑆 ∈ 𝒜𝑇 if and only if
∞∑

𝑘=1
|𝑐𝑘|2 |𝑎0⋯ 𝑎𝑘−1|2 <∞

Proposition 3.7 not only tells us that the operator norm is equivalent to a
Hilbert space norm, but gives a mapping

ℱ ∶ 𝒜𝑇 → 𝐻, 𝑆 ↦ 𝑆𝑒0
which maps 𝒜𝑇 onto the closed subspace 𝐻1 spanned by the basis vectors 𝑒𝑛 ∶
𝑛 ≥ 1. One can also define ℱ̃ ∶ 𝒜𝑇 → 𝐻 by 𝑆 ↦ 𝑆𝑒0. It is easy to see how
to adapt Proposition 3.7 to the unital algebra 𝒜𝑇. Note that the unital algebra
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𝒜𝑇 maps onto𝐻. Sinceℱ is a Banach space isomorphism, it gives a one-to-one
map of closed subspaces of𝒜𝑇 to closed subspaces of𝐻1, and similarly ℱ̃ maps
closed subspaces of 𝒜𝑇 onto closed subspaces of𝐻. Furthermore

Proposition 3.10. Suppose the weights of 𝑇 satisfy the conditions of Proposi-
tion 3.7.

(1) Themapℱ is an isomorphism of the lattice of closed ideals of𝒜𝑇 onto the
lattice of closed 𝑇-invariant subspaces of𝐻1.

(2) Themap ℱ̃ is an isomorphism of the lattice of closed ideals of𝒜𝑇 onto the
lattice of closed 𝑇-invariant subspaces of𝐻.

Proof. We prove only the second statement.
Let us first observe that themap ℱ̃ is𝑇-equivariant. That is,𝑇ℱ̃(𝑆) = ℱ̃(𝑇𝑆), 𝑆 ∈

𝒜𝑇. Indeed, this follows immediately from the definition of ℱ̃.We claim that a
closed subspace ℐ ⊂ 𝒜𝑇 is a closed ideal if and only if it is 𝑇-invariant. Clearly,
if ℐ is an ideal in 𝒜𝑇, then it is 𝑇-invariant. On the other hand, if a closed sub-
space ℐ ⊂ 𝒜𝑇 is 𝑇-invariant, then it is invariant under multiplication by any
polynomial in 𝑇. Let 𝑆 ∈ ℐ and 𝑅 ∈ 𝒜𝑇. If {𝑝𝑛} is a sequence of polynomials
such that {𝑝𝑛(𝑇)} converges in norm to 𝑅, then 𝑝𝑛(𝑇)𝑆 converges in norm to
𝑅𝑆. Thus, ℐ is a closed ideal.
Now clearly the map ℱ̃ maps closed subspaces of 𝒜𝑇 to closed subspaces of

𝐻, and since ℱ̃ is 𝑇-equivariant, it is an isomorphism of the lattice of closed
𝑇-invariant subpaces of 𝒜𝑇 onto the lattice of closed 𝑇-invariant subpaces of
𝐻. But as shown above, the closed 𝑇-invariant subspaces of 𝒜𝑇 are exactly the
closed ideals. □

We know from Proposition 2.16 that the gauge invariant ideals in the algebra
𝒜𝑇 generated by a unilateral weighted shift 𝑇 are all of the form< 𝑇𝑘 > .Given
an element 𝑆 ∈ 𝒜𝑇, one can ask when the ideal < 𝑆 > is of the form < 𝑇𝑘 >
for some 𝑘 ∈ ℕ.

Corollary 3.11. Let the weighted shift 𝑇 be as in Proposition 3.7, and let 𝑆 ∈ 𝒜𝑇.
Suppose �̂�(𝑗) = 0, 𝑗 = 1,… , 𝑘 − 1 and �̂�(𝑘) ≠ 0 for some 𝑘 > 1. Then the
closed ideal<𝑆> = <𝑇𝑘> if and only the closed subspace generated by the vectors
𝑆𝑒0, 𝑇𝑆𝑒0, 𝑇2𝑆𝑒0,… contains the basis vector 𝑒𝑘.

Proof. The condition �̂�(𝑗) = 0 for 𝑗 = 1,… , 𝑘 − 1 implies that <𝑆> ⊂ <𝑇𝑘>.
Indeed, there is a sequence of polynomials {𝑝𝑛} ⊂ <𝑇𝑘> converging in norm to
𝑆, hence 𝑆 ∈ <𝑇𝑘>, and so the closed ideal <𝑆> ⊂ <𝑇𝑘>. Applying the map
ℱ ∶ 𝒜𝑇 → 𝐻, it follows that 𝑆𝑒0 is contained in the closed invariant subspace
generated by the vector 𝑒𝑘.
By Proposition 3.10, in order for the two ideals to coincide, the corresponding

subspaces under themapℱmust coincide. Thus it is necesessary and sufficient
that the closed subspace generated by the vectors 𝑆𝑒0, 𝑇𝑆𝑒0, 𝑇2𝑆𝑒0,… equal the
closed subspace generated by 𝑒𝑘, 𝑇𝑒𝑘 𝑇2𝑒𝑘,… ,which is the subspace generated
by the basis vectors 𝑒𝑘, 𝑒𝑘+1, 𝑒𝑘+2,… . Thus, if the closed subspace generated by
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the vectors 𝑆𝑒0, 𝑇𝑆𝑒0, 𝑇2𝑆𝑒0,… contains the vector 𝑒𝑘, by invariance it contains
the vectors 𝑒𝑘+1, 𝑒𝑘+2, … , and hence the two closed subspaces coincide. □

Theweights {𝑎𝑛} satisfying the conditions of Proposition 3.7 satisfy lim𝑛 𝑎𝑛 =
0, so that the wighted shift 𝑇 is quasinilpotent, and hence the algebra𝒜𝑇 is rad-
ical. The consequences of the Lemmamentioned so far did not make direct use
of the fact that the elements of the algebra are all quasinilpotent. The following
Proposition gives a different sort of criterion as to when an element 𝑆 ∈ 𝒜𝑇
generates an ideal of the form<𝑇𝑘>.Here we do not need to assume the equiv-
alence of the operator norm to the norm 𝑆 ↦ ||𝑆𝑒0||2, rather we need only
assume that the weighted shift 𝑇 is quasinilpotent.
Recall ([13]) that a necessary and sufficient condition for a weighted shift

operator to be quasinilpotent is that lim𝑛 sup𝑘 |𝑎𝑘+1⋯ 𝑎𝑘+𝑛|
1
𝑛 = 0.

Proposition 3.12. Let {𝑎𝑛}𝑛≥0 be a sequence of nonzero weights such that the
unilateral weighted shift operator 𝑇𝑒𝑛 = 𝑎𝑛𝑒𝑛+1 is quasinilpotent, and hence the
algebra𝒜𝑇 is radical. Let 𝑆 ∈ 𝒜𝑇 be a nonzero element such that �̂�(𝑗) = 0, 𝑗 < 𝑘
and �̂�(𝑘) ≠ 0. If in the unital algebra𝒜𝑇, 𝑆 factors as 𝑆 = 𝑇𝑘𝑄 for some𝑄 ∈ 𝒜𝑇,
then <𝑆> = <𝑇𝑘>. In particular, if 𝑆 is a polynomial �̂�(𝑘)𝑇𝑘 +⋯ �̂�(𝑛)𝑇𝑛, then
<𝑆> = <𝑇𝑘>.

Proof. First observe that <𝑆 >⊂ <𝑇𝑘>. By Proposition 2.4 there is a sequence
of polynomials {𝑝𝑛(𝑇)} ⊂ <𝑇𝑘> converging to <𝑆>. Thus 𝑆 belongs to the
closed ideal <𝑇𝑘>, and hence <𝑆> ⊂ <𝑇𝑘>.
Now we prove the reverse containment. Since multiplying 𝑆 by a nonzero

constant does not change the ideal <𝑆>, we may assume that �̂�(𝑘) = 1, so that
if 𝑆 = 𝑇𝑘𝑄, then �̂�(0) = 1.Writing𝑄 = 𝐼−𝑅,we have that 𝐼−𝑅 is invertible in
𝒜𝑇 with inverse 𝐼+𝑅+𝑅2+⋯ . Indeed, since𝑅 ∈ 𝒜𝑇 which is radical, given any
𝑟 > 0, ||𝑇𝑛|| ≤ 𝑟𝑛 for 𝑛 ≥ 𝑁𝑟. Thus, 𝑆(𝐼 −𝑅)−1 = 𝑆+ 𝑆𝑅+ 𝑆𝑅2 +⋯ .Note that
while 𝑆(𝐼−𝑅)−1 is a product in the unital algebra, the sum 𝑆+𝑆𝑅+𝑆𝑅2+⋯ . is
computed in 𝒜𝑇, and equals 𝑇𝑘. It follows that 𝑇𝑘 ∈ <𝑆>, and hence <𝑇𝑘> ⊂
<𝑆>.
Finally observe that if 𝑆 is a polynomial in 𝑇, then the factorization 𝑆 = 𝑇𝑘𝑄

is realizable in 𝒜𝑇. □

In [14], Theorem 3, Shields characterizes the commutant of a weighted shift
in terms of formal power series. In particular, that implies that the commutant
is an integral domain. It follows that the smaller algebra 𝒜𝑇 is also an integral
domain, though in our case a non-unital integral domain. The existence of the
gauge action on 𝒜𝑇 allows us to deduce the same result.

Proposition 3.13. Let 𝑇 be a weighted shift with nonzero weight sequence as in
Lemma 3.1. Then𝒜𝑇 is a non-unital integral domain.
In particular, if 𝑇 is a quasinilpotent weighted shift, then the nonzero elements

of𝒜𝑇 are quasinilpotent and not nilpotent.
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Proof. Let 𝑅, 𝑆 ∈ 𝒜𝑇, be nonzero elements. From Lemma 2.3 we know that
the Fourier coefficients of 𝑅 are not all zero, and similarly for 𝑆. By Proposi-
tion 2.4 there is a sequence of polynomials {𝑝𝑛} (resp., {𝑞𝑛}) which are convex
combinations of Fejer polynomials, so that {𝑝𝑛(𝑇)} converges to𝑅 (resp., {𝑞𝑛(𝑇)}
converges to 𝑆). In particular, it follows from the Fejer property that 𝑝𝑛(𝑘) ≠ 0
implies �̂�(𝑘) ≠ 0 (resp., 𝑞𝑛(𝑘) ≠ 0 imples �̂�(𝑘) ≠ 0). Furthermore, for all
𝑘, 𝑝𝑛(𝑘)→ �̂�(𝑘) (resp., 𝑞𝑛(𝑘)→ �̂�(𝑘)) as 𝑛 →∞.
Let

𝑗0 = min{𝑗 ∶ �̂�(𝑗) ≠ 0} and 𝑘0 = min{𝑘 ∶ �̂�(𝑘) ≠ 0}.
Now {𝑝𝑛(𝑇)𝑞𝑛(𝑇)} converges in norm to 𝑅𝑆, and so {𝑝𝑛𝑞𝑛(𝓁)} converges to

𝑅𝑆(𝓁) for all 𝓁 ∈ ℕ. If 𝓁0 = min{𝓁 ∶ 𝑝𝑛𝑞𝑛(𝓁) ≠ 0 for 𝑛 sufficiently large} then
𝓁0 = 𝑗0 + 𝑘0 and 𝑝𝑛𝑞𝑛(𝓁0) = 𝑝𝑛(𝑗0)𝑞𝑛(𝑘0). Hence

𝑅𝑆(𝓁0) = lim
𝑛
𝑝𝑛(𝑗0)𝑞𝑛(𝑘0) ≠ 0

so that 𝑅𝑆 ≠ 0.
For the second statement, if 𝑇 is quasinilpotent, then the elements of𝒜𝑇, are

quasinilpotnt, and the nonzero elements are not nilpotent as 𝒜𝑇 is an integral
domain. □

4. The Volterra operator algebra

Let𝑉 be the Volterra operator on 𝐿2[0, 1], given by𝑉𝜉(𝑥) = ∫ 𝑥0 𝜉(𝑡)𝑑𝑡. Then
we know ([8]) that for 𝑛 ≥ 0,

𝑉𝑛+1𝜉(𝑥) = 1
𝑛! ∫

𝑥

0
(𝑥 − 𝑡)𝑛𝜉(𝑡)𝑑𝑡 (2)

Let 𝑓 be any 𝐿2[0, 1] function and let𝑉𝑓 denote the operator on 𝐿2[0, 1] given
by

𝑉𝑓𝜉(𝑥) = ∫
𝑥

0
𝑓(𝑥 − 𝑡)𝜉(𝑡)𝑑𝑡

Observe this is bounded, since

|𝑉𝑓𝜉(𝑥)| = | ∫
𝑥

0
𝑓(𝑥 − 𝑡)𝜉(𝑡)𝑑𝑡|

≤ ∫
𝑥

0
|𝑓(𝑥 − 𝑡)| |𝜉(𝑡)|𝑑𝑡

≤ [∫
𝑥

0
|𝑓(𝑥 − 𝑡)|2 𝑑𝑡]

1
2 [∫

𝑥

0
|𝜉(𝑡)2|𝑑𝑡]

1
2

≤ ||𝑓||2||𝜉||2
Now, since any 𝐿2[0, 1] function 𝑓 is the 𝐿2 limit of a sequence of polynomi-

als, {𝑝𝑛}, we have that

|(𝑉𝑓 − 𝑉𝑝𝑛)𝜉(𝑥)| ≤ ||𝑓 − 𝑝𝑛||2||𝜉||2
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so that
||𝑉𝑓 − 𝑉𝑝𝑛 ||→ 0 (3)

Let𝒜𝑉 denote the Volterra operator algebra, by which wemean the operator
norm closure of the polynomials 𝑝 in𝑉 with 𝑝(0) = 0.We have just shown that
𝑉𝑓 ∈ 𝒜𝑉 if 𝑓 ∈ 𝐿2[0, 1].We would like to characterize arbitrary 𝑇 ∈ 𝒜𝑉 .

Theorem 4.1. (1) Let 𝑓 ∈ 𝐿1[0, 1]. Then for 𝜌 ∈ 𝐿2[0, 1], the function
(𝑉𝑓)𝜌(𝑥) ∶= ∫ 𝑥0 𝑓(𝑥 − 𝑡)𝜌(𝑡)𝑑𝑡 ∈ 𝐿2[0, 1], and

||(𝑉𝑓)𝜌||2 ≤ ||𝑓||1 ||𝜌||2 and hence ||𝑉𝑓|| ≤ ||𝑓||1

(2) 𝑓 ∈ 𝐿1[0, 1]↦ ||𝑉𝑓|| is a norm on 𝐿1[0, 1].
(3) Let𝑇 ∈ 𝒜𝑉 and {𝑓𝑛}a sequence of functions in𝐿1[0, 1] such that𝑉𝑓𝑛 → 𝑇

in𝒜𝑉 . If 0 < 𝑥0 < 1, then the sequence {∫ 𝑥00 |𝑓𝑛(𝑥)|𝑑𝑥} is bounded.
(4) Let 0 < 𝑥0 < 1 and let 𝑆𝑥0 = {𝑓 ∶ 𝑓 ∈ 𝐿1[0, 1], 𝑓(𝑥) = 0 for 𝑥0 < 𝑥 ≤ 1}.

Then on 𝑆𝑥0 the operator norm 𝑓 ↦ ||𝑉𝑓|| and the 𝐿1-norm 𝑓 ↦ ∫ 10 |𝑓|
are equivalent.

(5) Let 𝑇 ∈ 𝒜𝑉 . Then there is a measurable function 𝑓 on [0, 1], integrable
over compact subsets of [0, 1), such that 𝑇 = 𝑉𝑓.

(6) If 𝑓, 𝑔 are measurable functions on [0, 1] such that 𝑉𝑓, 𝑉𝑔 ∈ 𝒜𝑉 and
𝛼 ∈ ℂ, then 𝑉𝛼𝑓 = 𝛼𝑉𝑓 and 𝑉𝑓+𝑔 = 𝑉𝑓 + 𝑉𝑔.

Proof. Let 𝜌 ∈ 𝐿2[0, 1] and 𝑓 ∈ 𝐿1[0, 1]. For 𝑥 ∈ [0, 1] define the function 𝑓𝑥
by

𝑓𝑥(𝑡) = {
𝑓(𝑥 − 𝑡) if 0 ≤ 𝑡 ≤ 𝑥
0 if 𝑥 < 𝑡 ≤ 1

|(𝑉𝑓)𝜌(𝑥)| = | ∫
𝑥

0
𝑓(𝑥 − 𝑡)𝜌(𝑡)𝑑𝑡|

≤ ∫
𝑥

0
|𝑓(𝑥 − 𝑡)| |𝜌(𝑡)|𝑑𝑡

≤ ∫
1

0
(
√
|𝑓𝑥(𝑡)|) (

√
|𝑓𝑥(𝑡)||𝜌(𝑡)|)𝑑𝑡

≤ (∫
1

0
|𝑓𝑥(𝑡)|𝑑𝑡)

1
2 (∫

1

0
|𝑓𝑥(𝑡)| |𝜌(𝑡)|2 𝑑𝑡)

1
2

≤ ||𝑓𝑥||
1
2
1 (∫

1

0
|𝑓𝑥(𝑡)| |𝜌(𝑡)|2 𝑑𝑡)

1
2

≤ ||𝑓||
1
2
1 (∫

1

0
|𝑓𝑥(𝑡)| |𝜌(𝑡)|2 𝑑𝑡)

1
2
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Thus

∫
1

0
|(𝑉𝑓)𝜌(𝑥)|2 𝑑𝑥 ≤ ||𝑓||1 ∫

1

0
∫

1

0
|𝑓𝑥(𝑡)| |𝜌(𝑡)|2 𝑑𝑡 𝑑𝑥

≤ ||𝑓||1 ∫
1

0
(∫

1

0
|𝑓𝑥(𝑡)|𝑑𝑥)|𝜌(𝑡)|2 𝑑𝑡

≤ ||𝑓||1||𝑓||1|||𝜌|2||1
≤ (||𝑓||1 ||𝜌||2)2

Thus, (𝑉𝑓)𝜌 ∈ 𝐿2[0, 1] and ||(𝑉𝑓)𝜌||2 ≤ ||𝑓||1 ||𝜌||2. Thus ||𝑉𝑓|| ≤ ||𝑓||1.
To prove (2), note that by definition,

||𝑉𝑓|| = sup{| < (𝑉𝑓)𝜌, 𝜉 > | ∶ ||𝜌||2 ≤ 1, ||𝜉||2 ≤ 1}.

For 𝑓 ∈ 𝐿1[0, 1], define

𝜌(𝑡) = sgn(𝑓(1 − 𝑡)) ∶=
⎧

⎨
⎩

𝑓(1−𝑡)
|𝑓(1−𝑡)|

if 𝑓(1 − 𝑡) ≠ 0

0 otherwise

and let 𝐹(𝑥) = ∫ 𝑥0 𝑓(𝑥 − 𝑡)𝜌(𝑡)𝑑𝑡. Then 𝐹 is continuous, and 𝐹(1) = ||𝑓||1.
Now let 𝜉(𝑥) = sgn(𝐹(𝑥)). Since ||𝜌||2, ||𝜉||2 ≤ 1, we have

||𝑉𝑓|| ≥ | < (𝑉𝑓)𝜌, 𝜉 > | = ∫
1

0
|𝐹(𝑥)|𝑑𝑥 > 0.

For (3), if the sequence of integrals is not bounded, then for all 𝑥0 ≤ 𝑥 ≤ 1,
the values of 𝑇(1)(𝑥) are either ±∞ or undefined. But that contradicts that
𝑇(1) ∈ 𝐿2[0, 1].
For (4), if the space 𝑆𝑥0 is complete in the operator norm 𝑓 ↦ ||𝑉𝑓||, then

since by part (1) ||𝑉𝑓|| ≤ ||𝑓||1, it follows from a Corollary of the Open Map-
ping Theorem that the two norms are equivalent. Suppose that 𝑆𝑥0 is not com-
plete in the operator norm. Then there is an element 𝑇 ∈ 𝒜𝑉 , ||𝑇|| = 1, and a
sequence {𝑓𝑛} ⊂ 𝑆𝑥0 so that {𝑉𝑓𝑛 } converges to 𝑇 with ∫

𝑥0
0 |𝑓𝑛| unbounded. But

that contradicts (3).
For (5), let 0 < 𝑥0 < 1 and define the projection 𝑃𝑥0 on 𝐿

2[0, 1] by

𝑃𝑥0𝜌(𝑡) = {
𝜌(𝑡) if 0 ≤ 𝑡 ≤ 𝑥0
0 otherwise

For 𝑓 ∈ 𝐿1[0, 1], let 𝑓𝑥0 ∈ 𝑆𝑥0 be defined by 𝑓𝑥0(𝑡) = {
𝑓(𝑡) if 0 ≤ 𝑡 ≤ 𝑥0
0 otherwise

Observe that
𝑃𝑥0𝑉𝑓𝑃𝑥0 = 𝑃𝑥0𝑉𝑓𝑥0𝑃𝑥0
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Also note that 𝑓 ∈ 𝑆𝑥0 ↦ ||𝑃𝑥0𝑉𝑓𝑃𝑥0|| is a norm on 𝑆𝑥0 , weaker than the oper-
ator norm. That it is a norm follows from (2), with the interval [0, 1] replaced
by [0, 𝑥0].
Let 𝑇 ∈ 𝒜𝑉 and {𝑓𝑛} a sequence of functions in 𝐿1[0, 1] such that {𝑉𝑓𝑛 } con-

verges to 𝑇. Then

{𝑃𝑥0𝑉𝑓𝑛𝑃𝑥0 = 𝑃𝑥0𝑉𝑓𝑛,𝑥0𝑃𝑥0} converges to 𝑃𝑥0𝑇𝑃𝑥0

In other words, the sequence {𝑉𝑓𝑛 ,𝑥0} converges in the norm defined in the pre-
vious paragraph. Since by (3) the integrals ∫ 𝑥00 |𝑓𝑛| are bounded, the limit of
the sequence {𝑓𝑛,𝑥0} with respect to this norm belongs to 𝑆𝑥0 . Thus, the limit of
{𝑉𝑓𝑛 ,𝑥0} has the form 𝑉𝑔 for some 𝑔 ∈ 𝑆𝑥0 .
Now if 𝑥0 < 𝑦 < 1, then {𝑓𝑛,𝑦} converges with respect to the norm 𝑞 ∈ 𝑆𝑦 ↦

||𝑃𝑦𝑉𝑞𝑃𝑦|| to a function ℎ. In other words, {𝑉𝑓𝑛,𝑦 } converges in this norm to an
operator𝑉ℎ for someℎ ∈ 𝑆𝑦, and furthermore, the restriction ofℎ to the interval
[0, 𝑥0] coincides with 𝑔. Thus, if 𝑥0 < 𝑥1 < 𝑥2 <⋯ < 1 with lim𝑛 𝑥𝑛 = 1, then
we obtain a sequence of functions 𝑓𝑥𝑛 such that 𝑓𝑥𝑛+1 restricted to [0, 𝑥𝑛] equals
𝑓𝑥𝑛 on that interval. Thus we obtain a function 𝑓,measurable on [0, 1], whose
restriction to [0, 𝑥𝑛] is equals the restriction of 𝑓𝑥𝑛 to [0, 𝑥𝑛]. Finally, the fact
that 𝑓 is integrable over compact subsets of [0, 1) follows from the fact that all
of the 𝑓𝑥𝑛 are integrable.
To verify (6), let {𝑝𝑛}, {𝑞𝑛} be sequences of polynomials such that {𝑉𝑝𝑛 }, {𝑉𝑞𝑛 }

converge to 𝑉𝑓, 𝑉𝑔 respectively. Since 𝑉𝑝𝑛+𝑞𝑛 = 𝑉𝑝𝑛 + 𝑉𝑞𝑛 , and 𝑉𝛼𝑝𝑛 = 𝛼𝑉𝑝𝑛 ,
the conclusion follows. □

In [9] G. Little and J. B. Reade prove an asympotic estimate for the norm of
powers of the Volterra operator 𝑉 ∶

lim
𝑛
𝑛!||𝑉𝑛|| = 1

2 .

This result can be interpreted as an asymptotic estimate of the ratio of the
operator norm to the 𝐿1-norm on the set of functions 𝑓𝑛(𝑥) = 𝑥𝑛. Indeed, since
𝑛!𝑉𝑛+1 = 𝑉𝑓𝑛 , we have

||𝑉𝑓𝑛 ||
||𝑓𝑛||1

= 𝑛!||𝑉𝑛+1||
1

𝑛+1

= (𝑛 + 1)!||𝑉𝑛+1||→ 1
2

as 𝑛 →∞. Since the set of functions {𝑓𝑛 ∶ 𝑛 = 0, 1,… } spans a dense subspace
of the operator algebra𝒜𝑉 , this result seems to suggest that the two normsmay
be equivalent.
However, it turns out that the two norms are not equivalent, as the following

example shows.
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Example 4.2. Let 𝒮 be the space of Lebesgue measurable functions 𝑓 on [0, 1]
such that, for every 0 < 𝑥 < 1, 𝑓|[0,𝑥] ∈ 𝐿2[0, 𝑥]. For 𝑓 ∈ 𝒮, define

𝜌𝑥(𝑡) =
⎧

⎨
⎩

1
𝑐(𝑥)

𝑓(𝑥 − 𝑡), if 𝑐(𝑥) ≠ 0 and 𝑡 ≤ 𝑥

0, otherwise

where 𝑐(𝑥) = [∫ 𝑥0 |𝑓(𝑥 − 𝑡)|2 𝑑𝑡]
1
2 . Then, clearly, for any function 𝜌 ∈ 𝐿2[0, 1]

of unit norm, | ∫ 𝑥0 𝑓(𝑥 − 𝑡)𝜌(𝑡)𝑑𝑡| ≤ ∫ 𝑥0 𝑓(𝑥 − 𝑡)𝜌𝑥(𝑡)𝑑𝑡.
Thus, if 𝐺(𝑥) = (∫ 𝑥0 𝑓(𝑥− 𝑡)𝜌𝑥(𝑡)𝑑𝑡)2, and if 𝑓 is not zero a.e. in the interval

[0, 𝑥], we have

𝐺(𝑥) = 1
𝑐(𝑥)2

(∫
𝑥

0
|𝑓(𝑥 − 𝑡)|2 𝑑𝑡)2

= ∫
𝑥

0
|𝑓(𝑥 − 𝑡)|2 𝑑𝑡

Hence ||𝑉𝑓|| ≤ [∫ 10 𝐺(𝑥)𝑑𝑥]
1
2 .

Let 𝒮1 = {𝑓 ∈ 𝒮 ∶ ∫ 10 ∫
𝑥
0 |𝑓|2 <∞}, and for

𝑓 ∈ 𝒮1, set ||𝑓||♯ = [∫
1

0
∫

𝑥

0
|𝑓|2]

1
2 .

If the kernel 𝑘𝑓 is defined by

𝑘𝑓(𝑥, 𝑡) = {
𝑓(𝑥 − 𝑡) if 𝑡 ≤ 𝑥
0 if 𝑡 > 𝑥

then the condition 𝑓 ∈ 𝒮1 is equivalent to 𝑘𝑓 ∈ 𝐿2([0, 1] × [0, 1]) and in that
case ||𝑓||♯ = ||𝑘𝑓||2. Thus ||𝑓||♯ is the Hilbert-Schmidt norm of the operator
𝑉𝑓.
To show that𝒜𝑉 properly contains 𝐿1[0, 1] it suffices to exhibit a function 𝑓

with ||𝑓||♯ <∞ but 𝑓 ∉ 𝐿1[0, 1].
Now let 𝑓 =

∑∞
𝑛=1

2𝑛

𝑛
𝜒[1−2−(𝑛−1),1−2−𝑛). Then ∫

1
0 𝑓 =

∑∞
𝑛=1

1
𝑛
diverges, so 𝑓 ∉

𝐿1[0, 1]. However, ||𝑓||2♯ = ∫ 10 𝐺 is finite. To see this, view the area under the
graph of 𝐺 as divided into horizontal strips. The portion of the area between
𝐺(1 − 2−(𝑛−1)) and 𝐺(1 − 2−𝑛) is 3

2
⋅ 1
𝑛2
. Thus,

∫
1

0
𝐺 =

∞∑

𝑛=1

3
2 ⋅

1
𝑛2

= 𝜋2∕4.

It follows that the operator norm ||𝑉𝑓|| is finite, and in fact ||𝑉𝑓|| ≤ 𝜋∕2.
If 𝑓𝑛 ∶= 𝑓𝜒[0,1−2−𝑛), then 𝑓𝑛 ∈ 𝐿1[0, 1] and a calculation similar to the above
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shows that ||𝑉𝑓−𝑉𝑓𝑛 ||→ 0 as 𝑛 →∞. Since𝑉𝑓𝑛 ∈ 𝒜𝑉 and𝒜𝑉 is by definition
complete, 𝑉𝑓 ∈ 𝒜𝑉 .
Thus, 𝑉𝑓 ∈ 𝒜𝑉 , but 𝑓 ∉ 𝐿1[0, 1].

Remark 4.3. There is no simple relationship between theHilbert Schmidt norm
of 𝑉𝑓 and ||𝑓||1.We have just seen that the Hilbert-Schmidt norm of 𝑉𝑓 can be
finite and 𝑓 not in 𝐿1[0, 1]. On the other hand, if 𝑓 ∈ 𝐿1[0, 1] is such that, for
some 0 < 𝑥 < 1, 𝑓|[0,𝑥] ∉ 𝐿2[0, 𝑥], then the 𝐿1 norm of 𝑓 is finite but the
Hilbert Schmidt norm of 𝑉𝑓 is not.

Example 4.4. If 𝑓 is measurable on [0, 1], the condition 𝑘𝑓 ∈ 𝐿1([0, 1]2) does
not imply 𝑉𝑓 ∈ 𝒜𝑉 . Let 𝑓(𝑥) =

1

(1−𝑥)
3
2
. Then

||𝑘𝑓||1 = ∫
1

0
(∫

𝑥

0
𝑓(𝑡)𝑑𝑡)𝑑𝑥 <∞

To show𝑉𝑓 is unbounded, it is enough to find 𝜌 ∈ 𝐿2[0, 1] such that (𝑉𝑓)𝜌 ∉
𝐿2[0, 1]. Take 𝜌 to be the constant 1. Then

||(𝑉𝑓)𝜌||22 = ∫
1

0
| ∫

𝑥

0
𝑓(𝑡)𝑑𝑡|2 𝑑𝑥 diverges.

This shows that that the conditions of Theorem 4.1 part (5) on a measurable
function 𝑓 to satisfy 𝑉𝑓 ∈ 𝒜𝑉 are necessary but not sufficient.

Remark 4.5. Let 𝑓 be measurable on [0, 1] and integrable over compact subsets
of [0, 1). One would like to have an ‘easily verifiable’ necessary and sufficient
condition for 𝑉𝑓 to belong to 𝒜𝑉 . One might conjecture that such a condition
depends on the rate of growth of {∫ 𝑥0 |𝑓|} as 𝑥 ↑ 1. On the other hand, could it
happen, for some 𝑓, that 𝑉𝑓 ∈ 𝒜𝑉 , but 𝑉|𝑓| ∉ 𝒜𝑉?

4.1. Operator algebraic properties of𝒜𝑽 . We turn now froma discussion of
the norm of operators in 𝒜𝑉 to its properties as an algebra. Since the Volterra
operator is quasinilpotent, the algebra 𝒜𝑉 is a commutative radical operator
algebra. From the example of the weighted shift, we know that radical operator
algebras 𝒜𝑇 can admit a gauge action. Does the same hold for 𝒜𝑉?

Proposition 4.6. 𝒜𝑉 does not admit a gauge action.

Proof. We will make use of the formula for 𝑉𝑛+1 (cf equation 2).
Now by the Muntz-Szasz Theorem, the function 𝑔(𝑥) = 𝑥 can be uniformly

approximated in [0, 1] by polynomials in {𝑥2, 𝑥3,… }. Thus given 𝜖 > 0, we can
find a polynomial 𝑝(𝑥) = 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 satisfying ||𝑔 − 𝑝||∞ =
sup0≤𝑥≤1 |𝑥 − 𝑝(𝑥)| < 𝜖.
Let 𝜌 ∈ 𝐿2[0, 1] with ||𝜌||2 = 1. Then

||𝑉2(𝜌) −
𝑛∑

𝑗=2
𝑗!𝑎𝑗𝑉𝑗+1(𝜌)||2 = || ∫

𝑥

0
[(𝑥 − 𝑡) − 𝑝(𝑥 − 𝑡)]𝜌(𝑡)𝑑𝑡||2
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≤ || ∫
𝑥

0
|(𝑥 − 𝑡) − 𝑝(𝑥 − 𝑡)||𝜌(𝑡)|𝑑𝑡||2

≤ || ∫
1

0
𝜖|𝜌(𝑡)|𝑑𝑡||2

≤ 𝜖

Since this holds for all 𝜌 ∈ 𝐿2[0, 1] of norm 1, it follows that

||𝑉2 −
𝑛∑

𝑗=2
𝑗!𝑎𝑗𝑉𝑗+1|| ≤ 𝜖.

Nowwe assume that the operator algebra𝒜𝑉 admits a gauge action, 𝛾. Since
by definition the Fourier coefficient 𝑉2(2) = 1, and ˆ(

∑𝑛
𝑗=2 𝑗!𝑎𝑗𝑉

𝑗+1)(2) = 0,
and since the operation 𝑆 ∈ 𝒜𝑉 ↦ �̂�(2) = ∫𝕋 𝛾𝜆(𝑆)𝜆

−2 𝑑|𝜆| is norm-decreasing,
it follows that

||𝑉2|| = || ∫
𝕋
(𝛾𝜆(𝑉2 −

𝑛∑

𝑗=2
𝑗!𝑎𝑗𝑉𝑗+1)𝜆−2 𝑑|𝜆| || ≤ 𝜖

which is absurd, since 𝜖 > 0 was arbitrary.
Thus 𝒜𝑉 does not admit a gauge action. □

If 𝑇 is a quasinilpotent weighted shift, then the fact that the lattice Lat𝑇 is
discrete and Lat𝑉 is continuous tells us that the two operators are not unitarily
equivalent. But to show that the operator algebras 𝒜𝑇, 𝒜𝑉 are not isomorphic
requires another argument.

Corollary 4.7. Let𝑇 be aquasinilpotentweighted shift. Then the radical operator
algebras𝒜𝑇, 𝒜𝑉 are not completely isometrically isomorphic.

Proof. Since𝒜𝑇 admits a gauge action, and𝒜𝑉 does not, they cannot be com-
pletely isometrically isomorphic. □

Define a ‘convolution’ on elements of 𝒜𝑉 as follows: if 𝑓, 𝑔 are measurable
functions on [0, 1] such that 𝑉𝑓, 𝑉𝑔 ∈ 𝒜𝑉 , set

𝑓 ∗ 𝑔(𝑥) = ∫
𝑥

0
𝑓(𝑥 − 𝑡)𝑔(𝑡)𝑑𝑡 (4)

First observe that since the restrictions of𝑓, 𝑔 to the interval [0, 𝑥] are integrable
if 𝑥 < 1, it follows that 𝑓 ∗ 𝑔 is well defined. Furthermore, a calculation shows
that, for 𝜌 ∈ 𝐿2[0, 1],

𝑉𝑓∗𝑔(𝜌) = 𝑉𝑓(𝑉𝑔(𝜌)) and hence 𝑉𝑓∗𝑔 = 𝑉𝑓𝑉𝑔. (5)

It is well known that the closed invariant subspaces of the Volterra operator
𝑉 have the form {𝜉 ∈ 𝐿2[0, 1] ∶ 𝜉(𝑡) = 0 for 0 ≤ 𝑡 ≤ 𝑥0}, for 0 < 𝑥0 < 1. ([2],
Theorem 5.5. Note that their notation differs from our: their𝑉 is𝑉∗ here.) The
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same holds for the operator algebra, 𝒜𝑉 . This yields some information about
the closed ideals of 𝒜𝑉 .

Proposition 4.8. Let 0 < 𝑥0 < 1. The subspace ℐ𝑥0 = {𝑉𝑓 ∶ 𝑓(𝑡) = 0, for 0 ≤
𝑡 ≤ 𝑥0} is a closed ideal of𝒜𝑉 .

Proof. Let 𝑉𝑔 ∈ ℐ𝑥0 and 𝑉𝑓 ∈ 𝒜𝑉 . Since 𝑉𝑓𝑉𝑔 = 𝑉𝑓∗𝑔, and since we have
𝑓 ∗ 𝑔(𝑥) = ∫ 𝑥0 𝑓(𝑥 − 𝑡)𝑔(𝑡), it is clear that if 𝑥 ≤ 𝑥0 then 𝑓 ∗ 𝑔(𝑥) = 0. Thus,
ℐ𝑥0 is an ideal.
The proof that ℐ𝑥0 is a closed ideal is similar to the proof of statement (2) of

Theorem 4.1. Suppose 𝑉𝑓 ∈ 𝒜𝑉 , 𝑉𝑓 ∉ ℐ𝑥0 . This implies that the restriction of
𝑓 to the interval [0, 𝑥0] is not zero.
Let 𝐹(𝑥) = ∫ 𝑥0 𝑓(𝑥 − 𝑡)𝜌(𝑡)𝑑𝑡, where

𝜌(𝑡) = {
𝑠𝑔𝑛(𝑓(𝑥0 − 𝑡)), if 𝑡 ≤ 𝑥0
0, if 𝑡 > 𝑥0

Then 𝐹 is continuous, and 𝐹(𝑥0) = ∫ 𝑥00 |𝑓(𝑥0 − 𝑡)|𝑑𝑡 > 0. Let

𝜉(𝑡) = {
𝑠𝑔𝑛(𝐹(𝑥)), if 𝑥 ≤ 𝑥0
0, if 𝑥 > 𝑥0

Now let 𝑉𝑔 ∈ ℐ𝑥0 be arbitrary. Then

< (𝑉𝑓 − 𝑉𝑔)(𝜌), 𝜉 >= ∫
𝑥0

0
|𝐹(𝑥)|𝑑𝑥 is a positive constant.

It follows that no sequence {𝑉𝑔𝑛 } ⊂ ℐ𝑥0 converges to 𝑉𝑓. Hence ℐ𝑥0 is a closed
ideal. □

Remark 4.9. In Proposition 3.10 we established a one-to-one correspondence
between closed ideals of the operator algebra 𝒜𝑇 of the weighted shift 𝑇, and
invariant subspaces. If such a relationshipwere to exist for theVolterra operator
algebra, then we would have a complete description of the closed ideals of𝒜𝑉 .
Note that if an operator algebra 𝒜 is completely isometrically represented

on a Hilbert space 𝐻 with cyclic vector 𝜉0, then given an invariant subpace 𝐻1
there is a closed ideal ℐ by ℐ = {𝑎 ∈ 𝒜 ∶ 𝑎𝜉0 ∈ 𝐻1}. In the other direction,
there is no assurance that if ℐ is a closed ideal of 𝒜, that the subspace ℐ ⋅ 𝜉0 is
closed in𝐻.

Lemma 4.10. Let 𝛼, 𝛽 ∈ (0, 1) and suppose 𝑓, 𝑔 are measurable functions on
[0, 1] such that 𝑉𝑓, 𝑉𝑔 ∈ 𝒜𝑉 , and

(1) If 𝑓 is supported on [𝛼, 1] and 𝑔 is supported on [𝛽, 1], then 𝑓 ∗ 𝑔 is sup-
ported on [(𝛼 + 𝛽), 1] if 𝛼 + 𝛽 < 1, and 𝑓 ∗ 𝑔 = 0 if 𝛼 + 𝛽 ≥ 1.

(2) In particular, if 𝛽 = 1 − 𝛼, then 𝑓 ∗ 𝑔 = 0.

Proof. The proof is a straightforward computation, making use of the convo-
lution formula, equation 4. □
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Corollary 4.11. If 𝑓 is a measurable function on [0, 1] such that 𝑉𝑓 ∈ 𝒜𝑉 and
𝑓 is supported on [𝛼, 1], then (𝑉𝑓)𝑛 = 0 if 𝑛𝛼 ≥ 1.

Proof. This follows from repeated application of Lemma 4.10 □

The following result appears as Proposition 2.13 of [11]. It is proved there
using methods entirely different from those in this paper.

Corollary 4.12. The nilpotent elements in the Volterra operator algebra 𝒜𝑉 are
dense.

Proof. Let 𝑉𝑓 ∈ 𝒜𝑉 . Since the elements of the form 𝑉𝑔, 𝑔 ∈ 𝐿1[0, 1] are dense
in 𝒜𝑉 , given 𝜖 > 0, let 𝑔 ∈ 𝐿1[0, 1] satisfy ||𝑉𝑓 − 𝑉𝑔|| < 𝜖. There is 𝛿 > 0 such
that if 𝐸 ⊂ [0, 1] is measurable with 𝜇(𝐸) ≤ 𝛿, then ∫𝐸 |𝑔| ≤ 𝜖.
Define ℎ ∈ 𝐿1[0, 1] by

ℎ(𝑥) = {
0, if 0 ≤ 𝑥 < 𝛿
𝑔(𝑥), if 𝛿 ≤ 𝑥 ≤ 1

Then
||𝑉𝑓 − 𝑉ℎ|| ≤ ||𝑉𝑓 − 𝑉𝑔|| + ||𝑉𝑔 − 𝑉ℎ|| < 𝜖 + ||𝑔 − ℎ||1 < 2𝜖

Observe that the second inequality above makes use of part (1) of Theo-
rem 4.1, since

||𝑉𝑔 − 𝑉ℎ|| = ||𝑉𝑔−ℎ|| ≤ ||𝑔 − ℎ||1
Let 𝑛 ∈ ℕ satisfy 𝑛𝛿 ≥ 1. It follows from Corollary4.11 that 𝑉ℎ is nilpotent

in 𝒜𝑉 . □

Remark 4.13. 𝐿1[0, 1] is a Banach algebra under the convolution 𝑓 ∗ 𝑔(𝑥) =
∫ 𝑥0 𝑓(𝑥− 𝑡)𝑔(𝑡)𝑑𝑡.Hence this Banach algebra is dense in𝒜𝑉 , and the convolu-
tion is the restriction of that in 𝒜𝑉 to 𝐿1.
One version of the Titschmarsh convolution is: if 𝑓, 𝑔 ∈ 𝐿1[0, 1] and 𝑓 ∗ 𝑔 =

0 then there is an 𝛼 ∈ [0, 1] such that supp𝑓 ⊂ [𝛼, 1] and supp𝑔 ⊂ [1 − 𝛼, 1].
([2] Problem 5.4 and [8] Theorem 10, Sec. 38.3)
The next result shows that the Titschmarsh convolution theorem also holds

in the larger algebra𝒜𝑉 . In particular, for real-valued functions the converse of
statement (2) of Lemma 4.10 holds.

Corollary 4.14. Let 𝑓, 𝑔 be real-valued measurable functions on [0, 1] such that
𝑉𝑓, 𝑉𝑔 ∈ 𝒜𝑉 . Then 𝑉𝑓∗𝑔 = 0 if and only if there exists 𝛼 ∈ [0, 1] such that
supp𝑓 ⊂ [𝛼, 1] and supp𝑔 ⊂ [1 − 𝛼, 1].

Proof. One direction follows from Lemma 4.10.
If 𝑉𝑓∗𝑔 = 𝑉𝑓𝑉𝑔 = 0, then 𝑉(𝑉𝑓𝑉𝑔) = 𝑉𝐹𝑉𝑔 = 0 where 𝐹(𝑥) = ∫ 𝑥0 𝑓(𝑡)𝑑𝑡.

It follows that 𝑉𝐹𝑉𝑔𝜉 = 0 for all real-valued 𝜉 ∈ 𝐿2[0, 1]. Thus ∫ 𝑥0 𝐹(𝑥 −
𝑡)(𝑉𝑔𝜉)(𝑡)𝑑𝑡 = 0 for a.a. 𝑥 ∈ [0, 1].
As 𝐹 = 𝑉𝑓(1) and 𝑉𝑔𝜉 are both in 𝐿2[0, 1] ⊂ 𝐿1[0, 1], it follows from the

classical Titschmarch theorem that there exists 𝛼 ∈ [0, 1] such that 𝐹 = 0 in
[0, 𝛼] and ∫ 𝑥0 𝑔(𝑥 − 𝑡)𝜉(𝑡)𝑑𝑡 = 0 for 𝑥 ∈ [0, 1 − 𝛼]. Thus 𝑓 = 0 in [0, 𝛼].
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Suppose 𝑔 ≠ 0 in [0, 1 − 𝛼]. Thus for some 𝑥0 ∈ [0, 1 − 𝛼], ∫ 𝑥00 |𝑔|𝑑𝑡 ≠ 0.
Define 𝜉(𝑡) = 𝑠𝑔𝑛(𝑔(𝑥0 − 𝑡)). Then ∫ 𝑥0 𝑔(𝑥 − 𝑡)𝜉(𝑡)𝑑𝑡 is a nonzero continuous
function in the interval [0, 1 − 𝛼], a contradiction. □

The author would like to thank Chris Phillips for his comments on an earlier
version of this paper.
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