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Optimal connectivity results for spheres in
the curve graph of low and medium

complexity surfaces

Helena Heinonen, Roshan Klein-Seetharaman
andMinghan Sun

Abstract. Answering a question of Wright, we show that spheres of any
radius are always connected in the curve graph of surfaces Σ2,0,Σ1,3, and Σ0,6,
and the union of two consecutive spheres is always connected for Σ0,5 and
Σ1,2. We also classify the connected components of spheres of radius 2 in the
curve graph of Σ0,5 and Σ1,2.
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1. Introduction
1.1. Main results. Let Σ = Σ𝑔,𝑛 be a connected surface with genus 𝑔 and 𝑛
punctures. We define the complexity of Σ to be 𝜉(Σ) = 3𝑔 − 3 + 𝑛. We say Σ is

∙ exceptional if 𝜉(Σ) = 1, i.e. (𝑔, 𝑛) ∈ {(1, 1), (0, 4)},
∙ low complexity if 𝜉(Σ) = 2, i.e. (𝑔, 𝑛) ∈ {(1, 2), (0, 5)},
∙ medium complexity if 𝜉(Σ) = 3, i.e. (𝑔, 𝑛) ∈ {(2, 0), (1, 3), (0, 6)},
∙ high complexity if 𝜉(Σ) ≥ 4.

We now define the curve graph of a surface Σ𝑔,𝑛.
Definition 1.1. Suppose𝛼 is a simple closed curve on a surfaceΣ𝑔,𝑛. 𝛼 is said to
be an essential curve if it does not bound a disk (i.e. it does not bound something
homeomorphic to the unit disk in ℝ2).

Received November 28, 2023.
2010Mathematics Subject Classification. 57M15, 57M50.
Key words and phrases. Curve graph, connectivity, spheres.
All authors are funded by NSF grant DMS-2142712.

ISSN 1076-9803/2024

351

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm


352 HELENA HEINONEN, ROSHAN KLEIN-SEETHARAMAN ANDMINGHAN SUN

Definition 1.2. Suppose 𝛼 is a simple closed curve on a surface Σ𝑔,𝑛. 𝛼 is said
to be an non-peripheral curve if it does not bound a once-punctured disk.

Definition 1.3. For a surface Σ𝑔,𝑛 with positive complexity, we define its curve
graph, denoted 𝒞(Σ𝑔,𝑛), as follows. The vertex set of 𝒞(Σ𝑔,𝑛) is the set of isotopy
classes of essential, non-peripheral simple closed curves on Σ. Suppose 𝛼, 𝛽 ∈
𝑉(𝒞(Σ)). Then we define 𝛼 ∼ 𝛽 if we can choose a representative 𝑎 of 𝛼 and 𝑏
of 𝛽 such that 𝑎, 𝑏 are disjoint curves.

Let 𝒞Σ be the curve graph of some surface Σ = Σ𝑔,𝑛. For any vertex 𝑐 ∈ 𝒞Σ
and radius 𝑟, let

𝑆𝑟 = 𝑆𝑟(𝑐) = {𝑎 ∈ 𝒞Σ ∶ 𝑑(𝑎, 𝑐) = 𝑟}
be the sphere of radius 𝑟 about 𝑐 in 𝒞Σ. We will say that a sphere is connected
if the induced subgraph is connected.
The main results to be proved in this paper are as follows:

Theorem 1.4. Let Σ𝑔,𝑛 be low complexity. Fix a center 𝑐 ∈ 𝒞Σ. Then for all
𝑟 > 0 we have that 𝑆𝑟(𝑐) ∪ 𝑆𝑟+1(𝑐) is connected.

Theorem 1.5. Let Σ𝑔,𝑛 be medium complexity. Fix a center 𝑐 ∈ 𝒞Σ. Then for
all 𝑟 > 0 we have that 𝑆𝑟(𝑐) is connected.

In the low complexity case, we do not understand in general the connected
components of 𝑆𝑟. However, we can understand the case of 𝑆2.

Definition 1.6. Let Σ𝑔,𝑛 be low complexity. Fix center 𝑐 ∈ 𝒞Σ. Let 𝑆′𝑟(𝑐) denote
the subgraph of 𝑆𝑟(𝑐) generated by the set of vertices in 𝑆𝑟(𝑐) which are not
isolated in 𝑆𝑟(𝑐) (i.e. 𝑆′𝑟(𝑐) is the subgraph of 𝑆𝑟(𝑐) generated by the set {𝑦 ∈
𝑆3(𝑐) ∶ ∃𝑧 ∈ 𝑆3(𝑐) such that 𝑦 ∼ 𝑧}).

Theorem 1.7. Let Σ𝑔,𝑛 be low complexity. Fix center 𝑐 ∈ 𝒞Σ. Then 𝑆′2(𝑐) is
connected.

1.2. Previous results. The main contribution of this paper is to strengthen
the following theorem from [13].

Theorem 1.8 ([13], Theorem 1.1). For all 𝑟 > 0 and connected surface Σ,
(1) If Σ has high complexity, then 𝑆𝑟 is connected.
(2) If Σ has medium complexity, then 𝑆𝑟 ∪ 𝑆𝑟+1 is connected.
(3) If Σ has low complexity, then 𝑆𝑟 ∪ 𝑆𝑟+1 ∪ 𝑆𝑟+2 is connected.

Our Theorem 1.4 and Theorem 1.5 strengthen the above theorem, thereby
answering [13, Question 1.7]. Our Theorem 1.4 and Theorem 1.5 are sharp
because 𝑆𝑟 is never connected for 𝑟 ≥ 1 in low complexity [13, Corollary 6.12].
Our Theorem 1.7 describes the connected components of 𝑆2 in low complex-

ity.
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1.3. Organization of the proof. In both the low and medium complexity
cases for the connectivity of spheres (Theorem 1.4 and Theorem 1.5), we uti-
lize the same proof strategy, as well as the same preliminary results from [13].
Then wemodify the paths obtained in [13] in order to stay closer to 𝑆𝑟, with the
Bounded Geodesic Image Theorem from [9] as our primary tool.
Our main contribution in the low complexity case (Theorem 1.4) is to con-

struct improved “preliminary paths" (discussed in Section 3.4), and show this
adjustment allows the argument to ultimately yield paths contained in two
spheres instead of three.
In the medium complexity case (Theorem 1.5), Wright’s argument included

an induction on radius, forwhich itwas crucial to use essentially non-separating
curves (Definition 4.3). Since we assume Wright’s result, we avoid arguing
by induction, so we are able to use curves which fail to be essentially non-
separating to produce paths which stay in a single sphere.
We prove Theorem 1.7 by showing that 𝑆′2(𝑐) naturally has the structure of a

ℤ-bundle over 𝑆1(𝑐). Note that 𝑆1(𝑐) can be seen as a copy of the Farey graph
because all curves in 𝑆1(𝑐) live on a sphere with a disk removed and with three
punctures, and such a sphere gives the same curve graph as Σ0,4. Interestingly,
the monodromy of this bundle over a Farey triangle in 𝑆1(𝑐) is translation by
1. This ℤ-bundle structure is related to some existing ideas such as a version
of the Lantern relation. But as far as we know, this ℤ-bundle structure has not
been recorded in the literature previously, andwe expect it to be of independent
interest.

1.4. Motivation. This paper continues the tradition of examining the rela-
tionship between fine and coarse geometry of the curve graph. As an exam-
ple, the Bounded Geodesic Image Theorem uses coarse information to deduce
a precise result about the vertices on geodesics.
In particular, we can also gain a better understanding of the coarse geome-

try of the curve graph as a whole by understanding the fine results. This idea
is exemplified in [13] where the linear connectivity of the Gromov boundary
(coarse) follows from an analysis of the connectivity of 𝑆𝑟 (fine). For previous
connectivity results and other related work, see [2, 3, 4, 5, 6, 8, 7, 10, 11].
Our paper also develops techniques to perform constructions directly in the

curve graph rather than spaces of lamination or Teichmüller space.

1.5. Acknowledgements. We would like to thank our mentor Alex Wright
for his guidance on this paper and acknowledge that this work was supported
by NSF grant DMS-2142712.

2. Subsurface projections and the Bounded Geodesic Image
Theorem
In this section, we will introduce one of our key tools, the Bounded Geodesic

Image Theorem, and recall some basic facts about subsurface projections.
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Let 𝑈 be a subsurface of Σ and 𝛼 ∈ 𝒞Σ. We say curve 𝛼 cuts U if it is not
possible to isotope 𝛼 out of 𝑈. We define 𝒞(Σ, 𝑈) to be the subgraph of 𝒞Σ
whose vertices are all essential non-peripheral curves that cut 𝑈, and keeping
all possible edges. Note that 𝒞𝑈 is contained in 𝒞(Σ, 𝑈).
Given a subsurface𝑈 of Σ, there exists a subsurface projection map, denoted

𝜌𝑈 , from the set of curves cutting 𝑈 to finite subsets of curves on 𝑈. We will
want to recall some key facts about 𝜌𝑈 :

(1) The values of 𝜌𝑈 are uniformly bounded in diameter.
(2) The map 𝜌𝑈 is 6-Lipschitz i.e.

𝑑(𝜌𝑈(𝛼), 𝜌𝑈(𝛽)) ≤ 6𝑑(𝛼, 𝛽).
(3) Define

𝑑𝑈(𝛼, 𝛽) = 𝑑𝑖𝑎𝑚(𝜌𝑈(𝛼) ∪ 𝜌𝑈(𝛽)).
It can easily be verified that 𝑑𝑈 satisfies the triangle inequality.

The following theorem is known as the Bounded Geodesic Image Theorem:

Theorem 2.1. [9, Theorem 3.1] Let𝑈 be a subsurface of Σ. There exists𝑀 > 0
such that if 𝑑𝑈(𝛼, 𝛽) ≥ 𝑀 then every geodesic from 𝛼 to 𝛽 in 𝒞Σ contains a
curve not cutting 𝑈.
From here on,𝑀 will refer to the constant required for Theorem 2.1, which

can be taken independent of Σ and 𝑈 [12].

3. Low complexity
Throughout this section, we deal with Σ = Σ0,5. Assume that a center vertex

𝑐 ∈ 𝒞Σ0,5 is fixed and let 𝑆𝑟 = 𝑆𝑟(𝑐).

3.1. Organization. The outcome of this section is to prove Theorem 1.4. We
do so by first taking arbitrary 𝑎 ∈ 𝑆𝑟 and 𝑏, 𝑏′ ∈ 𝑆𝑟+1 ∩ 𝑆1(𝑎) and constructing
a preliminary path, described in Proposition 3.7, connecting 𝑏 to 𝑏′. We then
offer Lemma 3.21 to serve a similar function as [13, Lemma 6.16] to push this
path up to 𝑆𝑟∪𝑆𝑟+1 using Dehn twists, by observing that vertices on this prelim-
inary path only enter 𝑆3(𝑎)when they are close to 𝑆𝑟−1 ∪𝑆𝑟. This adjustment is
sufficient in proving the path stays within two consecutive spheres rather than
three.

3.2. Definitions.

Definition 3.1. A vertex 𝑥 ∈ 𝑆𝑟 has unique backtracking if it has a unique
neighbor in 𝑆𝑟−1, i.e. there is a unique 𝑦 ∈ 𝑆𝑟−1 such that 𝑥 ∼ 𝑦.
Definition 3.2. A vertex 𝑥 ∈ 𝑆𝑟 has no sidestepping if it does not have any
neighbor in 𝑆𝑟, i.e. there is no 𝑦 ∈ 𝑆𝑟 such that 𝑥 ∼ 𝑦.
Definition 3.3. A vertex 𝑥 ∈ 𝑆𝑟 is forward facing if it has unique backtracking
and no sidestepping.
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3.3. Pentagons in 𝒞𝚺𝟎,𝟓. It is important to note that 𝒞Σ contains no cycles
of length 3 or 4 [13, Lemma 6.1]. Thus, we often study paths on 𝒞Σ by using
pentagons.

Definition 3.4. Label the 5 punctures of Σ with the elements of ℤ∕5ℤ. The 5
tuple of curves (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) is a pentagon if for 𝑖 ∈ ℤ∕5ℤ:

(1) 𝑎𝑖 goes around punctures 𝑖 and 𝑖 + 1,
(2) the intersection number between 𝑎𝑖, 𝑎𝑖+1 and 𝑎𝑖, 𝑎𝑖−1 is 2, and
(3) the intersection number between 𝑎𝑖, 𝑎𝑖+2 and 𝑎𝑖, 𝑎𝑖−2 is 0.
To obtain a 5-cycle from a pentagon with vertices (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), we can

traverse the curves in the following order: (𝑎1, 𝑎3, 𝑎5, 𝑎2, 𝑎4). We use the fol-
lowing lemmas to find pentagons in 𝒞Σ0,5.
Lemma 3.5. [13, Lemma 6.5] Suppose 𝑎1, 𝑎3 ∈ 𝑆𝑟−1 are adjacent. Then there
are curves 𝑎2, 𝑎3, 𝑎5 ∈ 𝑆𝑟 ∪ 𝑆𝑟+1 such that (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) is a pentagon.
Lemma 3.6. [13, Lemma 6.6] Suppose 𝑎1 ∈ 𝑆𝑟−1 and 𝑎3, 𝑎4 ∈ 𝑆𝑟 ∩ 𝑆1(𝑎1) have
𝑖(𝑎3, 𝑎4) = 2. Then there exist 𝑎2, 𝑎5 ∈ 𝑆𝑟 ∪ 𝑆𝑟+1 such that (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) is
a pentagon.

3.4. Preliminary path construction.

Proposition 3.7. Suppose 𝑎 ∈ 𝑆𝑟 and 𝑏, 𝑏′ ∈ 𝑆𝑟+1 ∩ 𝑆1(𝑎). Then there exists a
path 𝛾 from 𝑏 to 𝑏′ contained in 𝑆1(𝑎) ∪ 𝑆2(𝑎) ∪ 𝑆3(𝑎) such that the following
hold for all vertices 𝑣 on the path 𝛾:

(1) If 𝑣 ∈ 𝑆3(𝑎), then 𝑑(𝑣, (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎)) ≤ 2.
(2) If 𝑣 ∈ 𝑆1(𝑎), then 𝑣 ∈ 𝑆𝑟+1.
First we recall the following lemmas:

Lemma 3.8. [13, Lemma 6.10] For any 𝑎 ∈ 𝒞Σ0,5 and 𝑥 ∈ 𝑆1(𝑎), 𝑥 is forward
facing with respect to 𝑎.
Lemma 3.9. [13, Lemma 6.13] For any 𝑎 ∈ 𝒞Σ0,5, 𝑆1(𝑎) ∪ 𝑆2(𝑎) is connected.
Definition 3.10. Suppose Σ = Σ𝑔,𝑛 is a surface and 𝑣 ∈ 𝒞Σ is a vertex in its
curve graph. For all natural numbers 𝑛, let𝐵𝑛(𝑣) denote the set of vertices of𝒞Σ
that is of distance at most 𝑛 from 𝑣 (the distance is computed using the graph
metric of 𝒞Σ).
Lemma 3.11. [13, Lemma 6.14] Suppose 𝑥 ∈ 𝑆𝑟 is forward facing and 𝑦, 𝑦′ ∈
𝑆1(𝑥) ∩ 𝑆𝑟+1. Then there exists a path from 𝑦 to 𝑦′ in (𝑆𝑟+1 ∪ 𝑆𝑟+2) ∩ 𝐵2(𝑥).
Lemma 3.11 gives us the following corollary.

Corollary 3.12. Suppose𝑥𝑗−1, 𝑥𝑗, 𝑥𝑗+1 is a path in 𝑆1(𝑎)∪𝑆2(𝑎)with𝑥𝑗 ∈ 𝑆1(𝑎).
Then there exists a path from 𝑥𝑗−1 to 𝑥𝑗+1 contained in (𝑆2(𝑎)∪𝑆3(𝑎))∩𝐵2(𝑥𝑗).
Proof. This statement is exactly the conclusion of Lemma 3.11 with 𝑎 as the
center, 𝑥 = 𝑥𝑗, 𝑦 = 𝑥𝑗−1, and 𝑦′ = 𝑥𝑗+1, sowe only need to check the conditions
are satisfied.
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First, we see 𝑥𝑗 is forward facing with respect to 𝑎 because 𝑥𝑗 ∈ 𝑆1(𝑎) by
assumption and by Lemma 3.8, every vertex in 𝑆1(𝑎) is forward facing with
respect to 𝑎.
Second, we have 𝑥𝑗−1, 𝑥𝑗+1 ∈ 𝑆1(𝑥𝑗) because 𝑥𝑗−1, 𝑥𝑗, 𝑥𝑗+1 is a path by as-

sumption.
Third, we observe 𝑥𝑗−1, 𝑥𝑗+1 ∈ 𝑆1(𝑎)∪𝑆2(𝑎) and 𝑆1(𝑎) is totally disconnected

because 𝒞Σ0,5 has no triangles. Now 𝑥𝑗−1, 𝑥𝑗+1 are adjacent to 𝑥𝑗 ∈ 𝑆1(𝑎).
Thus, 𝑥𝑗−1, 𝑥𝑗+1 ∉ 𝑆1(𝑎) so 𝑥𝑗−1, 𝑥𝑗+1 ∈ 𝑆2(𝑎). This verifies the conditions
of Lemma 3.11. □

Now we have the tools to construct the preliminary path as stated in Propo-
sition 3.7.

Proof of Proposition 3.7. By Lemma 3.9, 𝑆1(𝑎) ∪ 𝑆2(𝑎) is connected. Since
𝑏, 𝑏′ ∈ 𝑆1(𝑎) this implies there exists a path 𝑏 = 𝑥0, ..., 𝑥𝑙 = 𝑏′ contained in
𝑆1(𝑎) ∪ 𝑆2(𝑎). Now for each 𝑥𝑗 ∈ (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎) replace the path segment
𝑥𝑗−1, 𝑥𝑗, 𝑥𝑗+1 with the path 𝑥𝑗−1 = 𝑥0𝑗 , 𝑥1𝑗 , ..., 𝑥𝑘𝑗 = 𝑥𝑗+1 for some 𝑘 ≥ 0 given by
Corollary 3.12. Call this path 𝛾. First we observe by construction that 𝛾 has no
vertex in (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎).
Now we check that 𝛾 satisfies the conclusions of Proposition 3.7 by utilizing

the following three sublemmas. The first sublemma will show that 𝛾 is con-
tained in 𝑆1(𝑎) ∪ 𝑆2(𝑎) ∪ 𝑆3(𝑎).
Sublemma 3.13. The path 𝛾 is contained in 𝑆1(𝑎) ∪ 𝑆2(𝑎) ∪ 𝑆3(𝑎).
Proof. By construction the vertices in 𝛾 are either in 𝑆1(𝑎)∪𝑆2(𝑎) or in (𝑆2(𝑎)∪
𝑆3(𝑎)) ∩ 𝐵2(𝑥𝑗) for some 𝑗 ≤ 𝑙. □

The second sublemma will establish part (1) of Proposition 3.7, namely, if
𝑣 ∈ 𝑆3(𝑎) then 𝑑(𝑣, (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎)) ≤ 2.
Sublemma 3.14. If 𝑣 is a vertex in 𝛾 and 𝑣 ∈ 𝑆3(𝑎), then 𝑑(𝑣, (𝑆𝑟−1 ∪ 𝑆𝑟) ∩
𝑆1(𝑎)) ≤ 2.
Proof. The original path 𝑏 = 𝑥0, ..., 𝑥𝑙 = 𝑏′ is contained in 𝑆1(𝑎)∪𝑆2(𝑎) so if 𝑣 ∈
𝑆3(𝑎), then 𝑣must have been obtained from replacing the segment𝑥𝑗−1, 𝑥𝑗, 𝑥𝑗+1
with the path 𝑥𝑗−1 = 𝑥0𝑗 , 𝑥1𝑗 , ..., 𝑥𝑘𝑗 = 𝑥𝑗+1 for some 𝑘 ≥ 0. In particular, 𝑣 = 𝑥𝑖𝑗
for some 𝑖 ≤ 𝑘.By Corollary 3.12, 𝑣 = 𝑥𝑖𝑗 ∈ (𝑆2(𝑎)∪𝑆3(𝑎))∩𝐵2(𝑥𝑗) so 𝑑(𝑣, 𝑥𝑗) ≤
2. Additionally, 𝑥𝑗 ∈ (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎). Thus 𝑑(𝑣, (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎)) ≤ 2. □

The final sublemma will establish part (2) of Proposition 3.7, namely, if 𝑣 ∈
𝑆1(𝑎) then 𝑣 ∈ 𝑆𝑟+1.
Sublemma 3.15. The only vertices in 𝛾 which are in 𝑆1(𝑎) are also in 𝑆𝑟+1.
Proof. Let 𝑣 be a vertex on 𝛾 such that 𝑣 ∈ 𝑆1(𝑎). Now 𝑎 ∈ 𝑆𝑟 so 𝑣 ∈ 𝑆𝑟−1 ∪
𝑆𝑟 ∪ 𝑆𝑟+1. But by construction 𝛾 has no vertices in (𝑆𝑟−1 ∪ 𝑆𝑟) ∩ 𝑆1(𝑎) because
any such vertices in the original path were replaced by a path in 𝑆2(𝑎) ∪ 𝑆3(𝑎).
Thus, 𝑣 ∈ 𝑆𝑟+1. □
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Since we have verified the conclusions of Proposition 3.7 for arbitrary 𝑎 ∈ 𝑆𝑟
and 𝑏, 𝑏′ ∈ 𝑆1(𝑎) ∩ 𝑆𝑟+1, this finishes the proof. □

3.5. Some Results on Dehn Twists. In this section, we prove some results
about Dehn twists that we will later use. We first fix some important notation.

Remark 3.16. Suppose 𝑎, 𝑏 ∈ 𝒞Σ0,5. Let 𝑇𝑎(𝑏) denote the left Dehn twist of 𝑏
around 𝑎. Henceforth, we will refer to a left Dehn twist as a Dehn twist.
In addition, we use 𝑑𝑎 to denote the distance between the projections to the

curve graph of the annular subsurface associated to an element 𝑎 of 𝒞Σ0,5.
We make use of the following fact, which was proven in [9, Equation 2.6].

Proposition 3.17. Suppose 𝑎, 𝑏 are vertices in 𝒞Σ0,5 such that 𝑑(𝑎, 𝑏) ≥ 2.
Then

lim
𝑁→∞

𝑑𝑎(𝑏, 𝑇𝑁𝑎 (𝑏)) = ∞. (1)

Lemma 3.18. Suppose 𝑎 ∈ 𝑆𝑟 and 𝑑(𝑏, 𝑎) ≥ 2. Then there exists a positive
integer 𝑁(𝑎, 𝑏), such that for all 𝑁′ ≥ 𝑁(𝑎, 𝑏), we have 𝑑𝑎(𝑇𝑁

′
𝑎 (𝑏), 𝑐)≫𝑀.

Proof. For all integers𝑚, we have
𝑑𝑎(𝑇𝑚𝑎 (𝑏), 𝑐) ≥ 𝑑𝑎(𝑇𝑚𝑎 (𝑏), 𝑏) − 𝑑𝑎(𝑏, 𝑐), (2)

where 𝑑𝑎(𝑏, 𝑐) is a constant. Thus, the lemma follows from Proposition 3.17.
□

Remark 3.19. For the rest of Section 3.5, we will continue to use 𝑁(𝑎, 𝑏) to
denote the constant in Lemma 3.18. Note that 𝑁(𝑎, 𝑏) depends on 𝑎, 𝑏.
Corollary 3.20. Suppose 𝑎 ∈ 𝑆𝑟 and 𝑑(𝑏, 𝑎) ≥ 2. If 𝑁′ ≥ 𝑁(𝑎, 𝑏), then

𝑑(𝑐, 𝑇𝑁′
𝑎 (𝑏)) ≥ 𝑟. (3)

Proof. By Lemma 3.18 and Theorem 2.1, any geodesic from 𝑇𝑁′
𝑎 (𝑏) to 𝑐 must

contain a vertex that lies in 𝐵1(𝑎). This implies that 𝑑(𝑇𝑁
′

𝑎 (𝑏), 𝑐) ≥ 𝑟. □

3.6. Main lemma. In this section, we make a critical improvement to [13,
Lemma 6.16] by proving Lemma 3.21. These two results are almost the same,
except that we construct a path such that every vertex 𝑥𝑖 is at most 𝑟+2 distance
away from the center 𝑐 (property 2 in Lemma 3.21), whereas [13, Lemma 6.16]
does not prove this upper bound.

Lemma 3.21. Suppose 𝑎 ∈ 𝑆𝑟 and 𝑏, 𝑏′ ∈ 𝑆𝑟+1 ∩ 𝑆1(𝑎). Then there exists a
path 𝑏, 𝑥1,… , 𝑥𝑙, 𝑏′ with four properties:

(1) 1 ≤ 𝑑(𝑥𝑖, 𝑎) ≤ 3.
(2) 𝑟 ≤ 𝑑(𝑥𝑖, 𝑐) ≤ 𝑟 + 2.
(3) If 𝑑(𝑥𝑖, 𝑐) = 𝑟, then 𝑑(𝑥𝑖, 𝑎) = 2, there exists a unique vertex 𝑧 adjacent

to both 𝑥𝑖 and 𝑎, 𝑧 ∈ 𝑆𝑟−1, and 𝑧 is the unique backtrack of 𝑥𝑖.
(4) If 𝑑(𝑥𝑖, 𝑐) = 𝑟 and if 𝑎 has unique backtracking, then 𝑥𝑖 has no sidestep-

ping.
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Proof. We first construct a path and then prove that it satisfies the four listed
properties.
We begin by considering the path 𝛼 from Proposition 3.7. Let 𝑏, 𝑦1,… , 𝑦𝑙, 𝑏′

be the vertices of the path. By Lemma 3.18, for all 𝑖 such that 𝑑(𝑦𝑖, 𝑎) ≥ 2, there
exists a positive integer𝑁(𝑎, 𝑦𝑖) such that if𝑁′ ≥ 𝑁(𝑎, 𝑦𝑖), then𝑑𝑎(𝑇𝑁

′
𝑎 (𝑦𝑖), 𝑐)≫

𝑀. Take 𝑁 = max𝑖(𝑁(𝑦𝑖, 𝑎)). Let 𝛾 be the path obtained by applying 𝑇𝑁𝑎 to 𝛼.
The vertices of 𝛾 are then

𝑏, 𝑇𝑁𝑎 (𝑦1),… , 𝑇𝑁𝑎 (𝑦𝑙), 𝑏′. (4)

Let 𝑥𝑖 = 𝑇𝑁𝑎 (𝑦𝑖) for all 1 ≤ 𝑖 ≤ 𝑙.
Proposition 3.7, as well as the fact that Dehn twists preserve distance (Re-

mark 3.16), verifies property (1) above.
Nowwe verify property (2). We first claim that for all 𝑖, 𝑑(𝑥𝑖, 𝑐) ≥ 𝑟. Let us fix

some 𝑖. If 𝑑(𝑦𝑖, 𝑎) ≥ 2, then Corollary 3.20 implies that 𝑑(𝑥𝑖, 𝑐) = 𝑑(𝑇𝑁𝑎 (𝑦𝑖), 𝑐) ≥
𝑟. On the other hand, 𝑑(𝑦𝑖, 𝑎) ≥ 1 by construction of 𝛼. So the only remaining
case to consider is if 𝑑(𝑦𝑖, 𝑎) = 1, then the assumptions on the path 𝛼 imply
that 𝑦𝑖 ∈ 𝑆𝑟+1. So 𝑑(𝑥𝑖, 𝑐) = 𝑑(𝑇𝑁𝑎 (𝑦𝑖), 𝑐) = 𝑑(𝑦𝑖, 𝑐) ≥ 𝑟.
Next, we claim that for all 𝑖, 𝑑(𝑥𝑖, 𝑐) ≤ 𝑟+2. This follows from the observation

that if 𝑦𝑖 ∈ 𝑆3(𝑎), then by assumptions on the path 𝛼, there exists 𝑧𝑖 ∈ 𝑆1(𝑎) ∩
(𝑆𝑟 ∪𝑆𝑟−1) such that 𝑑(𝑦𝑖, 𝑧𝑖) ≤ 2. But since Dehn twists preserve distances and
fix vertices adjacent to the center of the twist,

𝑑(𝑥𝑖, 𝑧𝑖) = 𝑑(𝑇𝑁𝑎 (𝑦𝑖), 𝑇𝑁𝑎 (𝑧𝑖)) = 𝑑(𝑦𝑖, 𝑧𝑖). (5)

And so, 𝑑(𝑥𝑖, 𝑧𝑖) ≤ 2. So,

𝑑(𝑥𝑖, 𝑐) ≤ 𝑑(𝑥𝑖, 𝑧𝑖) + 𝑑(𝑐, 𝑧𝑖) ≤ 𝑟 + 2. (6)

This finishes the verification of property (2).
To verify property (3), we suppose 𝑑(𝑥𝑖, 𝑐) = 𝑟. Recall that by definition,

𝑥𝑖 = 𝑇𝑁𝑎 (𝑦𝑖). If 𝑑(𝑦𝑖, 𝑎) = 1, then by construction of 𝛼, we have 𝑦𝑖 ∈ 𝑆𝑟+1. Since
𝑇𝑁𝑎 fixes 𝑦𝑖, we conclude that 𝑥𝑖 = 𝑇𝑁𝑎 (𝑦𝑖) belongs to 𝑆𝑟+1. This contradicts the
assumption that 𝑑(𝑥𝑖, 𝑐) = 𝑟. So we must have 𝑑(𝑦𝑖, 𝑎) ≥ 2.
And so by Lemma 3.18 and Theorem 2.1, every geodesic from 𝑥𝑖 = 𝑇𝑁𝑎 (𝑦𝑖) to

𝑐 must pass through 𝐵1(𝑎). Let 𝜁 be one such geodesic and 𝑧 be one vertex in
𝜁 ∩ 𝐵1(𝑎). Since 𝑑(𝑥𝑖, 𝑎) ≥ 2, 𝑧must belong to 𝑆𝑟−1, implying that 𝑑(𝑥𝑖, 𝑎) = 2.
By construction, 𝑧 is a vertex adjacent to both 𝑥𝑖 and 𝑧. It is the unique such
vertex because 𝒞Σ0,5 has no quadrilaterals.
To finish verifying property (3), it remains to show that 𝑧 is the unique back-

track of 𝑥𝑖. Let 𝑧′ be a backtrack of 𝑥𝑖. There is a geodesic 𝜁 connecting 𝑧 to 𝑐
that passes through 𝑧′. By the Bounded Geodesic Image Theorem, 𝜁 must in-
tersect 𝐵1(𝑎). Since 𝑧′ ∈ 𝑆𝑟−1, 𝑧′ must in fact belong to 𝐵1(𝑎). Because Σ0,5 has
no quadrilaterals, 𝑧 and 𝑧′ must coincide. This verifies property (3).
To verify property (4), assume 𝑎 has unique backtracking and 𝑥𝑖 ∈ 𝑆𝑟. Sup-

pose for the sake of contradiction that 𝑠 is a sidestep of 𝑥𝑖. We note that 𝑠 is not
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adjacent to 𝑎 because otherwise 𝑥𝑖, 𝑠, 𝑎, 𝑧 would form a quadrilateral, a con-
tradiction. 𝑠 is also not equal to 𝑎, since otherwise 𝑥𝑖, 𝑎, 𝑧 form a triangle, a
contradiction.
Let 𝑧 be the unique neighbor of 𝑥𝑖 and 𝑎 constructed during the verification

of property (3). During the verification of property (3), we proved that 𝑑(𝑦𝑖, 𝑎) ≥
2. So by Lemma 3.18, 𝑑𝑎(𝑥𝑖, 𝑐) ≫ 𝑀. Additionally, since 𝑑(𝑥𝑖, 𝑠) = 1, by the
coarse-Lipschitz property of 𝑑𝑎, we have 𝑑𝑎(𝑥𝑖, 𝑠) is bounded. So by the triangle
inequality, 𝑑𝑎(𝑠, 𝑐)≫ 𝑀. By Theorem 2.1, we know that every geodesic from 𝑠
to 𝑐 passes through 𝐵1(𝑎).
Let 𝜂 be one such geodesic. Since 𝑠 ∈ 𝑆𝑟 and 𝑠 is not adjacent or equal to 𝑎,

we have 𝜂∩𝐵1(𝑎) ⊂ 𝑆𝑟−1. But since 𝑎 has unique backtracking, the only vertex
in 𝐵1(𝑎) ∩ 𝑆𝑟−1 is 𝑧. This shows that 𝜂 must pass through 𝑧. But then 𝑠, 𝑧, 𝑥𝑖
form a triangle, a contradiction. This proves property (4). □

3.7. Proving Theorem1.4. Before we begin the proof of Theorem 1.4, wewill
need to make use of the following lemmas. Essentially, these lemmas mod-
ify the paths constructed in Lemma 3.21 so that they lie in 𝑆𝑟+1(𝑐) and 𝑆𝑟+2.
Lemma 3.23 will play a crucial role in the proof of Theorem 1.4.

Lemma 3.22. Suppose 𝑎 ∈ 𝑆𝑟 has unique backtracking and 𝑏, 𝑏′ ∈ 𝑆𝑟+1 are
both adjacent to 𝑎. Then there exists a path from 𝑏 to 𝑏′ entirely in (𝑆𝑟+1 ∪
𝑆𝑟+2) ∩ 𝐵4(𝑎).
Proof. Consider the path from 𝑏 to 𝑏′ given by Lemma 3.21. Each vertex on
this path that lies in 𝑆𝑟 is forward facing and also in 𝐵2(𝑎). Forward facing
vertices have no side stepping, so this path has no adjacent vertices in 𝑆𝑟. Thus,
we can apply Lemma 3.11 to each vertex in 𝑆𝑟 to obtain the appropriate path in
(𝑆𝑟+1 ∪ 𝑆𝑟+2) ∩ 𝐵4(𝑎). □

Lemma 3.23. Suppose 𝑎 ∈ 𝑆𝑟 and 𝑏, 𝑏′ ∈ 𝑆𝑟+1 are both adjacent to 𝑎. Then
there exists a path from 𝑏 to 𝑏′ entirely in (𝑆𝑟+1 ∪ 𝑆𝑟+2) ∩ 𝐵6(𝑎).
Proof. Lemma3.21 gives a path from 𝑏 to 𝑏′ in (𝑆𝑟∪𝑆𝑟+1∪𝑆𝑟+2)∩𝐵3(𝑎) such that
each vertex on this path that lies in 𝑆𝑟 has unique backtracking and is in 𝐵2(𝑎).
By Lemma 3.5, we can modify the path at each pair of adjacent vertices that lie
in 𝑆𝑟 to obtain a newpath in (𝑆𝑟∪𝑆𝑟+1∪𝑆𝑟+2)∩𝐵4(𝑎)with the additional assump-
tion that no two adjacent vertices are in 𝑆𝑟. Now we can apply Lemma 3.22 to
each vertex in 𝑆𝑟 to obtain the appropriate path in (𝑆𝑟+1 ∪ 𝑆𝑟+2) ∩ 𝐵6(𝑎). □

Next, we recall [13, Lemma 2.1], which states the sufficient conditions for
the connectivity of spheres.

Lemma 3.24. [13, Lemma 2.1] Let Γ be an arbitrary graph and fix 𝑐 ∈ Γ. Fix
𝑤 > 0, and let 𝑟 > 0 be arbitrary. Suppose the following conditions hold:

(1) For every 𝑧 ∈ 𝑆𝑟(𝑐) and 𝑥, 𝑦 ∈ 𝑆𝑟+1(𝑐) ∩ 𝐵1(𝑧) there exists a path
𝑥 = 𝑥0, 𝑥1,… , 𝑥𝑙 = 𝑦
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with
𝑥𝑖 ∈ 𝑆𝑟+1(𝑐) ∪⋯ ∪ 𝑆𝑟+𝑤(𝑐)

for 0 ≤ 𝑖 ≤ 𝑙.
(2) For every adjacent pair 𝑥, 𝑦 ∈ 𝑆𝑟(𝑐) there exists a path

𝑥 = 𝑥0, 𝑥1,… , 𝑥𝑙 = 𝑦
with

𝑥𝑖 ∈ 𝑆𝑟+1(𝑐) ∪⋯ ∪ 𝑆𝑟+𝑤(𝑐)
for 0 < 𝑖 < 𝑙.

Then 𝑆𝑟(𝑐) ∪ 𝑆𝑟+1(𝑐) ∪⋯ ∪ 𝑆𝑟+𝑤−1(𝑐) is connected.
Proof of Theorem 1.4. Since the curve graphs𝒞Σ0,5 and𝒞Σ1,2 for the low com-
plexity surfaces are isomorphic, it suffices to prove Theorem 1.4 for 𝒞Σ0,5. The
result follows immediately from combining Lemma 3.24 with Lemma 3.23 and
Lemma 3.5. □

4. Medium complexity
Throughout this section, we assume Σ is medium complexity. Again we fix

a center vertex 𝑐 and let 𝑆𝑟 = 𝑆𝑟(𝑐). In this section, we upgrade the results from
[13, Theorem 1.1] to prove Theorem 1.5: 𝑆𝑟 is connected for medium complex-
ity surfaces.

4.1. Organization. We use [13, Theorem 1.1 (2)] that 𝑆𝑟 ∪ 𝑆𝑟+1 is connected
and begin with a path in 𝑆𝑟 ∪𝑆𝑟+1. Then we use the definition𝒪(𝑧), introduced
by Wright, as a tool to push the path into 𝑆𝑟+1 by allowing the path to contain
vertices which need not be essentially non-separating.

4.2. Essentially non-separating curves.

Definition 4.1. Let Σ be a surface and 𝑈 be a subsurface. We call 𝑈 a pair of
pants if 𝑈 is of genus 0 with 3 boundary components.

Definition 4.2. A curve on Σ is called a pants curve if it bounds a genus 0 sub-
surface with 2 punctures.

Definition4.3. Acurve on𝒞Σ is essentially non-separating if it is non-separating
or a pants curve. A two-componentmulti-curve𝛼∪𝛽 is essentially non-separating
if 𝛼 and 𝛽 themselves are essentially non-separating, and either

(1) 𝛼 ∪ 𝛽 is non-separating,
(2) at least one of 𝛼 or 𝛽 is a pants curve, or
(3) 𝛼 ∪ 𝛽 bounds a genus 0 subsurface with 1 puncture.
For 𝑐 ∈ 𝒞Σ, we can define 𝒞𝑐Σ as the subgraph of 𝒞Σ whose vertex set is the

union between the singleton set {𝑐} and the set of all essentially non-separating
curves on 𝒞𝑐Σ. Disjoint curves 𝛼 and 𝛽 are joined by an edge if either 𝛼 ∪ 𝛽 is
essentially non-separating or they have different distances to 𝑐.
To fix notation, let 𝑆𝑐𝑟 = 𝑆𝑟 ∩ 𝒞𝑐Σ.
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Remark 4.4. [13, Lemma 5.2]Wright showed that 𝑆𝑐𝑟 coincideswith the sphere
of radius 𝑟 in 𝒞𝑐Σ.
We now recall the following results:

Lemma 4.5. 𝑆𝑐𝑟 ∪ 𝑆𝑐𝑟+1 is connected.
Proof. [13, Proposition 5.4] verifies that the sufficient conditions for the con-
nectivity of spheres in Lemma 3.24 hold in 𝒞𝑐Σ with 𝑤 = 2. □

Lemma 4.6. [13, Lemma 5.3] Suppose Σ has medium complexity. For all 𝑥 ∈
𝑆𝑟, then either 𝑥 ∈ 𝑆𝑐𝑟 or there exists 𝑥′ ∈ 𝑆𝑐𝑟 ∩ 𝑆1(𝑥).
4.3. Definition and properties of 𝒪(𝒛). In order to prove Theorem 1.5, we
make use of the following definition and prove several of its properties.

Definition 4.7. For any 𝑧 ∈ 𝑆𝑐𝑟 , define
𝒪(𝑧) = {𝑎 ∈ 𝑆1(𝑧) ∩ 𝒞𝑐Σ ∶ 𝑑𝑈(𝑎, 𝑐) > 𝑀}

where 𝑈 is the unique component of Σ − 𝑧 that is not a pair of pants. Observe
that 𝒪(𝑧) ⊆ 𝑆𝑐𝑟+1.
Recalling [13, Lemma 7.2], we know we can connect any essentially non-

separating curve to 𝒪(𝑧):
Lemma 4.8. [13, Lemma 7.2] Let 𝑧 ∈ 𝑆𝑐𝑟 and𝑈 be the unique connected com-
ponent ofΣ−𝑧 that is not a pair of pants. Then for all𝑁 > 0, any𝑥 ∈ 𝑆1(𝑧)∩𝑆𝑐𝑟+1
can be connected to some 𝑒 ∈ 𝒪(𝑧) by a path in 𝑆1(𝑧) ∩ 𝑆𝑐𝑟+1. Moreover, 𝑒 can
be taken such that 𝑑𝑈(𝑒, 𝑐) > 𝑁.
Additionally, we will make use of the following lemma:

Lemma 4.9. Let 𝑧 ∈ 𝑆𝑐𝑟 and 𝑎, 𝑏 ∈ 𝒪(𝑧). Then 𝑎, 𝑏 can be connected by a path
contained entirely in 𝑆𝑟+1.
Proof. Let𝑈 be the unique connected component of Σ− 𝑧 that is not a pair of
pants. Observe that the subsurface projection 𝜌𝑈(𝑐) is a finite set with diameter
bounded by some constant 𝑘 (see Section 2). Thus, there exists 𝑐′ ∈ 𝜌𝑈(𝑐) such
that 𝑑𝒞Σ(𝑐, 𝑐′) ≤ 𝑘. Since 𝑎, 𝑏 ∈ 𝒪(𝑧), both 𝑑𝑈(𝑎, 𝑐), 𝑑𝑈(𝑏, 𝑐) ≥ 𝑀+1, so by the
triangle inequality,

𝑎, 𝑏 ∈
∞⋃

𝑟′=𝑀+1+𝑘
𝑆𝑟′(𝑐′), (7)

where each 𝑆𝑟′(𝑐′) is a sphere in 𝒞𝑈. This union is a subgraph of 𝒞𝑈. It is con-
nected because𝑈 is low complexity, and so Theorem 1.4 gives that 𝑆𝑀+1+𝑘(𝑐′)∪
𝑆𝑀+2+𝑘(𝑐′) is a connected subset of 𝒞𝑈. Thus, we can find a path in 𝒞𝑈

𝑎 = 𝑝0,… , 𝑝𝑙 = 𝑏
such that each𝑑𝑈(𝑝𝑖, 𝑐′) ≥ 𝑀+1+𝑘. Thenby the triangle inequality, 𝑑𝑈(𝑝𝑖, 𝑐) >
𝑀.
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Applying Theorem 2.1 for all 0 < 𝑖 < 𝑙, every geodesic from 𝑝𝑖 to 𝑐 must
go through 𝑧, as 𝑧 is the only vertex not cutting 𝑈 since it is essentially non-
separating. By construction, for all 𝑖, 𝑝𝑖 lies entirely within𝑈 and so 𝑑(𝑧, 𝑝𝑖) =
1. Since 𝑑(𝑧, 𝑐) = 𝑟 and , 𝑑(𝑝𝑖, 𝑐) = 𝑟 + 1 for all 𝑖, as desired. □

4.4. Proving Theorem 1.5. We now have the tools to prove the main result
for medium complexity surfaces, namely that for any 𝑐 ∈ 𝒞Σ and 𝑟 > 0, we
have that 𝑆𝑟(𝑐) is connected.
Proof of Theorem 1.5. Suppose 𝑥, 𝑦 ∈ 𝑆𝑟+1 are arbitrary. By Lemma 4.6 we
can connect 𝑥, 𝑦 to 𝑥′, 𝑦′ ∈ 𝑆𝑐𝑟+1 respectively, so it suffices to find a path con-
necting 𝑥′, 𝑦′ inside 𝑆𝑟+1. By Lemma 4.5, 𝑆𝑐𝑟 ∪ 𝑆𝑐𝑟+1 is connected, so there exists
a path 𝑥′ = 𝑥0, 𝑥1, ..., 𝑥𝑘 = 𝑦′ contained in 𝑆𝑐𝑟 ∪ 𝑆𝑐𝑟+1.
The path from 𝑥′ to 𝑦′ above can be taken to have no two consecutive vertices

in 𝑆𝑐𝑟 . This follows from [13, Lemma 5.4, part (2)] that for each 𝑥𝑖, 𝑥𝑖+1 ∈ 𝑆𝑐𝑟 ,
there exists a path 𝑥𝑖 = 𝑥0𝑖 , 𝑥1𝑖 , 𝑥2𝑖 = 𝑥𝑖+1 such that 𝑥1𝑖 ∈ 𝑆𝑐𝑟+1.
Thus, for each vertex 𝑥𝑖 in the path from 𝑥′ to 𝑦′, if 𝑥𝑖 ∈ 𝑆𝑐𝑟 , then both 𝑥𝑖−1

and 𝑥𝑖+1 must be in 𝑆𝑐𝑟+1. In particular, since 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1 is a path, we have
𝑥𝑖−1, 𝑥𝑖+1 ∈ 𝑆1(𝑥𝑖) ∩ 𝑆𝑐𝑟+1.
Now applying Lemma 4.8, to 𝑥𝑖, there exists 𝑥′𝑖−1 and 𝑥′𝑖+1 in𝒪(𝑥𝑖)which can

be connected to 𝑥𝑖−1 and 𝑥𝑖+1 respectively with paths contained in 𝑆1(𝑥𝑖)∩𝑆𝑐𝑟+1
such that 𝑑𝑈(𝑥′𝑖−1, 𝑐)≫𝑀 and 𝑑𝑈(𝑥′𝑖+1, 𝑐)≫𝑀.
Applying Lemma 4.9, we can connect 𝑥′𝑖−1 and 𝑥′𝑖+1 by a path entirely in

𝑆𝑟+1. Thus, for consecutive vertices 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1 in the path from 𝑥′ to 𝑦′ where
𝑥𝑖−1, 𝑥𝑖+1 ∈ 𝑆𝑐𝑟+1 and 𝑥𝑖 ∈ 𝑆𝑐𝑟 , we can remove 𝑥𝑖 and connect 𝑥𝑖−1 to 𝑥𝑖+1 by a
path contained in 𝑆𝑟+1. Since no two consecutive vertices in the path were in
𝑆𝑐𝑟 , this construction eliminates all vertices in 𝑆𝑟 and results in a path from 𝑥′
to 𝑦′ contained in 𝑆𝑟+1, as desired.

□

5. Structure of 𝑺𝟐 in low complexity
The main aim of this section is to prove Theorem 1.7. Throughout this sec-

tion, we will work with the low complexity surface Σ = Σ0,5. During the proof,
we will also show that in 𝒞Σ0,5, the sphere 𝑆′2(𝑐) has the structure of aℤ-bundle
over 𝑆1(𝑐).
5.1. Basic Definitions. We begin with two basic definitions.

Definition 5.1. Suppose 𝑥 ∈ 𝑆1(𝑐). Consider 𝑆1(𝑥), which is a copy of the
Farey graph, in which 𝑐 is a vertex. Let 𝐸𝑥 denote the subset of 𝑆1(𝑥) that has
Farey distance 1 from 𝑐. In other words, 𝐸𝑥 consists of curves that are disjoint
from 𝑥 and have intersection number 2 with 𝑐.
Definition 5.2. Let 𝑣 ∈ 𝑆2(𝑐) be any vertex. Define 𝛽(𝑣) as the unique back-
track of 𝑣 in 𝑆1(𝑐). In other words, 𝛽(𝑣) is the unique vertex adjacent to both 𝑣
and 𝑐.
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Proposition 5.3. Suppose 𝑣 ∈ 𝑆2(𝑐). If 𝑣 is a non-isolated vertex in 𝑆2(𝑐), then
𝑣 ∈ 𝐸𝛽(𝑣).
Proof. Since 𝑣 is non-isolated in 𝑆2(𝑐), 𝑣 is adjacent to some 𝑤 ∈ 𝑆2(𝑐). Since
𝒞Σ0,5 has no triangles, 𝛽(𝑤) ≠ 𝛽(𝑣). So 𝑐, 𝛽(𝑣), 𝑣, 𝑤, 𝛽(𝑤) is a cycle of length
5. Since all cycles of length 5 in the low complexity curve graph are pentagons
([1, Theorem 3.1]), 𝑐, 𝛽(𝑣), 𝑣, 𝑤, 𝛽(𝑣) is a pentagon. Thus, 𝑣 is Farey adjacent to
𝑐 in 𝑆1(𝛽(𝑣)), proving that 𝑣 ∈ 𝐸𝛽(𝑣). □

Remark 5.4. Proposition 5.3 implies that 𝑆′2(𝑐) =
⨆

𝑥∈𝑆1(𝑐) 𝐸𝑥. So the map
𝛽|𝑆′2(𝑐) ∶ 𝑆

′
2(𝑐) → 𝑆1(𝑐) gives a fiber bundle. We will refer to the map 𝛽|𝑆′2(𝑐) as

just 𝛽.
We now give the above fiber bundle the additional structure of a ℤ-bundle.

We begin by recalling the notion of a half Dehn twist.

Notation 5.5. Let 𝑣 ∈ 𝒞Σ0,5 be any vertex. Then we let 𝜏𝑣 denote the half
(right) Dehn twist around 𝑣. Furthermore, we let 𝐻𝑣 denote the infinite cyclic
group generated by 𝜏𝑣 (viewed as a subgroup of themapping class group ofΣ0,5).
Fact 5.6. Suppose 𝑥 ∈ 𝑆1(𝑐). Then 𝐻𝑐 acts on 𝐸𝑥 simply transitively. Indeed,
the set of vertices adjacent to 𝑥, which includes 𝑐 and 𝐸𝑥, can be naturally iden-
tified with the Farey graph, and𝐻𝑐 acts simply transitively on the set of vertices
adjacent to 𝑐 in this Farey graph.
This fact implies that the 𝐻𝑐-action makes the 𝛽 ∶ 𝑆′2(𝑐) → 𝑆1(𝑐) into a ℤ-

bundle, as we now make explicit.

Remark 5.7. For all 𝑦 ∈ 𝑆1(𝑐), we fix for the rest of this section some arbitrary
𝑦 ∈ 𝐸𝑦. Then there is an explicit bijection from ℤ to 𝐸𝑦 given by 𝑛 ↦ 𝜏𝑛𝑐 (𝑦).
Let 𝜁𝑦 denote the inverse of this bijection (so 𝜁𝑦 maps 𝐸𝑦 to ℤ).
5.2. Perfect pairing between some of the fibers.
Definition 5.8. Suppose 𝑥1, 𝑥2 ∈ 𝑆1(𝑐) and 𝑖(𝑥1, 𝑥2) = 2 (i.e. 𝑥1 and 𝑥2 are
adjacent if we interpret 𝑆1(𝑐) as a copy of the Farey graph). Then we say that
𝑥1, 𝑥2 are Farey connected.
In this subsection, we show that if 𝑥1, 𝑥2 ∈ 𝑆1(𝑐) and 𝑥1, 𝑥2 are Farey con-

nected, then𝐸𝑥1 , 𝐸𝑥2 have a “perfect pairing,"whichwewillmake precise below.
We first introduce a piece of notation.

Definition 5.9. Suppose 𝑥1, 𝑥2 are in ∈ 𝑆1(𝑐) and 𝑥1, 𝑥2 are Farey connected.
Then let ℰ(𝑥1, 𝑥2) denote the set of all edges in 𝒞Σ0,5 with one vertex in 𝐸𝑥1 and
another vertex in 𝐸𝑥2 .
The following proposition explains how ℰ(𝑥1, 𝑥2) gives a “perfect pairing"

between 𝐸𝑥1 and 𝐸𝑥2 .
Proposition 5.10. Suppose 𝑥1, 𝑥2 ∈ 𝑆1(𝑐) and 𝑥1 is Farey connected to 𝑥2.
Then there exists a bijection 𝜓 ∶ 𝐸𝑥1 → 𝐸𝑥2 such that

ℰ(𝑥1, 𝑥2) = {{𝑣, 𝜓(𝑣)} ∶ 𝑣 ∈ 𝐸𝑥1}. (8)
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In other words, the proposition says that every vertex of 𝐸𝑥1 is joined by an
edge to a unique vertex of 𝐸𝑥2 , and vice versa. The bijection is such that for all
𝑣 ∈ 𝐸𝑥1 , 𝜓(𝑣) is the unique element of 𝐸𝑥2 joined to 𝑣 by an edge.
Proof. Since𝑥1 is Farey connected to𝑥2, by [13, Lemma6.6], there exists 𝑠1, 𝑠2 ∈
𝑆′2(𝑐) such that 𝑐, 𝑥1, 𝑠1, 𝑠2, 𝑥2 is a pentagon. By definition of a pentagon, 𝑠1 ∈
𝐸𝑥1 and 𝑠2 ∈ 𝐸𝑥2 . Applying all integer powers of the half twist 𝜏𝑐 to the edge
{𝑠1, 𝑠2}, we get a collection of edges

{{𝜏𝑛𝑐 (𝑠1), 𝜏𝑛𝑐 (𝑠2)} ∶ 𝑛 ∈ ℤ}.
Call the collection Ω.
By Fact 5.6, if 𝑒1, 𝑒2 ∈ Ω, then 𝑒1, 𝑒2 share no vertices. Also by Fact 5.6,

each vertex in 𝐸𝑥1 is contained in an edge Ω and likewise each vertex in 𝐸𝑥2 is
contained in an edge Ω. These two facts guarantee the existence of a bijection
𝜓 ∶ 𝐸𝑥1 → 𝐸𝑥2 such that Ω = {{𝑣, 𝜓(𝑣)} ∶ 𝑣 ∈ 𝐸𝑥1}.
Now it remains to verify thatΩ = ℰ(𝑥1, 𝑥2). It is clear thatΩ ⊂ ℰ(𝑥1, 𝑥2). To

prove the converse, first observe that any edge 𝑒 ∈ ℰ(𝑥1, 𝑥2) forms a pentagon
with the vertices 𝑥1, 𝑥2, 𝑐. We know that all the pentagons containing 𝑥1, 𝑥2, 𝑐
are obtained from our initial pentagon {𝑐, 𝑥1, 𝑠1, 𝑠2, 𝑥2} by applying a power of
𝜏𝑐 (because given any two pentagons, there is a mapping class taking one to the
other, and if this mapping class fixes 𝑥1, 𝑥2, 𝑐, it must be a power of 𝜏𝑐). Hence,
𝑒 is obtained by applying a power of 𝜏𝑐 to the edge {𝑠1, 𝑠2}, and so 𝑒 ∈ ℰ(𝑥1, 𝑥2).
This shows that ℰ(𝑥1, 𝑥2) ⊂ Ω, and hence proves the proposition. □

This “perfect pairing" between 𝐸𝑥1 and 𝐸𝑥2 (for all Farey connected 𝑥1, 𝑥2 ∈
𝑆1(𝑐)) that we just found is compatible with the action of 𝐻𝑐 on 𝐸𝑥1 and 𝐸𝑥2 .
More precisely, we have the following.

Corollary 5.11. Suppose 𝑥1, 𝑥2 ∈ 𝑆1(𝑐) and 𝑥1, 𝑥2 are Farey connected. Let
𝜓 ∶ 𝐸𝑥1 → 𝐸𝑥2 constructed in 5.10. Then 𝐻𝑐 acts on 𝐸𝑥1 , 𝐸𝑥2 𝜓-equivariantly,
i.e. for all 𝑔 ∈ 𝐻𝑐 and all 𝑣 ∈ 𝐸𝑥1 , we have

𝜓(𝑔𝑣) = 𝑔𝜓(𝑣). (9)

Proof. Define the set Ω as in the proof of Proposition 5.10.
Suppose 𝑔 = 𝜏𝑚𝑐 and 𝑣 ∈ 𝐸𝑥1 . We know that {𝑣, 𝜓(𝑣)} ∈ Ω. By construction

of Ω, we have {𝜏𝑚𝑐 (𝑣), 𝜏𝑚𝑐 (𝜓(𝑣))} ∈ Ω as well. This implies that 𝜓(𝜏𝑚𝑐 (𝑣)) =
𝜏𝑚𝑐 (𝜓(𝑣)). This proves the desired 𝜓-equivariance. □

5.3. MonodromyNumber. In this subsection, wedefine themonodromynum-
ber associated to a Farey path in 𝑆1(𝑐).
Suppose 𝑥1,… , 𝑥𝑙 all belong to 𝑆1(𝑐) and that they form a Farey path. Let

𝜓𝑖,𝑖+1, 1 ≤ 𝑖 ≤ 𝑙 − 1, be the bijections (between 𝐸𝑥𝑖 and 𝐸𝑥𝑖+1) obtained in
Proposition 5.10. Choose any 𝑣 ∈ 𝐸𝑥1 . By Proposition 5.10, we obtain a path in
𝑆′2(𝑐)

𝑣, 𝜓12(𝑣), 𝜓23𝜓12(𝑣),… , 𝜓(𝑙−1)𝑙⋯𝜓12(𝑣).
Using the identification of the two sets 𝐸𝑥1 , 𝐸𝑥𝑙 withℤ given by Remark 5.7, we
compute an integer 𝜁𝑥𝑙 (𝜓(𝑙−1)𝑙⋯𝜓12(𝑣)) − 𝜁𝑥1(𝑣).
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Proposition 5.12. For a fixed Farey path 𝛾 as above, the number
𝜁𝑥𝑙 (𝜓(𝑙−1)𝑙⋯𝜓12(𝑣)) − 𝜁𝑥1(𝑣)

is independent of the choice of 𝑣 ∈ 𝐸𝑥1 .
Remark 5.13. If 𝑥𝑙 ≠ 𝑥1 (i.e. our Farey path is not a Farey cycle), then the
number 𝜁𝑥𝑙 (𝜓(𝑙−1)𝑙⋯𝜓12(𝑣)) − 𝜁𝑥1(𝑣) does depend on the choices of 𝑥𝑙 ∈ 𝐸𝑥𝑙
and 𝑥1 ∈ 𝐸𝑥1 that we made in Remark 5.7 when we defined the bijections 𝜁𝑙
and 𝜁1 .
However, in the case 𝑥𝑙 = 𝑥1, then changing our choice of �̄�1 would change

𝜁𝑥1(𝜓(𝑙−1)1⋯𝜓12(𝑣)) and 𝜁𝑥1(𝑣) by the same integer. Hence the number
𝜁𝑥1(𝜓(𝑙−1)1⋯𝜓12(𝑣)) − 𝜁𝑥1(𝑣)

is independent of the choice of 𝑥1 that we made in Remark 5.7.
Proof of Proposition 5.12. If the path 𝛾 has length 1, i.e. 𝑙 = 2, then the
proposition follows from equivariance (Corollary 5.11). The general case fol-
lows from the case 𝑙 = 1. □

Definition 5.14. Suppose 𝛾 = 𝑥1,… , 𝑥𝑙 is a Farey path in 𝑆1(𝑐). We call the
number 𝜁𝑥𝑙 (𝜓(𝑙−1)1⋯𝜓12(𝑣)) − 𝜁𝑥1(𝑣) for some choice of 𝑣 the “monodromy
number" associated to 𝛾. Proposition 5.12 shows that the monodromy number
is independent of the choice of 𝑣. When 𝛾 is a Farey cycle, by Remark 5.13, the
monodromy number is also independent of the choices made in Remark 5.7.

5.4. Monodromy Number for a Triangle. In this subsection, we explicitly
construct a Farey triangle in 𝑆1(𝑐) and calculate its monodromy number.
Remark 5.15. For the rest of Section 5, we fix two conventions for howwe will
pictorially represent Σ0,5 and curves on it. First, we will label the five punctures
on Σ0,5 with elements of the set {1, 2, 3, 4, 5}, as shown in Fig. 1 and Fig. 2. Sec-
ond, in these figures, we will represent an element 𝑣 ∈ 𝒞Σ0,5 by an arc such
that 𝑣 is the boundary of an 𝜀-neighborhood of the arc.
Construction 5.16. Let 𝑐 be the loop around punctures 1, 2 shown in Fig. 1
(note that Remark 5.15 is now in effect). We now construct a Farey cycle in
𝑆1(𝑐). Let 𝑥1 (resp. 𝑥2, 𝑥3) be the loops around punctures 3, 4 (resp. punctures
3, 5, punctures 4, 5) also shown in Fig. 1. It is clear that 𝑥1, 𝑥2, 𝑥3, 𝑥1 is a Farey
cycle of length 3 in 𝑆1(𝑐). For the rest of Section 5.4, we call this Farey cycle the
“fundamental triangle" and denote it by 𝒯.
Proposition 5.17. The monodromy number of 𝒯 is 1.

Proof. Let 𝜓12 be the bijection between 𝐸𝑥1 and 𝐸𝑥2 constructed in Proposi-
tion 5.10. Define 𝜓23 and 𝜓31 similarly.
Let 𝑣 be the loop around punctures 2, 5 as shown in the Fig. 2. Then the loops

𝜓12(𝑣), 𝜓23𝜓12(𝑣), 𝜓31𝜓23𝜓12(𝑣)must be the ones shown in the same figure. We
see that 𝜓31𝜓23𝜓12(𝑣) = 𝜏𝑐(𝑣). As a result, we have

𝜁𝑥1(𝜓31𝜓23𝜓12(𝑣)) − 𝜁𝑥1(𝑣) = 1. (10)
□
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Figure 1. Fundamental Triangle
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Figure 2. Monodromy Number of the Fundamental Triangle

Corollary 5.18. Suppose 𝑣, 𝑤 ∈ 𝐸𝑥1 , where 𝑥1 is still the vertex defined in
Construction 5.16. Then 𝑣 can be connected to 𝑤 by a path in 𝑆′2(𝑐).
Proof. We assume without loss of generality that 𝜁𝑥1(𝑤) − 𝜁𝑥1(𝑣) = 𝑎 > 0. By
Proposition 5.17, if 𝑎 = 1, then 𝑣 can be connected to 𝑤 by a path in 𝑆′2(𝑐).
Now we pass to the general case. Consider the vertices 𝑣, 𝜏𝑐(𝑣),⋯ , 𝜏𝑎𝑐 (𝑣). By

definition of 𝜁𝑥1 (Remark 5.7), we know that 𝜏𝑎𝑐 (𝑣) = 𝑤 and for all 1 ≤ 𝑖 ≤ 𝑎,
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we have 𝜁𝑥1(𝜏𝑖𝑐(𝑣)) − 𝜁𝑥1(𝜏𝑖−1𝑐 (𝑣)) = 1. So by the case of 𝑎 = 1, for all 1 ≤
𝑖 ≤ 𝑎, we obtain a path in 𝑆′2(𝑐) that connects 𝜏𝑖−1𝑐 (𝑣) to 𝜏𝑖𝑐(𝑣). Joining these
paths together, we obtain a path in 𝑆′2(𝑐) that connects 𝑣 to 𝑤. This proves the
corollary. □

5.5. Proving Theorem 1.7. We will see that Theorem 1.7 follows easily from
Proposition 5.10 and Corollary 5.18.

Proof of Theorem 1.7. Fix some 𝑣 ∈ 𝐸𝑥1 . Let 𝑧 ∈ 𝑆1(𝑐) and 𝑠 ∈ 𝐸𝑧. It suffices
to find a path in 𝑆′2(𝑐) between 𝑣 and 𝑠.
We first choose a Farey path 𝑧 = 𝑧0, 𝑧1,… , 𝑧𝑙 = 𝑥1 contained in 𝑆1(𝑐). By

applying Proposition 5.10 𝑙 times, we see 𝑠 is connected to some 𝑠′ ∈ 𝐸𝑥1 by
some path in 𝑆′2(𝑐). By Corollary 5.18, 𝑠′ is connected to 𝑣 by some path in
𝑆′2(𝑐). This proves the theorem. □
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