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Construction of the motivic cellular
spectrum𝐊𝐎𝒈𝒆𝒐 over 𝑺𝒑𝒆𝒄(ℤ)

K. Arun Kumar

Abstract. We construct a periodic motivic spectrum over 𝑆𝑝𝑒𝑐(ℤ) which
when pulled back to any scheme 𝑆 with 1

2
∈ Γ(𝑆,𝒪𝑆) is the 𝐻𝑃1−spectrum

constructed by Panin and Walter. This spectrum 𝐊𝐎𝑔𝑒𝑜 is constructed using
closed subschemes of the Grassmannians 𝐺𝑟(𝑟, 𝑛). Using this we show that
𝐊𝐎𝑔𝑒𝑜 is cellular.
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1. Introduction
Throughout this paper, all schemes we consider are separated and quasi-

compact. Given any scheme 𝑆, we let 𝑆𝑐ℎ𝑆 be a small category equivalent to
the category of 𝑆-schemes of finite type. After fixing 𝑆𝑐ℎ𝑆, the small categories
𝑆𝑐ℎ𝑎𝑓𝑓𝑆 , 𝑆𝑚𝑆 and 𝑆𝑚

𝑎𝑓𝑓
𝑆 are the full subcategories of 𝑆𝑐ℎ𝑆 generated by (glob-

ally) affine, smooth and smooth affine 𝑆-schemes respectively. Let ind-scheme
refer to any presheaf on the categroy 𝑆𝑚𝑆 which is a directed colimit of repre-
sentable presheaves.
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Panin and Walter in [PW18] construct an 𝐻𝑃1-spectrum 𝐁𝐎 over any reg-
ular Noetherian finite-dimensional scheme 𝑆 containing 1

2
and show that is

it isomorphic to Hornbostel’s hermitian 𝐾-theory spectrum 𝐊𝐎 in the stable
motivic homotopy category 𝑆𝐻(𝑆). Here 𝐻𝑃1 ≃ 𝑆4,2 is the quaternionic pro-
jective line. The main advantage of their construction is that 𝐁𝐎2𝑖 = ℤ × 𝑅𝐺𝑟
and 𝐁𝐎2𝑖+1 = ℤ × 𝐻𝐺𝑟 are ind-schemes ℤ × 𝑅𝐺𝑟 = colim𝑛 𝑅𝐺𝑟(𝑛, 2𝑛) and
ℤ×𝐻𝐺𝑟 = colim𝑛𝐻𝐺𝑟(2𝑛, 4𝑛). Here 𝑅𝐺𝑟(𝑟, 𝑛) and𝐻𝐺𝑟(2𝑟, 2𝑛) are open sub-
schemes of a Grassmannian scheme of appropriate degree. This makes it easier
to prove many properties. For example, Röndigs and Østvær in [RØ16] use this
model to compute the slice spectral sequence of hermitian K-theory.
In this paper, we remove the 1

2
∈ Γ(𝑆,𝒪𝑆) condition and extend the construc-

tion of 𝐁𝐎 to arbitrary schemes. We will denote this spectrum by 𝐊𝐎𝑔𝑒𝑜 to be
more in line with standard notations. Firstly for any 𝑆-scheme 𝑋, we define
𝐾𝑆𝑝⟂(𝑋) to be the K-theory space associated to the symmetric monoidal cate-
gory of unimodular alternating forms over 𝑋. This gives us a functor 𝐾𝑆𝑝⟂ ∶
𝑆𝑚𝑜𝑝

𝑆 → 𝐬𝐒𝐞𝐭 (cf. Def. 2.4). Using the presheaf 𝐾𝑆𝑝⟂, we can extend [PW18,
Thm. 8.2] to get isomorphisms

ℤ ×𝐻𝐺𝑟 ≅ ℤ × 𝐵𝑆𝑝∞ ≅ 𝑅Ω1
𝑠𝐵(

∐

𝑛
𝐵𝑆𝑝𝑛) ≅ 𝐾𝑆𝑝⟂

in the unstable motivic homotopy category 𝐻∙(𝑆) over any scheme 𝑆. As the
𝔸1-invariance of orthogonal and symplectic K-theories are only known when 2
is invertible, we still cannot extend the representability of hermitian K-theory
[PW18, Thm. 5.1] to Spec(ℤ). We, however, prove a weaker result for 𝐾𝑆𝑝⟂ in
section 3 using results from [AHW18].

Theorem. Let 𝑆 be ind-smooth over a Dedekind ring with perfect residue fields.
Then, for any affine Spec(𝑅) ≅ 𝑋 ∈ 𝑆𝑚𝑎𝑓𝑓

𝑆 there are isomorphisms

[𝑆𝑛 ∧ 𝑋+,ℤ ×𝐻𝐺𝑟]𝔸1 ≅ 𝜋𝑛𝑆𝑖𝑛𝑔𝔸
1(𝐾𝑆𝑝⟂(𝑋))

for all 𝑛 ∈ ℕ. In particular, this holds over Spec(ℤ).

Stably, we are able to extend several results about 𝐁𝐎 to Spec(ℤ). Collecting
all the results from sections 5 and 6 we get the following theorem.

Theorem. For any scheme 𝑆, there exists a motivic cellular𝐻𝑃1-spectrum

𝐊𝐎𝑔𝑒𝑜
𝑆 = (𝐊𝐎𝑔𝑒𝑜

0 ,𝐊𝐎𝑔𝑒𝑜
1 ,…) ∈ 𝑆𝐻(𝑆)𝐻𝑃1 ≅ 𝑆𝐻(𝑆)

such that,
(1) 𝐊𝐎𝑔𝑒𝑜

2𝑛 ≅ ℤ × 𝑅𝐺𝑟 and𝐊𝐎𝑔𝑒𝑜
2𝑛+1 ≅ ℤ ×𝐻𝐺𝑟 ≅ 𝐾𝑆𝑝⟂ in𝐻∙(𝑆);

(2) Ω2
𝐻𝑃1𝐊𝐎

𝑔𝑒𝑜 ≅ 𝐊𝐎𝑔𝑒𝑜 in 𝑆𝐻(𝑆)𝐻𝑃1 and hence Ω4
𝑇𝐊𝐎

𝑔𝑒𝑜 ≅ 𝐊𝐎𝑔𝑒𝑜 as
objects in 𝑆𝐻(𝑆);

(3) for any morphism of schemes 𝑓 ∶ 𝑆1 → 𝑆2, there exists a canonical iso-
morphism 𝐿𝑓∗𝐊𝐎𝑔𝑒𝑜

𝑆2
∼
,→ 𝐊𝐎𝑔𝑒𝑜

𝑆1
in 𝑆𝐻(𝑆1);
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(4) if 𝑓 ∶ 𝑆 → Spec(ℤ) is any scheme with 1
2
∈ Γ(𝑆,𝒪𝑆), 𝐿𝑓∗𝐊𝐎𝑔𝑒𝑜 is

isomorphic to the motivic spectrum 𝐁𝐎 given in [PW18].

In particular when 𝑆 is regular Noetherian of finite dimension with 1
2
∈ Γ(𝑆,𝒪𝑆),

𝐊𝐎𝑔𝑒𝑜 represents hermitian K-theory.

We do not know what cohomology theory 𝐊𝐎𝑔𝑒𝑜 represents over Spec(ℤ).
The hope is that it represents some version of hermitian K-theory. In a recent
paper, Schlichting [Sch19] introduced the notion of K-theory of forms which
generalises the K-theory of spaces with duality. In this formalism 𝐒𝐲𝐦𝐩(𝑋) be-
comes the category of quadratic spaces for a suitable choice of category with
forms structure on vector bundles 𝑉𝑒𝑐𝑡(𝑋). If this theory satisfies Nisnevich
excision and 𝔸1-invariance then 𝐾𝑆𝑝 will represent it in the unstable homo-
topy category. It is still unknown if this is true. However, a recent paper by
Bachmann andWickelgren ([BW21]) suggests that there is a version of the her-
mitian K-theory ring spectrum which can be defined over arbitrary schemes
(although it might not represent hermitian K-theory any more). It is unknown
if this spectrum is stably equivalent to ours when 2 is not invertible.

Acknowledgement
This paper is based on work done by me as part of my PhD and therefore it is

adapted from my thesis [AK20]. I would like to thank Universität Osnabrück
for giving me the opportunity to do my PhD and providing a welcoming and
supportive environment. In particular, I would like to thank my advisor Prof.
Oliver Röndigs for guiding me throughout my PhD and for continuing to help
me write this paper afterwards.

2. Hermitian K-theory
Hermitian K-theory evolved out of the study of bilinear forms over rings and

more generally schemes. Given a scheme 𝑋 and a quasicoherent 𝒪𝑋-module
ℰ, recall that a bilinear form on ℰ is a morphism of 𝒪𝑋-modules ℰ⊗ ℰ → 𝒪𝑋 .
We call a bilinear form unimodular (sometimes referred to as non-degenerate)
if the adjoint map ℰ → ℰ∗ is an isomorphism. When ℰ is isomorphic to a
trivial vector bundle of rank 𝑛, each bilinear form can be represented by an
element of𝐺𝐿𝑛(Γ(𝑋,𝒪𝑋)). Wewill be interested in two classes of bilinear forms
in particular. A symmetric bilinear form is a bilinear form 𝜓 such that 𝜓𝜏 = 𝜓
where 𝜏 ∶ ℰ⊗ℰ

∼
,→ ℰ⊗ℰ is the switchmap, an alternating bilinear form onℰ is a

bilinear form 𝜙, such that 𝜙◦∆ = 0, where ∆ is the diagonal map of sheaves ∆ ∶
ℰ𝑋 → ℰ⊗ ℰ. We call a vector bundle equipped with a unimodular alternating
form (resp. unimodular symmetric form) a symplectic space (resp. symmetric
space). Over any scheme 𝑋, 𝐻+ = (𝒪⊕2

𝑋 , ( 0 11 0 )) and 𝐻− = (𝒪⊕2
𝑋 , ( 0 1

−1 0 )) are
the hyperbolic symmetric and symplectic spaces respectively. Let 𝐒𝐲𝐦𝐦(𝑋)
and 𝐒𝐲𝐦𝐩(𝑋) denote the categories of symmetric and symplectic spaces over a
scheme 𝑋 respectively, where a morphism 𝑓 ∶ (𝑉, 𝜙) → (𝑊,𝜓) is a morphism
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of vector bundles 𝑓 ∶ 𝑉 → 𝑊 such that 𝑓∗𝜓𝑓 = 𝜙. The orthogonal sum
⟂ turns 𝐒𝐲𝐦𝐦(𝑋) and 𝐒𝐲𝐦𝐩(𝑋) into (essentially small) symmetric monoidal
categories. For objects ℰ ∈ 𝐒𝐲𝐦𝐦(𝑋) and ℱ ∈ 𝐒𝐲𝐦𝐩(𝑋) we denote their
corresponding isomorphism groupoids by 𝑂(ℰ) and 𝑆𝑝(ℱ) respectively.

Definition 2.1. Let 𝑅 be a commutative ring.
(1) The symplecticK-theory space𝐾𝑆𝑝⟂(𝑅) is the space𝐾⟂(𝑖𝐒𝐲𝐦𝐩(Spec(𝑅)))

and 𝐾𝑆𝑝𝑛(𝑅) = 𝜋𝑛𝐾𝑆𝑝⟂(𝑅) are the symplectic K-groups.
(2) The orthogonalK-theory space𝐾𝑂⟂(𝑅) is the space𝐾⟂(𝑖𝐒𝐲𝐦𝐦(Spec(𝑅)))

and 𝐾𝑂⟂
𝑛 (𝑅) = 𝜋𝑛𝐾𝑂⟂(𝑅) the orthogonal K-groups.

Here𝐾⟂(−) is the K-theory space of a symmetric monoidal category [Wei13,
Def. 4.3]. These were defined in [Kar73] as 1𝐾ℎ(𝑅) and −1𝐾ℎ(𝑅) respectively
for rings where 2 is invertible. The zeroth orthogonal K-group 𝐾𝑂⟂

0 (𝑅) is equal
to the classical Grothendieck-Witt group 𝐺𝑊(𝑅) (called theWitt-Grothendieck
group in [Lam05, Def. 1.1]).
There exist monoidal functors
∐

𝑛
𝑂(𝐻𝑛

+)(𝑅)→ 𝐒𝐲𝐦𝐦(Spec(𝑅)) and
∐

𝑛
𝑆𝑝(𝐻𝑛

−)(𝑅)→ 𝐒𝐲𝐦𝐩(Spec(𝑅))

given on objects by 𝑛 ↦ 𝐻𝑛
+ and 𝑛 ↦ 𝐻𝑛

− respectively. These then induce maps

Ω𝑠𝐵(
∐

𝑛
𝐵𝑂(𝐻𝑛

+))(𝑅)→ 𝐾𝑂⟂(𝑅)

Ω𝑠𝐵(
∐

𝑛
𝐵𝑆𝑝(𝐻𝑛

−))(𝑅)→ 𝐾𝑆𝑝⟂(𝑅)

of group completions. When 1
2
∈ 𝑅, [Lam06, Lem. 1.5] implies that∐𝑛 𝑂(𝐻

𝑛
+)

is a cofinal monoidal subcategory of 𝑖𝐒𝐲𝐦𝐦(Spec(𝑅)). We prove an analogous
result for symplectic spaces below.

Lemma 2.2. Let 𝑅 be any ring. Every symplectic space over 𝑅 is isometric to a
subspace of𝐻𝑛

− for some 𝑛.

Proof. First note that𝐻𝑛
− is isometric to (𝑅2𝑛, (

0 −𝐼2𝑛
𝐼2𝑛 0 )). Let (𝑃, 𝜙) be a sym-

plectic space over 𝑅. As 𝑃 is projective, there exists 𝑄 such that 𝑃 ⊕ 𝑄 ≅ 𝑅𝑚
for some 𝑚. The symplectic space 𝑃 ⟂ 𝑃 ⟂ 𝐻−(𝑄), where 𝐻−(𝑄) = (𝑄 ⊕
𝑄∗, ( 0 𝐼𝑄

−𝐼𝑄 0 )), then has an underlying space isomorphic to𝑅
2𝑚. Thuswehave

reduced to the case when the underlying module is free. Let (𝑅2𝑚, 𝑆) be a sym-
plectic space. As 𝑆 is an alternating invertible matrix, we have 𝑆−1 = 𝐿−𝐿𝑇 for
some strictly lower triangular matrix 𝐿. We will show that (𝑅4𝑚, (𝑆 0

0 −𝑆)) is

isometric to (𝑅4𝑚, ( 0 −𝐼2𝑚
𝐼2𝑚 0 )). Consider the matrix ( 𝐿 𝐼2𝑚

𝐿𝑇 𝐼2𝑚
). Its transpose
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is (𝐿
𝑇 𝐿

𝐼2𝑚 𝐼2𝑚
) and hence we have

(𝐿
𝑇 𝐿

𝐼2𝑚 𝐼2𝑚
) (𝑆 0
0 −𝑆) (

𝐿 𝐼2𝑚
𝐿𝑇 𝐼2𝑚

) = (𝐿
𝑇 𝐿

𝐼2𝑚 𝐼2𝑚
) ( 𝑆𝐿 𝑆
−𝑆𝐿𝑇 −𝑆)

= (𝐿
𝑇𝑆𝐿 − 𝐿𝑆𝐿𝑇 −𝐼2𝑚

𝐼2𝑚 0 ) (2.1)

As 𝐿𝑇 − 𝐿 is the two sided inverse of 𝑆, we have

𝐿𝑇𝑆𝐿 − 𝐿𝑆𝐿𝑇 = 𝐿𝑇(𝐼2𝑚 − 𝑆𝐿𝑇) − 𝐿𝑆𝐿𝑇 = 𝐿𝑇 − 𝐿𝑇𝑆𝐿𝑇 − 𝐿𝑆𝐿𝑇 = 𝐿𝑇 − 𝐿𝑇 = 0

proving that (𝑅4𝑚, (𝑆 0
0 −𝑆)) ≅ (𝑅4𝑚, ( 0 −𝐼2𝑚

𝐼2𝑚 0 )). □

From this, we have the following theorem.

Theorem 2.3. The morphism Ω𝑠𝐵(
∐

𝑛 𝐵𝑆𝑝(𝐻
𝑛
−))(𝑅) → 𝐾𝑆𝑝⟂(𝑅) induces iso-

morphisms 𝜋𝑛Ω𝑠𝐵(
∐

𝑛 𝐵𝑆𝑝(𝐻
𝑛
−))(𝑅)

∼
,→ 𝜋𝑛𝐾𝑆𝑝⟂(𝑅) for all 𝑛 ≥ 2.

Proof. This follows from theCofinality Theorem [Gra76] andLemma2.2 above.
□

There are several ways to extend the constructions of 𝐾𝑂⟂(𝑅) and 𝐾𝑆𝑝⟂(𝑅)
to arbitrary schemes. Firstly, we note that for any scheme 𝑆, 𝐾𝑂⟂ and 𝐾𝑆𝑝⟂
define lax-functors (𝑆𝑐ℎ𝑎𝑓𝑓𝑆 )𝑜𝑝 → 𝐬𝐒𝐞𝐭 from affine 𝑆-schemes to simplicial sets.
The naive way to extend this to arbitrary schemes is to use 𝐒𝐲𝐦𝐩(𝑋) for non-
affine schemes as well. For any 𝑋 ∈ 𝑆𝑚𝑆, we define the categories of big sym-
metric and big symplectic spaces, 𝐒𝐲𝐦𝐩𝑆𝑚𝑆

(𝑋) and 𝐒𝐲𝐦𝐦𝑆𝑚𝑆
(𝑋) respectively,

along the same lines as the category of big vector bundles (i,e. we fix a choice
of pullback for each form)[Wei13, Sec. 10.5]. These are equivalent as symmet-
ric monoidal categories to 𝐒𝐲𝐦𝐩(𝑋) and 𝐒𝐲𝐦𝐦(𝑋) respectively. We can then
define simplicial presheaves

𝐾𝑂⟂ ∶ 𝑆𝑚𝑜𝑝
𝑆 → 𝐬𝐒𝐞𝐭

𝐾𝑆𝑝⟂ ∶ 𝑆𝑚𝑜𝑝
𝑆 → 𝐬𝐒𝐞𝐭

extending 𝐾𝑂⟂(𝑅) and 𝐾𝑆𝑝(𝑅)⟂ respectively.

Definition 2.4. Let 𝑆 be any scheme.
(1) 𝐾𝑂⟂ ∶ 𝑆𝑚𝑜𝑝

𝑆 → 𝐬𝐒𝐞𝐭 is the simplicial presheaf given by 𝐾𝑂⟂(𝑋) =
𝐾⟂(𝑖𝐒𝐲𝐦𝐦𝑆𝑚𝑆

(𝑋)).
(2) 𝐾𝑆𝑝⟂ ∶ 𝑆𝑚𝑜𝑝

𝑆 → 𝐬𝐒𝐞𝐭 is the simplicial presheaf given by 𝐾𝑆𝑝⟂(𝑋) =
𝐾⟂(𝑖𝐒𝐲𝐦𝐩𝑆𝑚𝑆

(𝑋)).

For simplicity, we will denote 𝑆𝑝(𝐻𝑛
−) by 𝑆𝑝2𝑛 from now on.
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Theorem2.5. Themorphism
∐

𝑛 𝑆𝑝2𝑛(−)→ 𝑖𝐒𝐲𝐦𝐩𝑆𝑚𝑜𝑝
𝑆
(−) in𝐹𝑢𝑛(𝑆𝑚𝑜𝑝

𝑆 ,𝐂𝐚𝐭)
given by 𝑛 ↦ 𝐻𝑛

− induces a local weak equivalence of simplicial presheaves
∐

𝑛
𝐵𝑆𝑝2𝑛 → 𝐵(𝑖𝐒𝐲𝐦𝐩𝑆𝑚𝑜𝑝

𝑆
)

with respect to the Zariski topology on 𝑆𝑚𝑆 . In particular they are isomorphic as
objects in𝐻∙(𝑆).

Proof. Over a local ring 𝑅, every symplectic space is isometric to some 𝐻𝑛
−

[Lam06, Thm. 5.8]. This implies that
∐ 𝑆𝑝2𝑛(𝑅) → 𝑖𝐒𝐲𝐦𝐩(𝑅) is an equiva-

lence of groupoids and hence induces a weak equivalence of simplicial sets
∐

𝑛
𝐵𝑆𝑝2𝑛(𝑅)→ 𝐵𝑖𝐒𝐲𝐦𝐩(𝑅).

Since 𝐵𝑆𝑝2𝑛 is a degreewise representable simplicial sheaf, the stalks are just∐
𝑛 𝐵𝑆𝑝2𝑛(𝒪𝑈,𝑢), the evaluations at Spec(𝒪𝑈,𝑢). The isomorphism of simpli-

cial sets, colim𝑥∈𝑈 𝐵𝑖𝐒𝐲𝐦𝐩(𝑈)
∼
,→ 𝐵𝑖𝐒𝐲𝐦𝐩(𝒪𝑈,𝑢), then induces a weak equiv-

alence
∐

𝑛 𝐵𝑆𝑝2𝑛(𝒪𝑈,𝑢)→ 𝐵𝑖𝐒𝐲𝐦𝐩(𝒪𝑈,𝑢) of stalks in the Zariski topology and
so we are done. □

This result implies that the induced map of objectwise group completions is
also a weak equivalence.

Corollary 2.6. For any scheme 𝑆, there are isomorphisms

Ω1
𝑠𝐵(

∐

𝑛
𝐵𝑆𝑝2𝑛)

∼
,→ 𝐾⟂(

∐

𝑛
𝑆𝑝𝑛)

∼
,→ 𝐾𝑆𝑝⟂

in𝐻∙(𝑆).

Proof. Theorem 2.5 implies 𝐾𝑆𝑝⟂(∐𝑛 𝑆𝑝𝑛(𝒪𝑈,𝑢))
∼
,→ 𝐾𝑆𝑝⟂(𝒪𝑈.𝑢) for any

point (𝑈, 𝑢). Therefore, it is enough to show that these spaces areweakly equiv-
alent to the corresponding stalks. This follows from the analogous result for the
classifying spaces and the construction of group completions given in [Gra76].

□

Remark 2.7. Currently there is some ambiguity regarding the correct defini-
tion of symplectic K-theory over an arbitrary scheme. In general the hermitian
K-theory for categories with duality gives us Grothendieck-Witt spaces 𝐺𝑊(𝑋)
and 𝐺𝑊−(𝑋) ([Sch10a]) for any scheme 𝑋. These spaces give us all the desired
properties for regular Noetherian schemes with 1

2
∈ Γ(𝑋,𝒪𝑋). In the general

case, a recent paper [CDH+23] constructs multiple models of Grothendieck-
Witt spaces (actually Ω-spectra) which are equivalent when 2 is invertible.

Let 𝑋 be a scheme, 𝑖 ∶ 𝑈 ↪ 𝑋 be an open embedding and 𝑛 ∈ ℕ. We denote
by𝐾𝑂[𝑛](𝑋),𝐾𝑆𝑝[𝑛](𝑋),𝐾𝑂[𝑛](𝑋,𝑈) and𝐾𝑆𝑝[𝑛](𝑋,𝑈), the Grothendieck-Witt
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spaces as in [Sch10b]. By [Sch10b, Sec. 8 Cor. 1] we have homotopy equiva-
lences

𝐾𝑆𝑝[𝑛](𝑋)
∼
,→ 𝐾𝑂[𝑛+4𝑘+2](𝑋) and 𝐾𝑆𝑝[𝑛](𝑋,𝑈)

∼
,→ 𝐾𝑂[𝑛+4𝑘+2](𝑋,𝑈)

(2.2)
for all 𝑛, 𝑘 ∈ ℤ and for any open embedding 𝑖 ∶ 𝑈 ↪ 𝑋.
Theorem 2.8 ([PW18, Thm. 5.1]). Let 𝑆 be any regular Noetherian separated
scheme of finite Krull dimension with 1

2
∈ Γ(𝑆,𝒪𝑆). For any 𝑋 ∈ 𝑆𝑚𝑆 and any

𝑛 ≥ 0, there is an isomorphism of groups

𝐾𝑂[𝑛]
𝑖 (𝑋) = 𝜋𝑖(𝐾𝑂[𝑛](𝑋)) ≅ [𝑆𝑖 ∧ 𝑋+, 𝐾𝑂[𝑛]]𝔸1 (2.3)

In the case of affine schemes where two is invertible, we get back 𝐾𝑆𝑝⟂ and
𝐾𝑂⟂.

Theorem 2.9. Let𝑋 ≅ Spec(𝑅) and 1
2
∈ 𝑅, we then have homotopy equivalences

𝐾𝑂⟂(𝑋)
∼
,→ 𝐾𝑂[0](𝑋) (2.4)

𝐾𝑆𝑝⟂(𝑋)
∼
,→ 𝐾𝑆𝑝[0](𝑋). (2.5)

Proof. When 1
2
∈ 𝑅, every skew-symmetric form is alternating and hence

𝐾𝑂⟂(𝑋) and𝐾𝑆𝑝⟂(𝑋) are equal to 1𝐾ℎ(𝑅) and −1𝐾ℎ(𝑅) of [Kar73] respectively.
The results [Sch04, Cor. 4.6] and [Sch10b, Prop. 6] supply the desired homotopy
equivalences. □

3. Unstable representability
The main reference for this section is [PW18, Sec. 8]. We fix a noetherian

scheme 𝑆 of finite Krull dimension. The functor 𝑋 ↦ 𝑆𝑝2𝑛(Γ(𝑋,𝒪𝑋)) is repre-
sentable by a group scheme, in fact a closed subgroup scheme of 𝐺𝐿2𝑛, which
we also denote by 𝑆𝑝2𝑛. There aremorphisms of schemes 𝑆𝑝2𝑛 → 𝑆𝑝2𝑛+2 given
by 𝐴 ↦ 𝐴 ⊕ (0 −1

1 0 ) for each 𝑛. Let 𝑆𝑝∞ = colim𝑛 𝑆𝑝2𝑛 denote the colimit
which is a group object in the category of motivic spaces. Let 𝐻𝐺𝑟(2𝑟, 2𝑛) be
the quaternionic Grassmannian scheme which classifies rank 2𝑟 subbundles of
𝐻2𝑛
− and𝐻𝐺𝑟 is the ind-scheme colim𝑛𝐻𝐺𝑟(2𝑛, 4𝑛).

Theorem 3.1. Over any noetherian scheme 𝑆 of finite Krull dimension we have
a sequence of isomorphisms

ℤ ×𝐻𝐺𝑟 ≅ ℤ × 𝐵𝑆𝑝∞ ≅ 𝑅Ω1
𝑠𝐵(

∐

𝑛
𝐵𝑆𝑝2𝑛) ≅ 𝐾𝑆𝑝⟂

as objects in𝐻∙(𝑆).
This is equivalent to [PW18, Thm. 8.2] if 2 is invertible. We need the fol-

lowing lemma which is essentially [MV99, Thm. 4.1] but tweaked to correct
a mistake initially pointed out in [ST15]. Recall that a pointed graded simpli-
cial sheaves of monoids is a quadruple (𝑀,+, 𝛼, 𝑓) where (𝑀,+) is a sheaf of
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simplicial monoids and 𝛼 ∶ ℕ → 𝑀, 𝑓 ∶ 𝑀 → ℕ are morphisms of sheaf of
monoids with 𝑓𝛼 = 𝐼𝑑. In the lemma below, by sheaf we mean sheaf over 𝑆𝑚𝑆
with the Nisnevich topology.

Lemma 3.2. Let (𝑀,+, 𝛼, 𝑓) be a pointed graded simplicial sheaf of monoids
over the with𝑀∞ = 𝑐𝑜𝑙𝑖𝑚𝑛𝑓−1(𝑛). Assume the following three conditions hold.

(1) The map 𝜋𝔸1

0 (𝑓) ∶ 𝜋𝔸1

0 (𝑀)→ ℕ is an isomorphism of constant sheaves.
(2) Themonoid (𝑀,+) is commutative in𝐻∙(𝑆) under the inducedmonoidal

structure.
(3) The diagram

𝑀𝑛 ×𝑀𝑛 𝑀2𝑛

𝑀𝑛+1 ×𝑀𝑛+1 𝑀2𝑛+2

+

𝛼(2)+

commutes in𝐻∙(𝑆).
Then the canonical morphism𝑀∞ ×ℤ→ 𝑅Ω1

𝑠𝐵𝑀 is an𝔸1-weak equivalence.

Here 𝜋𝔸1

0 (𝒳) is just the sheafification of the presheaf of sets
𝑈 ↦ [𝑈,𝒳]𝔸1 .

Proof. By [MV99, Lem. 4.1.1], we can replace𝑀 with a term wise free simpli-
cial monoid and hence assume 𝑀+ ≅ 𝑅Ω1

𝑠𝐵𝑀. By [MV99, Lem. 4.1.7], there
is an 𝔸1-fibrant replacement functor𝑀 → 𝐸𝑥𝔸1(𝑀) taking monoid objects to
monoid objects. As 𝜋𝔸1

0 (𝑓) ∶ 𝜋𝔸1

0 (𝑀)→ ℕ is an isomorphism, 𝐸𝑥𝔸1(𝑀) is also
graded as

𝜋𝔸1

0 (𝐸𝑥𝔸1(𝑀))(𝑈) ≅ 𝜋0(𝐸𝑥𝔸1(𝑀))(𝑈).
The morphism𝑀 → 𝐸𝑥𝔸1(𝑀) induces an𝔸1-weak equivalence of each graded
component as they are disjoint and hence 𝔸1-weak equivalences 𝑅Ω1

𝑠𝐵𝑀
∼
,→

𝑅Ω1
𝑠𝐵𝐸𝑥𝔸1𝑀 and𝑀∞

∼
,→ 𝐸𝑥𝔸1(𝑀)∞ of homotopy colimits. Therefore, we can

replace𝑀 and𝑀∞ with 𝐸𝑥𝔸1(𝑀) and (𝐸𝑥𝔸1(𝑀))∞ respectively and reduce to
the situation where 𝑀 is 𝔸1-fibrant. Hence, we can assume (𝑀,+, 0) is com-
mutative in the simplicial homotopy category 𝐻𝑠(𝑆𝑚𝑆) and the diagram in (3)
commutes up to simplicial homotopy. Nowweneed to show that𝑀∞×ℤ→ 𝑀+

is a Nisnevich local weak equivalence of simplicial sheaves. As the Nisnevich
site has enough points, we use the stalk functors to reduce to the case where all
objects are Kan complexes. The first two conditions then imply that the map
𝑀∞×ℤ→ 𝑀+ , where𝑀+ is the group completion of the simplicial monoid𝑀,
is a homology isomorphism. Condition (3) implies that𝑀∞ is an H-space and
therefore 𝜋1(𝑀∞) is abelian and acts trivially on all higher homotopy groups.
The map is then a weak equivalence by Whitehead’s theorem. □

Remark 3.3. Condition 3was not part of [MV99, Thm. 4.1.10]. As the counter-
example in [ST15, Remark 8.5] shows, this additional condition is necessary.
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Proof of Theorem 3.1. Firstly by Corollary 2.6 we have 𝑅Ω1
𝑠𝐵(

∐
𝑛 𝐵𝑆𝑝2𝑛)

∼
,→

𝐾𝑆𝑝⟂ in𝐻∙(𝑆). We will show that the graded sheaf of monoids
∐

𝑛 𝐵𝑆𝑝2𝑛 sat-
isfies the conditions of Lemma 3.2. Condition (1) is clear. For (2), we need∐

𝑛 𝐵𝑆𝑝2𝑛 to be commutative in 𝐻∙(𝑆). Let ∆𝑅 be the simplicial ring with
∆𝑅𝑛 = 𝑅[𝑡0,… , 𝑡𝑛]∕(𝑡0 + … + 𝑡𝑛 − 1) and structure maps same as the topo-
logical simplex. Taking stalks we can reduce to the case of showing the simpli-
cial monoid

∐
𝑛 𝑆𝑖𝑛𝑔

𝔸1(𝐵𝑆𝑝2𝑛)(𝑅) =
∐

𝑛 𝐵𝑆𝑝2𝑛(∆𝑅) is homotopy commuta-
tive for any ring 𝑅. Fixing 𝑛,𝑚 ∈ ℕ, there exists a permutation matrix 𝑃𝑛,𝑚 ∈
𝐺𝐿2𝑛+2𝑚(𝑅) such that,

(𝐴 0
0 𝐵) = 𝑃𝑛,𝑚 (

𝐵 0
0 𝐴)𝑃

−1
𝑛,𝑚

in 𝑆𝑝2𝑛+2𝑚(𝑅) for any 𝐴 ∈ 𝑆𝑝2𝑛(𝑅) and 𝐵 ∈ 𝑆𝑝2𝑚(𝑅). From [Wei13, III.1.2.1]
we see that 𝑃𝑛,𝑚 is a product of elementary matrices 𝑃𝑛,𝑚 = 𝐸1…𝐸𝑘. As these
block matrices are of even rank, we can choose 𝐸𝑖 ∈ 𝑆𝑝2𝑛+2𝑚(𝑅). Each of
these 𝐸𝑖 can be written as the sum of the identity matrix and a nilpotent matrix
𝐸𝑖 = 𝐼 + 𝑁𝑖. The matrix 𝐹 = 𝐼 + 𝑡𝑁𝑖 is then an element of 𝑆𝑝2𝑛+2𝑚(𝑅[𝑡]) and
gives us a path between 𝐸𝑖 and 𝐼 in 𝑆𝑝2𝑛+2𝑚(∆𝑅). Therefore, there is a sim-
plicial homotopy between the maps (𝐴, 𝐵) ↦ 𝐴 ⊕ 𝐵 and (𝐴, 𝐵) ↦ 𝐵 ⊕ 𝐴 as
functors 𝑆𝑝2𝑛(∆𝑅)×𝑆𝑝2𝑚(∆𝑅)→ 𝑆𝑝2𝑛+2𝑚(∆𝑅). For (3), taking stalks again we
need to show that for any ring 𝑅 and any 𝑛 the maps 𝑆𝑝2𝑛(∆𝑅) × 𝑆𝑝2𝑛(∆𝑅) →
𝑆𝑝4𝑛+4(∆𝑅) given by

(𝐴, 𝐵)↦ 𝐴⊕ 𝐵 ⊕ (0 −1
1 0 )⊕ (0 −1

1 0 )

and

(𝐴, 𝐵)↦ 𝐴⊕ (0 −1
1 0 )⊕ 𝐵 (0 −1

1 0 )

are homotopic. Like (2) these maps are equal up to conjugation by a permu-
tation matrix and are simplicially homotopic. Hence, we get an isomorphism
ℤ × 𝐵𝑆𝑝∞

∼
,→ 𝑅Ω1

𝑠𝐵(
∐

𝑛 𝐵𝑆𝑝2𝑛) in 𝐻∙(𝑆). Finally, we have 𝐻𝐺𝑟(2𝑛,∞)
∼
,→

𝐵𝑆𝑝2𝑛 from [PW18, Sec 8.] inducing ℤ × 𝐻𝐺𝑟
∼
,→ ℤ × 𝐵𝑆𝑝∞ in 𝐻∙(𝑆). Note

that Panin and Walter assume the underlying scheme is regular with 2 invert-
ible but the proof works for arbitrary schemes. □

The above proof also shows that ℤ × 𝐻𝐺𝑟 is a unital commutative monoid
object in 𝐻∙(𝑆). Using results from [AHW18], we can say more in the case of
affine schemes.

Theorem 3.4. Let 𝑆 be ind-smooth over a Dedekind ring with perfect residue
fields. Then, for any 𝑋 ∈ 𝑆𝑚𝑎𝑓𝑓

𝑆 there is an isomorphism,

[𝑋+,ℤ ×𝐻𝐺𝑟]𝔸1 ≅ 𝐾𝑆𝑝⟂0 (𝑋)
of groups.
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Proof. By [AHW18, Ex. 2.3.4] we have for each 𝑛, bijections of sets
[𝑋+, 𝐵𝑆𝑝2𝑛]𝔸1 ≅ 𝜋0(𝐵𝑁𝑖𝑠𝑆𝑝2𝑛)(𝑋) ≅ 𝑆𝑦𝑚𝑝𝑛(𝑋)

where 𝑆𝑦𝑚𝑝𝑛(𝑋) is the set of isometry classes of rank 2𝑛 symplectic spaces
over 𝑋 and 𝐵𝑁𝑖𝑠𝑆𝑝2𝑛 is a Nisnevich fibrant replacement of 𝐵𝑆𝑝2𝑛. As the fil-
tered colimit 𝐵𝑆𝑝∞ = colim𝑛 𝐵𝑆𝑝2𝑛 is also the homotopy colimit, the sheaf
ℤ × colim𝑛 𝐵𝑁𝑖𝑠𝑆𝑝2𝑛 is a Nisnevich fibrant replacement of ℤ × 𝐵𝑆𝑝∞ giving,

[𝑋+,ℤ×𝐵𝑆𝑝∞]𝔸1 ≅ ℤ(𝑋)×colim
𝑛

𝜋0(𝐵𝑁𝑖𝑠𝑆𝑝2𝑛(𝑋)) ≅ ℤ(𝑋)×colim
𝑛

𝑆𝑦𝑚𝑝𝑛(𝑋)

as sets. There is a map ℤ(𝑋) × colim𝑛 𝑆𝑦𝑚𝑝𝑛(𝑋) → 𝐾𝑆𝑝⟂0 (𝑋) which is given
by

(𝑖, [𝐴])↦ [𝐴] − (𝑟𝑎𝑛𝑘(𝐴)2 − 𝑖)[𝐻−]
on each connected open subscheme of𝑋. As themonoid structure onℤ×𝐵𝑆𝑝∞
is induced by ⟂, this is a monoid homomorphism. We will show that this map
is a bijection. First, we note that it is enough to prove this in the case when 𝑋
is connected as all our schemes are locally connected. Given any [𝐴] − [𝐵] ∈
𝐾𝑆𝑝⟂0 (𝑋), by Theorem 2.3, there exists a symplectic space 𝐶 such that 𝐵 ⟂ 𝐶 ≅
𝐻𝑘
− for some 𝑘. Then, [𝐴] − [𝐵] = [𝐴] + [𝐶] − (𝑘[𝐻−]) = [𝐴 ⟂ 𝐶] − 𝑘[𝐻−]

and hence the map is surjective. Now suppose [𝐴] − 𝑘[𝐻−] = [𝐵] − 𝑗[𝐻−] in
𝐾𝑆𝑝⟂(𝑋). Then, 𝐴 ⟂ 𝐻𝑗+𝑝

− ≅ 𝐵 ⟂ 𝐻𝑘+𝑝
− for some 𝑝. Hence, they have the

same preimage in ℤ × colim𝑛 𝑆𝑦𝑚𝑝𝑛(𝑋) and this is a group isomorphism. □

Theorem 3.5. Let 𝑆 be ind-smooth over a Dedekind ring with perfect residue
fields. Then, for any affine Spec(𝑅) ≅ 𝑋 ∈ 𝑆𝑚𝑎𝑓𝑓

𝑆 there are isomorphisms

[𝑆𝑛 ∧ 𝑋+,ℤ ×𝐻𝐺𝑟]𝔸1 ≅ 𝜋𝑛𝑆𝑖𝑛𝑔𝔸
1(𝐾𝑆𝑝⟂(𝑋))

for all 𝑛 ≥ 0. In particular, this holds over Spec(ℤ).

Proof. By Theorem 4.1.2 of [AHW18], 𝐵𝑁𝑖𝑠𝑆𝑝2𝑘 is 𝔸1-naive, and by Proposi-
tion 4.1.16 of [MV99], the map 𝐵𝑆𝑝2𝑘 → 𝐵𝑁𝑖𝑠𝑆𝑝2𝑘 induces an isomorphism of
groups 𝜋𝑛𝐵𝑆𝑝2𝑘(𝑈)

∼
,→ 𝜋𝑘𝐵𝑁𝑖𝑠𝑆𝑝2𝑘(𝑈) for all 𝑈 ∈ 𝑆𝑚𝑆 and all 𝑛 ≥ 1. There-

fore, the morphism of colimtis 𝐵𝑆𝑝∞ → colim𝑘 𝐵𝑁𝑖𝑠𝑆𝑝2𝑘 also induces an iso-
morphism on all higher homotopy groups. By Theorem 3.4, we have a group
isomorphism 𝜋0ℤ × colim𝑘 𝐵𝑁𝑖𝑠𝑆𝑝2𝑘(𝑋) ≅ 𝐾𝑆𝑝0(𝑋) for every 𝑋 ∈ 𝑆𝑚𝑎𝑓𝑓

𝑆 . As
𝜋0𝐵𝐺 =∗ for any group, there is a weak equivalence 𝐾𝑆𝑝⟂0 (𝑋) × 𝐵𝑆𝑝∞(𝑋) →
ℤ(𝑋) × colim𝑘 𝐵𝑁𝑖𝑠𝑆𝑝2𝑘(𝑋). We then have bijections,

[𝑆𝑛 ∧ 𝑋+,ℤ × 𝐵𝑆𝑝∞]𝔸1 ≅ [𝑆𝑛 ∧ 𝑋+,ℤ × colim
𝑘

𝐵𝑁𝑖𝑠𝑆𝑝2𝑘]𝔸1

≅ 𝜋𝑛𝑆𝑖𝑛𝑔𝔸
1(ℤ(𝑋) × colim

𝑘
𝐵𝑁𝑖𝑠𝑆𝑝2𝑘(𝑋))

for all 𝑛 ≥ 0. The map of spaces 𝐾𝑆𝑝⟂0 (𝑋) × 𝐵𝑆𝑝∞(𝑋) → 𝐾𝑆𝑝⟂(𝑋) is a topo-
logical group completion, when 𝑋 is affine, by Theorem 2.3. Further, from
the proof of Theorem 3.1 we have that 𝑆𝑖𝑛𝑔𝔸1𝐵𝑆𝑝∞(𝑋) is a grouplike H-space.
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Putting these together, we get that the map 𝑆𝑖𝑛𝑔𝔸1(𝐾𝑆𝑝⟂0 (𝑋) × 𝐵𝑆𝑝∞(𝑋)) →
𝑆𝑖𝑛𝑔𝔸1(𝐾𝑆𝑝⟂(𝑋)) is a levelwise weak equivalence. Therefore,

𝜋𝑛𝑆𝑖𝑛𝑔𝔸
1(ℤ × colim

𝑘
𝐵𝑁𝑖𝑠𝑆𝑝2𝑘) ≅ 𝜋𝑛𝑆𝑖𝑛𝑔𝔸

1(𝐾𝑆𝑝⟂(𝑋))

and hence we have

[𝑆𝑛 ∧ 𝑋+,ℤ × 𝐵𝑆𝑝∞]𝔸1 ≅ 𝜋𝑛𝑆𝑖𝑛𝑔𝔸
1(𝐾𝑆𝑝⟂(𝑋))

thus completing the proof. □

We have a stronger result in the case when 1
2
∈ Γ(𝑆,𝒪𝑆).

Theorem 3.6. Let 𝑆 be a regular Noetherian scheme of finite Krull dimension
with 1

2
∈ Γ(𝑆,𝒪𝑆). For any 𝑋 ∈ 𝑆𝑚𝑆 and for all 𝑛 ∈ ℕ,

[𝑆𝑛 ∧ 𝑋+,ℤ ×𝐻𝐺𝑟]𝔸1 ≅ 𝐾𝑆𝑝[0]𝑛 (𝑋).

Proof. The statement follows from Theorems 2.8 and 3.1. □

4. Hermitian K-theory spectrum
Recall from Section 2 that for any scheme 𝑆 we have simplicial presheaves

𝐾𝑂[𝑛] ∶ 𝑆𝑚𝑜𝑝
𝑆 → 𝐬𝐒𝐞𝐭. When 𝑆 is a regular Noetherian scheme of finite Krull

dimension with 1
2
∈ Γ(𝒪𝑆, 𝑆), Panin and Walter showed that there is a motivic

𝑇-spectrum 𝐊𝐎 = (𝐾𝑂[0], 𝐾𝑂[1], 𝐾𝑂[2],…), where 𝑇 = 𝔸1∕𝔸1 − 0 [PW18, Sec.
7]. We will recall this construction below. First, we need the fact that for any
exact category with strict duality (ℰ, ∗, 𝜂) we can define a family of exact cate-
gory with weak equivalence and duality structures on the category of bounded
chain complexes 𝐶ℎ𝑏(ℰ).

Definition 4.1 (Shifted dualities). For 𝑛 ∈ ℤ, we define the functor 𝜂𝑛 ∶
𝐶ℎ𝑏(ℰ) → 𝐶ℎ𝑏(ℰ)𝑜𝑝 to be given by 𝐸. ↦ (𝐸.)∗[𝑛]. Where (𝐸.)∗ is the chain
complex (𝐸.)∗𝑖 = 𝐸∗−𝑖. That is,

(𝐸∗, 𝑑∗) ∶ …𝐸∗−𝑖+1
𝑑∗−𝑖,,,→ 𝐸∗−𝑖

𝑑∗−𝑖−1,,,,→ 𝐸∗−𝑖−1 → …

[𝑛] is the usual shift functor 𝐸[𝑛]𝑖 = 𝐸𝑖−𝑛. In particular (𝑑∗
𝑛)𝑖 = (𝑑−𝑖−1−𝑛)∗.

Let 𝜂𝑛 ∶ (−) ⇒ (−)∗𝑛∗𝑛 be the natural transformation given by

(𝜂𝑛𝐸)𝑖 = (−1)
𝑛(𝑛−1)

2 𝜂𝐸𝑖 𝐸. ∈ 𝐶ℎ𝑏(ℰ)

The pairs (∗𝑛, 𝜂𝑛), give us exact categories with weak equivalences and du-
ality

(𝐶ℎ𝑏(ℰ), ∗𝑛, 𝜂𝑛, 𝑞)
for each 𝑛 ∈ ℤ. We will apply this construction to ℰ = 𝑉𝑒𝑐𝑡(𝑋) and ∗𝑛= ∨𝑛
given by ∨𝑛 ∶ 𝐸 ↦ 𝐸∨[𝑛].
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Definition 4.2 (Koszul complex). Let 𝑝 ∶ 𝐸 → 𝑋 be a vector bundle of rank 𝑛.
The pullback 𝑝∗𝐸 = 𝐸 ×𝑋 𝐸 → 𝐸 is a vector bundle over 𝐸 (as a scheme) and
has a section 𝑠 ∶ 𝐸 → 𝐸 ×𝑋 𝐸 given by the diagonal map. The Koszul complex
𝜅(𝐸) is the chain complex of vector bundles over 𝐸 given by

𝜅(𝐸) ∶ (0→ Λ𝑛𝑝∗𝐸∨ → Λ𝑛−1𝑝∗𝐸∨ → …→ Λ2𝑝∗𝐸∨ → 𝑝∗𝐸∨ → 𝒪𝐸 → 0)

with grading 𝜅(𝐸)𝑖 = Λ𝑛−𝑖𝐸∨ and differentials 𝑑 ∶ Λ𝑘+1𝑝∗𝐸∨ → Λ𝑘𝑝∗𝐸∨ given
by

𝑑(𝑥0 ∧ 𝑥1 ∧ … ∧ 𝑥𝑘) =
𝑛∑

𝑖=0
(−1)𝑖𝑠∗(𝑥𝑖)𝑥0 ∧ … ∧ �̂�𝑖 ∧ … ∧ 𝑥𝑘

where 𝑠∗ is the dual of the section 𝑠 ∶ 𝒪𝐸 → 𝑝∗𝐸.

The canonical isomorphismΛ𝑟𝑝∗𝐸
∼
,→ (Λ𝑛−𝑟𝑝∗𝐸)∨⊗Λ𝑛𝑝∗𝐸 induces an iso-

morphism of chain complexes 𝜃(𝐸) ∶ 𝜅(𝐸)
∼
,→ 𝜅(𝐸)∨ ⊗ Λ𝑛𝑝∗𝐸[𝑛]. Given an

isomorphism 𝜆 ∶ 𝑑𝑒𝑡𝐸 = Λ𝑛𝐸
∼
,→ 𝒪𝑋 , this gives us a non-degenerate symmet-

ric form in 𝐶ℎ𝑏(𝑉𝑒𝑐𝑡(𝐸),∨𝑛, 𝜂𝑛, 𝑞),

𝜅(𝐸, 𝜆) ∶ 𝜅(𝐸)
∼
,→ 𝜅(𝐸)∨ ⊗ Λ𝑛𝑝∗𝐸[𝑛]

∼
,→ 𝜅(𝐸)∨[𝑛]

where we choose the sign of the isomorphismsΛ𝑟𝑝∗𝐸
∼
,→ (Λ𝑛−𝑟𝑝∗𝐸)∨⊗Λ𝑛𝑝∗𝐸

to be compatible with the natural transformation 𝜂𝑛. Let 𝑉𝑒𝑐𝑡(𝐸)𝑞𝐸−𝑋 be the
full subcategory of 𝑉𝑒𝑐𝑡(𝐸) generated by complexes which are acyclic when
restricted to the open subscheme 𝐸 − 𝑋. It follows that 𝜅(𝐸, 𝜆) is an object of
𝑉𝑒𝑐𝑡(𝐸)𝑞𝐸−𝑋 . Given a pair (𝐸, 𝜆), where 𝑝 ∶ 𝐸 → 𝑋 is a rank 𝑛 vector bundle
and 𝜆 ∶ 𝑑𝑒𝑡𝐸 = Λ𝑛𝐸

∼
,→ 𝒪𝑋 an isomorphism between the determinant bundle

and the trivial bundle, the Thomclass 𝑡ℎ(𝐸, 𝜆) = [(𝜅(𝐸, 𝜆)] is the corresponding
element in 𝐾𝑂[𝑛]

0 (𝐸, 𝐸 − 𝑋). From this we see that for every pair (𝐸, 𝜆), where
𝐸 is a vector bundle and 𝜆 ∶ Λ𝑛𝐸

∼
,→ 𝒪𝑋 , we have a functor

𝐶ℎ𝑏(𝑉𝑒𝑐𝑡(𝑋),∨𝑚, 𝜂𝑛, 𝑞)→ 𝐶ℎ𝑏(𝑉𝑒𝑐𝑡(𝐸)𝑞𝐸−𝑋 ,∨𝑚+𝑛, 𝜂𝑛, 𝑞)

which on objects is given by tensoring with 𝜅(𝐸),

𝐶.↦ 𝑝∗𝐶. ⊗ 𝜅(𝐸).

This induces a map of spaces𝐾𝑂[𝑚](𝑋)→ 𝐾𝑂[𝑚+𝑛](𝐸, 𝐸−𝑋)which we denote
by⊗𝑡ℎ(𝐸, 𝜆).

Theorem 4.3. Let 𝑋 ∈ 𝑆𝑚𝑆 with 𝑆 a regular Noetherian scheme of finite Krull
dimension with 1

2
∈ Γ(𝑆,𝒪𝑆). For any pair (𝐸, 𝜆) described above, the map

⊗𝑡ℎ(𝐸, 𝜆) ∶ 𝐾𝑂[𝑚](𝑋)→ 𝐾𝑂[𝑚+𝑛](𝐸, 𝐸 − 𝑋) is a weak equivalence of spaces.

Proof. This is a corollary of [PW18, Thm. 5.1], which contains the hypotheses
on regularity and invertibility of 2. □
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For any scheme 𝑋, let 𝐸 = 𝒪𝑋 be the trivial bundle with 𝜆 = 𝑖𝑑, 𝜅(𝐸, 𝜆) is
then given by,

0 𝒪𝔸1
𝑋

𝒪𝔸1
𝑋

0

0 𝒪𝔸1
𝑋

𝒪𝔸1
𝑋

0

𝑡

−1 1
−𝑡

where 𝑡 is the variable in𝔸1
Spec(𝑅) ≅ Spec(𝑅[𝑡]). We then have an induced equiv-

alence of simplicial sets,

⊗𝑡ℎ(𝒪, 𝑖𝑑) ∶ 𝐾𝑂[𝑛](𝑋)
∼
,→ 𝐾𝑂[𝑛+1](𝔸1 × 𝑋, (𝔸1 ⧵ {0}) × 𝑋)

which is functorial on 𝑋. Therefore, there is a levelwise weak equivalence of
simplicial presheaves 𝐾𝑂[𝑛](−)

∼
,→ 𝐾𝑂[𝑛+1](𝔸1 × −, (𝔸1 ⧵ {0}) × −). If 𝐾𝑂[𝑛]

𝑓 is
an𝔸1-fibrant replacement of 𝐾𝑂[𝑛], we have a zigzag of𝔸1-weak equivalences

𝐇𝐨𝐦𝑠𝑃𝑆ℎ∙(𝑆)(− ∧ 𝑇,𝐾𝑂[𝑛]
𝑓 )

∼
←, 𝐇𝐨𝐦𝑠𝑃𝑆ℎ∙(𝑆)(− ∧ 𝑇,𝐾𝑂[𝑛])
∼
,→ 𝐾𝑂[𝑛](𝔸1 × −, (𝔸1 ⧵ {0}) × −)

for each 𝑛. As 𝐇𝐨𝐦𝑠𝑃𝑆ℎ∙(𝑆)(− ∧ 𝑇,𝐾𝑂[𝑛]
𝑓 ) is fibrant, the zigzag lifts to a weak

equivalence of simplicial presheaves

𝐾𝑂[𝑛]
𝑓 (−)

∼
,→ 𝐇𝐨𝐦𝑠𝑃𝑆ℎ∙(𝑆)(− ∧ 𝑇,𝐾𝑂[𝑛+1]

𝑓 ).

Taking the adjoint, we get an equivalence of motivic spaces

𝑇 ∧ 𝐾𝑂[𝑛]
𝑓 (−)

∼
,→ 𝐾𝑂[𝑛+1]

𝑓 (−) (4.1)

for each 𝑛. The sequence (𝐾𝑂[𝑛]
𝑓 )𝑛≥0 along with structure maps 4.1 defines a 𝑇-

spectrum𝐊𝐎 ∈ 𝐒𝐩𝐭(𝑆)𝑇. As we have to make choices for fibrant replacements
𝐾𝑂[𝑛]

𝑓 and the structure maps, the 𝑇-spectrum 𝐊𝐎 is not unique. However, by
Theorem A.5 we get a unique object in 𝑆𝐻(𝑆) up to (not necessarily unique)
isomorphism.

Definition 4.4. We define 𝐊𝐎 to be the naive 𝑇-spectrum given by the se-
quence 𝐊𝐎 = (𝐾𝑂[𝑛])𝑛≥0 and the structure maps 𝑇 ∧𝐋 𝐾𝑂[𝑛] → 𝐾𝑂[𝑛+1] in
𝐻∙(𝑆) induced by the weak equivalences in 4.1. By Theorem A.5,𝐊𝐎 defines a
unique object in 𝑆𝐻(𝑆) up to isomorphism. By abuse of notation, we will refer
to this object also as𝐊𝐎.

From Theorems 2.8 and 4.3, we get the following corollary.

Corollary 4.5. Let 𝑆 be regular noetherian scheme of finite Krull dimension with
1
2
∈ Γ(𝑆,𝒪𝑆). For all 𝑋 ∈ 𝑆𝑚𝑆 , there is an isomorphism of groups

[Σ∞𝑋+, 𝑆𝑝,𝑞 ∧𝐊𝐎] ≅ 𝐾𝑂[𝑞]
2𝑞−𝑝(𝑋)
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where 2𝑞 ≥ 𝑝 ≥ 𝑞 ≥ 0 and [−,−] denotes𝐻𝑜𝑚𝑆𝐻(𝑆)(−,−).

Proof. As 𝑆𝑝,𝑞 = 𝑆𝑝−𝑞 ∧ 𝔾𝑞
𝑚 and 𝑇 ≅ 𝑆2,1 in 𝐻∙(𝑆) we have a sequence of

bijections

[Σ∞𝑋+, 𝑆𝑝,𝑞 ∧𝐊𝐎] ≅ [𝑆2𝑞−𝑝 ∧ Σ∞𝑋+, 𝑇𝑞 ∧𝐊𝐎]

≅ [𝑆2𝑞−𝑝 ∧ Σ∞𝑋+,𝐊𝐎[−𝑞]] ≅ [𝑆2𝑞−𝑝 ∧ 𝑋+, 𝐾𝑂[𝑞]]𝔸1 ≅ 𝐾𝑂[𝑞]
2𝑞−𝑝(𝑋)

for all 2𝑞 ≥ 𝑝 ≥ 𝑞 ≥ 0. □

The above result suggests a definition of𝐾𝑂[𝑛]
𝑖 (𝑋) for 𝑖 < 0. Indeed Schlicht-

ing in [Sch17] constructs an Ω-spectrum 𝔾𝕎𝑛(𝑋) for any scheme 𝑋 with an
ample family of line bundles which satisfies

𝜋𝑖𝔾𝕎
𝑛(𝑋) = {𝐾𝑂

[𝑛]
𝑖 (𝑋) 𝑖 ≥ 0

𝑊𝑛−𝑖(𝑋) 𝑖 < 0
(4.2)

for all 𝑖 ∈ ℤ and 𝑛 ∈ ℕ. Here 𝑊𝑛(𝑋) are Balmer’s triangular Witt groups
[Bal00]. Setting 𝐾𝑂[𝑛]

𝑖 (𝑋) = 𝜋𝑖𝔾𝕎
𝑛(𝑋) for all 𝑖 and using [PW18, Lem. 5.2] we

get the following generalisation.

Theorem 4.6. Let 𝑆 be regular noetherian scheme of finite Krull dimension with
1
2
∈ Γ(𝑆,𝒪𝑆). For all 𝑋 ∈ 𝑆𝑚𝑆 , there is an isomorphism of groups

[Σ∞𝑋+, 𝑆𝑝,𝑞 ∧𝐊𝐎] ≅ 𝐾𝑂[𝑞]
2𝑞−𝑝(𝑋)

where 𝑝 ≥ 𝑞 ≥ 0.

5. The geometric HP1-spectrum KOgeo

As before, the stable homotopy category 𝑆𝐻(𝑆) is the stabilization of 𝐻∙(𝑆)
with respect to the functor (𝑋, 𝑥0) ↦ 𝑇 ∧ (𝑋, 𝑥0) where 𝑇 = 𝔸1∕(𝔸1 − 0).
There is a Quillen equivalence between the categories 𝐒𝐩𝐭(𝑆)𝑇 and 𝐒𝐩𝐭(𝑆)𝑇∧2 ,
of 𝑇- and 𝑇∧2-spectra, given by the adjoint pair (𝑋𝑛) ↦ (𝑋2𝑛) and (𝑋𝑛) ↦
(𝑋0, 𝑇 ∧ 𝑋0, 𝑋1, 𝑇 ∧ 𝑋1,…), inducing an isomorphism of stable homotopy cat-
egories 𝑆𝐻(𝑆)𝑇 ≅ 𝑆𝐻(𝑆)𝑇∧2 [Jar00, Prop. 2.13]. To construct our desired spec-
trum, we need a different model of the stable homotopy category which utilizes
the quaternionic projective space 𝐻𝑃1 = 𝐻𝐺𝑟(2, 4). From this point onwards,
we will denote the base scheme 𝑆 by 𝑝𝑡 to simplify notation.
Theorem 5.1. Let 𝑥0 ∶ 𝑝𝑡 → 𝐻𝑃1 be the distinguished point corresponding to
the subbundle [𝐻−⊕ 0]. There is an isomorphism 𝜂 ∶ (𝐻𝑃1, 𝑥0) ≅ 𝑇∧2 in𝐻∙(𝑆).
Proof. This is [PW18, Thm. 9.8]. To introduce notation and to illustrate the
geometry present when discussing higher Grassmannians, we elaborate some
of the arguments below. Consider the open subscheme 𝔸4 ≅ 𝑁 ↪ 𝐺𝑟(2, 4)
classifying rank 2 subbundles 𝑈 ↣ 𝒪4 whose projection onto 0⊕ 0⊕𝒪2 is an
isomorphism. We have 𝑁 = 𝑁+ ⊕𝑁−, where 𝑁+ = 𝐻𝑃1 ∩ 𝐺𝑟(2, 0⊕ 𝒪⊕ 𝒪2)
and 𝑁− = 𝐻𝑃1 ∩ 𝐺𝑟(2,𝒪⊕ 0⊕ 𝒪2) are closed subschemes of 𝐻𝑃1 which are
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isomorphic to 𝔸2. By [PW21, Thm. 3.4], 𝐻𝑃1 − 𝑁+ is the quotient of 𝔸5 =
𝔸2 ×𝔸2 ×𝔸1 by the free 𝔾𝑎-action,

𝑡 ⋅ (𝑎, 𝑏, 𝑟) = (𝑎, 𝑏 + 𝑡𝑎, 𝑟 + 𝑡(1 − 𝑎 (0 −1
1 0 ) 𝑏)).

The inclusion 𝔸1 ↪ 𝔸5 given by 𝑡 ↦ (0, 0, 0, 0, 𝑡) is then 𝔾𝑎-equivariant and
an 𝔸1-equivalence. Therefore, we have an induced 𝔸1-equivalence of the quo-
tients 𝑥0 ∶ 𝑝𝑡 → 𝐻𝑃1−𝑁+ given by the subspace 0⊕0⊕𝐻−. The commutative
square,

𝑝𝑡 𝐻𝑃1

𝐻𝑃1 −𝑁+ 𝐻𝑃1
∼ =

gives us an equivalence of pointed spaces (𝐻𝑃1, 𝑥0)
∼
,→ 𝐻𝑃1∕(𝐻𝑃1 − 𝑁+). We

have a similar square induced by the 𝔸1-equivalence 𝑁− ∼
,→ 𝑁,

𝑁− − 0 𝑁−

𝑁 −𝑁+ 𝑁

∼ ∼

where the left hand side is an equivalence as 𝑁 − 𝑁+ = 𝔸4 − 𝔸2 is a rank 2
vector bundle over 𝑁− − 0. Hence we have 𝑁−∕(𝑁− − 0) ≅ 𝑁∕(𝑁 − 𝑁+) in
𝐻∙(𝑆) and there is a zigzag of 𝔸1-equivalences

𝑇2 ≅ 𝔸2∕(𝔸2 − 0) ≅ 𝑁−∕𝑁− − 0 𝐻𝑃1∕(𝐻𝑃1 −𝑁+) (𝐻𝑃1, 𝑥0)

𝑁∕𝑁 −𝑁+ 𝑁 ∩𝐻𝑃1∕((𝑁 ∩𝐻𝑃1) −𝑁+)

∼

∼

excision

excision

Using the 2 out of 3 property twice, this gives us an 𝔸1-equivalence 𝑇∧2
∼
,→

𝐻𝑃1∕(𝐻𝑃1 −𝑁+) and hence 𝑇∧2 ≅ (𝐻𝑃1, 𝑥0) in𝐻∙(𝑆). □

Theorem 5.1 provides equivalences of stable homotopy categories 𝑆𝐻(𝑆) ≅
𝑆𝐻(𝑆)𝑇∧2 ≅ 𝑆𝐻(𝑆)𝐻𝑃1 . We now have the desired model of 𝑆𝐻(𝑆). We will
construct 𝐊𝐎𝑔𝑒𝑜 as a naive 𝐻𝑃1-spectrum in the sense of appendix A. For any
𝑛 ∈ ℤ, we have a canonical decomposition 𝑉𝑛 ⟂ 𝑉⟂

𝑛 ≅ 𝐻𝑛
+ over 𝑅𝐺𝑟(𝑛, 2𝑛)

which corresponds to the identity map 𝑅𝐺𝑟(𝑛, 2𝑛) → 𝑅𝐺𝑟(𝑛, 2𝑛). Similarly,
we have the canonical decompostion 𝑈2𝑛 ⟂ 𝑈⟂

2𝑛 ≅ 𝐻2𝑛
− over 𝐻𝐺𝑟(2𝑛, 4𝑛). Let

ℤ×𝐻𝐺𝑟 ∶= colim𝑛[−𝑛, 𝑛]×𝐻𝐺𝑟(2𝑛, 4𝑛), where [−𝑛, 𝑛]×𝑋 denotes the disjoint
union of 2𝑛+1 copies of𝑋. Themorphism𝐻𝐺𝑟(2𝑛, 4𝑛)→ 𝐻𝐺𝑟(2𝑛+2, 4𝑛+4)
is given by the subbundle

𝑈2𝑛 ⟂ 𝐻− ↣ (𝐻𝑛
− ⟂ 𝐻−) ⟂ (𝐻𝑛

− ⟂ 0)↣ (𝐻𝑛
− ⟂ 𝐻−) ⟂ (𝐻𝑛

− ⟂ 𝐻−)
where𝐻𝐺𝑟(2𝑛, 4𝑛) is identified with𝐻𝐺𝑟(2𝑛,𝐻𝑛

− ⟂ 𝐻𝑛
−). Defining [−𝑛, 𝑛]′ by

[−𝑛, 𝑛]′ = {𝑖 ∈ ℤ| − 𝑛 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 ≡ 𝑛mod 2}
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the infinite real Grassmannian,
ℤ×𝑅𝐺𝑟 ∶= colim

𝑛
[−2𝑛, 2𝑛]′×𝑅𝐺𝑟(2𝑛, 4𝑛)∪[−2𝑛+1, 2𝑛−1]′×𝑅𝐺𝑟(2𝑛−1, 4𝑛−2)

is defined along similar lines. The distinguished points ℎ0 ∶ 𝑝𝑡 → ℤ × 𝐻𝐺𝑟
and 𝑟0 ∶ 𝑝𝑡 → ℤ × 𝑅𝐺𝑟 correspond to the subbundles 𝐻𝑛

− ⟂ 0 ↣ 𝐻𝑛
− ⟂ 𝐻𝑛

−
and 𝐻𝑛

+ ⟂ 0 ↣ 𝐻𝑛
+ ⟂ 𝐻𝑛

+ over {0} ×𝐻𝐺𝑟(2𝑛, 4𝑛) ⊂ [−𝑛, 𝑛] ×𝐻𝐺𝑟(2𝑛, 4𝑛) and
{0} × 𝑅𝐺𝑟(2𝑛, 4𝑛) ⊂ [−2𝑛, 2𝑛]′ × 𝑅𝐺𝑟(2𝑛, 4𝑛) respectively for each 𝑛.
Lemma 5.2. For all 𝑛 ≥ 0, there exist morphisms of pointed smooth schemes

𝑓2𝑛 ∶ ([−𝑛, 𝑛] ×𝐻𝐺𝑟(2𝑛, 4𝑛)) ×𝐻𝑃1 → 𝑅𝐺𝑟(16𝑛, 32𝑛)
such that the following hold.

(1) The restriction 𝑓2𝑛|(0,𝐻𝑛−⟂0)×𝐻𝑃1 is given by the subbundle𝐻8𝑛
+ ⟂ 0.

(2) The restriction𝑓2𝑛|[−𝑛,𝑛]×𝐻𝐺𝑟(2𝑛,4𝑛)×(𝐻−⟂0) is given byan embedding𝐻
8𝑛
+ ↣

𝐻16𝑛
+ which is𝔸1-homotopic to the embedding given by𝐻8𝑛

+ ⟂ 0.
(3) These morphisms and 𝔸1-homotopies are compatible with inclusions of

schemes𝐻𝐺𝑟(2𝑛, 4𝑛)→ 𝐻𝐺𝑟(2(𝑛 + 1), 4(𝑛 + 1)) and 𝑅𝐺𝑟(16𝑛, 32𝑛)→
𝑅𝐺𝑟(16(𝑛 + 1), 32(𝑛 + 1)).

Proof. For simplicity, given two vector bundles 𝑈 and 𝑉 over two distinct
schemes𝑋 and𝑌, we denote by𝑈⊠𝑉 the vector bundle 𝑝∗1𝑈⊗𝑝∗2𝑉 over𝑋×𝑌
where 𝑝𝑖 are the projections. We have decompositions𝑈2𝑛 ⟂ 𝑈⟂

2𝑛 ≅ 𝐻2𝑛
− for all

𝑛. Remember that the tensor product of two symplectic spaces is a symmetric
space and in particular𝐻𝑛

−⊠𝐻𝑚
− ≅ 𝐻2𝑚𝑛

+ . For each 𝑛 ∈ ℕ and 𝑖 ∈ [−𝑛, 𝑛], we
have inclusions of symmetric spaces over𝐻𝐺𝑟(2𝑛, 4𝑛) ×𝐻𝑃1,

𝑈2𝑛 ⊠𝑈2 ↣ 𝐻2𝑛
− ⊠𝑈2,

𝐻𝑛−𝑖
− ⊠𝑈⟂

2 ↣ 𝐻2𝑛
− ⊠𝑈⟂

2 ,
𝑈⟂
2𝑛 ⊠𝐻− ↣ 𝐻2𝑛

− ⊠𝐻−,
𝐻𝑛+𝑖
− ⊠𝐻− ↣ 𝐻2𝑛

− ⊠𝐻−.

(5.1)

Putting these together, we get

(𝑈2𝑛 ⊠𝑈2) ⟂ (𝐻𝑛−𝑖
− ⊠𝑈⟂

2 ) ⟂ (𝑈⟂
2𝑛 ⊠𝐻−) ⟂ (𝐻𝑛+𝑖

− ⊠𝐻−) (5.2)
which is a rank 16𝑛 symmetric subspace of the rank 32𝑛 symmetric space

(𝐻2𝑛
− ⊠𝑈2) ⟂ (𝐻2𝑛

− ⊠𝑈⟂
2 ) ⟂ (𝐻2𝑛

− ⊠𝐻−) ⟂ (𝐻2𝑛
− ⊠𝐻−). (5.3)

This space is isometric to𝐻16𝑛
+ and a choice of isometry gives us 2𝑛+1 subspaces

of𝐻16𝑛
+ (one for each 𝑖), each of which is rank 16𝑛. Hence, we have amorphism

𝑓2𝑛 ∶ ([−𝑛, 𝑛] ×𝐻𝐺𝑟(2𝑛, 4𝑛)) ×𝐻𝑃1 → 𝑅𝐺𝑟(16𝑛, 32𝑛). (5.4)
The composition
𝐻𝐺𝑟(2𝑛, 4𝑛) ×𝐻𝑃1 → 𝐻𝐺𝑟(2𝑛+2, 4𝑛+4) ×𝐻𝑃1 → 𝑅𝐺𝑟(16𝑛+16, 32𝑛+32),
for a fixed 𝑖 then is given by the subspace
((𝑈2𝑛 ⟂ 𝐻−)⊠𝑈2) ⟂ ((𝑈⟂

2𝑛 ⟂ 𝐻−)⊠𝐻−) ⟂ ((𝐻𝑛−𝑖
− ⟂ 𝐻−)⊠𝑈⟂

2 ) ⟂ 𝐻2𝑛+2+2𝑖
+ .
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To make this equal to the composition

𝐻𝐺𝑟(2𝑛, 4𝑛) ×𝐻𝑃1 → 𝑅𝐺𝑟(16𝑛, 32𝑛)→ 𝑅𝐺𝑟(16𝑛 + 16, 32𝑛 + 32),
we need to choose the isometry used to define 𝑓2𝑛 carefully. First, we index𝐻2𝑛

−
as ⟂2𝑛

𝑖=1 𝐻
(𝑖)
− . We then get isometries

(𝐻(𝑖)
− ⊠𝑈2) ⟂ (𝐻(𝑖)

− ⊠𝑈⟂
2 ) ⟂ (𝐻(𝑖)

− ⊠𝐻−) ⟂ (𝐻(𝑖)
− ⊠𝐻−) ≅ 𝐻8

+ (5.5)

for each 𝑖 ∈ {1,… , 2𝑛}. Putting these together we get,
(𝐻2𝑛

− ⊠𝑈2) ⟂ (𝐻𝑛
− ⊠𝑈⟂

2 ) ⟂ (𝐻𝑛
− ⊠𝐻−) ⟂ (𝐻𝑛

− ⊠𝐻−) ≅ 𝐻16𝑛
+ (5.6)

which is the desired isometry. Pulling back this isometry along the inclusion

(0, 𝐻𝑛
− ⟂ 0) ×𝐻𝑃1 ↪ [−𝑛, 𝑛] ×𝐻𝐺𝑟(2𝑛, 4𝑛)) ×𝐻𝑃1

turns the symplectic subspace 5.3 into 𝐻8𝑛
+ ⟂ 0 and pulling back the isometry

along [−𝑛, 𝑛] ×𝐻𝐺𝑟(2𝑛, 4𝑛) × (𝐻− ⟂ 0) turns it into
(𝑈2𝑛⊠(𝐻− ⟂ 0)) ⟂ (𝐻𝑛−𝑖

− ⊠(0 ⟂ 𝐻−)) ⟂ (𝑈⟂
2𝑛⊠(𝐻− ⟂ 0)) ⟂ (𝐻𝑛+𝑖

− ⊠(0 ⟂ 𝐻−))

which is a subbundle isometric to 𝐻8𝑛
+ . Permuting the summands of 𝐻16𝑛

+ , we
can send the above subbundle to 𝐻8𝑛

+ ⟂ 0↣ 𝐻8𝑛
+ ⟂ 𝐻8𝑛

+ . As given in the proof
of Theorem 3.1, these permutations are 𝔸1-homotopic to identity. □

The next lemma can be proved analogously,

Lemma 5.3. For all 𝑛 ≥ 0, there exist morphisms of pointed smooth schemes
𝑔𝑛 ∶ ([−𝑛, 𝑛]′ × 𝑅𝐺𝑟(𝑛, 2𝑛)) ×𝐻𝑃1 → 𝐻𝐺𝑟(8𝑛, 16𝑛)

such that the following holds:
(1) The restriction 𝑔𝑛|(0,𝐻2𝑛

+ ⟂0)×𝐻𝑃1 is given by the subbundle𝐻8𝑛
− ⟂ 0 when 𝑛

is even.
(2) The restriction 𝑔𝑛|[−𝑛,𝑛]×𝑅𝐺𝑟(2𝑛,4𝑛)×(𝐻+⟂0) is given by an embedding𝐻

8𝑛
− ↣

𝐻16𝑛
− which is𝔸1-homotopic to the embedding given by𝐻8𝑛

− ⟂ 0.
(3) These morphisms and 𝔸1-homotopies are compatible with inclusions of

schemes
𝑅𝐺𝑟(𝑛, 2𝑛)→ 𝑅𝐺𝑟(𝑛 + 1, 2(𝑛 + 1))

and
𝐻𝐺𝑟(8𝑛, 16𝑛)→ 𝐻𝐺𝑟(8(𝑛 + 1), 16(𝑛 + 1)).

Proof. The proof is the same as for Lemma 5.2, except for a change in indices.
The morphism 𝑔𝑛 is defined on the 𝑖𝑡ℎ component, where 𝑖 ∈ [−𝑛, 𝑛]′, by the
subspace

(𝑉𝑛 ⊠𝑉1) ⟂ (𝐻
𝑛−𝑖
2

+ ⊠𝑉⟂
1 ) ⟂ (𝑉⟂

𝑛 ⊠𝐻+) ⟂ (𝐻𝑛+1) (5.7)
□

Using the morphisms of schemes 𝑓𝑛 and 𝑔𝑛, we can construct a naive 𝐻𝑃1-
spectrum.
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Theorem 5.4. For any scheme 𝑆, there exists a naive𝐻𝑃1-spectrum𝐊𝐎𝑔𝑒𝑜
𝑆 such

that for all 𝑖 ≥ 0, 𝐊𝐎𝑔𝑒𝑜
2𝑖+1 = ℤ × 𝐻𝐺𝑟 and 𝐊𝐎𝑔𝑒𝑜

2𝑖 = ℤ × 𝑅𝐺𝑟 as motivic spaces
andΩ2

𝐻𝑃1𝐊𝐎
𝑔𝑒𝑜 ≅ 𝐊𝐎𝑔𝑒𝑜 in 𝑆𝐻(𝑆)𝐻𝑃1 .

Here we are abusing notation and using𝐊𝐎𝑔𝑒𝑜
𝑆 to mean both the naive𝐻𝑃1-

spectrum and the associated object in 𝑆𝐻(𝑆).

Proof. From Lemma 5.2 and Lemma 5.3 we get morphisms of ind-schemes,

𝑓 ∶ 𝐻𝑃1 ×ℤ ×𝐻𝐺𝑟 → 𝑅𝐺𝑟 𝑔 ∶ 𝐻𝑃1 ×ℤ × 𝑅𝐺𝑟 → 𝐻𝐺𝑟 (5.8)

such that 𝑓|𝐻𝑃1∨𝐻𝐺𝑟 and 𝑔|𝐻𝑃1∨𝑅𝐺𝑟 are 𝔸1-homotopic to the constant zero mor-
phism. These induce structure maps 𝑓 ∶ 𝐻𝑃1 ∧𝐋 (ℤ × 𝐻𝐺𝑟) → ℤ × 𝑅𝐺𝑟 and
𝑔 ∶ 𝐻𝑃1∧𝐋 (ℤ×𝑅𝐺𝑟)→ ℤ×𝐻𝐺𝑟 in𝐻∙(𝑆), where ∧𝐋 is the left derived functor
of the smash product. Periodicity follows by construction. □

The periodicity above implies (8, 4)-periodicty in the standard bigrading of
motivic spectra.

Remark 5.5. Our construction of 𝐊𝐎𝑔𝑒𝑜 is along the same lines as the con-
struction of 𝐁𝐎 in [PW18]. However, we have shown that the condition of 2
being invertible is not needed. We have also used the theory of naive spectra
elaborated in Appendix A which simplifies that construction of the structure
maps of 𝐊𝐎𝑔𝑒𝑜 and shows that only the class of the structure maps in 𝐻∙(𝑆)
matter.

6. Properties of KOgeo

Having constructed 𝐊𝐎𝑔𝑒𝑜, we will look at some of its properties. The first
notable property is that it is absolute in the following sense.

Theorem 6.1. For any morphism 𝑓 ∶ 𝑆 → 𝑇 of schemes, there is a canonical
isomorphism 𝐿𝑓∗𝐊𝐎𝑔𝑒𝑜

𝑇
∼
,→ 𝐊𝐎𝑔𝑒𝑜

𝑆 in 𝑆𝐻(𝑆). In particular, for any scheme 𝑆,
𝐊𝐎𝑔𝑒𝑜

𝑆 is isomorphic to the pullback of 𝐊𝐎𝑔𝑒𝑜
ℤ = 𝐊𝐎𝑔𝑒𝑜

Spec(ℤ) by the structure map
𝑆 → Spec(ℤ).

Proof. Let 𝑓 ∶ 𝑆 → 𝑇 be a morphism of schemes. Pullback induces canonical
identifications 𝑓∗(𝐻𝐺𝑟(2𝑟, 2𝑛)𝑇) ≅ 𝐻𝐺𝑟(2𝑟, 2𝑛)𝑆 and 𝑓∗(ℤ × 𝐻𝐺𝑟𝑇) ≅ ℤ ×
𝐻𝐺𝑟𝑆. This pullback isomorphism is also compatible with the structure maps
of𝐊𝐎𝑔𝑒𝑜, as the tensor product of forms is preserved under pullback. Using the
closed model structure given in [PPR09] 𝑓∗ is a left Quillen functor completing
the proof. □

The next interesting property is that 𝐊𝐎𝑔𝑒𝑜 over Spec(ℤ[ 1
2
]) gives us back

the motivic spectrum 𝐁𝐎 constructed in [PW18]. This implies a corresponding
representability result for hermitian K-theory. To state this result, we will need
a model of 𝐁𝐎 as a naive 𝐻𝑃1-spectrum. For any rank 2 symplectic bundle
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(𝐸, 𝜙) over a scheme 𝑋, the structure map 𝜙 ∶ 𝐸⊗𝐸 → 𝒪𝑋 induces an isomor-
phism Λ2𝐸

∼
,→ 𝒪𝑋 . The canonical morphism 𝑈2 ↣ 𝐻2

− over 𝐻𝑃1 restricts to a
set of four maps 𝑈2 ↣ 𝒪𝐻𝑃1 . The pair which factors through 𝑈2 ↣ 𝐻− differ
up to isomorphism only by a sign. Therefore, denote these pairs by (𝑥0,−𝑥0)
and (𝑥∞,−𝑥∞) respectively (this notation in consistent with the fact the these
are isomorphisms when pulled back along points 𝑥0 and 𝑥∞). Consider the
symmetric form

𝒪𝐻𝑃1 𝑈2 𝒪𝐻𝑃1

𝒪𝐻𝑃1 𝑈∨
2 𝒪𝐻𝑃1

−1

𝑥0

𝜙2,4 1
(−𝑥∞)∨

in 𝐶ℎ𝑏(𝑉𝑒𝑐𝑡(𝐻𝑃1 × 𝑋),−𝜂, 𝑞), indexed from degrees 0 to 2. By construction,
this form is equal to [𝑈2] − [𝐻−] in 𝐾𝑆𝑝(𝐻𝑃1 × 𝑋) under

𝐾𝑂[2](𝐻𝑃1 × 𝑋)
∼
,→ 𝐾𝑆𝑝[0](𝐻𝑃1 × 𝑋)

∼
,→ 𝐾𝑆𝑝(𝐻𝑃1 × 𝑋)

and is the pullback of 𝜅(𝑈2, 𝜙) along the zero section 𝑧 ∶ 𝐻𝑃1 → 𝑈2. We will
call this element of𝐾𝑂[2]

0 (𝐻𝑃1×𝑋) the Borel class−𝑏1(𝑈2). The Borel class will
give us the desired structure map. Let us denote by 𝐁𝐎𝐻𝑃1 the image of 𝐁𝐎 in
𝑆𝐻(𝑆)𝐻𝑃1 .

Theorem 6.2. Let 𝑆 be a regular Noetherian scheme of finite Krull dimension
with 1

2
∈ Γ(𝒪𝑆, 𝑆). The structure morphisms of 𝐁𝐎𝐻𝑃1 are represented by maps

𝐾𝑂[𝑛](−)→ 𝐾𝑂[𝑛+2](− ×𝐻𝑃1), 𝐶.↦ 𝐶. ⊠ (−𝑏1(U2))

for all 𝑛.

Proof. It is enough to show that the image of the Borel class under the zigzag
of weak equivalences between 𝐻𝑃1 and 𝑇∧2 is 𝑡ℎ(𝒪, 𝑖𝑑) ⊠ 𝑡ℎ(𝒪, 𝑖𝑑). Firstly
the sequence 𝒪𝐻𝑃1 → 𝑈2

𝑥0,,→ 𝒪𝐻𝑃1 is exact when restricted to 𝐻𝑃1 − 𝑁+.
Hence −𝑏1(𝑈2) is an element of 𝐾𝑂

[𝑛+2]
0 (𝐻𝑃1, 𝐻𝑃1 −𝑁+). The pullback of the

morphism of vector bundles 𝑈2
𝑥0,,→ 𝒪𝐻𝑃1 along 𝔸2 ≅ 𝑁− → 𝐻𝑃1 is 𝒪⊕2

𝔸2

(𝑡0,𝑡1),,,,,→
𝒪𝔸2 , where 𝑡0 and 𝑡1 are the variables in 𝔸2

Spec(𝑅) ≅ Spec(𝑅[𝑡0, 𝑡1]). Therefore
−𝑏1(𝑈2) becomes

𝒪𝔸2 𝒪⊕2
𝔸2 𝒪𝔸2

𝒪𝔸2 𝒪⊕2
𝔸2 𝒪𝔸2

−1

(𝑡0,𝑡1)

1
(−𝑡1,−𝑡0)

which is 𝑡ℎ(𝒪, 𝑖𝑑)⊠ 𝑡ℎ(𝒪, 𝑖𝑑) as required. □

We can now state the desired result.
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Theorem 6.3. There exists an isomorphism 𝐊𝐎𝑔𝑒𝑜 ≅ 𝐁𝐎𝐻𝑃1 as objects in
𝑆𝐻(Spec(ℤ[ 1

2
])). Hence 𝐊𝐎𝑔𝑒𝑜 represents hermitian K-theory over regular Noe-

therian schemes of finite Krull dimension with 1
2
∈ Γ(𝑆,𝒪𝑆).

Proof. The isomorphisms 𝜏 ∶ ℤ × 𝐻𝐺𝑟
∼
,→ 𝐾𝑆𝑝 in 𝐻∙(𝑆) follows from Theo-

rem 3.1. To show that the diagram

𝐻𝑃1 ∧𝐋 𝐻𝑃1 ∧ (ℤ ×𝐻𝐺𝑟) ℤ ×𝐻𝐺𝑟

𝐻𝑃1 ∧𝐋 𝐻𝑃1 ∧𝐋 𝐾𝑂[4𝑛−2] 𝐾𝑂[4𝑛+2]

1∧1∧𝜏4𝑛−2 𝜏4𝑛+2

commutes in 𝐻∙(𝑆), we use the fact that ℤ ×𝐻𝐺𝑟 is an ind-scheme and hence
the restriction {𝑖}×𝐻𝐺𝑟(2𝑟, 2𝑛)↪ ℤ×𝐻𝐺𝑟

∼
,→ 𝐾𝑆𝑝 is classified by an element

in 𝐾𝑆𝑝0(𝐻𝐺𝑟(2𝑟, 2𝑛)). The map 𝐵𝑆𝑝2𝑛 → 𝐵𝑖𝐒𝐲𝐦𝐩 in 𝐻∙(𝑆) is given at the
level of schemes by sending principal 𝑆𝑝2𝑛-bundles to the associated symplectic
bundle. Consequently, themap𝐻𝐺𝑟(2𝑟, 2𝑛)→ 𝐵𝑆𝑝2𝑛 → 𝐵𝑖𝐒𝐲𝐦𝐩 corresponds
to the tautological symplectic bundle𝑈2𝑟,2𝑛 → 𝐻𝐺𝑟(2𝑟, 2𝑛). From this and the
definition of the map ℤ × 𝑀∞ → 𝑅Ω1𝐵𝑀, it follows that the isomorphism
𝜏 ∶ ℤ ×𝐻𝐺𝑟 → 𝐾𝑆𝑝 satisfies

𝜏|{𝑖}×𝐻𝐺𝑟(2𝑟,2𝑛) = [𝑈2𝑟,2𝑛] + (𝑖 − 𝑟)[𝐻−]
∈ 𝐾𝑆𝑝0(𝐻𝐺𝑟(2𝑟, 2𝑛))→ 𝐻𝑜𝑚𝐻∙(𝑆)(𝐻𝐺𝑟(2𝑟, 2𝑛), 𝐾𝑆𝑝).

The last map is an isomorphism over regular Noetherian schemes 𝑆 with 1
2
∈

Γ(𝑆,𝒪𝑆). We denote by 𝜏4𝑘+2 the composition

ℤ ×𝐻𝐺𝑟
𝜏
,→ 𝐾𝑆𝑝

∼
,→ 𝐾𝑂[4𝑘+2]

where 𝐾𝑆𝑝
∼
,→ 𝐾𝑂[4𝑘+2] is the isomorphism 2.2 for 𝑛 = 0. We then have
𝜏4𝑘+2|{𝑖}×𝐻𝐺𝑟(2𝑛,4𝑛) = ([𝑈2𝑛,4𝑛] + (𝑖 − 2𝑛[𝐻−]))[2𝑘 + 1]

and similarly the map𝐻𝑃1 ∧𝐻𝑃1 ∧ (ℤ ×𝐻𝐺𝑟)→ ℤ ×𝐻𝐺𝑟 → 𝐾𝑆𝑝 restricted
to𝐻𝑃1 ×𝐻𝑃1 × {𝑖} ×𝐻𝐺𝑟(2𝑛, 4𝑛) is given by

([𝑈2] − [𝐻−])⊠ ([𝑈2] − [𝐻−])⊠ ([𝑈2𝑛,4𝑛] + (𝑖 − 2𝑛)[𝐻−]).

To see this, note that [𝑈⟂
2𝑛,4𝑛] = 2𝑛[𝐻] − [𝑈2𝑛,4𝑛]. But, tensoring twice with

([𝑈2]−[𝐻−]) is exactly the structuremap of𝐁𝐎𝐻𝑃1 (6.2) and hence the diagram
commutes when restricted to the finite Grassmannians. As ℤ × 𝐻𝐺𝑟 is the
colimit of {𝑖} ×𝐻𝐺𝑟(2𝑛, 4𝑛) we have a map

𝐻𝑜𝑚𝐻∙(𝑆)(colim𝑛 𝐻𝐺𝑟(2𝑛, 4𝑛), 𝑋)→ lim
𝑛
𝐻𝑜𝑚𝐻∙(𝑆)(𝐻𝐺𝑟(2𝑛, 4𝑛), 𝑋)

for any 𝑋 ∈ 𝐒𝐩𝐜∙(𝑆). This is an isomorphism if

𝐻𝑜𝑚𝐻∙(𝑆)(𝑆
1
𝑠 ∧𝐻𝐺𝑟(2𝑛 + 2, 4𝑛 + 4), 𝑋)→ 𝐻𝑜𝑚𝐻∙(𝑆)(𝑆

1
𝑠 ∧𝐻𝐺𝑟(2𝑛, 4𝑛), 𝑋)
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is a surjection. To see this, take a fibrant replacement of 𝑋 to get the set of sim-
plicial homotopy classes. Surjectivity then implies that we can lift a collection
of homotopy classes, uniquely up to homotopy, to the colimit. This holds for
𝑋 = 𝐾𝑂[𝑘] as then we have

𝐻𝑜𝑚𝐻∙(𝑆)(𝑆
1
𝑠 ∧𝐻𝐺𝑟(2𝑛, 4𝑛), 𝐾𝑂[𝑘]) ≅ 𝐾𝑂[𝑘]

1 (𝐻𝐺𝑟(2𝑛, 4𝑛))

and themaps𝐾𝑂[𝑘]
𝑖 (𝐻𝐺𝑟(2𝑛+2, 4𝑛+4))→ 𝐾𝑂[𝑘]

𝑖 (𝐻𝐺𝑟(2𝑛, 4𝑛)) are surjections
by [PW21, Thm. 11.4] applied to 𝐾𝑂[∗]

∗ which is a cohomology theory with a
−1-commutative ring structure [PW18, Thm. 1.4]. □

Remark 6.4. Note thatweneeded 1
2
∈ Γ(𝑆,𝒪𝑆) to get the isomorphism𝐾𝑆𝑝

∼
,→

𝐾𝑂[2𝑘+1] as only then do we have the identification between skew-symmetric
and alternating forms.

We can also extend the cellularity result in [RSØ18] to arbitrary schemes. We
will use the definition of cellular spectra from [DI05].

Definition 6.5. For any scheme 𝑆, let 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆) be the smallest full subcategory
of 𝐒𝐩𝐭(𝑆) satisfying the following:

(1) One has 𝑆𝑝,𝑞 ∈ 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆) for all 𝑝, 𝑞 ∈ ℤ.
(2) If𝐅 is stably equivalent to𝐄 for some𝐄 ∈ 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆) then𝐅 ∈ 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆).
(3) For any diagram 𝐷 → 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆), hocolim𝐷 is in 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆).

Since 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆) is closed under stable equivalences, it defines a subcategory
𝑆𝐻(𝑆)𝑐𝑒𝑙𝑙 of 𝑆𝐻(𝑆). We call elements of 𝐒𝐩𝐭𝑐𝑒𝑙𝑙(𝑆) cellular spectra. Given amor-
phism 𝑓 ∶ 𝑆1 → 𝑆2, we have the following.

Lemma 6.6. For any morphism of schemes 𝑓 ∶ 𝑆1 → 𝑆2, 𝐿𝑓∗ ∶ 𝑆𝐻(𝑆2) →
𝑆𝐻(𝑆1) restricts to a morphism of cellular objects 𝐿𝑓∗ ∶ 𝑆𝐻(𝑆2)𝑐𝑒𝑙𝑙 → 𝑆𝐻(𝑆1)𝑐𝑒𝑙𝑙.

Proof. This follows from the fact that 𝐿𝑓∗ preserves all motivic spheres and
homotopy colimits. □

We wish to prove the following.

Theorem 6.7. Let 𝑆 be any scheme. The motivic spectrum𝐊𝐎𝑔𝑒𝑜
𝑆 is cellular.

To prove this, we will first show that the suspension spectra Σ∞𝐻𝐺(2𝑟, 2𝑛)+
are cellular. They constitute the case𝑚 = 0 of the following statement.

Lemma 6.8. Let 𝑚 ≥ 0. The suspension spectrum of the Thom space of 𝑈⊕𝑚
2𝑟,2𝑛

on𝐻𝐺𝑟(2𝑟, 2𝑛) is a finite cellular spectrum.

Proof. By Lemma 6.6 it is enough to prove this over Spec(ℤ). The proof is
by induction on 𝑟 and 𝑛. As 𝐻𝐺𝑟(0, 2𝑛) ≅ 𝑝𝑡, the statement holds for 𝑟 =
0. Extending the definitions in Theorem 5.1 we define 𝑁+ = 𝐻𝐺𝑟(2𝑟, 2𝑛) ∩
𝐺𝑟(2𝑟, 0⊕𝒪2𝑟⊕𝒪2𝑛) and𝑁− = 𝐻𝐺𝑟(2𝑟, 2𝑛) ∩𝐺𝑟(2𝑟,𝒪2𝑟⊕ 0⊕𝒪2𝑛) as closed
subschemes of 𝐻𝐺𝑟(2𝑟, 2𝑛). The direct sum of these bundles 𝑁 = 𝑁+ ⊕𝑁− is
the normal bundle of the embedding 𝐻𝐺𝑟(2𝑟, 2𝑛 − 2) → 𝐻𝐺𝑟(2𝑟, 2𝑛) [PW21,
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Thm 4.1]. Let 𝑌 be the open subscheme 𝐻𝐺𝑟(2𝑟, 2𝑛) ⧵ 𝑁+, then by [Spi10,
Lem.3.5] the cofiber of the map

𝑇ℎ(𝑈⊕𝑚
2𝑟,2𝑛|𝑌

)→ 𝑇ℎ(𝑈⊕𝑚
2𝑟,2𝑛),

is isomorphic to 𝑇ℎ(𝑈⊕𝑚
2𝑟,2𝑛|𝑁+

⊕𝒩)where𝒩 is the normal bundle of the closed
embedding 𝑁+ → 𝐻𝐺𝑟(2𝑟, 2𝑛). We have 𝑈2𝑟,2𝑛|𝑁+ ≅ 𝜋∗+𝑈2𝑟,2𝑛−2 by [PW21]
and in fact the proof shows us that𝜋∗+𝑈2𝑟,2𝑛−2 ≅𝒩. We therefore have a cofiber
sequence

𝑇ℎ(𝑈⊕𝑚
2𝑟,2𝑛|𝑌

)→ 𝑇ℎ(𝑈⊕𝑚
2𝑟,2𝑛)→ 𝑇ℎ(𝜋∗+𝑈

⊕𝑚+1
2𝑟,2𝑛−2).

where 𝜋+ is the structure map of a vector bundle. Therefore, the induced mor-
phism 𝑇ℎ(𝜋∗+𝑈

⊕𝑚+1
2𝑟,2𝑛−2) → 𝑇ℎ(𝑈⊕𝑚+1

2𝑟,2𝑛−2) is an unstable weak equivalence. By
induction on 𝑛, we have reduced to showing that Σ∞𝑇ℎ(𝑈⊕𝑚

2𝑟,2𝑛|𝑌
) is cellular. By

[PW21, Thm. 5.1], we have a zig-zag

𝑌 ← 𝑌1 ← 𝑌2 → 𝐻𝐺(2𝑟 − 2, 2𝑛 − 2)
where every map is an affine bundle, such that moreover there is an isomor-
phism of symplectic bundles

𝑈2𝑟,2𝑛|𝑌2
≅ 𝒪⊕2

𝑌2 ⊕𝑈2𝑟−2,2𝑛|𝑌2

and the map 𝑌2 → 𝐻𝐺(2𝑟 − 2, 2𝑛 − 2) has a section by the proof of [PW21,
Thm. 5.2], whence every scheme in the sequence has a point. By Theorem B.1
we then have equivalences

𝑇ℎ(𝑈2𝑟,2𝑛|𝑌) ≃ 𝑇ℎ(𝑈2𝑟,2𝑛|𝑌2
) ≅ 𝑇ℎ(𝒪2𝑚

𝑌2 ⊕𝑈⊕𝑚
2𝑟−2,2𝑛|𝑌2

) ≃ 𝑆4𝑚,2𝑚∧𝑇ℎ(𝑈⊕𝑚
2𝑟−2,2𝑛).

Induction completes the proof. □

This is enough to prove the required result.

Proof of Theorem 6.7. The proof is essentially given in [RSØ18]. As before
we have 𝐊𝐎𝑔𝑒𝑜 = hocolim𝑛 Σ−4𝑛,−2𝑛Σ∞ℤ ×𝐻𝐺𝑟. Therefore by [DI05, Lemma
3.4] and Definition 6.5 (3) it is enough to show that Σ∞𝐻𝐺𝑟(2𝑛, 4𝑛)+ is cellular
for each 𝑛. □

A. Naive spectra
Throughout this section, 𝒞 is a pointed cofibrantly generated model cate-

gory with fibrant and cofibrant replacement functors 𝑅 and 𝑄 respectively. We
denote by𝐻(𝒞) the corresponding homotopy category. Given a Quillen adjunc-
tion

(𝑇,𝑈, 𝜂) ∶ 𝒞⇆ 𝒞,
the category of 𝑇-spectra 𝑆𝑝ℕ(𝒞, 𝑇) has as objects sequences {𝐸𝑖}𝑖≥0 of objects
in 𝒞 along with assembly maps

𝑒𝑖 ∶ 𝑇(𝐸𝑖)→ 𝐸𝑖+1.
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The category 𝑆𝑝ℕ(𝒞, 𝑇) inherits several model structures from 𝒞. Here we will
consider the levelwise and stable projective model structures given in [Hov01].
We denote the associated homotopy categories by𝐻𝑙(𝑆𝑝ℕ(𝒞, 𝑇)) and 𝑆𝐻(𝒞, 𝑇)
respectively.

DefinitionA.1 (Naive spectra). AnaiveT-spectrum (𝐸⋅, 𝑒⋅) is a sequence {𝐸𝑛}𝑛∈ℕ
of objects in𝐻(𝒞) equipped with assembly morphisms

𝑒𝑛 ∈ 𝐻𝑜𝑚𝐻(𝒞)(𝐋𝑇(𝐸𝑛), 𝐸𝑛+1).
A morphism of naive 𝑇-spectra 𝜙 ∶ (𝐸⋅, 𝑒⋅) → (𝐹⋅, 𝑓⋅) is a collection of mor-
phisms 𝜙𝑛 ∶ 𝐸𝑛 → 𝐹𝑛 in 𝐻(𝒞) such that the relevant diagrams commute in
𝐻(𝒞). We denote this category by 𝑆𝑝naive(𝒞, 𝑇).
Any 𝑇-spectrum 𝐄 defines canonically a naive 𝑇-spectrum Naive(𝐄) with

underlying sequence 𝐄𝑛 and assembly morphisms the image of

𝐋𝑇(𝐄𝑛) = 𝑇(𝑄𝐄𝑛)→ 𝑇(𝐄𝑛)
𝑒𝑛,,→ 𝐄𝑛+1

in𝐻(𝒞) for every 𝑛. This gives us a functor Naive ∶ 𝑆𝑝(𝒞, 𝑇)→ 𝑆𝑝naive(𝒞, 𝑇).
Remark A.2. The notion of naive spectra presented here is a generalization of
the one given in [Riou07].

Lemma A.3. The functor Naive ∶ 𝑆𝑝ℕ(𝒞, 𝑇)→ 𝑆𝑝naive(𝒞, 𝑇) is essentially sur-
jective.

Proof. Given any naive 𝑇-spectrum (𝐸𝑛, 𝑒𝑛)𝑛∈ℕ, choose bifibrant models 𝐸′𝑛 ∈
𝒞 of 𝐸𝑛. We then have isomorphisms

𝐻𝑜𝑚𝐻(𝒞)(𝐋𝑇(𝐸𝑛), 𝐸𝑛+1) ≅ 𝐻𝑜𝑚𝒞(𝑇(𝐸′𝑛), 𝐸′𝑛+1)∕ ≃
allowing us to choose a lift 𝑒′𝑛 ∶ 𝑇(𝐸′𝑛) → 𝐸′𝑛+1 of 𝑒𝑛 for every 𝑛. We then have
a 𝑇-spectrum 𝐄′ whose image under Naive is isomorphic to (𝐸𝑛, 𝑒𝑛)𝑛∈ℕ. □

Lemma A.4. Let 𝐄 = (𝐸0, 𝐸1…),𝐅 = (𝐹0, 𝐹1,…) ∈ 𝑆𝑝ℕ(𝒞, 𝑇) with assembly
maps 𝑒𝑛 ∶ 𝑇(𝐸𝑛) → 𝐸𝑛+1 and 𝑓𝑛 ∶ 𝑇(𝐹𝑛) → 𝐹𝑛+1 respectively. If there is
an isomorphism 𝜙 ∶ Naive(𝐄)

∼
,→ Naive(𝐅) in 𝑆𝑝naive(𝒞, 𝑇), then 𝐄 and 𝐅 are

isomorphic in𝐻𝑙(𝑆𝑝ℕ(𝒞, 𝑇)).

Proof. We have isomorphisms 𝜙𝑛 ∶ 𝐸𝑛
∼
,→ 𝐹𝑛 in𝐻(𝒞) such that the diagrams

𝐋𝑇(𝐸𝑛) 𝐸𝑛+1

𝐋𝑇(𝐹𝑛) 𝐹𝑛+1

𝐋𝑇(𝜙𝑛) 𝜙𝑛+1

commute for all 𝑛. As 𝒞 is cofibrantly generated, so is𝐻𝑙(𝑆𝑝ℕ(𝒞, 𝑇)) and hence
it has a fibrant and cofibrant replacement functor [Hov01]. Using the cofibrant-
fibrant replacement of the spectra𝐄 and𝐅we can reduce to casewhen the spec-
tra are levelwise cofibrant-fibrant. In this case each 𝜙𝑛 lifts to a weak equiva-
lence in 𝒞 and commutativity of the diagrams implies that the twomaps 𝜙𝑛+1𝑒𝑛
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and 𝑓𝑛𝑇(𝜙𝑛) are homotopic [Hov99, Prop. 1.2.5]. For each 𝑛 ∈ ℕ, let 𝐸𝑛 × 𝐼 be
the functorial cylinder object for 𝐸𝑛. As 𝑇(𝐸𝑛) is cofibrant and 𝐹𝑛+1 is fibrant,
𝑇(𝐸𝑛 × 𝐼) is a cylinder object for 𝑇(𝐸𝑛) and there is a left homotopy

𝑇(𝐸𝑛) 𝐸𝑛+1

𝑇(𝐸𝑛 × 𝐼) 𝐹𝑛+1

𝑇(𝐸𝑛) 𝑇(𝐹𝑛),

𝑒𝑛

𝑖0 𝜙𝑛+1
𝐻𝑛

𝑇(𝜙𝑛)
𝑖1 𝑓𝑛

between 𝜙𝑛+1𝑒𝑛 and 𝑓𝑛𝑇(𝜙𝑛). The mapping cylinder𝑀𝜙𝑛 is the pushout of the
diagram

𝐸𝑛 𝐹𝑛

𝐸𝑛 × 𝐼 𝑀𝜙𝑛

𝑖1

𝜙𝑛

and hence the morphism 𝐹𝑛 → 𝑀𝜙𝑛 is an acyclic cofibration with a left inverse

induced by 𝑖𝑑𝐹𝑛 ∶ 𝐹𝑛 → 𝐹𝑛 and 𝐸𝑛 × 𝐼 → 𝐸𝑛
𝜙𝑛,,→ 𝐹𝑛. As 𝑇 is a left adjoint it

preserves pushouts and hence (𝑇(𝜙𝑛), 𝐻𝑛) induces a map
𝑇(𝑀𝜙𝑛)→ 𝐹𝑛+1 → 𝑀𝜙𝑛+1 .

This gives us a spectrum 𝐶𝑦𝑙(𝜙) = (𝑀𝜙0 ,𝑀𝜙1 ,…) with levelwise weak equiva-
lences 𝐄→ 𝐶𝑦𝑙(𝜙) and 𝐅→ 𝐶𝑦𝑙(𝜙) given by

𝐸𝑛
𝑖0,→ 𝐸𝑛 × 𝐼 → 𝑀𝜙𝑛 and 𝐹𝑛 → 𝑀𝜙𝑛 ,

where 𝐸𝑛 × 𝐼 → 𝑀𝜙𝑛 is a weak equivalence by the 2-out-of-3 property. Hence 𝐄
and 𝐅 are isomorphic in𝐻(𝑆𝑝ℕ(𝒞, 𝑇)). □

These two lemmas show that a naive 𝑇-spectrum defines a unique object in
𝐻𝑙(𝑆𝑝ℕ(𝒞, 𝑇)) up to isomorphism.

Theorem A.5. For any naive 𝑇-spectrum (𝐸𝑛, 𝑒𝑛)𝑛∈ℕ, there exists a 𝑇-spectrum
𝐄 ∈ 𝑆𝑝ℕ(𝒞, 𝑇), with assembly maps 𝑓′𝑛 ∶ 𝑇(𝐄𝑛)→ 𝐄𝑛+1, such that

(1) Naive(𝐄)
∼
,→ (𝐸𝑛, 𝑒𝑛)𝑛∈ℕ in 𝑆𝐻(𝒞, 𝑇);

(2) any other 𝐄′ ∈ 𝑆𝑝ℕ(𝒞, 𝑇) satisfying the above condition is isomorphic to
𝐄 in𝐻𝑙(𝑆𝑝ℕ(𝒞, 𝑇)).

In particular every naive 𝑇-spectrum defines a unique object in 𝑆𝐻(𝒞, 𝑇) up to
isomorphism.

Proof. Statement (2) follows from statement (1) and Lemma A.4. Statement
(1) is just a reformulation of Lemma A.3. The last sentence follows because
every levelwise weak equivalence is a stable equivalence. □
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RemarkA.6. Using the projectivemodel structure is not necessary; allweneed
is a model structure on 𝑆𝑝ℕ(𝒞, 𝑇) where the weak equivalences are precisely
the levelwise weak equivalences and every bifibrant object is also levelwise bi-
fibrant. Therefore the injective model structure works as well.

B. Thom spaces
TheThomspace construction preserves𝔸1-weak equivalences for sufficiently

well behaved schemes. Let 𝑆 be a schemewhich is ind-smooth over a Dedekind
ring 𝑘 with perfect residue fields.

TheoremB.1. Let𝑋 ∈ 𝑆𝑚𝑆 be a smooth 𝑆-schemewith a rational point𝑥 ∶ 𝑆 →
𝑋. For any 𝔸1-equivalence of pointed smooth schemes 𝑓 ∶ (𝑌, 𝑦) → (𝑋, 𝑥) and
any vector bundle 𝐸 → 𝑋 of constant rank 𝑛, the induced map of Thom spaces
𝑇ℎ(𝑓∗𝐸)→ 𝑇ℎ(𝐸) is an𝔸1-equivalence.

To prove this we use the following lemma.

Lemma B.2. Let 𝐸 → 𝐵 be a principal 𝐺𝐿𝑛-bundle over 𝑆. Given a point 𝑏 ∶
𝑆 → 𝐵, the diagram

𝐺𝐿𝑛 → 𝐸 → 𝐵
coming from the pullback

𝐺𝐿𝑛 𝐸

𝑆 𝐵𝑏

is an 𝔸1-local fiber sequence. Furthermore, for any scheme 𝐹 with a 𝐺𝐿𝑛-action
𝜎 ∶ 𝐺𝐿𝑛 × 𝐹 → 𝐹 the induced diagram

𝐹 → 𝐸 ×𝜎 𝐹 → 𝐵
is an𝔸1-local fiber sequence.

Proof. Note that for any locally trivial bundle 𝑃 → 𝑋 with fiber 𝐹 and any
point 𝑥 in 𝑋 the pullback diagram

𝐹 → 𝑃 → 𝑋
is a simplicial fiber sequence (taking stalks gives a fiber sequence of simplicial
sets). For any smooth 𝑆-scheme 𝐵, there is a sequence of bijections

𝑉𝑒𝑐𝑡𝑛(𝐵) ≅ 𝑃𝑁𝑖𝑠(𝐵, 𝐺𝐿𝑛) ≅ 𝑃𝑁𝑖𝑠(𝐵, 𝐺𝐿𝑛) ≅ 𝐻𝑜𝑚𝐻𝑠(𝑆)(𝐵, 𝐵𝐺𝐿𝑛)
where𝑃𝜏(𝐵, 𝐺𝐿𝑛) is the set of 𝜏-locally trivial𝐺𝐿𝑛 bundles by [AHW18, Ex.2.3.4]
and [MV99, Prop.4.1.15]. This implies that the map 𝐸 → 𝐵 is a pullback of the
𝐺𝐿𝑛-bundle 𝐸𝑁𝑖𝑠𝐺𝐿𝑛 → 𝐵𝑁𝑖𝑠𝐺𝐿𝑛 where 𝐵𝑁𝑖𝑠𝐺𝐿𝑛 is a Nisnevich fibrant replace-
ment. As every vector bundle (and hence every 𝐺𝐿𝑛-torsor) is Zariski locally
trivial, 𝐵𝐺𝐿𝑛 satisfies Nisnevich descent and hence we have a bijection

𝜋0(𝐵𝑁𝑖𝑠𝐺𝐿𝑛(𝑋)) ≅ 𝜋0(𝐵𝐺𝐿𝑛(𝑋))



348 K. ARUN KUMAR

for any 𝑋 ∈ 𝑆𝑚𝑆. By [AHW18, Thm. 5.2.3], the set of rank 𝑛 vector bundles
𝑉𝑒𝑐𝑡𝑛(−) is 𝔸1-invariant for affine schemes over 𝑆 and hence we have

𝑉𝑒𝑐𝑡𝑛(𝑋) ≅ 𝜋0(𝐵𝑁𝑖𝑠𝐺𝐿𝑛(𝑋)) ≅ 𝜋0(𝐵𝐺𝐿𝑛(𝑋))
for 𝑋 affine. By [AHW18, Thm. 2.2.5]

𝐺 → 𝐸𝑁𝑖𝑠𝐺 → 𝐵𝑁𝑖𝑠𝐺
is an 𝔸1-local fiber sequence hence by [Wen11, Prop. 2.3]

𝐺𝐿𝑛 → 𝐸 → 𝐵
is an 𝔸1-local fiber sequence. For any scheme 𝐹 with a 𝐺𝐿𝑛-action, we can
show that

𝐹 → 𝐸𝑁𝑖𝑠(𝐺𝐿𝑛) ×𝜎 𝐹 → 𝐵𝑁𝑖𝑠(𝐺𝐿𝑛)
is an 𝔸1-local fiber sequence along the lines of [Wen11, Prop. 5.1]. The simpli-
cial fiber sequence

𝐹 → 𝐸 ×𝜎 𝐹 → 𝐵
is a pullback of the universal sequence and hence is also 𝔸1-local. □

Proof of Theorem B.1. Given any vector bundle 𝐸 → 𝑋 of rank 𝑛, the 2 out
of 3 property implies that an 𝔸1-weak equivalence 𝑓 ∶ 𝑌 → 𝑋 induces an 𝔸1-
weak equivalence 𝑓∗𝐸 → 𝐸. The complement of the zero section 𝐸 − 𝑋 → 𝑋
is a locally trivial bundle with fiber 𝔸𝑛 − 0. The fiber sequence

𝔸𝑛 − 0→ 𝐸 − 𝑋 → 𝑋
is obtained by twisting the 𝐺𝐿𝑛-torsor associated to the vector bundle 𝐸 → 𝑋
by the standard 𝐺𝐿𝑛-action on 𝔸𝑛 − 0 and is hence an 𝔸1-local fiber sequence
by Lemma B.2. Thus the pullback of 𝐸−𝑋 along an𝔸1-equivalence 𝑓 ∶ 𝑌 → 𝑋
induces an𝔸1-equivalence𝑓∗𝐸−𝑌 → 𝐸−𝑋. We therefore have an equivalence
of cofibration sequences

𝑓∗𝐸 − 𝑌 𝑓∗𝐸 𝑇ℎ(𝑓∗𝐸)

𝐸 − 𝑋 𝐸 𝑇ℎ(𝐸)

∼ ∼ ∼

giving the desired 𝔸1-equivalence of Thom spaces. □
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