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Kakeya-type sets for geometric
maximal operators

Anthony Gauvan

ABSTRACT. We establish an estimate for arbitrary geometric maximal opera-
tors in the plane: we associate to any family B composed of rectangles and
invariant by translations and central dilations a geometric quantity A5 called
its analytic split and satisfying

log(1) 5, 1Ml

forall 1 < p < oo, where My is the Hardy-Littlewood type maximal operator
associated to the family B.

CONTENTS

Introduction

Results

The family T

Analytic split

Bateman’s construction and Kakeya-type set
Geometric estimates

Proof of Theorem 2.1

Proof of Theorem 2.2

References

® NNk W=

1. Introduction

295
297
297
298
299
300
303
305
306

In [3], Bateman classified the behavior of directional maximal operators in
the plane on the L? scale for 1 < p < oo. Here, we study geometric maximal
operators which are more general than directional maximal operators: in par-
ticular, their study requires to focus on the interactions between the coupling
eccentricity/orientation for a given family of rectangles. Our main result is the
construction of so-called Kakeya-type sets for an arbitrary geometric maximal
operator which gives an a priori bound on their L? norm in the same spirit than

in [3].
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We work in the Euclidean plane R?: if U is a measurable subset we denote by
|U| its Lebesgue measure. We also denote by R the family containing all rect-
angles of R%: for R € R, we define its orientation as the angle wg € [0, 7r) that
its longest side makes with the x-axis and its eccentricity as the ratio e € (0,1]
of its shortest side by its longest side. We will also denote by R’ the rectangle R
translated in its own direction by its lentgh.

A family B contained in R is said to be geometric if it is invariant by trans-
lations and central dilations i.e. if forany R € R, any x € R? and 1 > 0, we
have

x + AR € B.

Given any geometric family B, we define the associated geometric maximal
operator Mz as

MafG) = sup o [ 1
x€EReB |R| R
for any f € L® and x € R%. We are interested in the relation between the
geometry exhibited by the family B and the regularity of the operator M5 on
the LP space for 1 < p < o0.
A lot of research has been done in the case where 3B is equal to

Rq :={ReR : wz € O}

where Q is an arbitrary set of directions in [0, 77). In other words, R, is the set
of all rectangles whose orientation belongs to Q2. We say that R, is a directional
family and to alleviate the notation we denote

Mng = MQ

Naturally, the operator M, is said to be a directional maximal operator. The
study of those operators goes back at least to Cordoba and Fefferman’s article

[6] in which they use geometric techniques to show that if Q = {zlk}k then
>1

Mg has weak-type (2, 2). A year later, using Fourier analysis techniques, Nagel,
Stein and Wainger proved in [8] that M, is actually bounded on LP(R?) for any
p > 1. In[1], Alfonseca has proved that if the set of direction Q is a lacunary set
of finite order then the operator M, is bounded on LP(R?) for any p > 1. Finally
in [3], Bateman proved the converse and so characterized the LP boundedness
of directional operators in the plane.

Theorem 1.1 (Bateman). Fix an arbitrary set of directions Q C [0, 7). We have
the following alternative:

« if Qs finitely lacunary, then Mg, is bounded on LP for any p > 1.

« if Qis not finitely lacunary, then M, is not bounded on LP for any p < .

We invite the reader to look at [3] for more details and also [4] where Bate-
man and Katz introduced their method.
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2. Results

Our main result is an a priori estimate in the same spirit than one of the main
result of [3]. Precisely, to any family B contained in R we associate a geometric
quantity

Ag € NU {oo}
that we call analytic split of B. Loosely speaking, the analytic split 15 indicates
if B contains a lot of rectangles in terms of orientation and eccentricity. We
prove then the following Theorem.

Theorem 2.1. For any geometric family B and any 1 < p < oo we have
log(13) Sp [Ms]lp-

An important feature of this inequality is that we do not make any assump-
tion on the family B. In regards of the study of geometric maximal operators,
Theorem 2.1 gives a concrete and a priori lower bound on the LP(R?) norm of
M. We insist on the fact that this estimate is concrete since the analytic split
is not an abstract quantity associated to B but has a strong geometric interpre-
tation. No such results was previously known for geometric maximal operators
and we give an application in order to illustrate it.

Theorem 2.2. Fix any set of directions Q C [0, %) which is not finitely lacunary
and let B < Rq be a geometric family satisfying for any w € Q

inf e =0.
ReB,wp=w

In this case, the operator M g is not bounded on LP for any p < 0.
Observe that since we have B C Ry we have the trivial pointwise estimate
My < Mo,

Hence, we have [[Mg||, < oo if [[Mg||, < co. Surprisingly, Theorem 2.2 states
that the conserve is also true i.e. we have ||[Mg||, = oo if || Mg||, = oo.

3. The family T

Given a geometric family B < R, we can always suppose, without loss of
generality, that it is of the form

B={{+AR:T€R*1>0,REB}
where the family B is contained in the family T defined as

T={Ry(k) :n>0,0<k<2"—-1}.
Here, forn > 1 and k < 2" — 1, R,(k) is the parallelogram whose vertices are
the points (0, 0), (0, zin), (1, %) and (1, 2%). The parallelogram R, (k) should be
thought as a rectangle whose eccentricity and orientation are

1 k=
(er, 0 @r,00) = o oma)
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In the rest of the text, we always identify a geometric family
B,RgorF <R

with the family that generates it
B, TqorFCT.

The family T has a natural structure of binary tree and we develop a vocabu-
lary adapted to this structure: for any R € T of scale n > 1, there exist a unique
R; € T of scale n — 1 such that R C Ry. We say that Ry is the parent of R. In
the same fashion, observe that there are only two elements R, R; € T of scale
n+ 1 such that R;, R; C R. We say that R, and R, are the children of R. Observe
that R € T is the child of R” € T if and only if R C R’ and 2|R| = |R’| : we
will often use those two conditions. We say that a sequence (finite or infinite)
{Ri};en C T is a path if it satisfies R;; C R; and 2|R;;;| = |R;| for any i i.e. if R;
is the parent of R; . ; for any i. Different situations can occur. A finite path P has
a first element R and a last element R’ (defined in a obvious fashion) and we
will write Pg g := P. On the other hand, an infinite path P has no endpoint.
For any family B contained in T, there is a unique parallelogram R € T such
that any R’ € B is included in R and |R| is minimal. We say that this element
Rp := R is the root of B and we define the set [B] as

[B] :={ReT : 3R € B,R' CR C Rg}.

A subset of T of the form [B] is called a tree generated by B. We define the set
Lg as
Ly={R€B:VR' €B,R CR=>R =R}.

An element of Ly is called a leaf of B. Observe that for any B in T we have
[B] = [Lg] and also Lg = L(g). The first identity says that the leaves of a tree [B]
can be seen as the minimal set that generates [B]. The second identity states
that [B] is not bigger than B in the sense that it does not have more leaves. If P
is an infinite path, we have by definition Lp = @.

4. Analytic split

We associate to any family B included in T a natural number 4j5; € N U {oo}
that we call analytic split. For any tree [B], we define its boundary [B] as the
set of path in [B] that are maximal for the inclusion i.e. P € J[B] if and only if
P is a path included in [B] such that if P’ C [B] is a path that contains P then
P = P'. For any tree [B] and path P € 8[B] we define the splitting number of P
relatively to [B] as

spip) := #{R€[B]\P: 3R € P,RCR2IR| = |R'|}.
We say that a tree [F] is a fig tree of scale n and height h when

o [F]is finite and #0[F] = 2"
« for any P € 0[F] we have spp; = nand #P = h.
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Observe that by construction we always have h > n. We define the analytic split
Aip) of a tree [ B] as the integer n such that [B] contains a fig tree [F] of scale n
and do not contains any fig tree of scale n + 1. In the case where [B] contains
fig trees of arbitrary high scale, we set A;z) = co. More generally for any family
B contained in T (i.e. when B is not necessarily a tree), we define its analytic
split as
AB = A[B]

Hence by definition, the analytic split of a family B is the same as the analytic
split of the tree [B]. Observe that thanks to Theorem 2.1 this definition is per-
tinent.

5. Bateman’s construction and Kakeya-type set

In [3], Bateman proves the following Theorem.

Theorem 5.1 (Bateman’s construction [3]). Suppose that [F] is a fig tree of scale
n and height h: there exists a finite family {R; : i € I} included in the geometric
Sfamily & defined as

F={{+AR: T €R*1>0,R€[F]}

such that

Ur

iel

s|UR

i€l

log(n)

If R is a rectangle, we denote by R’ the parallelogram R but shifted of one
unit length on the right along its orientation. We fix a 2" mutually independent
random variables

R; 1 (Q,P) = Ly

who are uniformly distributed in the set L. We consider also the deterministic
vectors

e l - 1 . s h
{tl—(O,z—h)lS2}
is a deterministic vector. Bateman’s main result in [3] reads as follow

Theorem 5.2. We have

P log(n) < > 0.

Uu+r;

iel

U T(t; +Ry)

iel

The proof of this Theorem involves fine geometric estimates, percolation the-
ory and the use of the so-called notion of stickiness of thin tubes of the euclidean
plane, see[3] and [4]. Those kind of geometric estimate leads, more generally,
to lower bound on maximal operators.
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Lemma 5.3. Fix N > 0 such that there exists a finite family {R; : i € I}included
in a geometric family B such that

NURi < UR{.

iel i€l
In this case, for any p € (1, 00), we have

p

N 3p |IMg]f,-

6. Geometric estimates

We need different geometric estimates in order to prove Theorem 2.1. We
start with geometric estimates on R which will help us to prove geometric esti-
mates on R2. Finally we prove a geometric estimate on R? involving geometric
maximal operators that is crucial.

If I is a bounded interval on R and ¢ > 0 we denote by 7I the interval that
has the same center as I and 7 times its length i.e. |tI| = 7 |I|. The following
lemma can be found in [2].

Lemma 6.1 (Austin’s covering lemma). Let {I,},c4 a finite family of bounded
intervals on R. There is a disjoint subfamily

{IOCk }kSN
such that

We apply Austin’s covering lemma to prove two geometric estimates on in-
tervals of the real line. The first one concerns union of dilated intervals.

Lemma 6.2. Fixt > 0and let {I,},c4 a finite family of bounded intervals on R.

We have
UL U

acA acA

~
-7

Proof. Suppose that 7 > 1. We just need to prove that

U‘L'Ia <t UI“'

acA acgA
Simply observe that we have
1
U TIOC C {MluaeAIa > ?}
aEgA
and apply the one dimensional maximal Theorem. O

Now that we have dealt with union of dilated intervals we consider union of
translated intervals.
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Lemma 6.3. Let u > 0 be a positive constant. For any finite family of intervals
{I},c4 On R and any finite family of scalars {t,},c , C R such that, foralla € A

[to| < X |Ig|
we have
U Ia| = (U Ga + 1)
aeA aeA

Proof. We apply Austin’s covering lemma to the family {I.} ., which gives a
disjoint subfamily {I ak} such that

k<N
U I, C U 31,
aeA k<N

In particular we have

We consider now the family

which is a priori not disjoint. We apply again Austin’s covering lemma which

gives a disjoint subfamily that we will denote {(1 + ,u)Iakl }I<M who satisfies

UJa+wi, c 30+ W, -

k<N I<M

In particular we have
| |a+wr, |~ [ Ja+wL,|.
I<M k<N

To conclude, it suffices to observe that for any &« € A we have
to +1, 1+ wI,
because |{,| < p X |I,|. Hence the family
{takl + I(Zkl }ZSM

is disjoint and so finally

|_| (t“kz +I°‘kt) - Z I
I<M I<M

where we have used lemma 6.2 in the last step. O

1

> 3'(1—4'#) U 3(1+ M)Iak[

I<M

Ut

acA

[acd
akl H“
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We denote by P the family containing all parallelograms R C R? whose
vertices are of the form (p, a),(p, b),(q,c) and (q,d) where p — g > 0 and
b—a =d-c > 0. Wesay that Ly := p — q is the length of R and that
Wpx :=b—aisthewidth of R. For R € P and and a positive ratio0 < 7 < 1 we
denote by Py ; the family defined as

Prr :={S€P :SCR,Lg = Lg,|S| > 7|R|}.

For R € P define the parallelogram R € 2 as the parallelogram who has same
length, orientation and center than R but is 5 times wider i.e. Wp = 5Wp.

Proposition 6.4. Fix0 < 7 < 1and any finite family of parallelograms {R;},.; C
P. Foreach i € I, select an element S; € Py, .. The following estimate holds

Us: Ur

iel iel

T
>
— 54

Proof. Fix x € Rand fori € I, denote by R’ and S} the segments R; N {x X R}
and S; N {x X R}. For any i € I, observe that there is a scalar ¢; satisfying |¢;| <
u X |R;| with
M=5
such that
ti + TR C ST
Applying lemma 6.3, we then have (since 9 X (1 + u) = 54)

U ST U (t; + TR;C) U TR

1
> —
) ) 54 |\
iel iel iel

2

We conclude using lemma 6.2

U

T
25
iel

1
54

o
iel

and integrating on x. O

We state a last geometric estimate involving maximal operator: we fix an
arbitrary element R € P and anelement V' € P includedin Rsuch thatL; =L,

and |V| < §|R|. Recall that we denote by R the parallelogram R translated in
its direction by its length.

Proposition 6.5. There is a parallelogram S € Py 1 depending on V such that
the following inclusion holds )

1
S C {MVlRt > E}
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Proof. Without loss of generality, we can consider that we have
R :=10,1]>.

and that the lower left corner of V' is O. The upper left corner of V is the point
(0, Wy,) and we denote by (d, 1) and (d + Wy, 1) its lower right and upper right
corners. Since V' C R we have

d+ Wy <1
The upper right corner of %V is the point (%(d +Wy), %) andsoforany0 <y <
1-— %(d + Wy,) we have

1
0,y) + EV CR.

This yields our inclusion as follow. Let f € R? be a vector such that the center
of the parallelogram V' = ¢ + 2V is the point (1, 0). By construction we directly
have

~ 1
VNRY > —
VRl =213
but moreover forany 0 <y < % we have

(0,9 +VInR]| 2 =

since the upper right quarter of V is relatively to R' in the same position than
V relatively to R. Finally, denoting by V* the parallelogram V N [0,1] X R, the
parallelogram S defined as

s:= |J wn+vy

1
<yp< -
0<y<;

satisfies the condition claimed. This concludes the proof. O

7. Proof of Theorem 2.1

We fix an arbitrary family B contained in T and we prove the following The-
orem: combined with Lemma 5.3 it yields Theorem 2.1.

Theorem 7.1. There exists a finite family {R; : i € I} included in the geometric
family B defined as

B={{+AR:T€R*%1>0,R€EB}
which satisfies

U

iel

s|UR

iel

log(n)

wheren = Ap.
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The family B generates a tree [B]: we fix a fig tree [F] C [B] of scale 15 and
we denote by h € N its height. We apply Bateman’s Theorem to obtain a finite
family {t; + R; : i < 2"} included in

F={{+AR : {€R*1>0,R€[F]}

Ur| s |Ur

i€l i€l
We take advantage of those elements but this time using elements of B and not
elements of [F]. Let us define A, as

Ay =R,

i€l

which satisfies

log(n) pS

and similarly let us define A, as

A, = URl‘

i€l

FIGURE 1. Theorem 2.1 shows that we can virtually use the tree
[F] for the operator My even if B has no structure. On the il-
lustration, B is composed of the red dots which represent rect-
angles who have very different scale and yet they interact at the
level of [F].

We apply apply Proposition 6.5: for any U € L) we fix an element V; of B
such that V; € U. To each pair (U, V) we apply Proposition 6.5 and this gives

a parallelogram Sy; € S, 1 such that
4

1
Sy C {MvulTU > E}'
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We define then the set B, as
By := | J G+ TSy
i<2h
Because V; € B, we obviously have

My, < Mg

and so Sy; C {M glry > 1—16} We take the union over i < 2" and we obtain

B, := U f;+ TSk C {MﬂlA1 > 1%}
i<2h

and so finally |B,| < |{M231A1 > i}|

Let us compute |B,|: to do so, we observe that we can use Proposition 6.4
with the families {f; + R! : i < 2"} and {f; + TSy : i < 2"}. This yields

|B,| > L|A2|
21 x4

and so we finally have

1 1
Mgl > —¢l.
log(n) { B4 16}‘

This inequality concludes the proof of Theorem 2.1.

A1l S

8. Proof of Theorem 2.2

Let Q be a directions in [0, %) which is not finitely lacunary and let B be a
geometric family such that we have B C R and also

sup inf e =0.
weh ReB,wp=w

Let us denote by T, the family included in T such that
Ro={f+ AR : f€R* 1> 0,RE€ Ty}.

Denote also by B the family included in T that generates B and observe that
our hypothesis implies that we have

[B] =Tq
and so in particular we have
A = Ar,.
The following claim will concludes the proof.
Claim. The set of direction Q is not finitely lacunary if and only if A, = co.
Applying Theorem 2.1, we obtain forany 1 < p < o
00 = Ay, = Ap) S Mgl
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