New York Journal of Mathematics

New York J. Math. 30 (2024) 295-306.

Kakeya-type sets for geometric maximal operators

Anthony Gauvan

ABSTRACT. We establish an estimate for arbitrary geometric maximal operators in the plane: we associate to any family \mathcal{B} composed of rectangles and invariant by translations and central dilations a geometric quantity $\lambda_{\mathcal{B}}$ called its *analytic split* and satisfying

$$\log(\lambda_{\mathcal{B}}) \lesssim_p \|M_{\mathcal{B}}\|_p^p$$

for all $1 , where <math>M_{\mathcal{B}}$ is the Hardy-Littlewood type maximal operator associated to the family \mathcal{B} .

CONTENTS

1.	Introduction	295
2.	Results	297
3.	The family <i>T</i>	297
4.	Analytic split	298
5.	Bateman's construction and Kakeya-type set	299
6.	Geometric estimates	300
7.	Proof of Theorem 2.1	303
8.	Proof of Theorem 2.2	305
References		306

1. Introduction

In [3], Bateman classified the behavior of directional maximal operators in the plane on the L^p scale for 1 . Here, we study geometric maximal operators which are more general than directional maximal operators: in particular, their study requires to focus on the interactions between the coupling eccentricity/orientation for a given family of rectangles. Our main result is the construction of so-called Kakeya-type sets for an arbitrary geometric maximal operator which gives an*a priori* $bound on their <math>L^p$ norm in the same spirit than in [3].

Received September 11, 2023.

²⁰¹⁰ Mathematics Subject Classification. 42B25.

Key words and phrases. maximal operator.

ANTHONY GAUVAN

We work in the Euclidean plane \mathbb{R}^2 : if *U* is a measurable subset we denote by |U| its Lebesgue measure. We also denote by \mathcal{R} the family containing all rectangles of \mathbb{R}^2 : for $R \in \mathcal{R}$, we define its *orientation* as the angle $\omega_R \in [0, \pi)$ that its longest side makes with the *x*-axis and its *eccentricity* as the ratio $e_R \in (0, 1]$ of its shortest side by its longest side. We will also denote by R^t the rectangle R translated in its own direction by its lentgh.

A family \mathcal{B} contained in \mathcal{R} is said to be geometric if it is invariant by translations and central dilations *i.e.* if for any $R \in \mathcal{R}$, any $x \in \mathbb{R}^2$ and $\lambda > 0$, we have

$$x + \lambda R \in \mathcal{B}.$$

Given any geometric family \mathcal{B} , we define the associated geometric maximal operator $M_{\mathcal{B}}$ as

$$M_{\mathcal{B}}f(x) := \sup_{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R} |f|$$

for any $f \in L^{\infty}$ and $x \in \mathbb{R}^2$. We are interested in the relation between the geometry exhibited by the family \mathcal{B} and the regularity of the operator $M_{\mathcal{B}}$ on the L^p space for 1 .

A lot of research has been done in the case where \mathcal{B} is equal to

$$\mathcal{R}_{\Omega} := \{ R \in \mathcal{R} : \omega_R \in \Omega \}$$

where Ω is an arbitrary set of directions in $[0, \pi)$. In other words, \mathcal{R}_{Ω} is the set of all rectangles whose orientation belongs to Ω . We say that \mathcal{R}_{Ω} is a directional family and to alleviate the notation we denote

$$M_{\mathcal{R}_{\Omega}} := M_{\Omega}.$$

Naturally, the operator M_{Ω} is said to be a directional maximal operator. The study of those operators goes back at least to Cordoba and Fefferman's article [6] in which they use geometric techniques to show that if $\Omega = \left\{\frac{\pi}{2^k}\right\}_{k\geq 1}$ then M_{Ω} has weak-type (2, 2). A year later, using Fourier analysis techniques, Nagel, Stein and Wainger proved in [8] that M_{Ω} is actually bounded on $L^p(\mathbb{R}^2)$ for any p > 1. In [1], Alfonseca has proved that if the set of direction Ω is a lacunary set of finite order then the operator M_{Ω} is bounded on $L^p(\mathbb{R}^2)$ for any p > 1. Finally in [3], Bateman proved the converse and so characterized the L^p boundedness of directional operators in the plane.

Theorem 1.1 (Bateman). Fix an arbitrary set of directions $\Omega \subset [0, \pi)$. We have the following alternative:

- if Ω is finitely lacunary, then M_{Ω} is bounded on L^p for any p > 1.
- if Ω is not finitely lacunary, then M_{Ω} is not bounded on L^p for any $p < \infty$.

We invite the reader to look at [3] for more details and also [4] where Bateman and Katz introduced their method.

2. Results

Our main result is an *a priori* estimate in the same spirit than one of the main result of [3]. Precisely, to any family \mathcal{B} contained in \mathcal{R} we associate a geometric quantity

$$\lambda_{\mathcal{B}} \in \mathbb{N} \cup \{\infty\}$$

that we call *analytic split* of \mathcal{B} . Loosely speaking, the analytic split $\lambda_{\mathcal{B}}$ indicates if \mathcal{B} contains a lot of rectangles in terms of orientation and eccentricity. We prove then the following Theorem.

Theorem 2.1. For any geometric family \mathcal{B} and any 1 we have

$$\log(\lambda_{\mathcal{B}}) \lesssim_p \|M_{\mathcal{B}}\|_p^p.$$

An important feature of this inequality is that we do not make any assumption on the family \mathcal{B} . In regards of the study of geometric maximal operators, Theorem 2.1 gives a *concrete* and *a priori* lower bound on the $L^p(\mathbb{R}^2)$ norm of $M_{\mathcal{B}}$. We insist on the fact that this estimate is concrete since the analytic split is not an abstract quantity associated to \mathcal{B} but has a strong *geometric interpretation*. No such results was previously known for geometric maximal operators and we give an application in order to illustrate it.

Theorem 2.2. Fix any set of directions $\Omega \subset [0, \frac{\pi}{4})$ which is not finitely lacunary and let $\mathcal{B} \leq \mathcal{R}_{\Omega}$ be a geometric family satisfying for any $\omega \in \Omega$

$$\inf_{R\in\mathcal{B},\omega_R=\omega}e_R=0$$

In this case, the operator $M_{\mathcal{B}}$ is not bounded on L^p for any $p < \infty$.

Observe that since we have $\mathcal{B} \subset \mathcal{R}_{\Omega}$ we have the trivial pointwise estimate

$$M_{\mathcal{B}} \leq M_{\Omega}.$$

Hence, we have $||M_{\mathcal{B}}||_p < \infty$ if $||M_{\Omega}||_p < \infty$. Surprisingly, Theorem 2.2 states that the conserve is also true *i.e.* we have $||M_{\mathcal{B}}||_p = \infty$ if $||M_{\Omega}||_p = \infty$.

3. The family T

Given a geometric family $\mathcal{B} \leq \mathcal{R}$, we can always suppose, without loss of generality, that it is of the form

$$\mathcal{B} = \{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in B \}$$

where the family *B* is contained in the family *T* defined as

$$T = \{R_n(k) : n \ge 0, 0 \le k \le 2^n - 1\}.$$

Here, for $n \ge 1$ and $k \le 2^n - 1$, $R_n(k)$ is the parallelogram whose vertices are the points $(0,0), (0, \frac{1}{2^n}), (1, \frac{k-1}{2^n})$ and $(1, \frac{k}{2^n})$. The parallelogram $R_n(k)$ should be thought as a rectangle whose eccentricity and orientation are

$$(e_{R_n(k)},\omega_{R_n(k)})\simeq \left(\frac{1}{2^n},\frac{k}{2^n}\frac{\pi}{4}\right).$$

In the rest of the text, we always identify a geometric family

$$\mathcal{B}, \mathcal{R}_{\Omega} \text{ or } \mathcal{F} \leq \mathcal{R}$$

with the family that generates it

$$B, T_{\Omega} \text{ or } F \subset T.$$

The family *T* has a natural structure of binary tree and we develop a vocabulary adapted to this structure: for any $R \in T$ of scale $n \ge 1$, there exist a unique $R_f \in T$ of scale n - 1 such that $R \subset R_f$. We say that R_f is the *parent* of *R*. In the same fashion, observe that there are only two elements $R_h, R_l \in T$ of scale n + 1 such that $R_h, R_l \subset R$. We say that R_h and R_l are the *children* of *R*. Observe that $R \in T$ is the child of $R' \in T$ if and only if $R \subset R'$ and 2|R| = |R'|: we will often use those two conditions. We say that a sequence (finite or infinite) $\{R_i\}_{i\in\mathbb{N}} \subset T$ is a *path* if it satisfies $R_{i+1} \subset R_i$ and $2|R_{i+1}| = |R_i|$ for any *i i.e.* if R_i is the parent of R_{i+1} for any *i*. Different situations can occur. A finite path *P* has a first element *R* and a last element R' (defined in a obvious fashion) and we will write $P_{R,R'} := P$. On the other hand, an infinite path *P* has no endpoint. For any family *B* contained in *T*, there is a unique parallelogram $R \in T$ such that any $R' \in B$ is included in *R* and |R| is minimal. We say that this element $R_B := R$ is the *root* of *B* and we define the set [B] as

$$[B] := \{ R \in T : \exists R' \in B, R' \subset R \subset R_B \}.$$

A subset of *T* of the form [*B*] is called a *tree* generated by *B*. We define the set L_B as

$$L_{R} = \{ R \in B : \forall R' \in B, R' \subset R \Rightarrow R' = R \}.$$

An element of L_B is called a *leaf* of *B*. Observe that for any *B* in *T* we have $[B] = [L_B]$ and also $L_B = L_{[B]}$. The first identity says that the leaves of a tree [B] can be seen as the minimal set that generates [B]. The second identity states that [B] is not bigger than *B* in the sense that it does not have more leaves. If *P* is an infinite path, we have by definition $L_P = \emptyset$.

4. Analytic split

We associate to any family *B* included in *T* a natural number $\lambda_{[B]} \in \mathbb{N} \cup \{\infty\}$ that we call *analytic split*. For any tree [*B*], we define its *boundary* $\partial[B]$ as the set of path in [*B*] that are maximal for the inclusion *i.e.* $P \in \partial[B]$ if and only if *P* is a path included in [*B*] such that if $P' \subset [B]$ is a path that contains *P* then P = P'. For any tree [*B*] and path $P \in \partial[B]$ we define the *splitting number of P relatively to* [*B*] as

 $s_{P,[B]} := \# \{ R \in [B] \setminus P : \exists R' \in P, R \subset R', 2|R| = |R'| \}.$

We say that a tree [F] is a fig tree of scale n and height h when

- [F] is finite and $\#\partial[F] = 2^n$
- for any $P \in \partial[F]$ we have $s_{P,[F]} = n$ and #P = h.

Observe that by construction we always have $h \ge n$. We define the *analytic split* $\lambda_{[B]}$ of a tree [B] as the integer *n* such that [B] contains a fig tree [F] of scale *n* and do not contains any fig tree of scale n + 1. In the case where [B] contains fig trees of arbitrary high scale, we set $\lambda_{[B]} = \infty$. More generally for any family *B* contained in *T* (*i.e.* when *B* is not necessarily a tree), we define its analytic split as

$$\lambda_B := \lambda_{[B]}$$

Hence by definition, the analytic split of a family B is the same as the analytic split of the tree [B]. Observe that thanks to Theorem 2.1 this definition is pertinent.

5. Bateman's construction and Kakeya-type set

In [3], Bateman proves the following Theorem.

Theorem 5.1 (Bateman's construction [3]). Suppose that [F] is a fig tree of scale n and height h: there exists a finite family $\{R_i : i \in I\}$ included in the geometric family \mathcal{F} defined as

$$\mathcal{F} = \{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in [F] \}$$

such that

$$\log(n)\left|\bigcup_{i\in I}R_i\right|\lesssim\left|\bigcup_{i\in I}R_i^t\right|.$$

If *R* is a rectangle, we denote by R^t the parallelogram *R* but shifted of one unit length on the right along its orientation. We fix a 2^h mutually independent random variables

$$R_i : (\Omega, \mathbb{P}) \to L_{[F]}$$

who are uniformly distributed in the set $L_{[F]}$. We consider also the deterministic vectors

$$\left\{\vec{t}_i = (0, \frac{i-1}{2^h}) : i \le 2^h\right\}$$

is a deterministic vector. Bateman's main result in [3] reads as follow

Theorem 5.2. We have

$$\mathbb{P}\left(\log(n)\left|\bigcup_{i\in I}t_i+R_i\right|\lesssim \left|\bigcup_{i\in I}T(t_i+R_i)\right|\right)>0.$$

The proof of this Theorem involves fine geometric estimates, percolation theory and the use of the so-called notion of *stickiness* of thin tubes of the euclidean plane, see[3] and [4]. Those kind of geometric estimate leads, more generally, to lower bound on maximal operators. **Lemma 5.3.** Fix N > 0 such that there exists a finite family $\{R_i : i \in I\}$ included in a geometric family \mathcal{B} such that

$$N\left|\bigcup_{i\in I}R_i\right|\lesssim\left|\bigcup_{i\in I}R_i^t\right|$$

In this case, for any $p \in (1, \infty)$, we have

$$N \lesssim_p \|M_{\mathcal{B}}\|_p^p.$$

6. Geometric estimates

We need different geometric estimates in order to prove Theorem 2.1. We start with geometric estimates on \mathbb{R} which will help us to prove geometric estimates on \mathbb{R}^2 . Finally we prove a geometric estimate on \mathbb{R}^2 involving geometric maximal operators that is crucial.

If *I* is a bounded interval on \mathbb{R} and $\tau > 0$ we denote by τI the interval that has the same center as *I* and τ times its length *i.e.* $|\tau I| = \tau |I|$. The following lemma can be found in [2].

Lemma 6.1 (Austin's covering lemma). Let $\{I_{\alpha}\}_{\alpha \in A}$ a finite family of bounded intervals on \mathbb{R} . There is a disjoint subfamily

$$\{I_{\alpha_k}\}_{k\leq N}$$

such that

$$\bigcup_{\alpha\in A}I_{\alpha}\subset \bigcup_{k\leq N}3I_{\alpha_k}$$

We apply Austin's covering lemma to prove two geometric estimates on intervals of the real line. The first one concerns union of dilated intervals.

Lemma 6.2. Fix $\tau > 0$ and let $\{I_{\alpha}\}_{\alpha \in A}$ a finite family of bounded intervals on \mathbb{R} . We have

$$\left|\bigcup_{\alpha\in A}I_{\alpha}\right|\simeq_{\tau}\left|\bigcup_{\alpha\in A}\tau I_{\alpha}\right|.$$

Proof. Suppose that $\tau > 1$. We just need to prove that

$$\left|\bigcup_{\alpha\in A}\tau I_{\alpha}\right|\leq \tau \left|\bigcup_{\alpha\in A}I_{\alpha}\right|.$$

Simply observe that we have

$$\bigcup_{\alpha \in A} \tau I_{\alpha} \subset \left\{ M \mathbb{1}_{\bigcup_{\alpha \in A} I_{\alpha}} > \frac{1}{\tau} \right\}$$

and apply the one dimensional maximal Theorem.

Now that we have dealt with union of dilated intervals we consider union of translated intervals.

Lemma 6.3. Let $\mu > 0$ be a positive constant. For any finite family of intervals $\{I_{\alpha}\}_{\alpha \in A}$ on \mathbb{R} and any finite family of scalars $\{t_{\alpha}\}_{\alpha \in A} \subset \mathbb{R}$ such that, for all $\alpha \in A$

$$|t_{\alpha}| < \mu \times |I_{\alpha}|$$

we have

$$\left| \bigcup_{\alpha \in A} I_{\alpha} \right| \simeq_{\mu} \left| \bigcup_{\alpha \in A} \left(t_{\alpha} + I_{\alpha} \right) \right|.$$

Proof. We apply Austin's covering lemma to the family $\{I_{\alpha}\}_{\alpha \in A}$ which gives a disjoint subfamily $\{I_{\alpha_k}\}_{k < N}$ such that

$$\bigcup_{\alpha \in A} I_{\alpha} \subset \bigcup_{k \le N} 3I_{\alpha_k}.$$

In particular we have

$$\left| \bigsqcup_{k \le N} I_{\alpha_k} \right| \simeq \left| \bigcup_{\alpha \in A} I_\alpha \right|.$$

We consider now the family

$$\left\{(1+\mu)I_{\alpha_k}\right\}_{k\leq N}$$

which is *a priori* not disjoint. We apply again Austin's covering lemma which gives a disjoint subfamily that we will denote $\{(1 + \mu)I_{\alpha_{k_l}}\}_{l < M}$ who satisfies

$$\bigcup_{k\leq N} (1+\mu)I_{\alpha_k} \subset \bigcup_{l\leq M} 3(1+\mu)I_{\alpha_{k_l}}.$$

In particular we have

$$\left| \bigsqcup_{l \le M} (1+\mu) I_{\alpha_{k_l}} \right| \simeq \left| \bigcup_{k \le N} (1+\mu) I_{\alpha_k} \right|.$$

To conclude, it suffices to observe that for any $\alpha \in A$ we have

$$t_{\alpha} + I_{\alpha} \subset (1+\mu)I_{\alpha}$$

because $|t_{\alpha}| \leq \mu \times |I_{\alpha}|$. Hence the family

$$\{t_{\alpha_{k_l}}+I_{\alpha_{k_l}}\}_{l\leq M}$$

is disjoint and so finally

$$\left| \bigsqcup_{l \le M} \left(t_{\alpha_{k_l}} + I_{\alpha_{k_l}} \right) \right| = \sum_{l \le M} \left| I_{\alpha_{k_l}} \right| \ge \frac{1}{3(1+\mu)} \left| \bigcup_{l \le M} 3(1+\mu) I_{\alpha_{k_l}} \right| \simeq_{\mu} \left| \bigcup_{\alpha \in A} I_{\alpha} \right|$$

where we have used lemma 6.2 in the last step.

We denote by \mathcal{P} the family containing all parallelograms $R \subset \mathbb{R}^2$ whose vertices are of the form (p, a), (p, b), (q, c) and (q, d) where p - q > 0 and b - a = d - c > 0. We say that $L_R := p - q$ is the *length* of R and that $W_R := b - a$ is the *width* of R. For $R \in \mathcal{P}$ and and a positive ratio $0 < \tau < 1$ we denote by $\mathcal{P}_{R,\tau}$ the family defined as

$$\mathcal{P}_{R,\tau} := \{ S \in \mathcal{P} : S \subset R, L_S = L_R, |S| \ge \tau |R| \}.$$

For $R \in \mathcal{P}$ define the parallelogram $\hat{R} \in \mathcal{P}$ as the parallelogram who has same length, orientation and center than *R* but is 5 times wider *i.e.* $W_{\hat{R}} = 5W_R$.

Proposition 6.4. Fix $0 < \tau < 1$ and any finite family of parallelograms $\{R_i\}_{i \in I} \subset \mathcal{P}$. For each $i \in I$, select an element $S_i \in \mathcal{P}_{\hat{R}_i,\tau}$. The following estimate holds

$$\left|\bigcup_{i\in I}S_i\right|\geq \frac{\tau}{54}\left|\bigcup_{i\in I}R_i\right|.$$

Proof. Fix $x \in \mathbb{R}$ and for $i \in I$, denote by R_i^x and S_i^x the segments $R_i \cap \{x \times \mathbb{R}\}$ and $S_i \cap \{x \times \mathbb{R}\}$. For any $i \in I$, observe that there is a scalar t_i satisfying $|t_i| \le \mu \times |R_i|$ with

 $\mu = 5$

such that

$$t_i + \tau R_i^x \subset S_i^x$$

Applying lemma 6.3, we then have (since $9 \times (1 + \mu) = 54$)

$$\left|\bigcup_{i\in I} S_i^x\right| \ge \left|\bigcup_{i\in I} \left(t_i + \tau R_i^x\right)\right| \ge \frac{1}{54} \left|\bigcup_{i\in I} \tau R_i^x\right|.$$

We conclude using lemma 6.2

$$\frac{1}{54} \left| \bigcup_{i \in I} \tau R_i^x \right| \ge \frac{\tau}{54} \left| \bigcup_{i \in I} R_i^x \right|$$

and integrating on *x*.

We state a last geometric estimate involving maximal operator: we fix an arbitrary element $R \in P$ and an element $V \in \mathcal{P}$ included in R such that $L_V = L_u$ and $|V| \leq \frac{1}{2}|R|$. Recall that we denote by R^t the parallelogram R translated in its direction by its length.

Proposition 6.5. There is a parallelogram $S \in \mathcal{P}_{\hat{R},\frac{1}{4}}$ depending on V such that the following inclusion holds

$$S \subset \left\{ M_V \mathbb{1}_{R^t} > \frac{1}{16} \right\}.$$

Proof. Without loss of generality, we can consider that we have

$$R := [0, 1]^2$$
.

and that the lower left corner of *V* is *O*. The upper left corner of *V* is the point $(0, W_V)$ and we denote by (d, 1) and $(d + W_V, 1)$ its lower right and upper right corners. Since $V \subset R$ we have

$$d + W_V \le 1.$$

The upper right corner of $\frac{1}{2}V$ is the point $(\frac{1}{2}(d+W_V), \frac{1}{2})$ and so for any $0 \le y \le 1 - \frac{1}{2}(d+W_V)$ we have

$$(0,y) + \frac{1}{2}V \subset R.$$

This yields our inclusion as follow. Let $\vec{t} \in \mathbb{R}^2$ be a vector such that the center of the parallelogram $\tilde{V} = \vec{t} + 2V$ is the point (1, 0). By construction we directly have

$$|\tilde{V} \cap R^t| \geq \frac{1}{16}$$

but moreover for any $0 \le y \le \frac{1}{2}$ we have

$$\left|\{(0,y)+\tilde{V}\}\cap R^t\right|\geq \frac{1}{16}$$

since the upper right quarter of \tilde{V} is relatively to R^t in the same position than V relatively to R. Finally, denoting by V^* the parallelogram $\tilde{V} \cap [0,1] \times \mathbb{R}$, the parallelogram S defined as

$$S := \bigcup_{0 \le y \le \frac{1}{2}} ((0, y) + V^*)$$

satisfies the condition claimed. This concludes the proof.

7. Proof of Theorem 2.1

We fix an arbitrary family *B* contained in *T* and we prove the following Theorem: combined with Lemma 5.3 it yields Theorem 2.1.

Theorem 7.1. There exists a finite family $\{R_i : i \in I\}$ included in the geometric family \mathcal{B} defined as

$$\mathcal{B} = \{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in B \}$$

which satisfies

$$\log(n) \left| \bigcup_{i \in I} R_i \right| \lesssim \left| \bigcup_{i \in I} R_i^t \right|$$

where $n = \lambda_B$.

The family *B* generates a tree [*B*]: we fix a fig tree $[F] \subset [\mathcal{B}]$ of scale λ_B and we denote by $h \in \mathbb{N}$ its height. We apply Bateman's Theorem to obtain a finite family $\{t_i + R_i : i \leq 2^h\}$ included in

$$\mathcal{F} = \{\vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in [F]\}$$

which satisfies

$$\log(n) \left| \bigcup_{i \in I} R_i \right| \lesssim \left| \bigcup_{i \in I} R_i^t \right|.$$

We take advantage of those elements but this time using elements of *B* and not elements of [F]. Let us define A_1 as

$$A_1 := \bigcup_{i \in I} R_i$$

and similarly let us define A_2 as

$$A_2 := \bigcup_{i \in I} R_i^t$$

$$[\mathcal{F}]$$

$$\mathcal{B}$$

FIGURE 1. Theorem 2.1 shows that we can virtually use the tree [F] for the operator $M_{\mathcal{B}}$ even if *B* has no structure. On the illustration, *B* is composed of the red dots which represent rectangles who have very different scale and yet they *interact* at the level of [F].

We apply apply Proposition 6.5: for any $U \in L_{[F]}$ we fix an element V_U of B such that $V_U \subset U$. To each pair (U, V_U) we apply Proposition 6.5 and this gives a parallelogram $S_U \in S_{U,\frac{1}{2}}$ such that

$$S_U \subset \left\{ M_{V_U} \mathbb{1}_{TU} > \frac{1}{16} \right\}.$$

We define then the set B_2 as

$$B_2 := \bigcup_{i \le 2^h} \vec{t}_i + TS_{R_i}$$

Because $V_U \in B$, we obviously have

$$M_{V_U} \leq M_{\mathcal{B}}$$

and so $S_U \subset \{M_{\mathcal{B}} \mathbb{1}_{TU} > \frac{1}{16}\}$. We take the union over $i \leq 2^h$ and we obtain

$$B_2 := \bigcup_{i \le 2^h} \vec{t}_i + TS_{R_i} \subset \left\{ M_{\mathcal{B}} \mathbb{1}_{A_1} > \frac{1}{16} \right\}$$

and so finally $|B_2| \leq \left| \left\{ M_{\mathcal{B}} \mathbb{1}_{A_1} > \frac{1}{16} \right\} \right|$. Let us compute $|B_2|$: to do so, we observe that we can use Proposition 6.4 with the families $\{\vec{t}_i + R_i^t : i \leq 2^h\}$ and $\{\vec{t}_i + TS_{R_i} : i \leq 2^h\}$. This yields

$$|B_2| \ge \frac{1}{21 \times 4} |A_2|$$

and so we finally have

$$|A_1| \lesssim \frac{1}{\log(n)} \left| \left\{ M_{\mathcal{B}} \mathbb{1}_{A_1} > \frac{1}{16} \right\} \right|.$$

This inequality concludes the proof of Theorem 2.1.

8. Proof of Theorem 2.2

Let Ω be a directions in $[0, \frac{\pi}{4})$ which is not finitely lacunary and let \mathcal{B} be a geometric family such that we have $\mathcal{B} \subset \mathcal{R}_{\Omega}$ and also

$$\sup_{\omega\in\Omega}\inf_{R\in\mathcal{B},\omega_R=\omega}e_R=0$$

Let us denote by T_{Ω} the family included in T such that

$$\mathcal{R}_{\Omega} = \{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in T_{\Omega} \}.$$

Denote also by *B* the family included in *T* that generates \mathcal{B} and observe that our hypothesis implies that we have

$$[B] = T_{\Omega}$$

and so in particular we have

$$\lambda_B = \lambda_{T_\Omega}.$$

The following claim will concludes the proof.

Claim. The set of direction Ω is not finitely lacunary if and only if $\lambda_{T_{\Omega}} = \infty$.

Applying Theorem 2.1, we obtain for any 1

$$\infty = \lambda_{T_{\Omega}} = \lambda_{[B]} \lesssim \|M_{\mathcal{B}}\|_{p}^{p}.$$

ANTHONY GAUVAN

References

- ALFONSECA, ANGELES. Strong type inequalities and an almost-orthogonality principle for families of maximal operators along directions in ℝ². *J. Lond. Math. Soc., II. Ser.* 67 (2003), no. 1, 208–218. MR2072308, Zbl 1057.42018, doi: 10.1112/S0024610702003915. 296
- [2] AUSTIN, DONALD. A geometric proof of the Lebesgue differentiation theorem. *Proc. Am. Math. Soc.* 16 (1965), no. 16, 220–221. MR3234571, Zbl 0145.28502, doi: 10.2307/2033849. 300
- [3] BATEMAN, MICHAEL. Kakeya sets and directional maximal operators in the plane. *Duke Math. J.* 147 (2009), no. 1, 55–77. MR5532602, Zbl 1165.42005, doi: 0.1215/00127094-2009-006. 295, 296, 297, 299
- [4] BATEMAN, MICHAEL AND KATZ, NETS HAWK. Kakeya sets in Cantor directions. *Math. Res. Lett.* **15** (2008), no. 1, 73–81. MR5302015, Zbl 1160.42010, doi:10.4310/MRL.2008.v15.n1.a7. 296, 299
- [5] CORDOBA, ANTONIO AND FEFFERMAN, ROBERT. A geometric proof of the strong maximal theorem. Ann. Math. 102 (1975), 95–100. MR3507043, Zbl 0324.28004, doi:10.2307/1970976.
- [6] CORDOBA, ANTONIO AND FEFFERMAN, ROBERT. On differentiation of integrals. Proc. Natl. Acad. Sci. USA, (1977). 2211–2213 MR3582468, Zbl 0374.28002, doi:10.1073/pnas.74.6.2211.296
- [7] HARE, KATHRYN E. AND RÖNNING, JAN-OLAV. Applications of generalized Perron trees to maximal functions and density bases. J. Fourier Anal. Appl. 4 (1998), 215–227. MR1220774, Zbl 0911.42010, doi: 10.1007/BF02475990.
- [8] NAGEL, ALEXANDER AND STEIN, ELIAS M. AND WAINGER, STEPHEN. Differentiation in lacunary directions. *Proc. Natl. Acad. Sci. USA* **75** (1978), no. 1, 1060–1062. MR3606946, Zbl 0391.42015, doi: 10.1073/pnas.75.3.1060. 296

(Anthony Gauvan) LABORATOIRE DE MATHÉMATIQUES D'ORSAY, CNRS UMR 8628, UNIVER-SITÉ PARIS-SACLAY, BÂTIMENT 307, 91405 ORSAY CEDEX, FRANCE anthony.gauvan@universite-paris-saclay.fr

This paper is available via http://nyjm.albany.edu/j/2024/30-10.html.