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Kakeya-type sets for geometric
maximal operators

Anthony Gauvan

Abstract. We establish an estimate for arbitrary geometric maximal opera-
tors in the plane: we associate to any family ℬ composed of rectangles and
invariant by translations and central dilations a geometric quantity 𝜆ℬ called
its analytic split and satisfying

log(𝜆ℬ) ≲𝑝 ‖𝑀ℬ‖
𝑝
𝑝

for all 1 < 𝑝 <∞, where𝑀ℬ is the Hardy-Littlewood type maximal operator
associated to the family ℬ.
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1. Introduction
In [3], Bateman classified the behavior of directional maximal operators in

the plane on the 𝐿𝑝 scale for 1 < 𝑝 < ∞. Here, we study geometric maximal
operators which are more general than directional maximal operators: in par-
ticular, their study requires to focus on the interactions between the coupling
eccentricity/orientation for a given family of rectangles. Our main result is the
construction of so-called Kakeya-type sets for an arbitrary geometric maximal
operator which gives an a priori bound on their 𝐿𝑝 norm in the same spirit than
in [3].
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Wework in the Euclidean planeR2: if𝑈 is a measurable subset we denote by
|𝑈| its Lebesgue measure. We also denote by ℛ the family containing all rect-
angles of R2: for 𝑅 ∈ ℛ, we define its orientation as the angle 𝜔𝑅 ∈ [0, 𝜋) that
its longest side makes with the 𝑥-axis and its eccentricity as the ratio 𝑒𝑅 ∈ (0, 1]
of its shortest side by its longest side. We will also denote by 𝑅𝑡 the rectangle 𝑅
translated in its own direction by its lentgh.
A family ℬ contained in ℛ is said to be geometric if it is invariant by trans-

lations and central dilations i.e. if for any 𝑅 ∈ ℛ, any 𝑥 ∈ R2 and 𝜆 > 0, we
have

𝑥 + 𝜆𝑅 ∈ ℬ.
Given any geometric family ℬ, we define the associated geometric maximal
operator𝑀ℬ as

𝑀ℬ𝑓(𝑥) ∶= sup
𝑥∈𝑅∈ℬ

1
|𝑅| ∫𝑅

|𝑓|

for any 𝑓 ∈ 𝐿∞ and 𝑥 ∈ R2. We are interested in the relation between the
geometry exhibited by the family ℬ and the regularity of the operator 𝑀ℬ on
the 𝐿𝑝 space for 1 < 𝑝 <∞.
A lot of research has been done in the case where ℬ is equal to

ℛΩ ∶= {𝑅 ∈ ℛ ∶ 𝜔𝑅 ∈ Ω}

where Ω is an arbitrary set of directions in [0, 𝜋). In other words, ℛΩ is the set
of all rectangles whose orientation belongs toΩ. We say thatℛΩ is a directional
family and to alleviate the notation we denote

𝑀ℛΩ ∶= 𝑀Ω.

Naturally, the operator 𝑀Ω is said to be a directional maximal operator. The
study of those operators goes back at least to Cordoba and Fefferman’s article
[6] in which they use geometric techniques to show that if Ω =

{ 𝜋
2𝑘

}
𝑘≥1

then

𝑀Ω has weak-type (2, 2). A year later, using Fourier analysis techniques, Nagel,
Stein andWainger proved in [8] that𝑀Ω is actually bounded on 𝐿𝑝(R2) for any
𝑝 > 1. In [1], Alfonseca has proved that if the set of directionΩ is a lacunary set
of finite order then the operator𝑀Ω is bounded on 𝐿𝑝(R2) for any𝑝 > 1. Finally
in [3], Bateman proved the converse and so characterized the 𝐿𝑝 boundedness
of directional operators in the plane.

Theorem 1.1 (Bateman). Fix an arbitrary set of directions Ω ⊂ [0, 𝜋). We have
the following alternative:

∙ ifΩ is finitely lacunary, then𝑀Ω is bounded on 𝐿𝑝 for any 𝑝 > 1.
∙ ifΩ is not finitely lacunary, then𝑀Ω is not bounded on 𝐿𝑝 for any 𝑝 <∞.

We invite the reader to look at [3] for more details and also [4] where Bate-
man and Katz introduced their method.
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2. Results
Ourmain result is an a priori estimate in the same spirit than one of themain

result of [3]. Precisely, to any familyℬ contained inℛwe associate a geometric
quantity

𝜆ℬ ∈ N ∪ {∞}
that we call analytic split ofℬ. Loosely speaking, the analytic split 𝜆ℬ indicates
if ℬ contains a lot of rectangles in terms of orientation and eccentricity. We
prove then the following Theorem.

Theorem 2.1. For any geometric familyℬ and any 1 < 𝑝 <∞ we have

log(𝜆ℬ) ≲𝑝 ‖𝑀ℬ‖
𝑝
𝑝.

An important feature of this inequality is that we do not make any assump-
tion on the family ℬ. In regards of the study of geometric maximal operators,
Theorem 2.1 gives a concrete and a priori lower bound on the 𝐿𝑝(R2) norm of
𝑀ℬ. We insist on the fact that this estimate is concrete since the analytic split
is not an abstract quantity associated to ℬ but has a strong geometric interpre-
tation. No such results was previously known for geometric maximal operators
and we give an application in order to illustrate it.

Theorem 2.2. Fix any set of directions Ω ⊂ [0, 𝜋
4
) which is not finitely lacunary

and letℬ ≤ ℛΩ be a geometric family satisfying for any 𝜔 ∈ Ω
inf

𝑅∈ℬ,𝜔𝑅=𝜔
𝑒𝑅 = 0.

In this case, the operator𝑀ℬ is not bounded on 𝐿𝑝 for any 𝑝 <∞.

Observe that since we have ℬ ⊂ ℛΩ we have the trivial pointwise estimate

𝑀ℬ ≤ 𝑀Ω.
Hence, we have ‖𝑀ℬ‖𝑝 < ∞ if ‖𝑀Ω‖𝑝 < ∞. Surprisingly, Theorem 2.2 states
that the conserve is also true i.e. we have ‖𝑀ℬ‖𝑝 = ∞ if ‖𝑀Ω‖𝑝 = ∞.

3. The family 𝑻
Given a geometric family ℬ ≤ ℛ, we can always suppose, without loss of

generality, that it is of the form

ℬ =
{
𝑡 + 𝜆𝑅 ∶ 𝑡 ∈ R2, 𝜆 > 0, 𝑅 ∈ 𝐵

}

where the family 𝐵 is contained in the family 𝑇 defined as
𝑇 = {𝑅𝑛(𝑘) ∶ 𝑛 ≥ 0, 0 ≤ 𝑘 ≤ 2𝑛 − 1} .

Here, for 𝑛 ≥ 1 and 𝑘 ≤ 2𝑛 − 1, 𝑅𝑛(𝑘) is the parallelogram whose vertices are
the points (0, 0), (0, 1

2𝑛
), (1, 𝑘−1

2𝑛
) and (1, 𝑘

2𝑛
). The parallelogram 𝑅𝑛(𝑘) should be

thought as a rectangle whose eccentricity and orientation are
(
𝑒𝑅𝑛(𝑘), 𝜔𝑅𝑛(𝑘)

)
≃ ( 12𝑛 ,

𝑘
2𝑛
𝜋
4 ) .
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In the rest of the text, we always identify a geometric family

ℬ,ℛΩ or ℱ ≤ ℛ
with the family that generates it

𝐵, 𝑇Ω or 𝐹 ⊂ 𝑇.
The family 𝑇 has a natural structure of binary tree and we develop a vocabu-

lary adapted to this structure: for any 𝑅 ∈ 𝑇 of scale 𝑛 ≥ 1, there exist a unique
𝑅𝑓 ∈ 𝑇 of scale 𝑛 − 1 such that 𝑅 ⊂ 𝑅𝑓. We say that 𝑅𝑓 is the parent of 𝑅. In
the same fashion, observe that there are only two elements 𝑅ℎ, 𝑅𝑙 ∈ 𝑇 of scale
𝑛+1 such that 𝑅ℎ, 𝑅𝑙 ⊂ 𝑅. We say that 𝑅ℎ and 𝑅𝑙 are the children of 𝑅. Observe
that 𝑅 ∈ 𝑇 is the child of 𝑅′ ∈ 𝑇 if and only if 𝑅 ⊂ 𝑅′ and 2|𝑅| = |𝑅′| : we
will often use those two conditions. We say that a sequence (finite or infinite)
{𝑅𝑖}𝑖∈N ⊂ 𝑇 is a path if it satisfies 𝑅𝑖+1 ⊂ 𝑅𝑖 and 2|𝑅𝑖+1| = |𝑅𝑖| for any 𝑖 i.e. if 𝑅𝑖
is the parent of 𝑅𝑖+1 for any 𝑖. Different situations can occur. A finite path 𝑃 has
a first element 𝑅 and a last element 𝑅′ (defined in a obvious fashion) and we
will write 𝑃𝑅,𝑅′ ∶= 𝑃. On the other hand, an infinite path 𝑃 has no endpoint.
For any family 𝐵 contained in 𝑇, there is a unique parallelogram 𝑅 ∈ 𝑇 such
that any 𝑅′ ∈ 𝐵 is included in 𝑅 and |𝑅| is minimal. We say that this element
𝑅𝐵 ∶= 𝑅 is the root of 𝐵 and we define the set [𝐵] as

[𝐵] ∶=
{
𝑅 ∈ 𝑇 ∶ ∃𝑅′ ∈ 𝐵, 𝑅′ ⊂ 𝑅 ⊂ 𝑅𝐵

}
.

A subset of 𝑇 of the form [𝐵] is called a tree generated by 𝐵. We define the set
𝐿𝐵 as

𝐿𝐵 =
{
𝑅 ∈ 𝐵 ∶ ∀𝑅′ ∈ 𝐵, 𝑅′ ⊂ 𝑅 ⇒ 𝑅′ = 𝑅

}
.

An element of 𝐿𝐵 is called a leaf of 𝐵. Observe that for any 𝐵 in 𝑇 we have
[𝐵] = [𝐿𝐵] and also 𝐿𝐵 = 𝐿[𝐵]. The first identity says that the leaves of a tree [𝐵]
can be seen as the minimal set that generates [𝐵]. The second identity states
that [𝐵] is not bigger than 𝐵 in the sense that it does not have more leaves. If 𝑃
is an infinite path, we have by definition 𝐿𝑃 = ∅.

4. Analytic split
We associate to any family 𝐵 included in 𝑇 a natural number 𝜆[𝐵] ∈ N ∪ {∞}

that we call analytic split. For any tree [𝐵], we define its boundary 𝜕[𝐵] as the
set of path in [𝐵] that are maximal for the inclusion i.e. 𝑃 ∈ 𝜕[𝐵] if and only if
𝑃 is a path included in [𝐵] such that if 𝑃′ ⊂ [𝐵] is a path that contains 𝑃 then
𝑃 = 𝑃′. For any tree [𝐵] and path 𝑃 ∈ 𝜕[𝐵] we define the splitting number of 𝑃
relatively to [𝐵] as

𝑠𝑃,[𝐵] ∶= #
{
𝑅 ∈ [𝐵] ⧵ 𝑃 ∶ ∃𝑅′ ∈ 𝑃, 𝑅 ⊂ 𝑅′, 2|𝑅| = |𝑅′|

}
.

We say that a tree [𝐹] is a fig tree of scale 𝑛 and height ℎ when
∙ [𝐹] is finite and #𝜕[𝐹] = 2𝑛
∙ for any 𝑃 ∈ 𝜕[𝐹] we have 𝑠𝑃,[𝐹] = 𝑛 and #𝑃 = ℎ.
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Observe that by constructionwe always have ℎ ≥ 𝑛. We define the analytic split
𝜆[𝐵] of a tree [𝐵] as the integer 𝑛 such that [𝐵] contains a fig tree [𝐹] of scale 𝑛
and do not contains any fig tree of scale 𝑛 + 1. In the case where [𝐵] contains
fig trees of arbitrary high scale, we set 𝜆[𝐵] = ∞. More generally for any family
𝐵 contained in 𝑇 (i.e. when 𝐵 is not necessarily a tree), we define its analytic
split as

𝜆𝐵 ∶= 𝜆[𝐵].
Hence by definition, the analytic split of a family 𝐵 is the same as the analytic
split of the tree [𝐵]. Observe that thanks to Theorem 2.1 this definition is per-
tinent.

5. Bateman’s construction and Kakeya-type set
In [3], Bateman proves the following Theorem.

Theorem 5.1 (Bateman’s construction [3]). Suppose that [𝐹] is a fig tree of scale
𝑛 and height ℎ: there exists a finite family {𝑅𝑖 ∶ 𝑖 ∈ 𝐼} included in the geometric
familyℱ defined as

ℱ =
{
𝑡 + 𝜆𝑅 ∶ 𝑡 ∈ R2, 𝜆 > 0, 𝑅 ∈ [𝐹]

}

such that

log(𝑛)
||||||||||

⋃

𝑖∈𝐼
𝑅𝑖
||||||||||
≲
||||||||||

⋃

𝑖∈𝐼
𝑅𝑡𝑖

||||||||||
.

If 𝑅 is a rectangle, we denote by 𝑅𝑡 the parallelogram 𝑅 but shifted of one
unit length on the right along its orientation. We fix a 2ℎmutually independent
random variables

𝑅𝑖 ∶ (Ω,P)→ 𝐿[𝐹]
who are uniformly distributed in the set𝐿[𝐹]. We consider also the deterministic
vectors

{𝑡𝑖 = (0, 𝑖 − 1
2ℎ

) ∶ 𝑖 ≤ 2ℎ}

is a deterministic vector. Bateman’s main result in [3] reads as follow

Theorem 5.2. We have

P
⎛
⎜
⎝
log(𝑛)

||||||||||

⋃

𝑖∈𝐼
𝑡𝑖 + 𝑅𝑖

||||||||||
≲
||||||||||

⋃

𝑖∈𝐼
𝑇(𝑡𝑖 + 𝑅𝑖)

||||||||||

⎞
⎟
⎠
> 0.

The proof of this Theorem involves fine geometric estimates, percolation the-
ory and the use of the so-called notion of stickiness of thin tubes of the euclidean
plane, see[3] and [4]. Those kind of geometric estimate leads, more generally,
to lower bound on maximal operators.
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Lemma 5.3. Fix𝑁 > 0 such that there exists a finite family {𝑅𝑖 ∶ 𝑖 ∈ 𝐼} included
in a geometric familyℬ such that

𝑁
||||||||||

⋃

𝑖∈𝐼
𝑅𝑖
||||||||||
≲
||||||||||

⋃

𝑖∈𝐼
𝑅𝑡𝑖

||||||||||
.

In this case, for any 𝑝 ∈ (1,∞), we have
𝑁 ≲𝑝 ‖𝑀ℬ‖

𝑝
𝑝.

6. Geometric estimates
We need different geometric estimates in order to prove Theorem 2.1. We

start with geometric estimates on R which will help us to prove geometric esti-
mates on R2. Finally we prove a geometric estimate on R2 involving geometric
maximal operators that is crucial.
If 𝐼 is a bounded interval on R and 𝜏 > 0 we denote by 𝜏𝐼 the interval that

has the same center as 𝐼 and 𝜏 times its length i.e. |𝜏𝐼| = 𝜏 |𝐼|. The following
lemma can be found in [2].

Lemma 6.1 (Austin’s covering lemma). Let {𝐼𝛼}𝛼∈𝐴 a finite family of bounded
intervals on R. There is a disjoint subfamily

{𝐼𝛼𝑘 }𝑘≤𝑁
such that ⋃

𝛼∈𝐴
𝐼𝛼 ⊂

⋃

𝑘≤𝑁
3𝐼𝛼𝑘

We apply Austin’s covering lemma to prove two geometric estimates on in-
tervals of the real line. The first one concerns union of dilated intervals.

Lemma 6.2. Fix 𝜏 > 0 and let {𝐼𝛼}𝛼∈𝐴 a finite family of bounded intervals on R.
We have ||||||||||

⋃

𝛼∈𝐴
𝐼𝛼
||||||||||
≃𝜏

||||||||||

⋃

𝛼∈𝐴
𝜏𝐼𝛼

||||||||||
.

Proof. Suppose that 𝜏 > 1. We just need to prove that
||||||||||

⋃

𝛼∈𝐴
𝜏𝐼𝛼

||||||||||
≤ 𝜏

||||||||||

⋃

𝛼∈𝐴
𝐼𝛼
||||||||||
.

Simply observe that we have
⋃

𝛼∈𝐴
𝜏𝐼𝛼 ⊂ {𝑀1∪𝛼∈𝐴𝐼𝛼 >

1
𝜏 }

and apply the one dimensional maximal Theorem. □

Now that we have dealt with union of dilated intervals we consider union of
translated intervals.



KAKEYA-TYPE SETS FOR GEOMETRIC MAXIMAL OPERATORS 301

Lemma 6.3. Let 𝜇 > 0 be a positive constant. For any finite family of intervals
{𝐼𝛼}𝛼∈𝐴 on R and any finite family of scalars {𝑡𝛼}𝛼∈𝐴 ⊂ R such that, for all 𝛼 ∈ 𝐴

|𝑡𝛼| < 𝜇 × |𝐼𝛼|

we have
||||||||||

⋃

𝛼∈𝐴
𝐼𝛼
||||||||||
≃𝜇

||||||||||

⋃

𝛼∈𝐴
(𝑡𝛼 + 𝐼𝛼)

||||||||||
.

Proof. We apply Austin’s covering lemma to the family {𝐼𝛼}𝛼∈𝐴 which gives a
disjoint subfamily

{
𝐼𝛼𝑘
}
𝑘≤𝑁 such that

⋃

𝛼∈𝐴
𝐼𝛼 ⊂

⋃

𝑘≤𝑁
3𝐼𝛼𝑘 .

In particular we have
||||||||||

⨆

𝑘≤𝑁
𝐼𝛼𝑘

||||||||||
≃
||||||||||

⋃

𝛼∈𝐴
𝐼𝛼
||||||||||
.

We consider now the family
{
(1 + 𝜇)𝐼𝛼𝑘

}
𝑘≤𝑁

which is a priori not disjoint. We apply again Austin’s covering lemma which
gives a disjoint subfamily that we will denote

{
(1 + 𝜇)𝐼𝛼𝑘𝑙

}
𝑙≤𝑀

who satisfies

⋃

𝑘≤𝑁
(1 + 𝜇)𝐼𝛼𝑘 ⊂

⋃

𝑙≤𝑀
3(1 + 𝜇)𝐼𝛼𝑘𝑙 .

In particular we have
||||||||||

⨆

𝑙≤𝑀
(1 + 𝜇)𝐼𝛼𝑘𝑙

||||||||||
≃
||||||||||

⋃

𝑘≤𝑁
(1 + 𝜇)𝐼𝛼𝑘

||||||||||
.

To conclude, it suffices to observe that for any 𝛼 ∈ 𝐴 we have

𝑡𝛼 + 𝐼𝛼 ⊂ (1 + 𝜇)𝐼𝛼
because |𝑡𝛼| ≤ 𝜇 × |||𝐼𝛼|||. Hence the family

{𝑡𝛼𝑘𝑙 + 𝐼𝛼𝑘𝑙 }𝑙≤𝑀

is disjoint and so finally
||||||||||

⨆

𝑙≤𝑀

(
𝑡𝛼𝑘𝑙 + 𝐼𝛼𝑘𝑙

)||||||||||
=
∑

𝑙≤𝑀

|||||𝐼𝛼𝑘𝑙
||||| ≥

1
3(1 + 𝜇)

||||||||||

⋃

𝑙≤𝑀
3(1 + 𝜇)𝐼𝛼𝑘𝑙

||||||||||
≃𝜇

||||||||||

⋃

𝛼∈𝐴
𝐼𝛼
||||||||||

where we have used lemma 6.2 in the last step. □
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We denote by 𝒫 the family containing all parallelograms 𝑅 ⊂ R2 whose
vertices are of the form (𝑝, 𝑎), (𝑝, 𝑏), (𝑞, 𝑐) and (𝑞, 𝑑) where 𝑝 − 𝑞 > 0 and
𝑏 − 𝑎 = 𝑑 − 𝑐 > 0. We say that 𝐿𝑅 ∶= 𝑝 − 𝑞 is the length of 𝑅 and that
𝑊𝑅 ∶= 𝑏− 𝑎 is the width of 𝑅. For 𝑅 ∈ 𝒫 and and a positive ratio 0 < 𝜏 < 1we
denote by 𝒫𝑅,𝜏 the family defined as

𝒫𝑅,𝜏 ∶= {𝑆 ∈ 𝒫 ∶ 𝑆 ⊂ 𝑅, 𝐿𝑆 = 𝐿𝑅, |𝑆| ≥ 𝜏|𝑅|} .

For 𝑅 ∈ 𝒫 define the parallelogram �̂� ∈ 𝒫 as the parallelogram who has same
length, orientation and center than 𝑅 but is 5 times wider i.e. 𝑊�̂� = 5𝑊𝑅.

Proposition 6.4. Fix 0 < 𝜏 < 1 and any finite family of parallelograms {𝑅𝑖}𝑖∈𝐼 ⊂
𝒫. For each 𝑖 ∈ 𝐼, select an element 𝑆𝑖 ∈ 𝒫�̂�𝑖 ,𝜏. The following estimate holds

||||||||||

⋃

𝑖∈𝐼
𝑆𝑖
||||||||||
≥ 𝜏
54

||||||||||

⋃

𝑖∈𝐼
𝑅𝑖
||||||||||
.

Proof. Fix 𝑥 ∈ R and for 𝑖 ∈ 𝐼, denote by 𝑅𝑥𝑖 and 𝑆
𝑥
𝑖 the segments 𝑅𝑖 ∩ {𝑥 × R}

and 𝑆𝑖 ∩ {𝑥 × R}. For any 𝑖 ∈ 𝐼, observe that there is a scalar 𝑡𝑖 satisfying |𝑡𝑖| ≤
𝜇 × |𝑅𝑖| with

𝜇 = 5
such that

𝑡𝑖 + 𝜏𝑅𝑥𝑖 ⊂ 𝑆𝑥𝑖 .
Applying lemma 6.3, we then have (since 9 × (1 + 𝜇) = 54)

||||||||||

⋃

𝑖∈𝐼
𝑆𝑥𝑖

||||||||||
≥
||||||||||

⋃

𝑖∈𝐼

(
𝑡𝑖 + 𝜏𝑅𝑥𝑖

)||||||||||
≥ 1
54

||||||||||

⋃

𝑖∈𝐼
𝜏𝑅𝑥𝑖

||||||||||
.

We conclude using lemma 6.2

1
54

||||||||||

⋃

𝑖∈𝐼
𝜏𝑅𝑥𝑖

||||||||||
≥ 𝜏
54

||||||||||

⋃

𝑖∈𝐼
𝑅𝑥𝑖

||||||||||
and integrating on 𝑥. □

We state a last geometric estimate involving maximal operator: we fix an
arbitrary element𝑅 ∈ 𝑃 and an element𝑉 ∈ 𝒫 included in𝑅 such that 𝐿𝑉 = 𝐿𝑢
and |𝑉| ≤ 1

2
|𝑅|. Recall that we denote by 𝑅𝑡 the parallelogram 𝑅 translated in

its direction by its length.

Proposition 6.5. There is a parallelogram 𝑆 ∈ 𝒫�̂�, 1
4
depending on 𝑉 such that

the following inclusion holds

𝑆 ⊂ {𝑀𝑉1𝑅𝑡 >
1
16} .
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Proof. Without loss of generality, we can consider that we have

𝑅 ∶= [0, 1]2.

and that the lower left corner of 𝑉 is 𝑂. The upper left corner of 𝑉 is the point
(0,𝑊𝑉) and we denote by (𝑑, 1) and (𝑑+𝑊𝑉 , 1) its lower right and upper right
corners. Since 𝑉 ⊂ 𝑅 we have

𝑑 +𝑊𝑉 ≤ 1.

The upper right corner of 1
2
𝑉 is the point ( 1

2
(𝑑+𝑊𝑉),

1
2
) and so for any 0 ≤ 𝑦 ≤

1 − 1
2
(𝑑 +𝑊𝑉) we have

(0, 𝑦) + 1
2𝑉 ⊂ 𝑅.

This yields our inclusion as follow. Let 𝑡 ∈ R2 be a vector such that the center
of the parallelogram �̃� = 𝑡 + 2𝑉 is the point (1, 0). By construction we directly
have

|�̃� ∩ 𝑅𝑡| ≥ 1
16

but moreover for any 0 ≤ 𝑦 ≤ 1
2
we have

||||{(0, 𝑦) + �̃�} ∩ 𝑅𝑡|||| ≥
1
16

since the upper right quarter of �̃� is relatively to 𝑅𝑡 in the same position than
𝑉 relatively to 𝑅. Finally, denoting by 𝑉∗ the parallelogram �̃� ∩ [0, 1] × R, the
parallelogram 𝑆 defined as

𝑆 ∶=
⋃

0≤𝑦≤ 1
2

((0, 𝑦) + 𝑉∗)

satisfies the condition claimed. This concludes the proof. □

7. Proof of Theorem 2.1
We fix an arbitrary family 𝐵 contained in 𝑇 and we prove the following The-

orem: combined with Lemma 5.3 it yields Theorem 2.1.

Theorem 7.1. There exists a finite family {𝑅𝑖 ∶ 𝑖 ∈ 𝐼} included in the geometric
familyℬ defined as

ℬ =
{
𝑡 + 𝜆𝑅 ∶ 𝑡 ∈ R2, 𝜆 > 0, 𝑅 ∈ 𝐵

}

which satisfies

log(𝑛)
||||||||||

⋃

𝑖∈𝐼
𝑅𝑖
||||||||||
≲
||||||||||

⋃

𝑖∈𝐼
𝑅𝑡𝑖

||||||||||
where 𝑛 = 𝜆𝐵.
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The family 𝐵 generates a tree [𝐵]: we fix a fig tree [𝐹] ⊂ [ℬ] of scale 𝜆𝐵 and
we denote by ℎ ∈ N its height. We apply Bateman’s Theorem to obtain a finite
family

{
𝑡𝑖 + 𝑅𝑖 ∶ 𝑖 ≤ 2ℎ

}
included in

ℱ =
{
𝑡 + 𝜆𝑅 ∶ 𝑡 ∈ R2, 𝜆 > 0, 𝑅 ∈ [𝐹]

}

which satisfies

log(𝑛)
||||||||||

⋃

𝑖∈𝐼
𝑅𝑖
||||||||||
≲
||||||||||

⋃

𝑖∈𝐼
𝑅𝑡𝑖

||||||||||
.

We take advantage of those elements but this time using elements of 𝐵 and not
elements of [𝐹]. Let us define 𝐴1 as

𝐴1 ∶=
⋃

𝑖∈𝐼
𝑅𝑖

and similarly let us define 𝐴2 as

𝐴2 ∶=
⋃

𝑖∈𝐼
𝑅𝑡𝑖

B

[F ]

Figure 1. Theorem2.1 shows thatwe can virtually use the tree
[𝐹] for the operator 𝑀ℬ even if 𝐵 has no structure. On the il-
lustration, 𝐵 is composed of the red dots which represent rect-
angles who have very different scale and yet they interact at the
level of [𝐹].

We apply apply Proposition 6.5: for any 𝑈 ∈ 𝐿[𝐹] we fix an element 𝑉𝑈 of 𝐵
such that𝑉𝑈 ⊂ 𝑈. To each pair (𝑈,𝑉𝑈)we apply Proposition 6.5 and this gives
a parallelogram 𝑆𝑈 ∈ 𝒮�̂�, 1

4
such that

𝑆𝑈 ⊂ {𝑀𝑉𝑈1𝑇𝑈 > 1
16} .
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We define then the set 𝐵2 as

𝐵2 ∶=
⋃

𝑖≤2ℎ
𝑡𝑖 + 𝑇𝑆𝑅𝑖

Because 𝑉𝑈 ∈ 𝐵, we obviously have
𝑀𝑉𝑈 ≤ 𝑀ℬ

and so 𝑆𝑈 ⊂
{
𝑀ℬ1𝑇𝑈 > 1

16

}
. We take the union over 𝑖 ≤ 2ℎ and we obtain

𝐵2 ∶=
⋃

𝑖≤2ℎ
𝑡𝑖 + 𝑇𝑆𝑅𝑖 ⊂ {𝑀ℬ1𝐴1 >

1
16}

and so finally |𝐵2| ≤
|||||
{
𝑀ℬ1𝐴1 >

1
16

}|||||.
Let us compute |𝐵2|: to do so, we observe that we can use Proposition 6.4

with the families
{
𝑡𝑖 + 𝑅𝑡𝑖 ∶ 𝑖 ≤ 2ℎ

}
and

{
𝑡𝑖 + 𝑇𝑆𝑅𝑖 ∶ 𝑖 ≤ 2ℎ

}
. This yields

|𝐵2| ≥
1

21 × 4 |𝐴2|

and so we finally have

|𝐴1| ≲
1

log(𝑛)
|||||||
{𝑀ℬ1𝐴1 >

1
16}

|||||||
.

This inequality concludes the proof of Theorem 2.1.

8. Proof of Theorem 2.2
Let Ω be a directions in [0, 𝜋

4
) which is not finitely lacunary and let ℬ be a

geometric family such that we have ℬ ⊂ ℛΩ and also

sup
𝜔∈Ω

inf
𝑅∈ℬ,𝜔𝑅=𝜔

𝑒𝑅 = 0.

Let us denote by 𝑇Ω the family included in 𝑇 such that
ℛΩ =

{
𝑡 + 𝜆𝑅 ∶ 𝑡 ∈ R2, 𝜆 > 0, 𝑅 ∈ 𝑇Ω

}
.

Denote also by 𝐵 the family included in 𝑇 that generates ℬ and observe that
our hypothesis implies that we have

[𝐵] = 𝑇Ω
and so in particular we have

𝜆𝐵 = 𝜆𝑇Ω .
The following claim will concludes the proof.

Claim. The set of directionΩ is not finitely lacunary if and only if 𝜆𝑇Ω = ∞.

Applying Theorem 2.1, we obtain for any 1 < 𝑝 <∞
∞ = 𝜆𝑇Ω = 𝜆[𝐵] ≲ ‖𝑀ℬ‖

𝑝
𝑝.
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