New York Journal of Mathematics

Kakeya-type sets for geometric maximal operators

Anthony Gauvan

Abstract

We establish an estimate for arbitrary geometric maximal operators in the plane: we associate to any family \mathcal{B} composed of rectangles and invariant by translations and central dilations a geometric quantity $\lambda_{\mathcal{B}}$ called its analytic split and satisfying $$
\log \left(\lambda_{\mathcal{B}}\right) \lesssim_{p}\left\|M_{\mathcal{B}}\right\|_{p}^{p}
$$ for all $1<p<\infty$, where $M_{\mathcal{B}}$ is the Hardy-Littlewood type maximal operator associated to the family \mathcal{B}.

Contents

1. Introduction 295
2. Results 297
3. The family T 297
4. Analytic split 298
5. Bateman's construction and Kakeya-type set 299
6. Geometric estimates 300
7. Proof of Theorem 2.1 303
8. Proof of Theorem 2.2 305
References 306

1. Introduction

In [3], Bateman classified the behavior of directional maximal operators in the plane on the L^{p} scale for $1<p<\infty$. Here, we study geometric maximal operators which are more general than directional maximal operators: in particular, their study requires to focus on the interactions between the coupling eccentricity/orientation for a given family of rectangles. Our main result is the construction of so-called Kakeya-type sets for an arbitrary geometric maximal operator which gives an a priori bound on their L^{p} norm in the same spirit than in [3].

[^0]We work in the Euclidean plane \mathbb{R}^{2} : if U is a measurable subset we denote by $|U|$ its Lebesgue measure. We also denote by \mathcal{R} the family containing all rectangles of \mathbb{R}^{2} : for $R \in \mathcal{R}$, we define its orientation as the angle $\omega_{R} \in[0, \pi)$ that its longest side makes with the x-axis and its eccentricity as the ratio $e_{R} \in(0,1]$ of its shortest side by its longest side. We will also denote by R^{t} the rectangle R translated in its own direction by its lentgh.

A family \mathcal{B} contained in \mathcal{R} is said to be geometric if it is invariant by translations and central dilations i.e. if for any $R \in \mathcal{R}$, any $x \in \mathbb{R}^{2}$ and $\lambda>0$, we have

$$
x+\lambda R \in \mathcal{B} .
$$

Given any geometric family \mathcal{B}, we define the associated geometric maximal operator $M_{\mathcal{B}}$ as

$$
M_{\mathcal{B}} f(x):=\sup _{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R}|f|
$$

for any $f \in L^{\infty}$ and $x \in \mathbb{R}^{2}$. We are interested in the relation between the geometry exhibited by the family \mathcal{B} and the regularity of the operator $M_{\mathcal{B}}$ on the L^{p} space for $1<p<\infty$.

A lot of research has been done in the case where \mathcal{B} is equal to

$$
\mathcal{R}_{\Omega}:=\left\{R \in \mathcal{R}: \omega_{R} \in \Omega\right\}
$$

where Ω is an arbitrary set of directions in $[0, \pi)$. In other words, \mathcal{R}_{Ω} is the set of all rectangles whose orientation belongs to Ω. We say that \mathcal{R}_{Ω} is a directional family and to alleviate the notation we denote

$$
M_{\mathcal{R}_{\Omega}}:=M_{\Omega} .
$$

Naturally, the operator M_{Ω} is said to be a directional maximal operator. The study of those operators goes back at least to Cordoba and Fefferman's article [6] in which they use geometric techniques to show that if $\Omega=\left\{\frac{\pi}{2^{k}}\right\}_{k \geq 1}$ then M_{Ω} has weak-type (2,2). A year later, using Fourier analysis techniques, Nagel, Stein and Wainger proved in [8] that M_{Ω} is actually bounded on $L^{p}\left(\mathbb{R}^{2}\right)$ for any $p>1$. In [1], Alfonseca has proved that if the set of direction Ω is a lacunary set of finite order then the operator M_{Ω} is bounded on $L^{p}\left(\mathbb{R}^{2}\right)$ for any $p>1$. Finally in [3], Bateman proved the converse and so characterized the L^{p} boundedness of directional operators in the plane.

Theorem 1.1 (Bateman). Fix an arbitrary set of directions $\Omega \subset[0, \pi)$. We have the following alternative:

- if Ω is finitely lacunary, then M_{Ω} is bounded on L^{p} for any $p>1$.
- if Ω is not finitely lacunary, then M_{Ω} is not bounded on L^{p} for any $p<\infty$.

We invite the reader to look at [3] for more details and also [4] where Bateman and Katz introduced their method.

2. Results

Our main result is an a priori estimate in the same spirit than one of the main result of [3]. Precisely, to any family \mathcal{B} contained in \mathcal{R} we associate a geometric quantity

$$
\lambda_{\mathcal{B}} \in \mathbb{N} \cup\{\infty\}
$$

that we call analytic split of \mathcal{B}. Loosely speaking, the analytic split $\lambda_{\mathcal{B}}$ indicates if \mathcal{B} contains a lot of rectangles in terms of orientation and eccentricity. We prove then the following Theorem.
Theorem 2.1. For any geometric family \mathcal{B} and any $1<p<\infty$ we have

$$
\log \left(\lambda_{\mathcal{B}}\right) \lesssim_{p}\left\|M_{\mathcal{B}}\right\|_{p}^{p}
$$

An important feature of this inequality is that we do not make any assumption on the family \mathcal{B}. In regards of the study of geometric maximal operators, Theorem 2.1 gives a concrete and a priori lower bound on the $L^{p}\left(\mathbb{R}^{2}\right)$ norm of $M_{\mathcal{B}}$. We insist on the fact that this estimate is concrete since the analytic split is not an abstract quantity associated to \mathcal{B} but has a strong geometric interpretation. No such results was previously known for geometric maximal operators and we give an application in order to illustrate it.

Theorem 2.2. Fix any set of directions $\Omega \subset\left[0, \frac{\pi}{4}\right)$ which is not finitely lacunary and let $\mathcal{B} \leq \mathcal{R}_{\Omega}$ be a geometric family satisfying for any $\omega \in \Omega$

$$
\inf _{R \in \mathcal{B}, \omega_{R}=\omega} e_{R}=0 .
$$

In this case, the operator $M_{\mathcal{B}}$ is not bounded on L^{p} for any $p<\infty$.
Observe that since we have $\mathcal{B} \subset \mathcal{R}_{\Omega}$ we have the trivial pointwise estimate

$$
M_{\mathcal{B}} \leq M_{\Omega} .
$$

Hence, we have $\left\|M_{\mathcal{B}}\right\|_{p}<\infty$ if $\left\|M_{\Omega}\right\|_{p}<\infty$. Surprisingly, Theorem 2.2 states that the conserve is also true i.e. we have $\left\|M_{\mathcal{B}}\right\|_{p}=\infty$ if $\left\|M_{\Omega}\right\|_{p}=\infty$.

3. The family T

Given a geometric family $\mathcal{B} \leq \mathcal{R}$, we can always suppose, without loss of generality, that it is of the form

$$
\mathcal{B}=\left\{\vec{t}+\lambda R: \vec{t} \in \mathbb{R}^{2}, \lambda>0, R \in B\right\}
$$

where the family B is contained in the family T defined as

$$
T=\left\{R_{n}(k): n \geq 0,0 \leq k \leq 2^{n}-1\right\} .
$$

Here, for $n \geq 1$ and $k \leq 2^{n}-1, R_{n}(k)$ is the parallelogram whose vertices are the points $(0,0),\left(0, \frac{1}{2^{n}}\right),\left(1, \frac{k-1}{2^{n}}\right)$ and $\left(1, \frac{k}{2^{n}}\right)$. The parallelogram $R_{n}(k)$ should be thought as a rectangle whose eccentricity and orientation are

$$
\left(e_{R_{n}(k)}, \omega_{R_{n}(k)}\right) \simeq\left(\frac{1}{2^{n}}, \frac{k}{2^{n}} \frac{\pi}{4}\right) .
$$

In the rest of the text, we always identify a geometric family

$$
\mathcal{B}, \mathcal{R}_{\Omega} \text { or } \mathcal{F} \leq \mathcal{R}
$$

with the family that generates it

$$
B, T_{\Omega} \text { or } F \subset T .
$$

The family T has a natural structure of binary tree and we develop a vocabulary adapted to this structure: for any $R \in T$ of scale $n \geq 1$, there exist a unique $R_{f} \in T$ of scale $n-1$ such that $R \subset R_{f}$. We say that R_{f} is the parent of R. In the same fashion, observe that there are only two elements $R_{h}, R_{l} \in T$ of scale $n+1$ such that $R_{h}, R_{l} \subset R$. We say that R_{h} and R_{l} are the children of R. Observe that $R \in T$ is the child of $R^{\prime} \in T$ if and only if $R \subset R^{\prime}$ and $2|R|=\left|R^{\prime}\right|:$ we will often use those two conditions. We say that a sequence (finite or infinite) $\left\{R_{i}\right\}_{i \in \mathbb{N}} \subset T$ is a path if it satisfies $R_{i+1} \subset R_{i}$ and $2\left|R_{i+1}\right|=\left|R_{i}\right|$ for any i i.e. if R_{i} is the parent of R_{i+1} for any i. Different situations can occur. A finite path P has a first element R and a last element R^{\prime} (defined in a obvious fashion) and we will write $P_{R, R^{\prime}}:=P$. On the other hand, an infinite path P has no endpoint. For any family B contained in T, there is a unique parallelogram $R \in T$ such that any $R^{\prime} \in B$ is included in R and $|R|$ is minimal. We say that this element $R_{B}:=R$ is the root of B and we define the set $[B]$ as

$$
[B]:=\left\{R \in T: \exists R^{\prime} \in B, R^{\prime} \subset R \subset R_{B}\right\} .
$$

A subset of T of the form $[B]$ is called a tree generated by B. We define the set L_{B} as

$$
L_{B}=\left\{R \in B: \forall R^{\prime} \in B, R^{\prime} \subset R \Rightarrow R^{\prime}=R\right\} .
$$

An element of L_{B} is called a leaf of B. Observe that for any B in T we have $[B]=\left[L_{B}\right]$ and also $L_{B}=L_{[B]}$. The first identity says that the leaves of a tree $[B]$ can be seen as the minimal set that generates $[B]$. The second identity states that $[B]$ is not bigger than B in the sense that it does not have more leaves. If P is an infinite path, we have by definition $L_{P}=\emptyset$.

4. Analytic split

We associate to any family B included in T a natural number $\lambda_{[B]} \in \mathbb{N} \cup\{\infty\}$ that we call analytic split. For any tree $[B]$, we define its boundary $\partial[B]$ as the set of path in $[B]$ that are maximal for the inclusion i.e. $P \in \partial[B]$ if and only if P is a path included in $[B]$ such that if $P^{\prime} \subset[B]$ is a path that contains P then $P=P^{\prime}$. For any tree $[B]$ and path $P \in \partial[B]$ we define the splitting number of P relatively to $[B]$ as

$$
s_{P,[B]}:=\#\left\{R \in[B] \backslash P: \exists R^{\prime} \in P, R \subset R^{\prime}, 2|R|=\left|R^{\prime}\right|\right\} .
$$

We say that a tree $[F]$ is a fig tree of scale n and height h when

- $[F]$ is finite and $\# \partial[F]=2^{n}$
- for any $P \in \partial[F]$ we have $S_{P,[F]}=n$ and $\# P=h$.

Observe that by construction we always have $h \geq n$. We define the analytic split $\lambda_{[B]}$ of a tree $[B]$ as the integer n such that $[B]$ contains a fig tree $[F]$ of scale n and do not contains any fig tree of scale $n+1$. In the case where $[B]$ contains fig trees of arbitrary high scale, we set $\lambda_{[B]}=\infty$. More generally for any family B contained in T (i.e. when B is not necessarily a tree), we define its analytic split as

$$
\lambda_{B}:=\lambda_{[B]} .
$$

Hence by definition, the analytic split of a family B is the same as the analytic split of the tree $[B]$. Observe that thanks to Theorem 2.1 this definition is pertinent.

5. Bateman's construction and Kakeya-type set

In [3], Bateman proves the following Theorem.
Theorem 5.1 (Bateman's construction [3]). Suppose that [F] is a fig tree of scale n and height h : there exists a finite family $\left\{R_{i}: i \in I\right\}$ included in the geometric family \mathcal{F} defined as

$$
\mathcal{F}=\left\{\vec{t}+\lambda R: \vec{t} \in \mathbb{R}^{2}, \lambda>0, R \in[F]\right\}
$$

such that

$$
\log (n)\left|\bigcup_{i \in I} R_{i}\right| \lesssim\left|\bigcup_{i \in I} R_{i}^{t}\right| .
$$

If R is a rectangle, we denote by R^{t} the parallelogram R but shifted of one unit length on the right along its orientation. We fix a 2^{h} mutually independent random variables

$$
R_{i}:(\Omega, \mathbb{P}) \rightarrow L_{[F]}
$$

who are uniformly distributed in the set $L_{[F]}$. We consider also the deterministic vectors

$$
\left\{\overrightarrow{\vec{t}}_{i}=\left(0, \frac{i-1}{2^{h}}\right): i \leq 2^{h}\right\}
$$

is a deterministic vector. Bateman's main result in [3] reads as follow

Theorem 5.2. We have

$$
\mathbb{P}\left(\log (n)\left|\bigcup_{i \in I} t_{i}+R_{i}\right| \lesssim\left|\bigcup_{i \in I} T\left(t_{i}+R_{i}\right)\right|\right)>0 .
$$

The proof of this Theorem involves fine geometric estimates, percolation theory and the use of the so-called notion of stickiness of thin tubes of the euclidean plane, see[3] and [4]. Those kind of geometric estimate leads, more generally, to lower bound on maximal operators.

Lemma 5.3. Fix $N>0$ such that there exists a finite family $\left\{R_{i}: i \in I\right\}$ included in a geometric family \mathcal{B} such that

$$
N\left|\bigcup_{i \in I} R_{i}\right| \lesssim\left|\bigcup_{i \in I} R_{i}^{t}\right|
$$

In this case, for any $p \in(1, \infty)$, we have

$$
N \lesssim_{p}\left\|M_{\mathcal{B}}\right\|_{p}^{p}
$$

6. Geometric estimates

We need different geometric estimates in order to prove Theorem 2.1. We start with geometric estimates on \mathbb{R} which will help us to prove geometric estimates on \mathbb{R}^{2}. Finally we prove a geometric estimate on \mathbb{R}^{2} involving geometric maximal operators that is crucial.

If I is a bounded interval on \mathbb{R} and $\tau>0$ we denote by τI the interval that has the same center as I and τ times its length i.e. $|\tau I|=\tau|I|$. The following lemma can be found in [2].

Lemma 6.1 (Austin's covering lemma). Let $\left\{I_{\alpha}\right\}_{\alpha \in A}$ a finite family of bounded intervals on \mathbb{R}. There is a disjoint subfamily

$$
\left\{I_{\alpha_{k}}\right\}_{k \leq N}
$$

such that

$$
\bigcup_{\alpha \in A} I_{\alpha} \subset \bigcup_{k \leq N} 3 I_{\alpha_{k}}
$$

We apply Austin's covering lemma to prove two geometric estimates on intervals of the real line. The first one concerns union of dilated intervals.

Lemma 6.2. Fix $\tau>0$ and let $\left\{I_{\alpha}\right\}_{\alpha \in A}$ a finite family of bounded intervals on \mathbb{R}. We have

$$
\left|\bigcup_{\alpha \in A} I_{\alpha}\right| \simeq_{\tau}\left|\bigcup_{\alpha \in A} \tau I_{\alpha}\right|
$$

Proof. Suppose that $\tau>1$. We just need to prove that

$$
\left|\bigcup_{\alpha \in A} \tau I_{\alpha}\right| \leq \tau\left|\bigcup_{\alpha \in A} I_{\alpha}\right|
$$

Simply observe that we have

$$
\bigcup_{\alpha \in A} \tau I_{\alpha} \subset\left\{M \mathbb{1}_{\cup_{\alpha \in A} I_{\alpha}}>\frac{1}{\tau}\right\}
$$

and apply the one dimensional maximal Theorem.
Now that we have dealt with union of dilated intervals we consider union of translated intervals.

Lemma 6.3. Let $\mu>0$ be a positive constant. For any finite family of intervals $\left\{I_{\alpha}\right\}_{\alpha \in A}$ on \mathbb{R} and any finite family of scalars $\left\{t_{\alpha}\right\}_{\alpha \in A} \subset \mathbb{R}$ such that, for all $\alpha \in A$

$$
\left|t_{\alpha}\right|<\mu \times\left|I_{\alpha}\right|
$$

we have

$$
\left|\bigcup_{\alpha \in A} I_{\alpha}\right| \simeq_{\mu}\left|\bigcup_{\alpha \in A}\left(t_{\alpha}+I_{\alpha}\right)\right| .
$$

Proof. We apply Austin's covering lemma to the family $\left\{I_{\alpha}\right\}_{\alpha \in A}$ which gives a disjoint subfamily $\left\{I_{\alpha_{k}}\right\}_{k \leq N}$ such that

$$
\bigcup_{\alpha \in A} I_{\alpha} \subset \bigcup_{k \leq N} 3 I_{\alpha_{k}} .
$$

In particular we have

$$
\left|\bigsqcup_{k \leq N} I_{\alpha_{k}}\right| \simeq\left|\bigcup_{\alpha \in A} I_{\alpha}\right| .
$$

We consider now the family

$$
\left\{(1+\mu) I_{\alpha_{k}}\right\}_{k \leq N}
$$

which is a priori not disjoint. We apply again Austin's covering lemma which gives a disjoint subfamily that we will denote $\left\{(1+\mu) I_{\alpha_{k_{l}}}\right\}_{l \leq M}$ who satisfies

$$
\bigcup_{k \leq N}(1+\mu) I_{\alpha_{k}} \subset \bigcup_{l \leq M} 3(1+\mu) I_{\alpha_{k_{l}}} .
$$

In particular we have

$$
\left|\bigsqcup_{l \leq M}(1+\mu) I_{\alpha_{k_{l}}}\right| \simeq\left|\bigcup_{k \leq N}(1+\mu) I_{\alpha_{k}}\right| .
$$

To conclude, it suffices to observe that for any $\alpha \in A$ we have

$$
t_{\alpha}+I_{\alpha} \subset(1+\mu) I_{\alpha}
$$

because $\left|t_{\alpha}\right| \leq \mu \times\left|I_{\alpha}\right|$. Hence the family

$$
\left\{t_{\alpha_{k_{l}}}+I_{\alpha_{k_{l}}}\right\}_{l \leq M}
$$

is disjoint and so finally

$$
\left|\bigsqcup_{l \leq M}\left(t_{\alpha_{k_{l}}}+I_{\alpha_{k_{l}}}\right)\right|=\sum_{l \leq M}\left|I_{\alpha_{k_{l}}}\right| \geq \frac{1}{3(1+\mu)}\left|\bigcup_{l \leq M} 3(1+\mu) I_{\alpha_{k_{l}}}\right| \simeq_{\mu}\left|\bigcup_{\alpha \in A} I_{\alpha}\right|
$$

where we have used lemma 6.2 in the last step.

We denote by \mathcal{P} the family containing all parallelograms $R \subset \mathbb{R}^{2}$ whose vertices are of the form $(p, a),(p, b),(q, c)$ and (q, d) where $p-q>0$ and $b-a=d-c>0$. We say that $L_{R}:=p-q$ is the length of R and that $W_{R}:=b-a$ is the width of R. For $R \in \mathcal{P}$ and and a positive ratio $0<\tau<1$ we denote by $\mathcal{P}_{R, \tau}$ the family defined as

$$
\mathcal{P}_{R, \tau}:=\left\{S \in \mathcal{P}: S \subset R, L_{S}=L_{R},|S| \geq \tau|R|\right\} .
$$

For $R \in \mathcal{P}$ define the parallelogram $\hat{R} \in \mathcal{P}$ as the parallelogram who has same length, orientation and center than R but is 5 times wider i.e. $W_{\hat{R}}=5 W_{R}$.

Proposition 6.4. Fix $0<\tau<1$ and any finite family of parallelograms $\left\{R_{i}\right\}_{i \in I} \subset$ \mathcal{P}. For each $i \in I$, select an element $S_{i} \in \mathcal{P}_{\hat{R}_{i}, \tau}$. The following estimate holds

$$
\left|\bigcup_{i \in I} S_{i}\right| \geq \frac{\tau}{54}\left|\bigcup_{i \in I} R_{i}\right|
$$

Proof. Fix $x \in \mathbb{R}$ and for $i \in I$, denote by R_{i}^{x} and S_{i}^{x} the segments $R_{i} \cap\{x \times \mathbb{R}\}$ and $S_{i} \cap\{x \times \mathbb{R}\}$. For any $i \in I$, observe that there is a scalar t_{i} satisfying $\left|t_{i}\right| \leq$ $\mu \times\left|R_{i}\right|$ with

$$
\mu=5
$$

such that

$$
t_{i}+\tau R_{i}^{x} \subset S_{i}^{x} .
$$

Applying lemma 6.3, we then have (since $9 \times(1+\mu)=54$)

$$
\left|\bigcup_{i \in I} S_{i}^{x}\right| \geq\left|\bigcup_{i \in I}\left(t_{i}+\tau R_{i}^{x}\right)\right| \geq \frac{1}{54}\left|\bigcup_{i \in I} \tau R_{i}^{x}\right| .
$$

We conclude using lemma 6.2

$$
\frac{1}{54}\left|\bigcup_{i \in I} \tau R_{i}^{x}\right| \geq \frac{\tau}{54}\left|\bigcup_{i \in I} R_{i}^{x}\right|
$$

and integrating on x.
We state a last geometric estimate involving maximal operator: we fix an arbitrary element $R \in P$ and an element $V \in \mathcal{P}$ included in R such that $L_{V}=L_{u}$ and $|V| \leq \frac{1}{2}|R|$. Recall that we denote by R^{t} the parallelogram R translated in its direction by its length.

Proposition 6.5. There is a parallelogram $S \in \mathcal{P}_{\hat{R}, \frac{1}{4}}$ depending on V such that the following inclusion holds

$$
S \subset\left\{M_{V} \mathbb{1}_{R^{t}}>\frac{1}{16}\right\}
$$

Proof. Without loss of generality, we can consider that we have

$$
R:=[0,1]^{2} .
$$

and that the lower left corner of V is O. The upper left corner of V is the point $\left(0, W_{V}\right)$ and we denote by $(d, 1)$ and $\left(d+W_{V}, 1\right)$ its lower right and upper right corners. Since $V \subset R$ we have

$$
d+W_{V} \leq 1
$$

The upper right corner of $\frac{1}{2} V$ is the point $\left(\frac{1}{2}\left(d+W_{V}\right), \frac{1}{2}\right)$ and so for any $0 \leq y \leq$ $1-\frac{1}{2}\left(d+W_{V}\right)$ we have

$$
(0, y)+\frac{1}{2} V \subset R
$$

This yields our inclusion as follow. Let $\vec{t} \in \mathbb{R}^{2}$ be a vector such that the center of the parallelogram $\tilde{V}=\vec{t}+2 V$ is the point $(1,0)$. By construction we directly have

$$
\left|\tilde{V} \cap R^{t}\right| \geq \frac{1}{16}
$$

but moreover for any $0 \leq y \leq \frac{1}{2}$ we have

$$
\left|\{(0, y)+\tilde{V}\} \cap R^{t}\right| \geq \frac{1}{16}
$$

since the upper right quarter of \tilde{V} is relatively to R^{t} in the same position than V relatively to R. Finally, denoting by V^{*} the parallelogram $\tilde{V} \cap[0,1] \times \mathbb{R}$, the parallelogram S defined as

$$
S:=\bigcup_{0 \leq y \leq \frac{1}{2}}\left((0, y)+V^{*}\right)
$$

satisfies the condition claimed. This concludes the proof.

7. Proof of Theorem 2.1

We fix an arbitrary family B contained in T and we prove the following Theorem: combined with Lemma 5.3 it yields Theorem 2.1.
Theorem 7.1. There exists a finite family $\left\{R_{i}: i \in I\right\}$ included in the geometric family \mathcal{B} defined as

$$
\mathcal{B}=\left\{\vec{t}+\lambda R: \vec{t} \in \mathbb{R}^{2}, \lambda>0, R \in B\right\}
$$

which satisfies

$$
\log (n)\left|\bigcup_{i \in I} R_{i}\right| \lesssim\left|\bigcup_{i \in I} R_{i}^{t}\right|
$$

where $n=\lambda_{B}$.

The family B generates a tree $[B]$: we fix a fig tree $[F] \subset[\mathcal{B}]$ of scale λ_{B} and we denote by $h \in \mathbb{N}$ its height. We apply Bateman's Theorem to obtain a finite family $\left\{t_{i}+R_{i}: i \leq 2^{h}\right\}$ included in

$$
\mathcal{F}=\left\{\vec{t}+\lambda R: \vec{t} \in \mathbb{R}^{2}, \lambda>0, R \in[F]\right\}
$$

which satisfies

$$
\log (n)\left|\bigcup_{i \in I} R_{i}\right| \lesssim\left|\bigcup_{i \in I} R_{i}^{t}\right| .
$$

We take advantage of those elements but this time using elements of B and not elements of [F]. Let us define A_{1} as

$$
A_{1}:=\bigcup_{i \in I} R_{i}
$$

and similarly let us define A_{2} as

$$
A_{2}:=\bigcup_{i \in I} R_{i}^{t}
$$

Figure 1. Theorem 2.1 shows that we can virtually use the tree [F] for the operator $M_{\mathcal{B}}$ even if B has no structure. On the illustration, B is composed of the red dots which represent rectangles who have very different scale and yet they interact at the level of $[F]$.

We apply apply Proposition 6.5: for any $U \in L_{[F]}$ we fix an element V_{U} of B such that $V_{U} \subset U$. To each pair $\left(U, V_{U}\right)$ we apply Proposition 6.5 and this gives a parallelogram $S_{U} \in \mathcal{S}_{\hat{U}, \frac{1}{4}}$ such that

$$
S_{U} \subset\left\{M_{V_{U}} \mathbb{1}_{T U}>\frac{1}{16}\right\} .
$$

We define then the set B_{2} as

$$
B_{2}:=\bigcup_{i \leq 2^{h}} \vec{t}_{i}+T S_{R_{i}}
$$

Because $V_{U} \in B$, we obviously have

$$
M_{V_{U}} \leq M_{\mathcal{B}}
$$

and so $S_{U} \subset\left\{M_{\mathcal{B}} \mathbb{1}_{T U}>\frac{1}{16}\right\}$. We take the union over $i \leq 2^{h}$ and we obtain

$$
B_{2}:=\bigcup_{i \leq 2^{h}} \vec{t}_{i}+T S_{R_{i}} \subset\left\{M_{\mathcal{B}} \mathbb{1}_{A_{1}}>\frac{1}{16}\right\}
$$

and so finally $\left|B_{2}\right| \leq\left|\left\{M_{\mathcal{B}} \mathbb{1}_{A_{1}}>\frac{1}{16}\right\}\right|$.
Let us compute $\left|B_{2}\right|$: to do so, we observe that we can use Proposition 6.4 with the families $\left\{\vec{t}_{i}+R_{i}^{t}: i \leq 2^{h}\right\}$ and $\left\{\vec{t}_{i}+T S_{R_{i}}: i \leq 2^{h}\right\}$. This yields

$$
\left|B_{2}\right| \geq \frac{1}{21 \times 4}\left|A_{2}\right|
$$

and so we finally have

$$
\left|A_{1}\right| \lesssim \frac{1}{\log (n)}\left|\left\{M_{\mathcal{B}} \mathbb{1}_{A_{1}}>\frac{1}{16}\right\}\right|
$$

This inequality concludes the proof of Theorem 2.1.

8. Proof of Theorem $\mathbf{2 . 2}$

Let Ω be a directions in $\left[0, \frac{\pi}{4}\right.$) which is not finitely lacunary and let \mathcal{B} be a geometric family such that we have $\mathcal{B} \subset \mathcal{R}_{\Omega}$ and also

$$
\sup _{\omega \in \Omega} \inf _{R \in \mathcal{B}, \omega_{R}=\omega} e_{R}=0
$$

Let us denote by T_{Ω} the family included in T such that

$$
\mathcal{R}_{\Omega}=\left\{\vec{t}+\lambda R: \vec{t} \in \mathbb{R}^{2}, \lambda>0, R \in T_{\Omega}\right\}
$$

Denote also by B the family included in T that generates \mathcal{B} and observe that our hypothesis implies that we have

$$
[B]=T_{\Omega}
$$

and so in particular we have

$$
\lambda_{B}=\lambda_{T_{\Omega}}
$$

The following claim will concludes the proof.
Claim. The set of direction Ω is not finitely lacunary if and only if $\lambda_{T_{\Omega}}=\infty$.
Applying Theorem 2.1, we obtain for any $1<p<\infty$

$$
\infty=\lambda_{T_{\Omega}}=\lambda_{[B]} \lesssim\left\|M_{\mathcal{B}}\right\|_{p}^{p} .
$$

References

[1] Alfonseca, Angeles. Strong type inequalities and an almost-orthogonality principle for families of maximal operators along directions in \mathbb{R}^{2}. J. Lond. Math. Soc., II. Ser. 67 (2003), no. 1, 208-218. MR2072308, Zbl 1057.42018, doi: 10.1112/S0024610702003915. 296
[2] AUSTIN, DONALD. A geometric proof of the Lebesgue differentiation theorem. Proc. Am. Math. Soc. 16 (1965), no. 16, 220-221. MR3234571, Zbl 0145.28502, doi: 10.2307/2033849. 300
[3] BATEMAN, MiChAEL. Kakeya sets and directional maximal operators in the plane. Duke Math. J. 147 (2009), no. 1, 55-77. MR5532602, Zbl 1165.42005, doi: 0.1215/00127094-2009-006. 295, 296, 297, 299
[4] Bateman, Michael and Katz, Nets Hawk. Kakeya sets in Cantor directions. Math. Res. Lett. 15 (2008), no. 1, 73-81. MR5302015, Zbl 1160.42010, doi: 10.4310/MRL.2008.v15.n1.a7. 296, 299
[5] Cordoba, Antonio and Fefferman, Robert. A geometric proof of the strong maximal theorem. Ann. Math. 102 (1975), 95-100. MR3507043, Zbl 0324.28004, doi: 10.2307/1970976.
[6] Cordoba, Antonio and Fefferman, Robert. On differentiation of integrals. Proc. Natl. Acad. Sci. USA, (1977). 2211-2213 MR3582468, Zbl 0374.28002, doi: 10.1073/pnas.74.6.2211. 296
[7] Hare, Kathryn E. and Rönning, Jan-Olav. Applications of generalized Perron trees to maximal functions and density bases. J. Fourier Anal. Appl. 4 (1998), 215-227. MR1220774, Zbl 0911.42010, doi: 10.1007/BF02475990.
[8] Nagel, Alexander and Stein, Elias M. and Wainger, Stephen. Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA 75 (1978), no. 1, 1060-1062. MR3606946, Zbl 0391.42015, doi: 10.1073/pnas.75.3.1060. 296
(Anthony Gauvan) Laboratoire de Mathématiques d’Orsay, CNRS UMR 8628, UniverSité Paris-Saclay, BÂTiment 307, 91405 Orsay Cedex, France
anthony.gauvan@universite-paris-saclay.fr
This paper is available via $\mathrm{http}: / / \mathrm{nyjm} . a l b a n y . e d u / j / 2024 / 30-10 . \mathrm{html}$.

[^0]: Received September 11, 2023.
 2010 Mathematics Subject Classification. 42B25.
 Key words and phrases. maximal operator.

