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Toward explicit Hilbert series of
quasi-invariant polynomials in
characteristic p and q-deformed

quasi-invariants

FrankWang

Abstract. We study the spaces Qm ofm-quasi-invariant polynomials of the
symmetric group Sn in characteristic p. Using the representation theory of
the symmetric group we describe the Hilbert series of Qm for n = 3, proving
a conjecture of Ren and Xu [12]. From this we may deduce the palindromic-
ity and highest term of the Hilbert polynomial and the freeness of Qm as a
module over the ring of symmetric polynomials, which are conjectured for
general n. We also prove further results in the case n = 3 that allow us to
compute values ofm,p for which Qm has a di�erent Hilbert series over char-
acteristic 0 and characteristic p, and what the degrees of the generators of
Qm are in such cases. We also extend various results to the spaces Qm,q of q-
deformedm-quasi-invariants and prove a su�cient condition for the Hilbert
series of Qm,q to di�er from the Hilbert series of Qm.
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1. Introduction
Let k be a �eld, and let Sn act on V = k

n by permuting the coordinates. A
commonly studied object is the space of invariant or symmetric polynomials,
which can be described as the set of f ∈ k[V] = k[x1,… , xn] such that for all
transpositions si,j ∈ Sn, (1−si,j)f = 0. A generalization of the space of invariant
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polynomials is the space Qm of m-quasi-invariant polynomials, de�ned as the
set of f ∈ k[V] such that for all transpositions si,j ∈ Sn, (1−si,j)f is divisible by
(xi − xj)2m+1. Thus m-quasi-invariant polynomials are polynomials such that
(1 − si,j)P vanishes on the re�ection hyperplane xi = xj to some high order,
a generalization of invariant polynomials, where (1 − si,j)f vanishes on this
hyperplane to in�nite order.

Quasi-invariants were introduced by Chalykh and Veselov [5] in their work
on quantum Calogero-Moser systems. Quasi-invariant polynomials were also
found to be useful in the study of rational Cherednik algebras, where they can
be used to describe representations of the spherical subalgebra of a rational
Cherednik algebra [2]. These applications in the theory of integrable systems
and representation theory have generated interest in the subject, leading to
many interesting developments. In [7], Feigin and Veselov studied the rela-
tion between quasi-invariants and Calogero-Moser systems. In [8], Felder and
Veselov computed the Hilbert series of Qm in characteristic zero using the
Knizhnik-Zamolodchikov equations. Berest and Chalykh later de�ned quasi-
invariant polynomials of a general complex re�ection group [1]. Quasi-invariants
in characteristic p were �rst studied by Ren and Xu, where they computed the
Hilbert series of Qm for S2 and proved su�cient conditions for the Hilbert se-
ries of Qm in characteristic p to di�er from the Hilbert series in characteristic
zero [12].

The q-deformedquasi-invariants are a natural deformation of quasi-invariants
introduced by Chalykh [4] to prove various conjectures about Macdonald poly-
nomials. In [3], Braverman, Etingof, and Finkelberg introduced a deforma-
tion of the rational Cherednik algebra which they called the cyclotomic DAHA.
They showed that the cyclotomic DAHA acts on the space Qm,q of q-deformed
quasi-invariants and used this to show that Qm,q is a �at deformation of Qm for
all but countably many values of q. In this paper, we work toward a characteri-
zation of the speci�c values of q for which this deformation is not �at, andwhat
the Hilbert series of Qm,q is in such cases.

In Section 2 we give basic de�nitions and properties of Qm for an arbitrary
symmetric group. In Section 3 we focus on the case S3 and prove our main re-
sult about the Hilbert series of Qm. In Section 4 we discuss how our results in
Section 3 might be used to determine the values of m,p such that the Hilbert
series of Qm in characteristic p di�ers from that in characteristic zero and to
compute the Hilbert series explicitly in such cases. We also describe some par-
tial progress we made in this direction using the Opdam shift operator. In Sec-
tion 5 we discuss some preliminary results and conjectures about the Hilbert
series of q-deformed quasi-invariants, particularly in the case S3.

2. Quasi-invariant polynomials for Sn
We start with the de�nition of quasi-invariant polynomials. Let k be a �eld,

and let Sn act on k[x1,… , xn] by permuting the variables. Let si,j ∈ Sn denote
the transposition swapping the i-th and j-th indices.
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De�nition 2.1. Let n be a positive integer. A polynomial f ∈ k[x1,… , xn] is
m-quasi-invariant if for all transpositions si,j ∈ Sn, (1 − si,j)f is divisible by
(xi − xj)2m+1. We denote by Qm(n,k) the space of all m-quasi-invariants in
k[x1,… , xn].

Let k[x1,… , xn]Sn denote the space of polynomials in k[x1,… , xn]which are
invariant with respect to the action of Sn. Some useful properties of Qm(n,k)
are described in the following proposition.

Proposition 2.2 ([6]).
(1) k[x1,… , xn]Sn ⊂ Qm(n,k),Q0(n,k) = k[x1,… , xn],Qm(n,k) ⊂ Qm′(n,k)

ifm > m′.
(2) Qm(n,k) is a ring.
(3) Qm(n,k) is a �nitely generated module over k[x1,… , xn]Sn .

Note thatQm(n,k) admits a grading by the degrees of the polynomials. Thus
we may de�ne its Hilbert series.

De�nition 2.3. The Hilbert series of Qm(n,k) is

Hm(t) =
∑

d≥0
dimQm(n,k)[d]td

where Qm(n,k)[d] is the graded component of Qm(n,k) consisting of polyno-
mials of homogeneous degree d.

By the fundamental theorem of symmetric polynomials, k[x1,… , xn]Sn is a
free polynomial algebra generated by symmetric polynomials e1,… , en of de-
grees 1,… , n, respectively [10, p. 49–86]. Thus since Qm(n,k) is a �nitely gen-
erated module over k[x1,… , xn]Sn = k[e1,… , en] by Proposition 2.2, we can
write

Hm(t) =
Gm(t)

∏n
d=1(1 − td)

where Gm(t) is a polynomial by Hilbert’s syzygy theorem. We say that Gm(t) is
the Hilbert polynomial associated withHm(t). Note that describing the Hilbert
polynomial is related to describing the generators and relations of Qm(n,k) as
a k[x1,… , xn]Sn -module.

From now on, we will assume the characteristic of k does not divide n!,
so that the representation theory of Sn over k is non-modular. The following
lemma and proposition are standard results in the study of quasi-invariants, for
example they are a direct consequence of the decomposition of Qm(n,ℂ) as a
representation of the spherical rational Cherednik algebra (see [2]) in the case
k = ℂ.

Lemma 2.4. Qm(n,k) is a representation of Sn.

Now, consider a graded component Qm(n,k)[d] of the quasi-invariants. It is
a subrepresentation of Qm(n,k), and moreover it is �nite dimensional since it
is a subspace of the �nite dimensional space k[x1,… , xn][d]. Thus, since we



616 FRANKWANG

are working in the non-modular case, by Maschke’s theorem it decomposes as
a direct sum

Qm(n,k)[d] =
⨁

�∈Irrep(Sn)
Qm(n,k)[d]�

where Irrep(Sn) is the set of irreducible representations of Sn and Qm(n,k)[d]�
is the subspace of Qm(n,k)[d] on which Sn acts by a direct sum of copies of �.
Then for � ∈ Irrep(Sn), let us de�ne

Qm(n,k)� =
⨁

d≥0
Qm(n,k)[d]�

to be the isotypic components of Qm(n,k).

Proposition 2.5. (1) Qm(n,k)� is a module over k[x1,… , xn]Sn .
(2) We have the decomposition

Qm(n,k) =
⨁

�∈Irrep(Sn)
Qm(n,k)�

as a k-vector space and hence as a k[x1,… , xn]Sn -module as well.

By the above proposition, to study the generators and relations of Qm(n,k)
it su�ces to study the generators and relations of Qm(n,k)�. This will be our
primary method of studying Qm(n,k) throughout the rest of this paper. Let us
denote by triv and sign the trivial and sign representations of Sn, respectively.
We deal with these two cases here.

Proposition 2.6. Assume chark ≠ 2. As k[x1,… , xn]Sn -modules, we have
(1) Qm(n,k)triv is freely generated by 1.
(2) Qm(n,k)sign is freely generated by

∏
i<j(xi − xj)2m+1.

Proof. To prove (1), note that the statement that Sn acts by the trivial represen-
tation onf is equivalent to the statement thatf is Sn-invariant, soQm(n,k)triv ⊂
k[x1,… , xn]Sn . On the other hand, for any f ∈ k[x1,… , xn]Sn and any si,j ∈ Sn
we have (1 − si,j)f = f − f = 0 is divisible by (xi − xj)2m+1, so Qm(n,k)triv =
k[x1,… , xn]Sn .

To prove (2), let f ∈ Qm(n,k)sign and let si,j ∈ Sn. Then since f is in the
sign representation we have si,jf = −f, so (1 − si,j)f = 2f is divisible by
(xi − xj)2m+1. So f is divisible by (xi − xj)2m+1 for all i and j, and thus it is
divisible by

∏
i<j(xi − xj)2m+1.

Let us write f = f′
∏

i<j(xi − xj)2m+1 for some polynomial f′. Note that

si′,j′
∏

i<j
(xi − xj)2m+1 = −

∏

i<j
(xi − xj)2m+1

for all si′,j′ ∈ Sn, so we have

si′,j′f = −f = −f′
∏

i<j
(xi − xj)2m+1
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and

si′,j′f = si′,j′f′(si′,j′
∏

i<j
(xi − xj)2m+1) = −si′,j′f′

∏

i<j
(xi − xj)2m+1

so si′,j′f′ = f′. Since Sn is generated by transpositions, f′ is Sn-invariant, and
thus f is in the k[x1,… , xn]Sn -module generated by

∏
i<j(xi − xj)2m+1. Con-

versely, for any f′ ∈ k[x1,… , xn]Sn and si′,j′ ∈ Sn, we have

si′,j′
(
f′

∏

i<j
(xi − xj)2m+1

)
= −f′

∏

i<j
(xi − xj)2m+1

and
(1 − si′,j′)

(
f′

∏

i<j
(xi − xj)2m+1

)
= 2f′

∏

i<j
(xi − xj)2m+1

is divisible by (xi′−xj′)2m+1, so thek[x1,… , xn]Sn -module generated by
∏

i<j(xi−
xj)2m+1 is contained in Qm(n,k)sign. So Qm(n,k)sign is exactly this module.
Freeness then follows from the fact that k[x1,… , xn] is an integral domain. �

Remark2.7. Itwas proved in [12] that theHilbert series ofQm(2,k) is
1+t2m+1

(1−t)(1−t2)
,

regardless of the characteristic of k. Proposition 2.6 provides an alternate proof
of this result in the case chark ≠ 2. Namely, note that the only irreducible rep-
resentations of S2 are triv and sign. Thus the generators of Qm(2,k) are 1 (of
degree 0) and (x1−x2)2m+1 (of degree 2m+1). Since these generators belong to
di�erent irreducible representations of S2, there are no relations between them,
and thus the Hilbert polynomial is 1+ t2m+1 and the Hilbert series is 1+t2m+1

(1−t)(1−t2)
.

3. The Hilbert series of Qm(3,k)
The Hilbert series of Qm(3,ℂ) was computed in [8] and is as follows:

Hm(t) =
1 + 2t3m+1 + 2t3m+2 + t6m+3

(1 − t)(1 − t2)(1 − t3)
. (3.1)

In this section, wework toward an explicit description of theHilbert series of
Qm(3,k) in characteristic p > 3. Note that there are three irreducible represen-
tations of S3: triv, sign, and the 2-dimensional standard representation which
we will denote by std. Proposition 2.6 computes the generators of Qm(3,k)triv
and Qm(3,k)sign, so to compute the Hilbert series of Qm(3,k) we only need to
consider the space Qm(3,k)std. Both this section and the next section will be
largely focused on understanding this space.

This section is dedicated to proving the main result of this paper, which is
the following theorem, conjectured in [12]. Note the similarity to (3.1).

Theorem 3.1. Let k be a �eld of characteristic p > 3. Then Qm(3,k)std is freely
generated by standard representations of degree d and 6m + 3 − d where d is an
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integer depending onm,p that satis�es 2m + 1 ≤ d ≤ 3m + 1. In particular, the
Hilbert series of Qm(3,k) is

Hm(t) =
1 + 2td + 2t6m+3−d + t6m+3

(1 − t)(1 − t2)(1 − t3)
.

To start, let V be a copy of the standard representation, and let si,j ∈ S3.
Then V contains a one dimensional −1 eigenspace of si,j. Let us denote this
eigenspace by V−

i,j. Then we have

Lemma 3.2. Let V ⊂ Qm(3,k)std be a copy of the standard representation, and
let f ∈ V−

i,j . Then we have f + sf + s2f=0 where s = (1 2 3) ∈ S3 and f =
(xi − xj)2m+1f′ for some polynomial f′ that is invariant under the action of si,j .
Conversely, let f′ be an s1,2-invariant polynomial such that

(x1 − x2)2m+1f′ + (x2 − x3)2m+1sf′ + (x3 − x1)2m+1s2f′ = 0.
Then (x1−x2)2m+1f′ either belongs toQm(3,k)sign or the−1 eigenspace of s1,2 in
some copy of std inside Qm(3,k)std.

Proof. The proof of the �rst statement is analogous to the proof of Proposition
2.6. Since f ∈ V−

i,j, we have (1 − si,j)f = 2f is divisible by (xi − xj)2m+1, so
f = (xi−xj)2m+1f′ for some polynomial f′. Then since f and (xi−xj)2m+1 are
both si,j-antiinvariant, f′ must be si,j-invariant. The fact that f + sf + s2f = 0
is a direct consequence of f being an element of the standard representation.

For the second statement, note that since f′ is s1,2-invariant, sf′ = s1,3f′ and
s2f′ = s2,3f′. So we have

(1 − s1,3)
(
(x1 − x2)2m+1f′

)
= (x1 − x2)2m+1f′ − (x3 − x2)2m+1sf′

= −(x3 − x1)2m+1s2f′,

(1 − s2,3)
(
(x1 − x2)2m+1f′

)
= (x1 − x2)2m+1f′ − (x1 − x3)2m+1s2f′

= −(x2 − x3)2m+1sf′

so (x1−x2)2m+1f′ ism-quasi-invariant. On the other hand, since s1,2 sends the
vector space spanned by (x1 − x2)2m+1f′ to itself and s1,3 and s2,3 send (x1 −
x2)2m+1f′ to polynomials in the space spanned by (x1 − x2)2m+1f′ and (x2 −
x3)2m+1sf′, the span of the S3 orbit of (x1−x2)2m+1f′ is at most 2 dimensional.
If it is 1 dimensional, then (x1 − x2)2m+1f′ is contained in a copy of sign inside
Qm(3,k)sign since s1,2 acts by −1. If it is 2 dimensional, then since the only 2
dimensional irreducible representation of S3 is std, (x1 − x2)2m+1f′ belongs to
some copy of std insideQm(3,k)std. That it is in the−1 eigenspace of s1,2 is clear
by applying s1,2 to (x1 − x2)2m+1f′. �

Note that since Qm(3,k)std is a graded k[x1, x2, x3]S3-module, we may as-
sume its generators are homogeneous. We may also describe generating rep-
resentations of Qm(3,k)std, rather than generating elements. Here, by a gen-
erating representation we mean a copy of the standard representation inside
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Qm(3,k)std that is involved in a generators and relations presentation ofQm(3,k)std
as a k[x1, x2, x3]S3-module with a minimal number of generators.

Corollary 3.3. Let V be a generating representation of Qm(3,k)std and let f ∈
V−
i,j . Let us write f = (xi−xj)2m+1f′. Then f′ is not divisible by any nonconstant

symmetric polynomial.

Proof. Since f is in Qm(3,k)std, it satis�es f + sf + s2f = 0 where s = (1 2 3).
Assume for contradiction that f′ is divisible by some symmetric polynomial g.
Then it is clear that f∕g+ s(f∕g)+ s2(f∕g) = 0 and f∕g = (xi−xj)2m+1(f′∕g),
sof∕g is contained inQm(3,k) byLemma3.2. But thenf is in thek[x1, x2, x3]S3-
module generated by f∕g, so it is generated by an element of lower degree and
thus is not contained in a generating representation. �

For a standard representation V consisting of homogeneous polynomials of
degree d, let us say its degree is degV = d. The following lemma makes use of
this, and will prove to be useful both in the proof of Theorem 3.1 and in Section
4.

Lemma 3.4. Let V,W be distinct generating representations of Qm(3,k)std. Let
v ∈ V−

1,2, w ∈ W−
1,2. Then vs2,3w − ws2,3v is a nonzero element of Qm(3,k)sign

and we have degV + degW ≥ 6m + 3.

Proof. vs2,3w − ws2,3v is contained in Qm(3,k) because the quasi-invariants
form a ring by Proposition 2.2. It is also contained in a sign representation since
it spans the representation ∧2std = sign inside V ⊗W. Thus it is contained in
Qm(3,k)sign, so it remains to show that it is nonzero.

By Lemma 3.2 we can write v = (x1 − x2)2m+1v′, w = (x1 − x2)2m+1w′ for
s1,2-invariant polynomials v′ and w′. Then we have

vs2,3w − ws2,3v = (x1 − x2)2m+1v′(x1 − x3)2m+1s2,3w′

− (x1 − x2)2m+1w′(x1 − x3)2m+1s2,3v′

= (x1 − x2)2m+1(x1 − x3)2m+1(v′s2,3w′ − w′s2,3v′).

So vs2,3w − ws2,3v is zero if and only if v′s2,3w′ = w′s2,3v′, or in other words
if v′s2,3w′ is s2,3-invariant. Let us assume that v′s2,3w′ is s2,3-invariant. We will
show that this implies v′ = w′ up to a scalar, which contradicts V andW being
distinct.

Decompose v′ into its irreducible factors, and let f be such a factor. We will
show that f is also a factor of w′. Since v′s2,3w′ is s2,3-invariant, s2,3f must
be a factor of either v′ or s2,3w′. If it is a factor of s2,3w′, then f is a factor
of w′, as desired. Otherwise, s2,3f is a factor of v′. Then we also have that
s1,2f and s1,2s2,3f are factors of v′ since v′ is s1,2-invariant. Then s2,3s1,2f is a
factor of v′s2,3w′. If it is a factor in s2,3w′, then note that s1,3s2,3s1,2f is a factor
of s2,3w′ since w′ being s1,2-invariant implies s2,3w′ is s1,3-invariant. But we
have s1,3s2,3s1,2 = s2,3, so s2,3f is a factor of s2,3w′, which implies f is a factor
of w′, as desired. So we may assume s2,3s1,2f is a factor of v′. Then we also
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have s1,2s2,3s1,2f = s1,3f is a factor of v′ since v′ is s1,2-invariant, and thus v′ is
divisible by sf for all s ∈ S3.

So v′ is divisible by the least commonmultiple of all of the sf, which we will
denote by g. S3 �xes g as a factor of v′, so it must act on g by scalars. It cannot
act on g trivially, as then g would be a symmetric polynomial factor of v′, and
v′ has no symmetric polynomial factors by Corollary 3.3. So S3must act on g by
sign. Note also that we can only have one such factor of v′ on which S3 acts by
sign, as otherwise their product would be a symmetric polynomial factor of v′.
So every factor of v′ is also a factor of w′ except for possibly a factor in the sign
representation. We may apply everything above to w′ as well to get the same
result in the other direction, yielding a bijection between all irreducible factors
of v′ and w′ except maybe a factor of the sign representation in either case.
Since v′ and w′ are both s1,2-invariant, acting on both of them by s1,2 makes it
clear that either they both have an extra factor of the sign representation or they
both do not.

If v′ and w′ do not have an additional factor in the sign representation, then
we have a bijection between all irreducible factors of v′ and w′, and thus they
are equal up to a scalar, as desired. Otherwise, note that by Proposition 2.2, the
sign factors lie in Q0(3,k), and by Proposition 2.6 they are symmetric polyno-
mial multiples of (x1 − x2)(x2 − x3)(x3 − x1). But these symmetric polynomial
multiples must be 1, as otherwise v′ and w′ would be divisible by nonconstant
symmetric polynomials, which violates Corollary 3.3. So the sign factors are
both (x1 − x2)(x2 − x3)(x3 − x1). Thus we still have a bijection between the
factors of v′ and w′, so v′ and w′ are equal up to a scalar, as desired.

Note that vs2,3w − ws2,3v has degree degV + degW. Since Qm(3,k)sign is
generated by a polynomial of degree 6m+3 by Proposition 2.6, we have degV+
degW ≥ 6m + 3. �

The above lemma brings us closer to the proof of Theorem 3.1, however we
still need a couple more lemmas.

Lemma3.5. Assume that there exist generating representationsV,W ofQm(3,k)std
such that degV + degW = 6m + 3. Then Qm(3,k)std is a free module over
k[x1, x2, x3]S3 generated by V andW.

Proof. Assume for contradiction that there exists some other generating rep-
resentation U of Qm(3,k)std. By Lemma 3.4 we have degU ≥ degW. Let
v ∈ V−

1,2, w ∈W−
1,2, u ∈ U−

1,2. Then note that by Lemma 3.4 we have

vs2,3w − ws2,3v = c
∏

i<j
(xi − xj)2m+1

where c is a nonzero constant, since it is a degree 6m+3polynomial inQm(3,k)sign.
We also have

vs2,3u − us2,3v = f
∏

i<j
(xi − xj)2m+1
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for some symmetric polynomial f. But then instead ofU, we may take the rep-
resentation generated by cu−fw as the generating representation ofQm(3,k)std.
But we have
vs2,3(cu − fw) − (cu − fw)s2,3v = c(vs2,3u − us2,3v) − f(vs2,3w − ws2,3v)

= (cf − fc)
∏

i<j
(xi − xj)2m+1

= 0
which contradicts Lemma 3.4.

IfQm(3,k)std was not a free module then there would be nonzero symmetric
polynomials f, g such that fv = gw. But then we would have

fvs2,3(gw) − gws2,3(fv) = fvs2,3(fv) − fvs2,3(fv) = 0
and

fvs2,3(gw) − gws2,3(fv) = fg(vs2,3w − ws2,3v)
which cannot happen since none of f, g, vs2,3w − ws2,3v are zero. �

Now, note that we have k[x1, x2, x3] = k[x1 + x2 + x3, x1 − x3, x2 − x3], so
for any f ∈ Qm(3,k) we may write it as f = f′ + f′′, where f′ is divisible by
x1 + x2 + x3 and f′′ ∈ k[x1 − x3, x2 − x3]. Since x1 + x2 + x3 is symmetric,
the action of S3 preserves this decomposition, so for any si,j ∈ S3 we have (1 −
si,j)f = (1− si,j)f′+(1− si,j)f′′. Then since (xi−xj)2m+1 ∈ k[x1−x3, x2−x3],
it follows that f′, f′′ ∈ Qm(3,k). Moreover, if f is a generator ofQm(3,k), then
f′′ is also a generator since f′ is generated by f′

x1+x2+x3
. So we may assume all

generators of Qm(3,k) belong to k[x1 − x3, x2 − x3].

Lemma 3.6. Let V,W be generating representations of Qm(3,k)std such that
degV < degW and degW − degV > 1. Then either V ∈ Qm+1(3,k)std, or
there exists some generating representation W′ of Qm(3,k)std such that W′ ∈
Qm+1(3,k)std andV,W′ generate the same space asV,W ask[x1, x2, x3]S3-modules.

Proof. Let v ∈ V−
1,2, w ∈W−

1,2 and let v = (x1−x2)2m+1v′, w = (x1−x2)2m+1w′.
Wemay assume v′, w′ ∈ k[x1−x3, x2−x3]. Note that since v′, w′ are invariant
with respect to s1,2, we have that v′, w′ are symmetric in x1 − x3 and x2 − x3.
Recall from Section 2 that by the fundamental theorem of symmetric polynomi-
als, k[x1, x2, x3]Sn as an algebra is generated by polynomials e1, e2, e3 of degrees
1, 2, 3, respectively. We may take

e2 = (x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2,
e3 = (x1 + x2 − 2x3)(x2 + x3 − 2x1)(x3 + x1 − 2x2)

so that e2, e3 ∈ k[x1−x3, x2−x3]. Because degw′−deg v′ = degW−degV > 1,
there exists some nonzero symmetric polynomialf generated by e2, e3 of degree
degw′ − deg v′. Moreover, note that

e32 − 2e23 = 54
∏

i<j
(xi − xj)2
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so if we choose f to be a monomial in e2, e3 then it will not be divisible by∏
i<j(xi − xj)2 since there are no polynomial relations between e2, e3. Let us

�x such a polynomial f.
Note that v, w ∈ Qm+1(3,k) if and only if v′, w′ are divisible by (x1 − x2)2 ∈

k[x1 − x3, x2 − x3], respectively. Then for a polynomial f ∈ k[x1 − x3, x2 − x3]
let f be its image in k[x1 − x3, x2 − x3]∕((x1 − x2)2). We will consider the
images fv′, w′ of fv′ and w′. First, consider fv′. We have f ≠ 0, since f
is not divisible by

∏
i<j(xi − xj)2 and any symmetric polynomial divisible by

(x1 − x2)2 must also be divisible by
∏

i<j(xi − xj)
2. If v′ = 0 then v′ is divisible

by (x1 − x2)2, so v ∈ Qm+1(3,k) and we may take W′ = W to complete the
proof. So we may assume v′ ≠ 0. Lastly, note that the only zero divisors in
k[x1 − x3, x2 − x3]∕((x1 − x2)2) are multiples of x1 − x2. But since f, v′ are
both s1,2-invariant, if either one is divisible by x1 − x2 then it is also divisible
by (x1 − x2)2. But we already dealt with this case for both f and v′, so we may
assume that neither f nor v′ are zero divisors. Thus fv′ ≠ 0.

Now, note that when working in k[x1 − x3, x2 − x3]∕((x1 − x2)2), from any
homogeneous polynomial we can cancel out terms where the di�erence in the
degrees of x1−x3 and x2−x3 is large. Since fv′ andw′ are symmetric in x1−x3
and x2 − x3, we can cancel out terms until we eventually end up with either

fv′ = cv(x1 − x3)d(x2 − x3)d,

w′ = cw(x1 − x3)d(x2 − x3)d

or

fv′ = cv(x1 + x2 − 2x3)(x1 − x3)d(x2 − x3)d,

w′ = cw(x1 + x2 − 2x3)(x1 − x3)d(x2 − x3)d

for scalars cv, cw and d =
⌊degw′

2

⌋
depending on whether degw′ is even or odd.

Note that cv ≠ 0, as otherwise we would have fv′ = 0. Then note that w′ −
cw
cv
fv′ = 0. Set w′′ = w′ − cw

cv
fv′. Then w′′ is in Qm+1(3,k), and we may

setW′ to be the representation generated by (x1 − x2)2m+1w′′. Since cw
cv
fv′ is

generated by v′,V,W′ will generate the same space asV,W. Note that this also
impliesW′ is a generating representation of Qm(3,k)std. Then by construction
W′ ⊂ Qm+1(3,k)std, as desired. �

Finally, we are ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. By (3.1), the Hilbert polynomial of Qm(3,ℂ) is
1 + 2t3m+1 + 2t3m+2 + t6m+3,

and a result of Ren and Xu [12] says that the Hilbert series ofQm(3,k) is at least
as big as the Hilbert series of Qm(3,ℂ) in all degrees. In particular, this implies
that Qm(3,k)std contains a generator of degree at most 3m + 1.
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We will �rst show that Qm(3,k)std is freely generated by representations of
degree d and 6m + 3 − d for some d. We proceed by induction onm. The base
case m = 0 is a direct consequence of the fundamental theorem of symmetric
polynomials, so we proceed directly to the inductive step.

Assume thatQm(3,k)std is freely generated by representationsV,W of degree
d and 6m + 3 − d respectively where d ≤ 3m + 1. If d < 3m + 1 then 6m +
3 − d − d > 1, so by Lemma 3.6 we may assume one of V,W is contained in
Qm+1(3,k)std. Let us assume it isW. Then note that

∏
i<j(xi−xj)

2V andW are
both contained in Qm+1(3,k)std, and the sum of their degrees is 6m + 3 + 6 =
6(m + 1) + 3. If they are not generators then they must be generated by the
same generator, as otherwise their respective generators would violate Lemma
3.4. But this would imply that they are not independent over k[x1, x2, x3]S3 ,
which cannot happen since V andW are independent over k[x1, x2, x3]S3 . So
they are generators, and by Lemma 3.5Qm+1(3,k)std is a free module generated
by them. The same proof also works in the case when V is in Qm+1(3,k).

Now, consider when d = 3m+1. There exists a generatorU of Qm+1(3,k)std
of degree atmost 3(m+1)+1 = d+3 by the above. Note also thatU is generated
by V,W since it is contained in Qm(3,k)std by Proposition 2.2, so degU ≥ d.
Wewill proceed by casework on degU. If degU = d, thenwemust haveU = V
since V is the only standard representation in Qm(3,k) of degree d. Then note
that both V and

∏
i<j(xi − xj)

2W are in Qm+1(3,k)std, and they freely generate
Qm+1(3,k)std by the same argument as above. If degU = d + 1 then we have
U = fV +W for some symmetric polynomial f of degree 1. But recall that
all generators of the quasi-invariants lie in k[x1 − x3, x2 − x3], and the only
symmetric polynomial of degree 1 is e1 = x1 + x2 + x3, which does not lie in
k[x1 − x3, x2 − x3]. Thus we must have f = 0 and U = W. Then W lies in
Qm+1(3,k), so the same proof as above holds. If degU = d+2, then since there
are no symmetric polynomials of degree 1 in k[x1 − x3, x2 − x3] we must have
U = e2V. But then any f ∈ U is divisible by e2, which contradicts Corollary
3.3. If degU = d + 3, then by Lemma 3.4 there exists no other generators of
Qm+1(3,k)std of degree at most d + 3. But then there must exist a generator of
degree d + 4 = 3(m + 1) + 2 since otherwise the Hilbert series of Qm+1(3,ℂ)
would be larger than that ofQm+1(3,k) in degree 3(m+1)+2. Then by Lemma
3.5 Qm+1(3,k)std is freely generated by these two generators.

Thus Qm(3,k)std is generated by representations of degree d and 6m+3−d.
Note that one of d, 6m+3−d is at most 3m+1, so we may assume d ≤ 3m+1.
Let f ∈ Qm(3,k)std be of degree d. Then (1 − si,j)f is also of degree d and is
nonzero for some si,j sincef is not in the trivial representation. But it is divisible
by (xi − xj)2m+1, so it must be of degree at least 2m + 1. So we get 2m + 1 ≤
d ≤ 3m + 1. Note that d only depends on m,p and not on the ground �eld
since quasi-invariants are de�ned by systems of linear equations with integer
coe�cients. Since std has dimension 2, we get that the Hilbert polynomial is
1 + 2td + 2t6m+3−d + t6m+3 so the Hilbert series is 1+2td+2t6m+3−d+t6m+3

(1−t)(1−t2)(1−t3)
. �
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Remark 3.7. In [12] Ren and Xu conjectured various properties of Qm(n,k),
those being that the largest degree term in its Hilbert polynomial is t(

n
2)(2m+1),

and that when chark > 2 it is a free module of rank n! and its Hilbert polyno-
mial is palindromic. Theorem 3.1 proves all parts of this conjecture for n = 3
and chark > 3. We also remark that Proposition 2.6 shows that there exists a
generator of Qm(n,k) of degree

(n
2

)
(2m+1), though it is possible that there are

relations of the same degree that cancel out with this generator in the Hilbert
polynomial. We also note that even if the generator contributes a term to the
Hilbert series, we do not know if it is the largest degree term.

4. Conditions for the Hilbert series to di�er from characteristic
0
A question of interest that was studied in [12] was to �nd the values ofm,p

such thatQm(n,k) has a di�erent Hilbert series thanQm(n,ℂ), where chark =
p. The following theorem brings us closer to solving this problem for n = 3 in
the non-modular case.

Theorem 4.1. Let V,W be the generating representations of Qm(3,ℂ) and let
v ∈ V−

1,2, w ∈W−
1,2 where the coe�cients of each of v, w are coprime integers. Let

vs1,2w − ws1,2v = c
∏

i<j
(xi − xj)2m+1.

Let chark = p > 3. Then the Hilbert series of Qm(3,k) is di�erent from the
Hilbert series of Qm(3,ℂ) if and only if p divides c.

Proof. First, assume that theHilbert series is di�erent in characteristicp. Then
note that since the Hilbert polynomial over characteristic zero is 1 + 2t3m+1 +
2t3m+2 + t6m+3 by (3.1), Qm(3,k)std must be generated by representations of
degree d and 6m + 3 − d for d < 3m + 1 by Theorem 3.1. Then note that
6m + 3 − d > 3m + 2, so the images of V andW in characteristic p are gen-
erated by the generator of degree d. But then v, w are not independent over
k[x1, x2, x3]S3 , so we have vs1,2w − ws1,2v = 0, and we must have p|c.

Now, assume that p|c. Then v, w are not both generators of Qm(3,k) by
Lemma 3.4, and they are nonzero since their coe�cients are coprime. Let
deg v = 3m + 1, degw = 3m + 2. If v is not a generator then it is generated by
some representation of degree less than 3m + 1, so the Hilbert series in char-
acteristic p is di�erent from that in characteristic zero since no such generator
exists in characteristic zero. If w is not a generator then it is generated by some
representation of degree less than 3m+ 2. But note that it cannot be generated
by a representation of degree 3m + 1, as the only symmetric polynomial in de-
gree 1 is x1+ x2+ x3 andw ∈ k[x1− x3, x2− x3]. So there must be a generator
of degree less than 3m + 1, and the Hilbert series is di�erent in characteristic
p. �
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Using the methods from the proof of Theorem 3.1, we were able to calcu-
late the generators v, w as above recursively. Let us be more precise by call-
ing the generators of Qm(3,ℂ) vm and wm. Let vm = (x1 − x2)2m+1v′m, wm =
(x1 − x2)2m+1w′

m. Then we expressed vm, wm as polynomials in (x1 − x2)2 with
coe�cients that are scalar multiples of

(x1 − x3)r(x2 − x3)r, (x1 + x2 − 2x3)(x1 − x3)r(x2 − x3)r

for some r. Recalling that the generators of k[x1 − x3, x2 − x3]S3 are e2, e3, note
that v′m+1 is a linear combination of e3v′m and e2w′

m and w′
m+1 is a linear com-

bination of e22v
′
m and e3w′

m. Thus by choosing appropriate linear combinations
such that the constant terms as polynomials in (x1 − x2)2 vanish, we were able
to construct the generators v′m+1, w

′
m+1. We were then able to construct the co-

e�cients c in Theorem 4.1 and compute their prime factors to �nd the set of
p > 3 for which the Hilbert series of Qm(3,ℂ) di�ers from the Hilbert series of
Qm(3,k) when chark = p.

In [12] Ren and Xu proved a su�cient condition, that if there exists integers
a, k that satisfy

mn(n − 2) +
(n
2

)

n(n − 2)k +
(n
2

)
− 1

≤ pa ≤ mn
nk + 1

(4.1)

then the Hilbert series of Qm(n,Fp) is di�erent from that of Qm(n,ℂ). They
also conjectured that this condition is necessary. Using their programs, they
con�rmed this conjecture for n = 3, m ≤ 15, p < 50. Using the method de-
scribed above, we were able to con�rm the conjecture for a much larger range
of values, namely n = 3, m ≤ 3000, 3 < p < ∞. Thus we have strong evidence
that the conjecture is true, at least in the case n = 3, p > 3.

Closer inspection of the inductive step in the proof of Theorem 3.1 also pro-
vides a way to compute the degrees of the generators in the cases where they
are di�erent in characteristic p. Let V,W be the generating representations of
Qm(3,k)std, and assume that they are of degree 3m + 1 and 3m + 2. Then from
the proof of Theorem 3.1 we see that the generators of Qm+1(3,k)std are of de-
gree 3(m + 1) + 1 and 3(m + 1) + 2 unless either V or W is in Qm+1(3,k)std.
For the sake of this argument it will not matter which representation it is, so
let us say that it is V. Then let k be the maximum positive integer such that
V ⊂ Qm+k(3,k). For all 1 ≤ i ≤ k, we have that the minimal degree generator
of Qm+i(3,k)std is V, and for all 1 ≤ b ≤ k, the minimal degree generator of
Qm+k+b(3,k) is

∏
i<j(x1−xj)

2bV of degree 3m+1+6b. Note that when b = k
the lowest degree generator is of degree 3m + 1 + 6k = 3(m + 2k) + 1, so the
Hilbert series is equal to the Hilbert series in characteristic 0.

Note that in [12] the authors explicitly computed elements of Qm(n,k)std of
degree less than 3m + 1 whenm,p satisfy (4.1) for some a. Assuming the con-
dition (4.1) is necessary as conjectured by Ren and Xu, these elements coincide
with the minimal degree generators that we described above. Thus a proof of
the conjecture would also prove an explicit formula for the Hilbert series of
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Qm(3,k) for allm with chark > 3. Namely, let p, a, k satisfy 4.1 such that a is
as large as possible. Then if pa(2k+1) ≥ 2m+1, the Hilbert series of Qm(3,k)
would be

1 + 2tpa(3k+1) + 2t6m+3−pa(3k+1) + t6m+3

(1 − t)(1 − t2)(1 − t3)
and if pa(2k + 1) < 2m + 1 then the Hilbert series would be

1 + 2tpa(3k+2) + 2t6m+3−pa(3k+2) + t6m+3

(1 − t)(1 − t2)(1 − t3)
.

Note that in the second case, the lowest degree generator of Qm(3,k)std has
degree 6m + 3 − pa(3k + 2).

4.1. TheOpdamShiftOperator. In this sectionwewill describe somepartial
results towards proving the conjecture of Ren and Xu described above using the
Opdam shift operators Om introduced in [11]. The description of Opdam shift
operators using Dunkl operators that we use here was introduced in [9].

De�nition 4.2. The Opdam shift operator Om is the di�erential operator (i.e.

operator in the algebraℤ [xi, )xi ,
1

x1−xj
]) whose action on symmetric polynomi-

als is given by ∏

i<j

(
Di(m) − Dj(m)

)∏

i<j
(xi − xj) (4.2)

where
Di(k) = )xi − k

∑

j≠i

1
xi − xj

(1 − sij)

is the Dunkl operator.

Note that even though Om is de�ned according to 4.2, its action on polyno-
mials is not given by 4.2 since this is not a di�erential operator. Instead, to
compute explicitly Om as a di�erential operator one must observe how Om acts
on symmetric polynomials as a di�erential operator, and then take that di�er-
ential operator as the de�nition of Om.

Example 4.3. In 3 variables, one can compute explicitly that
Om = (x1−x2)(x1−x3)(x2−x3)()x1−)x2)()x1−)x3)()x2−)x3)+6(1−2m)(1−3m)(2−3m)

+
∑

cyc
[
(
(−2 + 3m)(x1 − x3)(x2 − x3) + (1 − 2m)(x1 − x2)2

)
()x1 − )x2)

2

+ ((6 − 22m + 20m2)(x1 − x2) + 4m(−1 +m) (
(x2 − x3)2

x3 − x1
−
(x1 − x3)2

x3 − x2
)) ()x1−)x2)].

The connection between Opdam shift operators and quasi-invariant polyno-
mials was discovered in [2]. Explicitly, we have the following result:

Theorem 4.4 ([2]). We have Om(Qm−1(n,ℂ)) ⊂ Qm(n,ℂ).
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Note also that the Opdam shift operators are Sn-invariant; this follows from
the fact that the operator in Equation 4.2 is symmetric. In the case n = 3, we
can see this directly from Example 4.3. Thus we can use the shift operators to
inductively compute the generators ofQm(3,ℂ)std, whichwe canuse to describe
the Hilbert series of Qm(3,k) through Theorem 4.1.

Let vm, wm be the degree 3m + 1, 3m + 2 generators of Qm(3,ℂ) whose coef-
�cients have GCD equal to 1. Then let e2 =

∑
cyc(xi −xj)

2, e3 =
∏

cyc(xi +xj −
2xk) be the degree 2 and 3 symmetric polynomials in ℂ[x1 − x2, x2 − x3]. Let

Om+1e3vm = amvm+1, Om+1e3wm = bmwm+1,

Om+1e2wm = dmvm+1, Om+1e22vm = emwm+1.
Note that the Opdam shift operator is a degree 0 operator, and this combined
with degree counting shows that the left hand sides of the above equations are
indeed multiples of the respective generators vm+1, wm+1. Then through com-
puter calculations we found that form < 100, p > 3 we have:

∙ vp(am) is the number of k > 0 withm = 1, 2⌊p
k

3
⌋ mod pk.

∙ vp(bm) is the number of k > 0 withm = 2, 2⌊p
k

3
⌋ − 1mod pk.

∙ vp(dm) is the number of k > 0 with

pk = 5mod 6, m =
2pk − 4

3 ,
2pk − 1

3 mod pk.

∙ vp(em) is the number of k > 0 with

pk = 1mod 6, m =
2pk − 5

3 ,
2pk − 2

3 mod pk.

where vp(n) is the p-adic valuation of n.
Now, recall we have vm(swm) − (svm)wm = cm

∏
(xi − xj)2m+1 for some cm

where s ∈ S3 is any transposition. Then from computer calculations we also
have

ambmcm+1 = (m − 1)(m − 2)(3m + 1)(3m + 2)cm (4.3)
dmemcm+1 = (3m + 1)(3m + 2)cm (4.4)

up to factors of 2, 3. Note that ambmcm+1, dmemcm+1 are expressable in terms of
the Opdam shift operator as the leading coe�cients of

(Om+1e3vm)(Om+1e3(swm)) − (Om+1e3(svm))(Om+1e3wm),

(Om+1e2wm)(Om+1e22(svm)) − (Om+1e2(swm))(Om+1e22vm),
respectively, which we conjecture can be expressed as a di�erential operator
applied to

vm(swm) − (svm)wm.
Moreover, if one can prove either the statements about vp(am), vp(bm) and 4.3
or the statements about vp(dm), vp(em) and 4.4 for allm, then we will know the
prime factorization of cm for allm up to factors of 2, 3 by induction. A straight-
forward calculation shows that the prime factorizations we would obtain from
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these proofs coincide with the conjecture of Ren and Xu. Thus if we combine
this with the rest of the results from this section, a proof of either of the collec-
tions of statements outlined above would complete a proof of the Hilbert series
of Qm(3,k) for allm,k with chark ≠ 2, 3.

5. q-deformed quasi-invariants
For this section we will mainly work over the complex numbers ℂ.

De�nition 5.1. For a complex number q ≠ 0, a polynomial f ∈ ℂ[x1,… , xn] is
called q-deformedm-quasi-invariant if for all transpositions si,j ∈ Sn, (1−si,j)f
is divisible by

∏m
k=−m(xi−q

kxj). We denote byQm,q(n) the space of q-deformed
m-quasi-invariants.

Note that when q = 1 we recover ordinary quasi-invariants, i.e. Qm,1(n) =
Qm(n,ℂ). In [3] it was proved that Qm,q(n) is a �at deformation of Qm(n,ℂ)
when q is a formal parameter, i.e. theHilbert series ofQm,q(n) overℂ(q) is equal
to the Hilbert series of Qm(n,ℂ). This implies that if q ∈ ℂ, the Hilbert series
ofQm,q(n) is equal to the Hilbert series ofQm(n,ℂ) for all but a countable set of
values for q. The main goal of this section is to work toward understanding the
values of q for which the Hilbert series ofQm,q(n) di�ers. The following lemma
uses the above to relate the various forms of quasi-invariants introduced in this
paper.

Lemma 5.2. (1) The Hilbert series of Qm,q(n) is at least as big as the Hilbert
series of Qm(n,ℂ) in all degrees.

(2) Let p be a prime, q a p-th root of unity, and k a �eld of characteristic p.
Then the Hilbert series ofQm(n,k) is at least as big as the Hilbert series of
Qm,q(n) in all degrees.

Proof. Fix a degree d, and consider the spaceQm,q(n)[d] overℂ(q)where q is a
formal parameter. Note that the conditions for a polynomial to be inQm,q(n)[d]
can be described as a system of linear equations with coe�cients in ℤ[q,q−1],
so Qm,q(n)[d] can be described as the nullspace of a matrix with entries in
ℤ[q,q−1]. Qm,q(n)[d] is then the nullspace of the same matrix when we spe-
cialize q = q. Specializing a matrix can only increase the dimension of its
nullspace, which proves 1.

Now, consider when q is a p-th root of unity. Then note that Qm,q(n)[d] is
the nullspace of a matrix with entries in ℤ[q, q−1]. If we specialize this matrix
to a matrix in ℤ∕pℤ[q, q−1], the nullspace of this matrix becomes the space
of polynomials in ℤ∕pℤ[q, q−1][x1,… , xn] such that (1 − si,j)P is divisible by
∏m

k=−m(xi − qkxj) for all si,j. But q satis�es qp −1 = 0, and in characteristic p
we have qp − 1 = (q − 1)p = 0, so q = 1. Thus we obtain that this nullspace is
exactly Qm(n,k)[d], which proves 2. �

Many basic properties of quasi-invariants also hold for q-deformed quasi-
invariants with the obvious modi�cations and analogous proofs. Proposition
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2.2, Lemma 2.4, and Proposition 2.5 directly translate fromQm(n,k) toQm,q(n).
Analogously to Proposition 2.6, we have

Proposition 5.3. As k[x1,… , xn]Sn -modules, we have
(1) Qm,q(n)triv is freely generated by 1.
(2) Qm,q(n)sign is freely generated by

∏
i<j

∏m
k=−m(xi − qkxj).

Thus by the same argument as in Remark 2.7, we have

Corollary 5.4. The Hilbert series of Qm,q(2) is
1+t2m+1

(1−t)(1−t2)
for all q.

Similarly, Lemma 3.2, Corollary 3.3, Lemma 3.4, and Lemma 3.5 all hold for
Qm,q(3)std as well if all instances of (xi−xj)2m+1 are replaced with

∏m
k=−m(xi−

qkxj) with the same proofs. We also have the following theorem analogous to
Theorem 4.1.

Theorem 5.5. Let V,W be the generating representations of Qm,q(3) and let v ∈
V−
1,2, w ∈ W−

1,2 where the coe�cients of each of v, w are coprime elements of
ℂ[q,q−1]. Let

vs1,2w − ws1,2v = c
∏

i<j

m∏

k=−m
(xi − qkxj).

where c ∈ ℂ[q,q−1]. Then the Hilbert series of Qm,q(3) is di�erent from the
Hilbert series of Qm(3,ℂ) if and only if q is a root of c.
Proof. First, assume that the Hilbert series of Qm,q(3) is di�erent from the
Hilbert series of Qm(3,ℂ). Then one of the specializations of v, w in Qm,q(3) is
not a generating representation, so it is generated by a representation of lower
degree. Without loss of generality, say that v is generated by a polynomial u.
Then since deg v+degw = 6m+3, degu+degw < 6m+3, so by Lemma 3.4w
is also generated by u. But then v, w are not independent over ℂ[x1, x2, x3]S3 ,
so vs1,2w − ws1,2v = 0 and thus c(q) = 0.

Now, assume q is a root of c. Then the specializations of v, w in Qm,q(3) are
not both generators by Lemma 3.4, and they are nonzero since their coe�cients
are coprime. Let us assume deg v = 3m + 1, degw = 3m + 2. If v is not a
generator then it is generated by some representation of degree less than 3m+1,
so the Hilbert series ofQm,q(3) is larger than the Hilbert series ofQm(3,ℂ) since
no such generator exists inQm(3,ℂ). Ifw is not a generator then it is generated
by some generator of degree less than 3m + 2. If this representation is not v
then we are done by the same argument as above. Note that if it is v, then up
to a scalar we have (x1 + x2 + x3)v = w in Qm,q(3) since x1 + x2 + x3 is the
only symmetric polynomial of degree 1. We will show that this cannot happen,
which will complete the proof.

Let M = Qm,q(n)[3m + 2] ∩ ℂ[q][x1,… , xn] be a ℂ[q]-module. Then N =
M∕(q − q)M is a module over ℂ[q]∕(q − q) ≅ ℂ, and it is easy to see that it is
a submodule of Qm,q(n)[3m+ 2] that contains the specializations of (x1 + x2 +
x3)v, w to Qm,q(n).
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Let y1,… , yk ∈ M be a basis of Qm,q(n)[3m + 2] such that the images of
y1,… , yk in N are nonzero. We will construct a basis of k elements in N using
in�nite descent on the sum of the degrees of y1,… , yk in q. Let y1,… , yk be
the images of y1,… , yk in N and assume y1,… , yk satisfy some linear relation
∑k

i=1 aiyi = 0whereai ∈ ℂ. Let j be an index such that yj has the largest degree
in q out of all yi such that ai ≠ 0. Then

∑k
i=1 aiyi is divisible by q − q and has

degree at most the degree of yj. Since y1,… , yk form a basis ofQm,q(n)[3m+2],
it follows that y1,… , ŷj,… , yk,

1
q−q

∑k
i=1 aiyi is also a basis of Qm,q(n)[3m + 2]

that lies inM. 1
q−q

∑k
i=1 aiyi has a lower degree than yj, so we have constructed

a basis of Qm,q(n)[3m + 2] that has a lower sum of degrees in q than y1,… , yk.
Since the sum of degrees must be nonnegative, this process must eventually
terminate, after which there can be no relations between y1,… , yk. After this
process, since y1,… , yk form a basis ofM, y1,… , yk spanN, soN has dimension
equal to M. Note that this implies (x1 + x2 + x3)v and w cannot be linearly
dependent in N, as they are linearly independent inM, so we have the desired
result. �

However, the proof of Lemma 3.6 does not immediately generalize to the
q-deformed case. This is because unlike (xi − xj)2m+1,

∏m
k=−m(xi − qkxj) is

not contained in a subalgebra of ℂ[x1, x2, x3] of Krull dimension 2, and the 2
dimensional subalgebra is key to the proof. As such, we were unable to prove
Lemma 3.6 and thus we do not know if Theorem 3.1 holds for the q-deformed
case. However, based on our calculations of speci�c cases we conjecture that
Theorem 3.1 indeed holds for Qm,q(3).

Recall that in [12] Ren andXuproved a su�cient condition for theHilbert se-
ries of Qm(n,k) to di�er from the Hilbert series of Qm(n,ℂ). Using their meth-
ods, we proved a similar su�cient condition in the q-deformed case.

Theorem 5.6. Letm ≥ 0, n ≥ 3 be integers, and let q be a primitive p-th root of
unity, where p is an integer such that

mn(n − 2) +
(n
2

)

(n
2

)
− 1

≤ p ≤ mn.

Then the Hilbert series of Qm,q(n) is di�erent from the Hilbert series of Qm(n,ℂ).

Note the similarity between the inequality in this theorem and 4.1. Namely,
this inequality is obtained from 4.1 when we set a = 1, k = 0, but without the
restriction that p must be prime.

Proof. In [8] it was proved that the smallest positive degree term in the Hilbert
series of Qm(n,ℂ) has degree mn + 1. For the values of q described above, we
will exhibit a nonsymmetric q-deformedm-quasi-invariant of degree less than
mn + 1, which su�ces for the proof.
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Let q satisfy the condition in the theorem, and consider the polynomial

fm,q =

⎧
⎪

⎨
⎪
⎩

xp1 − xp2 p ≥ 2m + 1
(xp1 − xp2 )

∏
i≠j

∏m
k= p+1

2
(xi − qkxj) p < 2m + 1, p odd

(xp1 − xp2 )
∏

i<j(xi + xj)
∏

i≠j
∏m

k= p+2
2
(xi − qkxj) p < 2m + 1, p even

.

(5.1)
Note that in both cases where p < 2m + 1, we have

degfm,q = p +
(n
2

)
(2m + 1 − p) ≤

(n
2

)
(2m + 1) −mn(n − 2) −

(n
2

)
= mn

so fm,q always has degree less than mn + 1. It su�ces to show that fm,q ∈
Qm,q(n). First, note that since q is a primitive p-th root of unity, we have

xpi − xpj =

p−1
2∏

k=− p−1
2

(xi − qkxj)

if p is odd and

xpi − xpj =

p
2
−1∏

k=− p
2

(xi − qkxj)

if p is even. If p ≥ 2m+1, then this implies xpi −x
p
j is divisible by

∏m
k=−m(xi−

qkxj). If p < 2m + 1 and p is odd, then fm,q is divisible by
p−1
2∏

k=− p−1
2

(x1 − qkx2)
m∏

k= p+1
2

(x1 − qkx2)(x2 − qkx1)

= ±ql
p−1
2∏

k=− p−1
2

(x1 − qkx2)
m∏

k= p+1
2

(x1 − qkx2)(x1 − q−kx2)

= ±ql
m∏

k=−m
(x1 − qkx2)

for some integer l, and if p is even fm,q is divisible by
p
2
−1∏

k=− p
2

(x1 − qkx2)(x1 + x2)
m∏

k= p+2
2

(x1 − qkx2)(x2 − qkx1)

= ±ql
p
2
−1∏

k=− p
2

(x1 − qkx2)(x1 − q
p
2 x2)

m∏

k= p+2
2

(x1 − qkx2)(x1 − q−kx2)
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= ±ql
m∏

k=−m
(x1 − qkx2).

Now, we will show that fm,q ∈ Qm,q(n) when p ≥ 2m + 1. Let i, j > 2. Then
we have

(1 − s1,2)(x
p
1 − xp2 ) = 2(xp1 − xp2 ), (1 − s1,i)(x

p
1 − xp2 ) = xp1 − xpi ,

(1 − s2,i)(x
p
1 − xp2 ) = xpi − xp2 , (1 − si,j)(x

p
1 − xp2 ) = 0,

and the desired result follows. Note that the products
∏

i≠j

m∏

k= p+1
2

(xi − qkxj),
∏

i<j
(xi + xj)

∏

i≠j

m∏

k= p+2
2

(xi − qkxj)

are symmetric, so the cases where p < 2m + 1 follow similarly. �

Conjecture 5.7. The condition given in Theorem 5.6 is also necessary. That is, if
the Hilbert series ofQm,q(n) is di�erent from the Hilbert series ofQm(n,ℂ), then q
is a primitive p-th root of unity where p is an integer that satis�es

mn(n − 2) +
(n
2

)

(n
2

)
− 1

≤ p ≤ mn.

In the case n = 3, the Hilbert series of Qm,q(3) is di�erent from the Hilbert
series of Qm(3,ℂ) if and only if Qm,q(3)std contains a polynomial of degree 3m.
Note that by Proposition 5.3 there are no polynomials in Qm,q(3)sign of degree
3m. So using the characterization of Qm,q(3) given by Lemma 3.2, the condi-
tion that a polynomial of degree 3m inQm,q(3)std exists reduces to a polynomial
equation in q. By directly computing these polynomials, we veri�ed this con-
jecture for n = 3, m ≤ 3. Note also that this implies that for n = 3 and a
�xed m, there are only �nitely many values of q for which the Hilbert series
of Qm,q(3) di�ers from the Hilbert series of Qm(3,ℂ). We conclude this section
with a lemma about the lowest degree generator in the standard representation
part of the n = 3 case.

Lemma 5.8. Let n = 3 and p, q satisfy the condition in Theorem 5.6. Then the
polynomial fm,q in 5.1 is the minimal degree generator of Qm,q(3)std.

Proof. Let us write fm,q = f′
∏m

k=−m(x1−q
kx2) for a polynomial f′. Then as-

sume for contradiction that there exists a generator ofQm,q(3)std of lower degree
than fm,q. By Lemma 3.5 there can only be one such generator, and by Lemma
3.2 this generator can be expressed as g

∏m
k=−m(x1 − qkx2) for a polynomial

g. Since this is the only generator of degree at most the degree of fm,q, fm,q
must be a symmetric polynomial multiple of g

∏m
k=−m(x1 − qkx2), and thus

f′ must be a symmetric polynomial multiple of g. But it is easy to see directly
from the de�nition of fm,q that f′ is not divisible by any nontrivial symmetric
polynomial, so we have a contradiction. �
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