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A fusion variant of the classical and
dynamical Mordell-Lang conjectures in

positive characteristic

Jason Bell and Dragos Ghioca

Abstract. We study an open question at the interplay between the classical
and the dynamical Mordell-Lang conjectures in positive characteristic. Let
K be an algebraically closed �eld of positive characteristic, let G be a �nitely
generated subgroup of the multiplicative group of K, and let X be an (irre-
ducible) quasiprojective variety de�ned over K. We consider K-valued se-
quences of the form an ∶= f('n(x0)), where '∶ X ⤏ X and f∶ X ⤏ ℙ1

are rational maps de�ned over K and x0 ∈ X is a point whose forward orbit
avoids the indeterminacy loci of ' and f. We show that the set of n for which
an ∈ G is a �nite union of arithmetic progressions along with a set of Banach
density zero.
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1. Introduction
1.1. Notation. In this note, we consider rational dynamical systems, which
are given by a pair (X, '), where X is always an irreducible quasiprojective va-
riety de�ned over a �eld K, and ' ∶ X ⤏ X is a rational map. The forward
'-orbit of a point x0 ∈ X is given by

O'(x0) ∶= {x0, '(x0), '
2(x0),…}

as long as this orbit is de�ned (i.e., x0 is outside the indeterminacy locus of 'n
for every n ≥ 0).

Throughout our paper, we let ℕ ∶= {1, 2, 3,…} and ℕ0 ∶= ℕ ∪ {0}. If R is a
ring then R∗ is its multiplicative group of units. An arithmetic progression is
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a set of the form {a + bn}n≥0 ⊆ ℕ0 where a, b ∈ ℕ0. We take a singleton to
be an arithmetic progression with b = 0. A subset N ⊆ ℕ0 is called eventually
periodic if it is a union of �nitely many arithmetic progressions. Finally, the
(upper) Banach density of a subset S ⊆ ℕ0 is

�(S) ∶= lim sup
|I|→∞

|S ∩ I|

|I|
,

where I ranges over all non-empty intervals of ℕ0 (see [Fur81, De�nition 3.7]).

1.2. Our main results. The purpose of this short note is to show that the re-
sults of [BCH21] hold (after slight necessary modi�cations to the statements
and proofs) over �elds of positive characteristic. In particular, we prove the
following result.

Theorem 1.1. LetX be a quasiprojective variety over a �eldK of positive charac-
teristic, let ' ∶ X ⤏ X be a rational map, let f ∶ X ⤏ ℙ1 be a rational function,
and let G ⊂ K∗ be a �nitely generated subgroup. If x0 ∈ X(K) is a point with
well-de�ned forward '-orbit that also avoids the indeterminacy locus of f, then
the set

N ∶= {n ∈ ℕ0 ∶ f('
n(x0)) ∈ G}

is a �nite union of arithmetic progressions along with a set of Banach density zero.

Our Theorem 1.1 extends the result of [BCH21, Theorem 1.1] to �elds of
positive characteristic.

The case N = ℕ0 in Theorem 1.1 can be easily achieved: let T ∶= Gd
m be a

d-dimensional multiplicative torus. Then an endomorphism ' of T is a map of
the form

(x1,… , xd)↦
⎛

⎜

⎝

c1

∏

j

x
a1,j

j
,… , cd

∏

j

x
ad,j

j

⎞

⎟

⎠

.

Now if we begin with a point x0 = (�1,… , �d), then every point in the orbit of
x0 has coordinates in the multiplicative group G generated by

c1,… , cd, �1,… , �d.

In particular, if f ∶ T → ℙ1 is a map of the form (x1,… , xd)↦ �x
p1
1
⋯x

pd

d
with

� ∈ G then f◦'n(x0) ∈ G for every n ≥ 0. It is interesting to see that, actually,
each dynamical system (X, ')withN = ℕ0 is controlled by one of this form, in
the sense given in the following result.

Theorem 1.2. LetK be a �eld of positive characteristic, letX be a quasiprojective
variety with a dominant self-map ' ∶ X ⤏ X, and let f ∶ X ⤏ ℙ1 be a dom-
inant rational map, all de�ned over K. Suppose that x0 ∈ X has the following
properties:

(1) every point in the orbit of x0 under ' avoids the indeterminacy loci of '
and f;

(2) O'(x0) is Zariski dense;
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(3) there is a �nitely generated multiplicative subgroup G of K∗ such that
f◦'n(x0) ∈ G for every n ∈ ℕ0 outside of a set of Banach density zero.

Then there exists a rational map Θ ∶ X ⤏ Gd
m for some nonnegative integer d,

and a dominant endomorphism Φ ∶ Gd
m → Gd

m such that the following diagram
commutes

X X

Gd
m Gd

m.

'

Θ Θ

Φ

Moreover, O'(x0) avoids the indeterminacy locus of Θ and f = g◦Θ, where g ∶
Gd
m → Gm is a map of the form

g(t1,… , td) = Ct
i1
1
⋯ t

id

d

for some i1,… , id ∈ ℤ and some C ∈ G.

Theorem 1.2 is a positive characteristic variant of [BCH21, Theorem 1.2].
However, there is an important di�erence between the conclusion of [BCH21,
Theorem 1.2] and the conclusion of Theorem 1.2: one cannot expect that the
map Θ is dominant, as shown in [BCH21, Example 3.7].

One can interpret Theorem 1.2 as saying that if almost every element of the
orbit of a point under a self-maphas some “coordinate” that lies in a�nitely gen-
erated multiplicative group, then there must be some geometric reason which
is causing this phenomenon: in this case, it is that the dynamical behaviour of
the orbit is completely determined by the behaviour of a related system associ-
ated with a multiplicative torus. In fact, similar to the results from [BCH21],
one can prove a general version of this result involving semigroups of maps
(see Theorem 2.2 for the precise formulation). Furthermore, as a consequence
of Theorem 1.2, we get the following characterization of orbits whose values lie
in a �nitely generated subgroup ofK∗, which shows that on arithmetic progres-
sions they are well-behaved.

Corollary 1.3. Let K be a �eld of positive characteristic and let X be a quasipro-
jective variety with a dominant self-map ' ∶ X ⤏ X and let f ∶ X ⤏ ℙ1 be a
dominant rationalmap, all de�ned overK. Suppose thatx0 ∈ X has the following
properties:

(1) every point in the orbit of x0 under ' avoids the indeterminacy loci of '
and f;

(2) there is a �nitely generated multiplicative subgroup G of K∗ such that
f◦'n(x0) ∈ G for every n ∈ ℕ0.

Then there are integers l and L with l ≥ 0 and L > 0 such that if ℎ1,… , ℎm
generate G then there are integer valued linear recurrences bj,1(n),… , bj,m(n) for
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j ∈ {0,… , L − 1} such that

f◦'Ln+j(x0) =

m∏

i=1

ℎ
bj,i(n)

i

for each n ≥ l.

As explained in Subsection 3.2, one of the motivations for considering when
a dynamical sequence {f(Φn(�))}n∈ℕ0 (for some self-mapΦ on a quasiprojective
variety X endowed with a rational map f ∶ X ⤏ ℙ1) takes values in a �nitely
generated multiplicative group comes from studying D-�nite power series. Al-
ready, this question along with other related questions have been considered
in the case of self-maps of ℙ1 in [BOSS21, OSSZ19, BNZ20]. Questions about
D-�nite series are of less relevance in the positive characteristic setting, but we
are nevertheless able to apply our results to rational series over positive char-
acteristic �elds whose coe�cients take values in a �nitely generated group. In
particular, we prove a positive characteristic analogue of a classical theorem of
Pólya [Pól21].

Theorem 1.4. Let K be a �eld of positive characteristic, let G ⊂ K∗ be a �nitely
generated subgroup, and let

F(x) =
∑

n≥0

anx
n

be a rational power series de�ned over K, and suppose that an ∈ G ∪ {0} for all
n ≥ 0. Then there is someM ≥ 1 and someN ≥ 0 such that

F(x) = P(x) +

M−1∑

b=0

�bx
b+MN∕(1 − �bx

M),

where P(x) is a polynomial of degree at mostMN − 1 with coe�cients in G ∪ {0},
�0,… , �M−1 ∈ G and �0,… , �M−1 ∈ G ∪ {0}.

This result was proved for integer-valued linear recurrences by Pólya [Pól21]
and later extended to characteristic zero �elds (and D-�nite series) by Bézivin
[Béz86]. The techniques appliedwere not, however, amenable dealingwith this
question in the positive characteristic setting. We show that by applying work
on S-unit equations due to Derksen and Masser [DM12], one can circumvent
the obstacles that arise in positive characteristic.

1.3. The dynamical Mordell-Lang conjecture in positive characteristic.
Another motivation for our question comes from the Dynamical Mordell-Lang
Conjecture (stated below as Conjecture 1.5).

In the case when G is the trivial group, Theorem 1.1 was already known (see
[BGT15, Gig14, Pet15]), and was motivated by a conjecture of Denis [Den94].
Furthermore, the special case when G is the trivial group is a weakening of
the Dynamical Mordell-Lang Conjecture in characteristic p (see [Ghi19] and
also [BGT16] for a comprehensive discussion of the Dynamical Mordell-Lang
Conjecture).
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Conjecture 1.5. LetX be a quasiprojective variety de�ned over a �eldK of char-
acteristic p, endowed with an endomorphism Φ. Then for any point � ∈ X(K)

and any subvariety Y ⊆ X, the set

S ∶= {n ∈ ℕ0∶ Φ
n(�) ∈ Y(K)}

is a �nite union of arithmetic progressions alongwith �nitelymany sets of the form

{

r∑

i=1

dip
kini ∶ ni ∈ ℕ0} , (1)

for some given r ∈ ℕ and some given rational numbers di and nonnegative inte-
gers ki (for i = 1,… , r).

Hence Conjecture 1.5 predicts that besides �nitely many arithmetic progres-
sions, the return set corresponding to the intersection of an orbit with a subva-
riety may also contain a set of Banach density 0 of a very special type (1).

It is natural to ask whether the set of Banach density 0 appearing in the re-
turn set N from the conclusion of Theorem 1.1 comprises �nitely many sets of
the same special form (1). However, the Dynamical Mordell-Lang Conjecture
in positive characteristic is a very di�cult question, even in the special case
of endomorphisms of the multiplicative group GN

m, in which case it reduces to
some deep Diophantine questions (for more details, see [CGSZ21]). More pre-
cisely, using the same construction as in [CGSZ21, Section 4] (especially, see
[CGSZ21, Proposition 4.3]), one can construct some endomorphism Φ of GN

m

(de�ned over Fp(t)) along with a starting point � ∈ GN
m(Fp(t)), a suitable ratio-

nal function f ∶ GN
m ⤏ A1, and a �nitely generated subgroup G ⊂ Gm(Fp(t))

such that for some given r ∈ ℕ, the set

N ∶= {n ∈ ℕ0∶ f(Φ
n(�)) ∈ G} (2)

is precisely the set of all n ∈ ℕ0 for which there existm1,… , mr ∈ ℕ0 such that

n2 = pm1 + pm2 +⋯ + pmr . (3)

The Diophantine equation (3) is very di�cult (already when r ≥ 5) and all one
can show with the current Diophantine methods is that the set of all n ∈ ℕ0
which satisfy an equation of the form (3) has natural density 0 (see [GOSS21]).
Obtaining the precise description of the return set N from (2) as a �nite union
of sets of the form (1) is beyond the known results available in the literature.

The fact that the problem in positive characteristic turns out to be more sub-
tle than the corresponding question in characteristic 0 is encountered in many
similar questions in arithmetic geometry (such as the classical Mordell-Lang
conjecture, see [Hru96, MS04] for the corresponding results in characteristic
p) or arithmetic dynamics (such as the Zariski dense orbit conjecture in pos-
itive characteristic, see [GS21]). Thus we �nd it interesting that the results
of [BCH21], which involve a language akin to both the Dynamical Mordell-
Lang Conjecture and to the classical Mordell-Lang conjecture, hold with suit-
able modi�cations over �elds of positive characteristic.
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1.4. Plan of our paper. The proofs of our results follow closely the strategy
from [BCH21]; the only signi�cant di�erence between the two arguments ap-
pears in the proof of Lemma 2.1. In Section 2 we explain the di�erences from
the arguments of [BCH21], including the proof of Lemma 2.1, in order to derive
the proof for our results in positive characteristic. We conclude the paper with
several applications (including Theorem 1.4) of our results in Section 3.

2. Proof of our results
The strategy of proof follows the arguments employed in [BCH21]. We pro-

ceed by describing the di�erences appearing in each section of the proof from
[BCH21] when working in positive characteristic. We note that while the re-
sults from the preceding section have an arbitrary �eld K of positive character-
istic, in practice we can always work with a sub�eld of K that is �nitely gen-
erated over its prime sub�eld with the property that all relevant varieties, ra-
tional functions, and group generators are de�ned over this sub�eld. Thus we
may henceforth assume without loss of generality that the �eld K is a �nitely
generated extension of its prime sub�eld.

2.1. Linear sequences inabeliangroups. Note that the contents of [BCH21,
Section 2] provide a general background for sequences in abelian groups and
the corresponding results also hold with identical proofs in the case when the
relevant rings have positive characteristic.

For example, the translation in positive characteristic of [BCH21, Proposi-
tion 2.9] asserts the following result: given a �eldKwhich is a �nitely generated
extension of Fp and given a sequence {un}n∈ℕ0 ⊂ K∗ satisfying a multiplicative
ℕ0-quasilinear recurrence (see [BCH21, De�nition 2.1]), then {un}n∈ℕ0 satis�es
amultiplicative linear recurrence andmoreover, ifH is a �nitely generated sub-
group of K∗, then {n ∈ ℕ0∶ un ∈ H} is eventually periodic. Indeed, working
with a �eld K which is �nitely generated over Fp, one views K as a �nite exten-
sion of some rational function �eld Fp(t1,… , tm). Letting R ∶= Fp[G, t1,… , tm]

denote the �nitely generated ring spanned by the ti’s and the elements of the
�nitely generated subgroup G ⊂ K∗, its integral closure R inside K is also a
�nitely generated Fp-algebra, according to [Eis95, Corollary 13.13]. Then the

group of units of R
∗

is again �nitely generated (by [Roq57]) and the rest of the
proof of [BCH21, Proposition 2.9] follows identically for such �elds K of char-
acteristic p.

2.2. Multiplicative dependence of certain rational functions. The goal
of [BCH21, Section 3] is to convert the statement of [BCH21, Theorem 1.2]
into a problem about linear recurrence sequences as developed in [BCH21, Sec-
tion 2]. Since the results of [BCH21, Section 2] hold in positive characteristic
(as explained in Section 2.1), our goal is then to see how the proofs of [BCH21,
Section 3] can be changed so that the main results hold for �elds of character-
istic p. We prove below the characteristic p variant of [BCH21, Lemma 3.2],
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which requires a slightly di�erent argument in order to eliminate the use of the
S-unit equation in characteristic 0.
Lemma 2.1. Let K be an algebraically closed �eld of characteristic p with tran-
scendence degree e < ∞ over Fp, let G be a �nitely generated multiplicative sub-
group of K∗ of rank r, let X be an irreducible quasiprojective variety over K of
dimension d, and let g0,… , gN−1 ∈ K(X) be N rational functions on X with
N = (d + e + 1)r. If

XG ∶= XG(g0,… , gN−1) ∶= {x ∈ X(K)∶ g0(x), g1(x),… , gN−1(x) ∈ G} (4)
is Zariski dense in X, then g0,… , gN−1 are multiplicatively dependent.
Proof. We prove this by induction on r. If r = 0 then G is a �nitely generated
torsion subgroup of K∗ and hence is �nite. It follows that if g0 ∈ K(X) has
the property that XG(g0) is Zariski dense then g0 must be constant since X is
irreducible; moreover, this constant must be in the torsion group G and thus
gm
0
= 1 for somem, giving us the result in this case.
Now we assume that the result holds whenever r < s with s ≥ 1 and we

consider the case when r = s. Let L = (d + e + 1)s−1.
We �x a rank one discrete valuation � of K(X) such that � is not identically

zero on G (note that by our assumption, not all elements of G are contained
in Fp because G has positive rank). Then after renormalizing, we may assume
that �|G ∶ G → ℤ is surjective and we let G0 denote the kernel, which is a
�nitely generated subgroup of G of rank s − 1.

Since the �eld extension K(X)∕Fp has transcendence degree d + e, for each
j = 0,… , L − 1, the functions fj,0 ∶= gj(d+e+1),… , fj,d+e ∶= gj(d+e+1)+d+e are
algebraically dependent over Fp. Thus there is a nontrivial polynomial relation

∑

i0,…,id+e

ci0⋯id+e ,j
f
i0
j,0
⋯f

id+e

j,d+e
= 0

where ci0⋯id+e ,j
∈ Fp and the sum is over a �nite set of indices in ℕd+e+1

0
; this

holds on some open subset of X. For each j ∈ {0,… , L − 1}, we let Ij be the
(�nite) set of indices � = (i0,… , id+e) ∈ ℕd+e+1

0
where ci0⋯id+e ,j

is nonzero. For

 = (i0,… , id+e) ∈ ℤd+e+1, we set

f
,j ∶= f
i0
j,0
⋯f

id+e

j,d+e
and c
,j ∶= ci0⋯id+e ,j

.

Then for every y ∈ XG and each j ∈ {0,… , L − 1}, there are two distinct el-
ements �j, �j in the |Ij|-tuple (c�,jf�,j(y))�∈Ij having the same valuation un-
der �. Given �0,… , �L−1, �0,… , �L−1 with each �j, �j ∈ Ij distinct, we let
XG,(�0,…,�L−1;�0,…,�L−1) denote the set of points y ∈ XG such that

�(f�j ,j(y)∕f�j ,j(y)) = 0.

Then there is some element

((�0, �0),⋯ , (�L−1, �L−1)) ∈

L−1∏

j=0

I2
j
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with �j ≠ �j for each j such that Z ∶= XG,(�0,…,�L−1;�0,…,�L−1) is Zariski dense
in X. Now let tj ∶= f�j ,j∕f�j ,j for j = 0,… , L − 1. Then by construction,
XG0(t0,… , tL−1) ⊇ Z and thus is Zariski dense. Then since G0 has rank s − 1,
the induction hypothesis gives that t0,… , tL−1 are multiplicatively dependent.
A multiplicative dependence among these functions then gives a dependence
among g0,… , gL(d+e+1), and hence the result follows by induction. �

2.3. Conclusion of our proof. We will now give the proofs of Theorems 1.1
and 1.2. To prove Theorem 1.1, note that, similar to the proof of [BCH21, Corol-
lary 1.3], one derives the conclusion of Corollary 1.3; then the proof of Theo-
rem1.1 follows verbatim as in the proof of [BCH21, Theorem1.1] from [BCH21,
Section 4].

To prove Theorem 1.2, we note that by assumption f◦�n(x0) ∈ G for all
natural numbers outside of a set V of Banach density zero. By Theorem 1.1,
the set of n for which f◦�n(x0) ∈ G is a �nite union of in�nite arithmetic
progressionsL1∪⋯∪Ls alongwith a setV′ of Banach density zero. In particular,
we must have

ℕ = L1 ∪⋯ ∪ Ls ∪ (V ∪ V′).

Nowℕ⧵(L1∪⋯∪Ls) is an eventually periodic set contained inV∪V′ and since
V ∪ V′ has Banach density zero, we see that ℕ ⧵ (L1 ∪⋯ ∪ Ls) is �nite and so
{n∶ f◦�n(x0) ∈ G} has �nite complement inℕ. Then the proof of Theorem 1.2
follows identically as the proof of [BCH21, Theorem 1.2] follows from [BCH21,
Section 3].

We note that we in fact obtain the following general statement that is related
to Theorem 1.2, where we now work with �nitely many self-maps of X.

Theorem 2.2. Let K be an algebraically closed �eld of positive characteristic, let
G be a �nitely generated subgroup ofK∗, letX be a quasiprojective variety overK,
let '1,… , 'm be dominant rational self-maps ofX and we let S denote the monoid
generated by thesemapsunder composition. We letf ∶ X ⤏ ℙ1 be anon-constant
rational map and assume that x0 ∈ X(K) has the property that its forward orbit
under S is Zariski dense and each point avoids the indeterminacy loci of the maps
'1,… , 'm and f.

If u' = f('(x0)) ∈ G for every ' in the monoid S then there exist a rational
map Θ ∶ X ⤏ Gd

m with d ≤ dim(X) that is de�ned at each point in O'(x0) =
('(x0))'∈S and endomorphisms Φ1,… ,Φm ∶ Gd

m → Gd
m such that the following

diagram commutes

X X

Gd
m Gd

m.

'1,… , 'm

Θ Θ

Φ1,… ,Φm
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Themain di�erence between Theorems 1.2 and 2.2 as opposed to their coun-
terparts in characteristic 0 (which are [BCH21, Theorem1.2] and [BCH21, Corol-
lary 3.5]) consists in the fact that themapΘ in the conclusion of these theorems
is no longer dominant. The reason for this is that in the �nal part of the proof
of [BCH21, Corollary 3.5], one employs Laurent’s classical result [Lau84] for
the Mordell-Lang conjecture for the multiplicative group to infer that an irre-
ducible subvariety of an algebraic torus must be itself a translate of a subtorus
if it contains a Zariski dense set of points from a given �nitely generated sub-
group of the torus; this conclusion does not hold in positive characteristic. All
one obtains, with the notation as in Theorem 2.2, is that the image of Θ is a
translate of a subvariety Y ⊆ Gd

m de�ned over a �nite �eld (as per Hrushovski’s
proof [Hru96] of theMordell-Lang conjecture in positive characteristic; see also
[MS04]).

3. Applications of our results
The applications from [BCH21, Sections 5 and 6] hold with almost identi-

cal proofs also in the case of �elds of positive characteristic. We state below
applications in a couple di�erent directions.

3.1. Heights. In [BGS21] and [BHS20], a broad dynamical framework giving
rise to many classical sequences from number theory and algebraic combina-
torics is developed. This is accomplished by considering dynamical sequences,
which are sequences of the form f◦'n(x0), where (X, ') is a rational dynamical
system, f ∶ X ⤏ ℙ1 is a rational map, and x0 ∈ X. Similar to [BGS21, BHS20],
Corollary 1.3 provides an interesting “gap” about heights of points in the for-
ward orbit of a self-map ' for varieties and maps de�ned over a function �eld
over a �nite �eld.

For a �nitely generated �eldK over its prime �eld Fp, we viewK as the func-
tion �eld of a projective geometrically irreducible varietyV de�ned over a �nite
�eld Fq; at the expense of replacing K by a �nite extension, we may assume V
is smooth [deJ96, Remark 4.2]. We let ΩV be the set of inequivalent absolute
values corresponding to the irreducible divisors of V. Then one can construct
the Weil height ℎ(⋅) ∶= ℎV(⋅) for the points in K corresponding to the places in
ΩV; for further background on height functions, we refer the reader to [BG06,
Chapter 2] and [Sil07, Chapter 3].

The following result is a positive characteristic analogue of [BCH21, Theo-
rem 5.1].

Theorem 3.1. LetK be a �nitely generated extension of Fp andX be a quasipro-
jective variety de�ned over K, endowed with a dominant self-map ' ∶ X ⤏ X

along with a rational map f ∶ X ⤏ ℙ1, both de�ned also over K. Suppose that
x0 ∈ X(K) has the following properties:

(1) every point in the orbit of x0 under ' avoids the indeterminacy loci of '
and f;
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(2) there is a �nitely generated multiplicative subgroup G of K∗ such that
f◦'n(x0) ∈ G for every n ∈ ℕ0.

If ℎ(f◦'n(x0)) = o(n2) then the sequence (f◦'n(x0))n satis�es a linear recur-
rence. More precisely, there exists an integerL ≥ 1 such that for each j ∈ {0,… , L−

1} there are �j, �j ∈ G such that for all n su�ciently large we have

f◦'Ln+j(x0) = �j�
n
j
.

Proof. The arguments are almost identicalwith the ones employed in the proof
of [BCH21, Theorem 5.1]. For example, the proof of [BCH21, Theorem 5.1]
uses a classical result of Schlickewei [Sch97, Theorem 1.1] which gives that for
a �nitely generated subgroupH ⊂ ℚ

∗

, there exist g1,… , gd ∈ H such that every
element of H can be expressed uniquely in the form �g

n1
1
⋯ g

nd

d
with � being

a root of unity and n1,… , nd ∈ ℤ and such that we have the following lower
bound for the Weil height of the points inH:

ℎ(�g
n1
1
⋯ g

nd

d
) ≥ max

1≤i≤d
{|ni|4

−dℎ(gi)}. (5)

An analogue of this result can be easily derived for function �elds K as in our
setting. Indeed, viewing (as before) K as the function �eld of a smooth projec-
tive geometrically irreducible variety V over some �nite �eld Fq, we let ΩV the
set of inequivalent absolute values associated with the irreducible divisors of V.
Then letting r be the rank of a torsion-free subgroupG0 ofG suchG = G0⊕Gtor,
whereGtor is the torsion subgroup ofG, we can �nd suitable generators g1,… , gr
of G0 along with places v1,… , vr of K (corresponding to irreducible divisors of
V), so the following properties are satis�ed by the absolute values | ⋅ |vi ∈ ΩV:

(i) |||gi
|||vi
> 1 for i = 1,… , r; and

(ii) ||||gj
||||vi
= 0 for each i ≠ j.

(We point out that such places can be produced inductively, using row reduc-
tion to obtain generators for which (i) and (ii) hold.) Conditions (i)-(ii) guaran-
tee that for any integers n1,… , nr, we have that the Weil height ℎ ∶ K ⟶ ℝ≥0

satis�es

ℎ (

r∏

i=1

g
ni
i
) > c ⋅

r
max
i=1

|ni|,

for some positive constant c depending only on the places v1,… , vr and the
points g1,… , gr. This allows us to apply the same arguments as in the proof
of [BCH21, Theorem 5.1] to conclude our proof of Theorem 3.1. �

3.2. A theorem of Pólya in positive characteristic. The class of dynamical
sequences includes all sequences whose generating functions are D-�nite, i.e.,
those satisfying homogeneous linear di�erential equations with rational func-
tion coe�cients (see also [BCH21, De�nition 6.1]). This is an important class of
power series since it appears ubiquitously in algebra, combinatorics, and num-
ber theory; we refer the reader to [BCH21, Sections 1 and 6] for a comprehen-
sive discussion of the D-�nite power series and their applications. In positive
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characteristic, however, the class of D-�nite power series is considerably less
interesting due to the fact that the derivations are nilpotent.

We notice that the study of power series with coe�cients in a �nitely gen-
erated subgroup G of the multiplicative group of a �eld enjoys a long history,
going back at least to the early 1920s, with the pioneeringwork of Pólya [Pól21],
who characterized rational functions whose Taylor expansions at the origin
have coe�cients lying in a �nitely generated multiplicative subgroup of ℤ.
Pólya’s results were later extended to D-�nite power series by Bézivin [Béz86],
although Bézivin’s work was necessarily done in characteristic zero for the rea-
sons stated in the preceding paragraph.

Many of the results of [BCH21, Section 6] go through with minimal changes
when working over a �eld of positive characteristic, but in the case of D-�nite
series what one cannot guarantee is that such a sequence arises as a dynami-
cal system. In cases where this can be done, there are no additional obstacles
when working in positive characteristic. In particular, if one considers ratio-
nal power series F(x) =

∑
anx

n, then one has an = wtAnv, where A is an
invertible matrix and w, v are column vectors, for all n su�ciently large; and
hence a tail of the sequence an can be realized as a dynamical sequence, even
in positive characteristic. In particular, the following result follows verbatim
from [BCH21, Theorem 1.4], as a consequence of both [BGT15] and also of our
Theorem 1.1.

Theorem 3.2. Let K be a �eld of characteristic p, let G ⊂ K∗ be a �nitely gener-
ated subgroup, and let

F(x) =
∑

n≥0

anx
n

be a rational power series de�ned over K. Consider the sets

N ∶= {n ∈ ℕ0∶ an ∈ G} andN0 ∶= {n ∈ ℕ0∶ an ∈ G ∪ {0}} .

Then both N and N0 are expressible as a union of �nitely many arithmetic pro-
gressions along with a set of Banach density 0.

Asmentioned before, an analogue of Pólya’s [Pól21] has apparently not been
worked out in positive characteristic. This is perhaps not surprising since the
theory of linear recurrences in positive characteristic has historically lagged be-
hind the development of the theory in characteristic zero; for example, Derk-
sen’s [Der07] analogue of the Skolem-Mahler-Lech theorem in positive charac-
teristic was only proved in 2007. We thus give the positive characteristic ana-
logue of Pólya’s theorem to �ll a gap in the literature.

Proof of Theorem 1.4. It is well known (see, for example, [BGT16, Proposi-
tion 2.5.1.4]) that there exist s ≥ 0 and m ≥ 0 and �1, �s ∈ K̄∗ and constants
ci,j ∈ K̄ such that

an =

s∑

i=1

m∑

j=0

ci,j

(n

j

)
�n
i
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for n su�ciently large. Then since we are working in characteristic p, we have
apmn+k =

∑s

i=1
b′
i,k
�n
i
for some constants b′

i,k
∈ K̄, for all su�ciently large n.

In particular, there are M,N ≥ 1 such that for each b ∈ {0, 1,… ,M − 1} we
have for all n ≥ N, aMn+b is expressible in the form

∑t

i=1
ei�

n
i
for some nonzero

�1,… , �t ∈ K̄∗ with �i∕�j not a root of unity for i ≠ j and some constants
e1,… , et ∈ K̄∗. Now let us consider a sequence of the form

∑t

i=1
ei�

n
i
which

satis�es the above conditions and which takes values in G ∪ {0}; i.e.,
t∑

i=1

ei�
n
i
∈ G ∪ {0}

for all n. We claim that t ≤ 1. To see this, let H denote the multiplicative sub-
group of K̄∗ generated byG and e1,… , et, �1,… , �t. Then if t ≥ 2 then by a result
of Derksen and Masser (see [BN18, Proposition 2.2] for the precise statement
used here) there is some �nite set S ⊆ K̄∗ such that for every n, we have

(e1∕e2) ⋅ (�1∕�2)
n = �0,n�

p
i1,n

1,n
⋯�

p
it−1,n

t−1,n

for some �0,n,… , �t−1,n ∈ S and i1,n,… , it−1,n ∈ {0, 1,…}. In particular, since S
is �nite, there exist 
0,… , 
t−1 ∈ S such that for n in a subset T of the natural
numbers of positive density, we have

(e1∕e2) ⋅ (�1∕�2)
n = 
0


p
i1,n

1
⋯ 


p
it−1,n

t−1
.

Let L be the �eld extension of F̄p generated byG0. Now since �1∕�2 is not a root
of unity, there is some rank-one discrete valuation � of L such that �(�1∕�2) =
a > 0. Letting ci = �(
i) for i = 0,… , t−1 and letting a′ = �(e1∕e2)we see that

a′ + na = c0 + c1p
i1,n +⋯ + ct−1p

it−1,n (6)

for all n in the positive density set T. But arguing as in [GOSS21, §2.3, Case
1], taking Q(n) = a′ + na and the �j = p for all j, we see that the set of n for
which Equation (6) holds has density zero, a contradiction. It follows that t = 1

as desired. It follows that for each b ∈ {0,… ,M − 1}, aMn+b = �b�
n

b
for some

�b, �b ∈ K for n ≥ N. Moreover, since aMn+b ∈ G ∪ {0} for all n we see that
�b, �b ∈ G if �b�b ≠ 0. It follows that

F(x) = P(x) +

M−1∑

i=0

�bx
b+MN∕(1 − �bx

M)

for some polynomial P(x) of degree < MN with coe�cients in G ∪ {0}. Notice
that if �b or �b is zero, we can take �b = 1 and �b = 0 instead, so the result
follows. �
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