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Equivariant homology decompositions for
cyclic group actions on de�nite 4-manifolds

Samik Basu, Pinka Dey and Aparajita Karmakar

Abstract. In this paper, we study the equivariant homotopy type of a con-
nected sum of linear actions on complex projective planes de�ned by Ham-
bleton and Tanase. These actions are constructed for cyclic groups of odd
order. We construct cellular �ltrations on the connected sum using spheres
inside unitary representations. A judicious choice of �ltration implies a split-
ting on equivariant homology for general cyclic groups under a divisibility
hypothesis, and in all cases for those of prime power order.
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1. Introduction
Simply connected 4-manifolds forman important category of spaces from the

point of view of both topologists and geometers. Their homotopy type is deter-
mined by the intersection form. The ones with positive de�nite intersection
form are homotopy equivalent to a connected sum of copies ofℂP2. This paper
studies the equivariant homotopy type of certain cyclic group actions on these
4-manifolds de�ned in [9], and splitting results for the equivariant homology
with constant coe�cients.

Recall that a simply connected 4-manifoldM possesses a CW-complex struc-
ture whose 2-skeleton is a wedge of spheres, and outside the 2-skeleton, there
is a single 4-cell. It follows that the homology is torsion-free, and non-zero in
only three degrees 0, 2 and 4, with H0(M) = ℤ and H4(M) = ℤ. If k is the
second Betti number ofM, in the stable homotopy category, we obtain the de-
compositionHℤ ∧M+ ≃ Hℤ ∨ (

⋁k
i=1 Σ

2Hℤ) ∨ Σ4Hℤ.
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Homology decompositions akin to the above in equivariant stable homotopy
category have been studied for complex projective spaces in [12] over the group
Cp. The splitting therein is obtained with Burnside ring coe�cients, which is
denoted by A. However, Lewis [13, Remark 2.2] shows that these decomposi-
tions are not likely if the group contains Cp2 or Cp × Cp. On the other hand,
for cyclic groups of square free order these splittings do exist ([1], [2]). There
are generalizations of these results for the group Cp for even cell complexes
([6], [7]), and with constant ℤ∕p-coe�cients [3]. Such results have also been
extensively studied for the group C2 with constant ℤ∕2-coe�cients ([15], [11],
[10]). In this paper, we prove decomposition results for cyclic group actions on
a connected sum of copies of ℂP2 with constant ℤ-coe�cients.

The homology decompositions forX are usually proved by building up a cel-
lular �ltration of X, and then showing that after smashing with the spectrum
Hℤ, the connecting maps are all trivial. For this purpose, the cells are taken
of the form D(V), a disk in a unitary G-representation V, so that the �ltration
quotients are wedges of SV , the one-point compacti�cation of V. There is a
di�erent concept of G-CW-complexes with cells of the type G∕H ×Dn for sub-
groups H ≤ G, but they are not useful from the point of view of homology
decompositions.

In this paper, the G-manifolds X(T) are de�ned using admissible weighted
trees T [9], which are directed rooted trees with G-action, with each vertex
carrying a weight comprising 3 integers a, b,m of gcd 1 (see �gure below).
The underlying manifolds ℂP2(a, b;m) are copies of ℂP2, which have an ac-
tion of the group Cm, by identifying ℂP2 as the space of complex lines in a
three-dimensional complex representation of Cm. The numbers a, b are used
to describe the irreducible representations therein. We �x � as a complex 1-
dimensional representation where Cm acts via mtℎ-roots of unity, and in these
terms ℂP2(a, b;m) = P(�a + �b + 1ℂ). The admissible part of the de�nition of
the tree allows us to construct the equivariant connected sum in the �gure.

v0 w(v0) = (a0, b0; 15)

v1 w(v1) = (a1, b1; 15)

v2 w(v2) = (a2, b2; 15)

v3
g ⋅ v3

g2 ⋅ v3

w(v3) = w(g ⋅ v3) = w(g2 ⋅ v3) = (a3, b3; 5)

T

X(T) =
[
ℂP2(a0, b0; 15)

#ℂP2(a1, b1; 15)#ℂP2(a2, b2; 15)
]

#C15 ×C5 ℂP
2(a3, b3; 5)

C15 = ⟨g ∣ g15 = 1⟩

Figure 1.0. Example of an equivariant connected sumde�ned
using a tree.

For a cyclic group Cm of odd order, we prove two decomposition results (see
Theorem 4.5 and Theorem 4.9), where ΣVHℤ denotesHℤ∧SV . In the theorem
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below, the notation T0 stands for the Cm-�xed points of T, and Td refers to the
vertices whose stabilizer is Cd for d ∣ m.

Theorem A. a) If T is an admissible weighted tree such that all �xed vertices v
with weight w(v) = (av, bv;mv) satisfy gcd(av − bv, mv) = 1, then

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�a0+�b0Hℤ ∨
(⋁

T0

Σ�Hℤ
)

∨
( ⋁

[�]∈Td∕Cm ,d≠m
Cm∕Cd+ ∧ Σ

�a�−b�Hℤ
)

where w(v0) = (a0, b0;m) is the weight of the root vertex.
b) Let T be an admissible weighted tree such that for the root vertex v0 with weight
w(v0) = (a0, b0;m), one of a0 or b0 is zero. Then,

Hℤ ∧ X(T)+ ≃ Hℤ ∨ Σ�+2Hℤ ∨
( ⋁

[�]∈Td∕Cm

Cm∕Cd+ ∧ Σ
�a�−b�Hℤ

)
.

For example in Figure 1.0, if gcd(ai − bi, 15) = 1 for 0 ≤ i ≤ 2, we are in the
case a) of Theorem A which implies the decomposition

Hℤ ∧ X(T)+ ≃ Hℤ ∨ Σ�a0+�b0Hℤ ∨
(
(Σ�Hℤ)∨3

)
∨

(
C15∕C5+ ∧ Σ

�a3−b3Hℤ
)
.

On the other hand if a0 = 0, we are in case b) of Theorem A, and the second
summand here includes d = m. Also observe that the condition implies that
a0 − b0 is relatively prime to 15. Therefore, we have

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�+2Hℤ ∨ Σ�Hℤ ∨ Σ�a1−b1Hℤ

∨ Σ�a2−b2Hℤ ∨
(
C15∕C5+ ∧ Σ

�a3−b3Hℤ
)
.

The results in Theorem A depend on a hypothesis on the weights at vertices
which are �xed under the Cm-action. We further prove that these hypotheses
may be removed when the group is of prime power order. (See Theorem 5.7
and Theorem 5.10)

Theorem B. a) Let T be an admissible weighted Cp-equivariant tree such that
p ∤ a0, b0 but p ∣ av − bv for some �xed vertex v. Then,

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�+2Hℤ ∨
( ⋁

�(T)+1
Σ�Hℤ

)

∨
( ⋁

 (T)−1
Σ2Hℤ

)
∨

( ⋁

Te∕Cp

Cp∕e+ ∧ Σ
2Hℤ

)
.

b) Let T be an admissible weighted Cpn -equivariant tree. Suppose � > 0 is the
maximumpower ofp that dividesav−bv among the �xed vertices v andp ∤ a0, b0.
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Then

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�+�p
�
Hℤ ∨

( n⋁

i=0
(Σ�p

i
Hℤ)∨WT(i)

)

∨
( ⋁

[�]∈Td∕Cpn , d≠pn
Cpn∕Cd+ ∧ Σ

�a�−b�Hℤ
)
.

In the statements of Theorem B, we observe that the complementary cases
are proved in TheoremA. The notations �(T),  (T) andWT(i) are clari�ed later
in the document. The techniques used in the proof are the cellular �ltration of
the manifolds X(T), and the following result about the RO(Cm)-graded homo-
topy groups ofHℤ. (See Theorem 3.8)

Theorem C. Let � ∈ RO(Cm) be such that |�| is odd, and |�H| > −1 implies
|�K| ≥ −1 for all subgroups K ⊇ H. Then �Cm� (Hℤ) = 0.

1.1. Organization. In Section 2, we recall the equivariant connected sum
construction leading to the de�nition of tree manifolds associated to admissi-
ble weighted trees in [9]. In Section 3, we introduce the facts from equivariant
stable homotopy theory required in the subsequent sections and prove Theo-
rem C. In Section 4, we prove the homology decompositions over the group Cm
(Theorem A), and �nally in Section 5, we prove the results over prime power
groups (Theorem B).

1.2. Notation. Throughout this paper, G denotes the cyclic group of order m,
wherem is odd, and g denotes a �xed generator of G. Whenever the notation p
is used for a prime, it is supposed to be odd. For an orthogonal G-representation
V, S(V) denotes the unit sphere,D(V) the unit disk, and SV the one-point com-
pacti�cation ofV, which is≅ D(V)∕S(V). The notation 1ℂ is used for the trivial
complex representation and 1 for the real trivial representation.

1.3. Acknowledgements. The �rst author would like to thank Surojit Ghosh for
some helpful conversations in the proof of Theorem 3.8. The research of the
�rst author was supported by the SERB MATRICS grant 2018/000845. The re-
search of the second authorwas supported by theNBHMgrant no. 16(21)/2020/11.
The authors would like to thank the referee for detailed comments about the
exposition.

2. Tree manifolds
In this section, we discuss the construction of connected sum ofG-manifolds

focussing on the special case of a connected sum of complex projective planes
in the case G = G. In the latter case, the construction is governed through a
system of explicit combinatorial data expressed as admissible weighted trees
(see [9] for details). We refer to these as tree manifolds.

2.1. Equivariant connected sums. LetX andY be two smoothG-manifolds
of the same dimension n. The equivariant connected sumX#Y depends on the
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following data
1) Points x ∈ XG , y ∈ YG .
2) An orientation reversing isomorphism of real G-representations ' ∶ TxX →
TyY.
Given the data above, one may conjugate ' with the exponential map to obtain
a di�eomorphism of punctured disks near x and y. This identi�cation is then
performed on X ⧵ {x} ⊔ Y ⧵ {y} to obtain the equivariant connected sum X#Y.
One readily observes the following homotopy co�bration sequences

X ⧵ {x}→ X#Y → Y, and Y ⧵ {y}→ X#Y → X. (2.2)

An additional feature in theG-equivariant situation is the orbit-wise connected
sum. Let X be a G-manifold and Y an N-manifold for a subgroup N. The data
underlying an orbit-wise connected sum is
1) A point y ∈ YN , and a point x ∈ X such that the stabilizer of x is N.
2) An orientation reversing isomorphism of realN-representations ' ∶ TxX →
TyY.
The condition 1) implies that x induces the inclusion of an orbit ix ∶ G∕N →
X. Now we may again use the exponential map to conjugate ' and identify
punctured disks at points of G∕N ↪ X with those at points of G∕N × {y} ↪
G ×N Y. The resulting connected sum is denoted by X#G ×N Y. The direct
analogues of (2.2) are

X ⧵ {x}→ X#G ×N Y →
G ×N Y
G∕N × {y}

,

and,
G ×N (Y ⧵ {y})→ X#G ×N Y → X∕ix(G∕N).

The second sequence has a re�nement in the form of a homotopy pushout

G ×N (Y − {y}) //

��

G ×N C(Y − {y})

ix◦�1
��

X#G ×N Y // X.

(2.3)

2.4. Linear actions on projective spaces. The principal construction of in-
terest in this paper is the equivariant connected sum of projective spaces. A
method to construct a G-action on a complex projective space ℂPn is to write
it as P(V), the projectivization of a unitary representation V. We call these lin-
ear actions. If � is a 1-dimensional complex representation of G, there is an
equivariant homeomorphism P(V) ≅ P(V ⊗ �). In the case G = G, we �x the
following notation for its representations.

2.5. Notation. The irreducible complex representations of the group G are 1-
dimensional, and up to isomorphism are listed as 1ℂ, �, �2,… , �m−1 where �
sends g to e2�i∕m, the mtℎ root of unity. The non-trivial real irreducible repre-
sentations are realizations of these. The realization of �i is also denoted by the
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same notation. Note that �i and �m−i are conjugate and hence their realizations
are isomorphic by the natural ℝ-linear map z ↦ z̄ which reverses orientation.

In this paper, our principal objects of interest are linear G-actions on ℂP2,
that is, we write ℂP2 as P(V) where V is a 3-dimensional complex represen-
tation of G. In terms of the notation above, V is a sum �a + �b + �c for some
integers a, b and c viewed (mod m). As P(V) ≅ P(V⊗�) for 1-dimensional �,
we may assume c = 0 in the expression for V. We denote this by ℂP2(a, b;m).
Often we use the notation ℂP2(a, b;m′) for a divisor m′ of m. This denotes
the Cm′-space P(1ℂ + �a + �b). In this expression, note that the restriction of
ℂP2(a, b;m) to the subgroup Cm′ is ℂP2(a, b;m′).

Proposition 2.6. The manifolds ℂP2(a, b;m) satisfy the following properties.
1) If gcd(a, b,m) = d, then ℂP2(a, b;m) ≅ �∗ℂP2(a

d
, b
d
; m
d
) the pullback via

� ∶ Cm → Cm∕Cd ≅ Cm∕d.
2) There are G-homeomorphisms

ℂP2(a, b;m) ≅ ℂP2(a − b,−b;m) ≅ ℂP2(−a, b − a;m),

and ℂP2(a, b;m) ≅ ℂP2(b, a;m).
3) The points p1 = [1, 0, 0], p2 = [0, 1, 0], and p3 = [0, 0, 1] are �xed by G. Their
tangential representations are given by

Tp1ℂP
2(a, b;m) ≅ �b−a + �−a, Tp2ℂP

2(a, b;m) ≅ �a−b + �−b,

Tp3ℂP
2(a, b;m) ≅ �a + �b.

The proof of the above easily follows from the homeomorphism P(V) ≅
P(V ⊗ �), and the identi�cation of the tangent bundle of ℂP2 as Hom(, ⟂),
where  is the canonical line bundle. In this paper, we call the numbers (a, b)
associated to the representation �a+�b rotation numbers. As in [9], we assume
that for the manifold denoted by ℂP2(a, b;m), gcd(a, b,m) = 1.

We also denote S4(a, b;m) for theG-action on S4 by identifying it with S�a+�b .
This may also be described as S(1+�a+�b), where 1 is the trivial real represen-
tation of dimension 1. This action has �xed points 0 and∞, and the tangential
representations are �a + �b and �−a + �−b respectively.

We now list the conditions required to form equivariant connected sums of
copies of ℂP2(a, b;m) and S4(a, b;m).

Proposition 2.7. 1) The connected sum ℂP2(a, b;m)#ℂP2(a′, b′;m) may be
formed if and only if for one of the equivalent choices of (a′, b′) as in 2) of
Proposition 2.6, ±(a′, b′) ∈ {(a,−b), (a − b, b), (a, b − a)}. Once this condi-
tion is satis�ed, there is a natural choice of data for the connected sum unless
a = b or one of a, b is 0.
2) The connected sum ℂP2(a, b;m)#S4(a′, b′;m)may be formed if and only if
±(a′, b′) ∈ {(a,−b), (a − b, b), (a, b − a)}. Here, ℂP2(a, b;m)#S4(a′, b′;m) is
G-homeomorphic to ℂP2(a, b;m).
3) Form′ ∣ m butm′ ≠ m, the connected sumℂP2(a, b;m)#G×Cm′ℂP

2(a′, b′;m′)
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may be de�ned if and only if the following are satis�ed
a) One of a, b, or a − b satis�es the equation gcd(x,m) = m′.
b) One of a′, b′, or a′−b′ is 0, and the others are up to sign two of the numbers
in {−b,−a, b − a} not divisible bym′.

The statements 1) and 2) follow from the examination of tangential repre-
sentations at �xed points of ℂP2(a, b;m), and 3) follows from the results in [9,
§1.C].

2.8. Admissible weighted trees. The observations above inform us that the
G-connected sums of di�erent ℂP2(a, b;m)s and S4(a, b;m)s may be formed
onlywhen certain relations are satis�ed between theweights involved. We now
lay down the sequence of combinatorial criteria which allow us to form such a
connected sum. These are written in the form of weights attached to trees with
a G-action satisfying required conditions, called admissible weighted trees.

Recall that a group action on a tree is given by an action on the vertices which
preserves the adjacency relation. We de�ne two types of trees called Type I and
Type II.

De�nition 2.9. An admissible weighted tree is a tree with G-action having the
following properties

(1) There is a G-�xed vertex v0 called the root vertex of the tree. In case of
a type II tree, v0 is the unique G-�xed vertex.

(2) The vertices of T are arranged in levels starting from zero according to
the distance from the root vertex with edge length considered to be 1.
Observe that G preserves the levels and every edge goes from level L to
L + 1 for some L.

(3) Each vertex v is equipped with a weight w(v) = (av, bv;mv) (de�ned
up to equivalence (av, bv;mv) ∼ (bv, av;mv)) such that mv ∣ m and
mv0 = m = |G|, and gcd(av, bv, mv) = 1 for all v.

(4) For every vertex v, Stab(v) = Cmv
⊂ G. Also w(g.v) = w(v), so that

weights of vertices in the same orbit are equal.
(5) In the case of type I trees, there are at most three vertices v of level 1

such that mv = m. Each of these vertices have distinct weights (up to
equivalence) among {±(av0 ,−bv0),±(av0 , bv0 − av0),±(bv0 , av0 − bv0)}.

(6) Vertices with the same weight (up to equivalence and sign) do not have
a common neighbour unless they are related by the G-action.

(7) Suppose there is an edge e from v in level L to u in level L + 1. Then
mu ∣ mv and
(a) Ifmu = mv and v is not the root vertex, then±(au, bu) ∈ {(av, bv −

av), (av − bv, bv)}.
(b) Ifmu ≠ mv then one ofav, bv, av−bv satis�es the equation gcd(x,m)

= mu, accordingly bu = 0, andau is a value among± {−av,−bv, bv−
av} not divisible bymu.

As far as De�nition 2.9 is concerned, type II trees are only a special subset
of type I trees, but the construction of the tree manifolds associated to them
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v0
w(v0) = (a0, b0; 21)

v1
g ⋅ v1

g2 ⋅ v1

w(v1) = w(g ⋅ v1) = w(g2 ⋅ v1) = (a1, b1; 7)

T

X(T) = S4(a0, b0; 21)

#C21 ×C7 ℂP
2(a1, b1; 7)

Figure 2.9. Example of a type II tree

will be di�erent. In the case of type I trees (for example in Figure 1.0) the tree
manifold associated to it is a connected sum of copies of ℂP2 with appropriate
weights. For type II trees (see Figure 2.9), the root vertex gives a copy of S4
in the connected sum and the rest of the vertices contribute ℂP2. One should
observe here that if the root S4 is connected to aℂP2 associated to a �xed vertex,
one may express the resultant tree manifold as one arising from a type I tree.

Remark 2.10. The de�nition of admissible, weighted tree above is the same
de�nition as [9, §1.D]. To see this, one may observe the following

∙ The tree as de�ned inherits a direction, where an edge e moving from
level L to L+ 1 is directed so that )0e lies in level L, and )1e lies in level
L + 1. One also observes that a vertex in level L > 0 is connected to a
unique vertex in level L − 1.

∙ The partial order may be generated from the condition that )0e < )1e.
This implies that two vertices are comparable if they are connected by a
sequence of edges, and in this case the order relation is determined by
the level.

∙ The weightsw(v) = (av, bv;mv) are so de�ned that we obtain an equiv-
alent weight under the operations (av, bv)↦ (bv, av). This is the equiv-
alence of weights referred to in the de�nition above.

∙ The conditions (5) and (7) above re�ect the condition “pair of match-
ing �xed components” of [9]. As we shall see, this is a slightly stronger
condition that also includes the data required for us to form the corre-
sponding equivariant connected sum.

2.11. Notation. The number n(T) associated to an admissible, weighted tree
T with vertex set V(T) is de�ned as

n(T) = {
#(V(T)) if T is of type I
#(V(T)) − 1 if T if of type II.

The signi�cance of the notation n(T) is that we associate to an admissible
weighted tree T, a G-manifold X(T) whose underlying space is #n(T)ℂP2. We
will use the notation T0 for TG, and Td = {v ∈ T ∣ Stab(v) = Cd}. Observe that
G∕Cd acts freely on Td. Also note that T0 is always a sub-tree of T, while Td is
not.
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2.12. Construction of connected sums along trees. The construction of
X(T), theG-manifold obtained by the connected sumof linear actions according
to the data described in the treeT is carried out in [9, Theorem1.7]. We describe
it’s main features below. For a vertex v ∈ V(T), we use the notation

ℂP2v ∶= ℂP2(av, bv;mv).

Proposition 2.13. Given an admissible, weighted tree T, there is a G-manifold
X(T) such that

(1) The underlying space of X(T) is #n(T)ℂP2.
(2) If T is of type I, thenX(T) ≅ a connected sum of copies ofℂP2v for every

vertex v of T. In case the vertex v is stabilized by a proper subgroup Cd
of G, the ℂP2g⋅v assemble together equivariantly as G ×Cd ℂP

2
v.

(3) IfT is of type II, thenX(T) ≅ a connected sum of copies ofℂP2v for every
non-root vertex v of T, and a copy of S4(av0 , bv0 ;m). As in (2), if the
vertex v is stabilized by a proper subgroup Cd of G, the ℂP2g⋅v assemble
together equivariantly as G ×Cd ℂP

2
v.

(4) For a non-root vertex v in level L, which is connected tow in level L−1
with mv = mw, the points where the connected sum is performed are
[0, 0, 1] ∈ ℂP2v, and the one in ℂP2w determined by the condition (7)(a)
of De�nition 2.9 if w is not the root vertex, or by (5) of De�nition 2.9 if
w = v0.

(5) For a non-root vertex v in level L connected tow in level L−1withmv <
mw, the points where the connected sum is performed are [0, 0, 1] ∈
ℂP2v, and some equivalent choice of point in ℂP2w determined by the
condition (7) (b) of De�nition 2.9. Equivalent choices of the latter give
equivalent manifolds [9, Lemma 1.2].

We now elaborate further on (4) and (5) of Proposition 2.13 above. We start
with an example.

Example 2.14. In order to see if ℂP2(a, b;m)#ℂP2(a′, b′;m) is de�nable we
may apply 1) of Proposition 2.7. Another method of saying this is that there is
an expression of the second summand as ℂP2(a′, b′;m) such that ±(a′, b′) ∈
{(a,−b), (a − b, b), (a, b − a)}. Once this choice is made, say (a′, b′) = (a,−b),
we get a natural data for the equivariant connected sum as

(1) The point p ∈ ℂP2(a, b;m) used in the connected sum is [0, 0, 1], and
the corresponding tangential representation is �a + �b.

(2) The point q ∈ ℂP2(a′, b′;m) used in the connected sum is [0, 0, 1], and
the corresponding tangential representation is �a′ + �b′ = �a + �−b.

(3) The natural orientation reversing isomorphism

TpℂP2(a, b;m)→ TqℂP2(a′, b′;m)

is given by identity on the factor �a and complex conjugation on the
factor �b.
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In (4) of Proposition 2.13, the choice of (av, bv) implies that

T[0,0,1]ℂP2v = �av + �bv

equals one of �aw + �bw−aw , �−aw + �aw−bw , �bw + �aw−bw , �−bw + �bw−aw , in the
case w is not the root vertex. We also note the tangential representations

T[1,0,0]ℂP2w = �−aw + �bw−aw , T[0,1,0]ℂP2w = �−bw + �aw−bw .

Among all the possibilities for T[0,0,1]ℂP2v, the �rst two are compatible with
T[1,0,0]ℂP2w, and the second two are compatible with T[0,1,0]ℂP2w. This demon-
strates how the weights imply the choice of connected sum point in ℂP2w. The
argument in Example 2.14 applies here to construct a canonical orientation re-
versing isomorphism among the tangential representations. Finally the condi-
tion (6) of De�nition 2.9 implies that the choice of connected sum point is not
the same as that of any other vertex.

We now look at (5) of Proposition 2.13. The conditionmv < mw implies that
mv is a proper divisor of mw. Consider O ≅ Cmw

∕Cmv
, the orbit of v under the

Cmw
-action. From (4) of De�nition 2.9, we observe that all the vertices inOhave

weight w(v). The connected sum formed here is ℂP2w#Cmw
×Cmv ℂP

2
v, which

connects the manifolds at all the vertices in O to ℂP2w at one go by writing

Cmw
×Cmv ℂP

2 ≅
∐

ℎ∈Cmw∕Cmv

ℎ ⋅ ℂP2v =
∐

ℎ∈Cmw∕Cmv

ℂP2ℎ⋅v.

In this case, we have bv = 0 andmv divides one of the numbers aw, bw, bw−aw
but notmore than one (unlessmv = 1) as gcd(aw, bw, mw) = 1. Wemay assume
gcd(bw, mw) = mv without loss of generality, and it implies av = ±aw. The �rst
part of the equivariant data for the connected sum is the point [0, 0, 1] in ℂP2v
with tangential Cmv

-representation �av+1ℂ (as a complex representation). The
next part is a choice of connected sum point which is required to have stabilizer
Cmv

, and hence belongs to

P(�bw + 1ℂ) − {[0, 1, 0], [0, 0, 1]} ⊂ P(�aw + �bw + 1ℂ) = ℂP2w.

For any point
q ∈ P(�bw + 1ℂ) − {[0, 1, 0], [0, 0, 1]},

the tangential Cmv
-representation is 1ℂ + �aw . We now have a canonical orien-

tation reversing isomorphism between T[0,0,1]ℂP2v and TqℂP2w which is conju-
gation on �av if av = −aw, or conjugation on the other factor if av = aw. As
P(�bw + 1ℂ) − {[0, 1, 0], [0, 0, 1]} is connected, this de�nes the equivariant con-
nected sum up to di�eomorphism ([9, Lemma 1.2]). Note also that there is a
completely analogous version of the above if w was the root vertex of a type II
tree, and ℂP2w was replaced by S�aw+�bw .
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3. Equivariant homology for cyclic groups
In this section, we recall the de�nition of equivariant homology with coef-

�cients in a Mackey functor. The main objective is to describe a theorem on
ℤ-homology which allows us to construct the homology decompositions in the
following sections. Equivariant homology and cohomology possess the richest
structure when the coe�cients are Mackey functors [5], which we summarize
in explicit terms below.

De�nition 3.1. A G-Mackey functor1 M is a collection of commutative
G∕H-groups M(G∕H) for each subgroup H ≤ G, accompanied by transfer
trHK ∶ M(G∕K) → M(G∕H) and restriction resHK ∶ M(G∕H) → M(G∕K) for K ≤
H ≤ G such that

(1) trHJ = trHK tr
K
J and resHJ = resKJ res

H
K for all J ≤ K ≤ H.

(2) trHK (.x) = trHK (x) for all x ∈ M(G∕K) and  ∈ H∕K.
(3)  ⋅ resHK (x) = resHK (x) for all x ∈ M(G∕H) and  ∈ H∕K.
(4) resHK tr

H
J (x) =

∑
∈H∕JK  ⋅ tr

K
J∩K res

J
J∩K(x) for all subgroups J, K ≤ H.

Example 3.2. The Burnside ring Mackey functor denoted A is described by
A(G∕H) = A(H), the Burnside ring of H. This is the group completion of the
monoid of �nite H-sets up to isomorphism. The restriction maps are given by
restricting the action, and the transfermaps are given by inducing up the action
: S ↦ H ×K S for K ≤ H.

In this paper, we work primarily with the constant Mackey functor ℤ de-
scribed by

ℤ(G∕H) = ℤ, resHK = Id, trHK = [H ∶ K],
for K ≤ H ≤ G. One may make a dual construction to de�ne the Mackey
functor ℤ∗ by

ℤ∗(G∕H) = ℤ, resHK = [H ∶ K], trHK = Id,

for K ≤ H ≤ G. For an Abelian group C, the Mackey functor ⟨C⟩ is described
by

⟨C⟩(G∕H) = {
C ifH = G
0 otherwise.

The importance of Mackey functors from the point of view of ordinary coho-
mology in the equivariant case is due to the following result.

Theorem 3.3. [8, Theorem 5.3] For aMackey functorM, there is an Eilenberg-
MacLane G-spectrumHM which is unique up to isomorphism in the equivari-
ant stable homotopy category.

1This is a simpli�cation in the case G is Abelian. Otherwise the double coset formula (4) has
a slightly more complicated expression.
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This Eilenberg-MacLane spectra are those whose integer-graded homotopy
groups are concentrated in degree 0 in the category of equivariant orthogonal
spectra [14]. The homotopy category of equivariant orthogonal spectra is called
the equivariant stable homotopy category, where one has desuspension func-
tors for one-point compacti�cations of orthogonal G-representations.

Example 3.4. For a G-spectrum X, the equivariant homotopy groups possess
the structure of a Mackey functor �Gn(X), de�ned by the formula

�Gn(X)(G∕H) ∶= �n(XH).

In fact, the grading may be extended over � ∈ RO(G) via the formula

�G�(X)(G∕K) ≅ Ho-G-spectra (S� ∧ G∕K+, X),

which is in fact equal to �K� (X). Analogously the cohomology theory and ho-
mology theory associated toMackey functors areRO(G)-graded andmay also be
equipped with the structure of a Mackey functor which on objects is described
as

H�
G(X;M)(G∕K) ≅ Ho-G-spectra (X ∧ G∕K+,Σ�HM),

HG
�(X;M)(G∕K) ≅ Ho-G-spectra (S� ∧ G∕K+, X ∧HM),

for � ∈ RO(G). For the Mackey functor ℤ, the integer graded groups at G∕G
compute the cohomology of X∕G, the orbit space of X under the G-action.

The Mackey functor ℤ has a multiplicative structure which makes it a com-
mutative Green functor [16, Chapter XIII.5]. The consequence of this multipli-
cation is that the cohomology H★

G (X;ℤ) has a graded commutative ring struc-
ture. The multiplicative structure also allows us to consider the Mackey func-
tors which are ℤ-modules, and examples of these are the homology and the
cohomology Mackey functorsHG

�(X;ℤ) andH�
G(X;ℤ).

Remark 3.5. For anyM ∈ ℤ-ModG, tr
H
K res

H
K equals the multiplication by in-

dex [H ∶ K] for K ≤ H ≤ G [17, Theorem 4.3].

The spectrumHℤ also has the followingwell-known relation after smashing
with representation spheres.

Proposition 3.6. If gcd(d,m) = 1, then

Hℤ ∧ S�k ≃ Hℤ ∧ S�dk .

Proof. We check that S−�dk ∧ Hℤ is an Eilenberg MacLane spectrum up to
suspension, whose underlying Mackey functor depends on k but not on d. For
this note that

�Gi (S
−�dk ∧Hℤ)(G∕L) ≅ H−i

G (S
�dk ;ℤ)(G∕L) ≅ H̃−i

L (S
�dk ;ℤ) ≅ H̃−i(S�dk∕L;ℤ).
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Now observe that the orbit space S�dk∕L ≃ S2, so that the groups above are ℤ
for i = −2, and 0 otherwise. Therefore, we obtain

S−�dk ∧Hℤ ≃ Σ−2HM,

where M(G∕L) = ℤ for L ≤ G. For a subgroup K = Cr1 of another subgroup
L = Cr2 of G, the restriction M(G∕L) → M(G∕K) is induced by the quotient
S�dk∕K → S�dk∕L, which is a map of degree r2⋅gcd(r1,dk)

r1⋅gcd(r2,dk)
which equals r2⋅gcd(r1,k)

r1⋅gcd(r2,k)
as gcd(d,m) = 1. The transfer maps are then determined by Remark 3.5. It
follows that S−�dk ∧ Hℤ ≃ S−�k ∧ Hℤ if gcd(d,m) = 1, so that Hℤ ∧ S�k ≃
Hℤ ∧ S�dk . �

We may observe from Proposition 3.6 that Σ�k−�dkHℤ ≃ Hℤ. This means in
the graded commutative ring �★Hℤ (graded over RO(G)), there are invertible
classes in degrees �k − �dk whenever (d,m) = 1. As a consequence the ring
�★Hℤ is determined from it’s values at the gradings which are linear combi-
nations of �k for k ∣ m. We recall the following computation of �

Cp
★ (Hℤ) [6,

Appendix B].

�
Cp
� (Hℤ) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

ℤ if |�| = 0, |�Cp | ≥ 0
ℤ∗ if |�| = 0, |�Cp | < 0
⟨ℤ∕p⟩ if |�| < 0, |�Cp | ≥ 0, and |�| even
⟨ℤ∕p⟩ if |�| > 0, |�Cp | < −1, and |�| odd
0 otherwise.

(3.7)

The homology decomposition theorems for G-spaces with even cells require
proving that certain odd degree homotopy groups of Hℤ are 0. In this paper,
we use the following result.

Theorem 3.8. Let � ∈ RO(G) be such that |�| is odd, and |�H| > −1 implies
|�K| ≥ −1 for all subgroups K ⊇ H. Then �G�(Hℤ) = 0.

Proof. The proof relies on [4, Proposition 4.3], where the same result is proved
for the groups Cpn where p is an odd prime. Here, note that

�G�(Hℤ) ≅ H−�
G (S0;ℤ),

so that the hypothesis in statement c) of [4, Proposition 4.3] corresponds to our
hypothesis on � over here.

We now suppose that the result is true for all subgroups of G and then prove
it for G. In this way, the result will be true for all cyclic groups of odd order. The
inductive hypothesis states that for all proper subgroups L of G and for all � ∈
RO(L) satisfying |�H| > −1 implies |�K| ≥ −1 for all subgroups L ⊇ K ⊇ H,
�L�(Hℤ) = 0.
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Now suppose that � satis�es the hypothesis of the theorem, and let x ∈
�G�(Hℤ). This implies that the restriction of � to a subgroup L satis�es the hy-
pothesis for L, so that by the inductive hypothesis we have �L�(Hℤ) = 0. As the
result has already been proved at prime powers in [4, Proposition 4.3], we may
assume thatm is divisible by at least two distinct primes p and q. We now use
the inductive hypothesis for Cm∕p and Cm∕q, and compute

px = [G ∶ Cm∕p]x = trGCm∕p res
G
Cm∕p

(x) = 0,

as �G�(Hℤ)(G∕Cm∕p) = �
Cm∕p
� (Hℤ) = 0, and analogously,

qx = [G ∶ Cm∕q]x = trGCm∕q res
G
Cm∕q

(x) = 0.

It follows that x = 0. �

Theorem 3.8 is useful to prove that cohomology of G-spaces which are con-
structed by attaching even cells of the typeD(V), is a freemodule over the coho-
mology of a pointH★

G (S
0;ℤ). Such results have been proved in [12], [1], [2], in

the context of equivariant projective spaces and Grassmannians. A more care-
ful argument has also been used in [6] and [7], where the free module property
has been proved for all �nite complexes obtained by attaching cells of the type
D(V) in even dimensions.

4. Equivariant homology decompositions for tree manifolds
In this section, we obtain homology decompositions for the tree manifolds

de�ned in Section 2. Recall that, ℂP2(a, b;m) serves as a building block for
these manifolds. We describe a cellular decomposition of complex projective
spaces, which has been studied along with cohomology of such spaces in [12,
§3] and [1, §8.1].

4.1. Cellular �ltration of projective spaces. The equivariant complex pro-
jective space P(V) is built up by attaching even dimensional cells of the type
D(W) for the realization of complex representationsW. To see this, let Vn be
a complex G-representation that decomposes in terms of irreducible factors as
Vn =

∑n
i=0 �i, and letWn denote the G-representation �−1n ⊗

∑n−1
i=0 �i. Consider

the G-equivariant map D(Wn)→ P(Vn) ≅ P(�−1n ⊗Vn) de�ned by

(z0, z1,… , zn−1)↦ [z0, z1,… , zn−1, 1 −
n−1∑

i=0
|z2i |],

where zi ∈ �−1n ⊗ �i. Restricting this map to S(Wn), we see that its image lies
in P(Vn−1) (which may be regarded as a subspace of P(Vn) in the obvious way),
and it is a homeomorphism from D(Wn) ⧵ S(Wn) to P(Vn) ⧵ P(Vn−1). Thus,
P(Vn) is obtained fromP(Vn−1) by attaching the cellD(Wn) along this boundary
map. Observe that this �ltration depends on the choice of the ordering of the
�i’s.
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Returning to our exampleℂP2(a, b;m) = P(�a⊕�b⊕ 1ℂ), we see that there
are six possible ways to build it. This choices will play a crucial role in proving
the homology decomposition theorems, as we will see below.

Example 4.2. Writing ℂP2(a, b;m) = P(�a⊕�b⊕ 1ℂ) in this order, the cellu-
lar �ltration above gives us the following co�bre sequence (using the fact that
P(�a ⊕ �b) ≅ S�a−b )

S�a−b → ℂP2(a, b;m)→ S�a+�b .

Using the other orderings, we also obtain the following co�bre sequences

S�a → ℂP2(a, b;m)→ S�a−b+�−b , S�b → ℂP2(a, b;m)→ S�b−a+�−a .

The homology decomposition is obtained by smashing these co�bre sequences
withHℤ and trying to prove a splitting. For example, in the co�bre sequence

Σ�a−bHℤ→ Hℤ ∧ ℂP2(a, b;m)→ Σ�a+�bHℤ, (4.3)

the connecting map Σ�a+�bHℤ → Σ�a−b+1Hℤ is a Hℤ-module map which is
classi�ed up to homotopy by�G0 (Σ

�a−b+1−�a−�bHℤ). This group is now analyzed
using Theorem 3.8 at � = −�a−b − 1 + �a + �b. Note that

|(−�a−b−1+�a+�b)Cd | =
⎧

⎨
⎩

−1 if d does not divide any of a, b or a − b
1 if d divides exactly one of a, b but not a − b
−3 if d divides a − b but not a or b.

Observe that |�| = 1 > 0, so in order to show�G�Hℤ = 0, we need |�Cd | ≥ −1
for all d ∣ m. Under the condition gcd(a, b,m) = 1, this is true if and only if
a − b is relatively prime tom, and in this case,

Hℤ ∧ ℂP2(a, b;m) ≃ Σ�a−bHℤ ∨ Σ�a+�bHℤ ≃ Σ�Hℤ ∨ Σ�a+�bHℤ.

The last equivalence follows from Proposition 3.6. Using the other two co�bre
sequences for ℂP2(a, b;m), we see that a homology decomposition is obtained
if one of a, b, or a − b is relatively prime tom.

In the case of connected sums, we carry forward the homology decomposi-
tion argument of Example 4.2. We illustrate this in the following example.

Example 4.4. Let

X = ℂP2(a, b;m)#ℂP2(a′, b′;m)

where gcd(a′−b′, m) = 1 and gcd(a−b,m) = 1. We assume that the connected
sum point p inℂP2(a′, b′;m) has tangential representation �a′ ⊕�b′ as in 1) of
Proposition 2.7. Example 4.2 shows that

Hℤ ∧ ℂP2(a, b;m) ≃ Σ�a+�bHℤ ∨ Σ�Hℤ.
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To computeHℤ ∧ X, we use the co�bre sequence (2.2). We note that

ℂP2(a′, b′;m) ⧵ {p} ≃ P(�a′ ⊕ �b′) ≃ S�
a′−b′

.

Therefore, we obtain a co�bre sequence ofHℤ-modules

Σ�
a′−b′

Hℤ→ Hℤ ∧ X → Σ�a+�bHℤ ∨ Σ�Hℤ.

From Proposition 3.6, we have Σ�
a′−b′

Hℤ ≃ Σ�Hℤ, and now Theorem 3.8 im-
plies that the above sequence splits. Consequently, we obtain

Hℤ ∧ X+ ≃ Hℤ ∨ Σ�a+�bHℤ ∨ Σ�Hℤ ∨ Σ�Hℤ.

We now prove the main theorems of this section. Example 4.2 points out the
necessity of the hypothesis in the theorem.

Theorem 4.5. If T is an admissible weighted tree of type I with G-action such
that for all vertices v ∈ T0 withw(v) = (av, bv;mv), gcd(av−bv, mv) = 1, then,
theHℤ-moduleHℤ ∧ X(T)+ admits the decomposition

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�a0+�b0Hℤ ∨
(⋁

T0

Σ�Hℤ
)

∨
( ⋁

[�]∈Td∕G,d≠m
G∕Cd+ ∧ Σ

�a�−b�Hℤ
)

where w(v0) = (a0, b0;m). If T is of type II,

Hℤ ∧ X(T)+ ≃ Hℤ ∨ Σ�a0+�b0Hℤ ∨
( ⋁

[�]∈Td∕G, d≠m
G∕Cd+ ∧ Σ

�a�−b�Hℤ
)
.

Proof. We proceed by induction on L(T), the maximum level reached by ver-
tices of the tree. The induction starts from a tree with only the root vertex. In
the type I case, this is computed in Example 4.2. In case of type II, the manifold
is S4(a0, b0;m), for which we have the following decomposition

Hℤ ∧ S4(a0, b0;m)+ ≃ Hℤ ∨ Σ�a0+�b0Hℤ.

Assume that the statement holds whenever L(T) ≤ L. We prove it for trees with
L(T) = L + 1. Given a tree T we denote by T(L) the part of it up to level L, so
that the result holds forX(T(L)). We attach orbits of the level L+1 vertices one
at a time. We write down the argument for a type I tree, as the other case is
entirely analogous. Let O1,… ,Ok denote the orbits of the level L + 1 vertices.
It su�ces to prove the case when an orbitOi is added to T(L) together with the
attaching edges, which we denote by T(L) + Oi. The stabilizer for the vertices
in Oi can be either the whole group G or a smaller subgroup Cd. We deal these
cases separately.

Case 1: The stabilizer for the vertices in Oi is G, that is, Oi = {vi}. Suppose
w(vi) = (ai, bi;m). By Proposition 2.13, this implies that the tangential repre-
sentation at the connected sumpoint ofℂP2vi is �

ai ⊕ �bi . We have the following
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co�bre sequence from (2.2)

ℂP2(ai, bi;m) ⧵ D(�ai ⊕ �bi )→ X
(
T(L) +Oi

)
→ X

(
T(L)

)
.

The left hand term can be simpli�ed further as

ℂP2(ai, bi;m) ⧵ D(�ai ⊕ �bi ) ≃ P(�ai ⊕ �bi ) ≃ S�
ai−bi .

We now apply Proposition 3.6 to note that Σ�
ai−biHℤ ≃ Σ�Hℤ. Applying the

induction hypothesis on X
(
T(L)

)
, we get a co�bre sequence ofHℤ-modules

Σ�Hℤ→ Hℤ∧X
(
T(L)+Oi

)
→ Σ�a0+�b0Hℤ∨

( ⋁

T(L)d∕G
G∕Cd+ ∧Σ

�Hℤ
)
. (4.6)

In the second summand of the right side of (4.6), d is also allowed to equalm.
Next we observe that the co�bre sequence splits by showing that up to homo-
topy, the connecting map from each summand of the right hand side of equa-
tion (4.6) to Σ�+1Hℤ is zero. For the �rst summand, this follows from Example
4.2. In the second summand, if d = m, the connecting map is classi�ed up to
homotopy by an element of �−1(Hℤ) = 0. If d ≠ m, this is classi�ed by an el-
ement of �−1(Hℤ)(G∕Cd), which is also 0. Using Theorem 3.8 in this manner,
we obtain the required homology decomposition for X(T(L) +Oi).

Case 2: The vertices in Oi have stabilizer Cmi
< G and w(vi) = (ai, bi;mi).

Here, we are considering the connected sum of the form

X
(
T(L)

)
#G ×Cmi ℂP

2(ai, bi;mi).

Consider the following homotopy pushout square of G-spaces (2.3)

G ×Cmi S
�ai−bi G ×Cmi C(S

�ai−bi )

X
(
T(L) +Oi

)
X
(
T(L)

)
,

where C(S�
ai−bi ) denotes the cone of S�

ai−bi . Note that the Cmi
-representation

� is also the restriction of a Cm-representation that we have denoted also using
�. Further using the shearing homeomorphism, we may write G×Cmi S

�ai−bi ≅

G∕Cmi
× S�

ai−bi . In G-spectra, this gives rise to the co�bre sequence

G∕Cmi+
∧ S�

ai−bi
+ → X

(
T(L) +Oi

)
+
∨ G∕Cmi+

→ X
(
T(L)

)
+
.

We use
G∕Cmi+

∧ S�
ai−bi
+ ≃ (G∕Cmi+

∧ S�
ai−bi ) ∨ G∕Cmi+

,

to deduce the co�bre sequence

G∕Cmi+
∧ S�

ai−bi → X
(
T(L) +Oi

)
+
→ X

(
T(L)

)
+
.
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Nowwe take the smash product withHℤ to get the following co�bre sequence
ofHℤ-modules

G∕Cmi+
∧ Σ�

ai−biHℤ→ Hℤ ∧ X
(
T(L) +Oi

)
+
→ Hℤ ∧ X(T(L))+. (4.7)

Note that the summands of the right hand side of the form Σ�Hℤ and G∕Cd+∧
Σ�

a�−b�Hℤ support a trivial connecting map using Theorem 3.8, and the facts
a) |(�r − �s − 1)K| > −1 if |K| ∣ r but not s.
b) |(�r − �s − 1)K| < −1 if |K| ∣ s but not r.

We now note that if the stabilizer Cmv
of a vertex v satis�es mv < m, then

mv must divide a0 or b0 under the given hypothesis. In the case of type II trees,
this is clear from (7)(b) of De�nition 2.9 as themaximum value ofmv is reached
among the vertices at level 1. For a type I tree, the analogous role is played by
vertices v withmv < m that are joined to a vertex w of T0. The same condition
now implies that one of aw, bw, aw−bw is divisible bymv. The hypothesis rules
out the third case. Now we repeatedly apply condition (7)(a) of De�nition 2.9
along the path from w to the root vertex v0 with the hypothesis ruling out the
fact thatmv divides au − bu for any vertex u along the path. It follows thatmv
divides either au or bu for every vertex along this path. Therefore, mv divides
either a0 or b0. Now by Theorem 3.8 using the fact thatmi divides either a0 or
b0, the connecting map on the summand Σ�a0+�b0Hℤ is 0. This completes the
proof. �

Remark 4.8. Observe that Theorem 4.5 has no hypothesis if the tree T is of
type II. Henceforth, we prove further results for trees of type I. The hypothesis
in Theorem 4.5 is required crucially in the proof. For example, observe that
if a0 − b0 ≡ 0 (mod m), then the the co�bre sequence (4.3) gives rise to the
connecting map

Σ�a0+�b0Hℤ ,→ Σ3Hℤ,
which is determined by

�G
�a0+�b0−3

(Hℤ).

This group may be non-zero.

In the following theorem, we observe that if one of the rotation numbers
at the root vertex is 0, then we obtain a decomposition result with no further
hypothesis on the weights.

Theorem4.9. LetT be an admissibleweighted treewithG-action of type I such
that for the root vertex v0 withw(v0) = (a0, b0;m), one of a0 or b0 is zero. Then,
Hℤ ∧ X(T)+ admits the following decomposition

Hℤ ∧ X(T)+ ≃ Hℤ ∨ Σ�+2Hℤ ∨
( ⋁

[�]∈Td∕G
G∕Cd+ ∧ Σ

�a�−b�Hℤ
)
.

Note that in the rightmost summand d may be equal tom.
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Proof. We proceed by induction on L(T), the maximum level reached by the
tree as in Theorem 4.5. We may assume b0 is zero, so we have, gcd(a0, m) = 1.
At the initial case L(T) = 0, X(T) = ℂP2(a0, 0;m), and for this manifold, the
cellular decomposition gives us the following co�bre sequence ofHℤ-modules

Σ�
a0Hℤ→ Hℤ ∧ ℂP2(a0, 0;m)→ Σ�a0+2Hℤ. (4.10)

Note that Σ�a0Hℤ ≃ Σ�Hℤ. The connecting map in (4.10),

Σ�+2Hℤ ,→ Σ�+1Hℤ

is trivial up to homotopy, hence the co�bre sequence splits and we obtain

Hℤ ∧ ℂP2(a0, 0;m)+ ≃ Hℤ ∨ Σ�+2Hℤ ∨ Σ�Hℤ.

For the inductive step, assume the statement is true for the tree up to level L,
T(L) and we attach one orbit Oi of the level L + 1 vertices to T(L). We prove
the case when the stabilizer for the vertices in Oi is G. An analogous reasoning
applies to the other cases.

Suppose Oi = {vi} and w(vi) = (ai, bi;m). As in the proof of Theorem 4.5,
we get the following co�bre sequence

S�
ai−bi → X

(
T(L) +Oi

)
→ X

(
T(L)

)
.

Applying the induction hypothesis on X
(
T(L)

)
, we get a co�bre sequence of

Hℤ-modules

Σ�
ai−biHℤ→ Hℤ ∧ X

(
T(L) +Oi

)
→ Σ�+2Hℤ ∨

( ⋁

[�]∈T(L)d∕G
G∕Cd+ ∧ Σ

�a�−b�Hℤ
)
.

(4.11)
We claim that the connecting map is zero from each summand of the right
hand side of the equation to Σ�ai−bi+1Hℤ. For the �rst summand note that the
group

�G
�+1−�ai−bi

(Hℤ) = 0

as it satis�es the condition given in Theorem 3.8. To show the map

G∕Cd+ ∧ Σ
�a�−b�Hℤ→ Σ�ai−bi+1Hℤ

is trivial consider the group

�Cd� (Hℤ), � = �a�−b� − �ai−bi − 1

Then |�| = −1, and for all subgroups Cj, |�Cj | ≤ 1. Equality holds if and only
if j ∣ (a� − b�) and j ∤ (ai − bi). Then for any subgroup Ck ⊃ Cj, k does
not divide (ai − bi). So |�Ck | ≥ −1. Thus, � satis�es the condition given in
Theorem 3.8. Hence, the co�bre sequence in (4.11) splits and we obtain the
required decomposition. This completes the proof. �
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5. Homology decompositions for G = Cpn

In this section, we derive homology decompositions for tree manifolds in
the case G = Cpn without any restriction on weight. We start with an example
pointing out the need for a judicious choice of cellular �ltration and later, we
discuss how a reorientation may help to solve this. As a result, we observe
some dimension shifting phenomena among the summands in the homology
decomposition.

Example 5.1. Let p ∣ a − b. We know from the cellular �ltration of projective
spaces (Example 4.2) that ℂP2(a, b;p) = P(�a ⊕ 1ℂ ⊕ �b) gives us the co�bre
sequence

Σ�aHℤ→ Hℤ ∧ ℂP2(a, b;m)→ Σ�a−b+�−bHℤ ≃ Σ�+2Hℤ.

Since the connecting map is zero, we obtain

Hℤ ∧ ℂP2(a, b;m) ≃ Σ�+2Hℤ ∨ Σ�Hℤ. (5.2)

One may also write ℂP2(a, b;p) = P(�a ⊕ �b ⊕ 1ℂ) which yields the co�bre
sequence

Σ�a−bHℤ ≃ Σ2Hℤ→ Hℤ ∧ ℂP2(a, b;m)→ Σ2�Hℤ. (5.3)

We claim that the connectingmap of (5.3) is non-zero. Suppose on the contrary
that the connecting map is trivial. Then we have the splitting

Hℤ ∧ ℂP2(a, b;m) ≃ Σ2�Hℤ ∨ Σ2Hℤ. (5.4)

The Mackey functor
�
Cp
� (Hℤ ∧ ℂP2(a, b;m))

is isomorphic (3.7) toℤ from (5.2), while isomorphic toℤ∗⊕⟨ℤ∕p⟩ if (5.4) were
true, a contradiction. Hence, the connectingmap of (5.3) should be non-trivial.

Recall from Proposition 2.13 (4) that for a non-root vertex v ∈ V(T), the
connected sum is performed at the point [0, 0, 1] ∈ ℂP2v. At the root vertex
v0 with weight (a0, b0;m) we may change the weights to (−a0, b0 − a0;m) or
(a0 − b0,−b0;m) to obtain a G-homeomorphic manifold. This fact will be used
in the proof of the theorems below.

The following example summarizes how a reorientation is performed and
the resulting modi�cations of weights. We also demonstrate how this allows us
to make a judicious choice of cellular �ltration of X(T).

Example 5.5. Suppose we have an admissible weighted G-equivariant tree T
depicted as in the left of the �gure belowwith root vertex v0,w(v0) = (a0, b0;m),
and all other vertices haveweight asmentioned therein. We reorientT to obtain
a new treeT′whose root vertex isu0 = v3withw(u0) = (a3−b3,−b3;m), and let
for i = 1, 2, 3, the vertices ui ∈ T′ represent the vertices v3−i. Proposition 2.13
(4) tells us that the connected sum is performed at [0, 0, 1] ∈ ℂP2v3 for which

T[0,0,1]ℂP2v3 = �a3 + �b3 .
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This means there exists a G-�xed point p in ℂP2v2 so that

TpℂP2v2 = �a3 + �−b3 or �−a3 + �b3 .

Then, if necessary, we apply a suitable G-homeomorphism to map the point p
to [0, 0, 1], which allow us to perform the connected sum at the point [0, 0, 1] of
ℂP2u1 with ℂP

2
u0 . This explains the weights in the new tree T′. Note that X(T)

is G homeomorphic to X(T′).

v0 ∶ w(v0) = (a0, b0;m)

v1 ∶ w(v1) = (a1, b1;m)

v2 ∶ w(v2) = (a2, b2;m)

v3 ∶ w(v3) = (a3, b3;m)

u3 ∶ w(u3) = ±(a1,−b1;m)

u2 ∶ w(u2) = ±(a2,−b2;m)

u1 ∶ w(u1) = ±(a3,−b3;m)

u0 ∶ w(u0) = (a3 − b3,−b3;m)

Figure 5.5. An example of reorientation: The left tree has root
vertex v0 and the right one has root vertex u0 = v3.

Suppose in the tree T, m ∤ a0, b0, a1 − b1, a2 − b2 but m ∣ a3 − b3. For the
G-manifold X(T) = #3i=0ℂP

2
vi if we proceed as in the proof of Theorem 4.5, we

obtain the co�bre sequence

Σ�a3−b3Hℤ
≃
��

// Hℤ ∧ X(T) // Hℤ ∧ #2i=0ℂP
2
vi

≃��

Σ2Hℤ Σ2�Hℤ ∨
(⋁2

i=0 Σ
�Hℤ

)

Observe that the connectingmapmay be non-zero here. On the other hand, for
T′, we obtain

Σ�±(a1+b1)Hℤ
≃
��

// Hℤ ∧ X(T′) // Hℤ ∧ #2i=0ℂP
2
ui

≃��

Σ�Hℤ Σ�+2Hℤ ∨
(⋁2

i=0 Σ
�Hℤ

)

(5.6)

The right vertical equivalence comes from Theorem 4.9 and the equivalence
Σ�ai+biHℤ ≃ Σ�Hℤ for i = 1, 2, 3. To see this, note from 7(a) of 2.9 that

±(a1, b1) ∈ {(a0,−b0), (a0 − b0, b0), (a0, b0 − a0)}.

Our condition m ∤ a0, b0, a0 − b0 implies m ∤ a1, b1, a1 + b1. Iterating this
process the desired equivalence follows. Observe that, the connecting map in
co�bre sequence (5.6) is trivial.
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We now proceed towards the decomposition result in the case G = Cp. For
the tree T, if p ∤ av − bv for all vertices v ∈ T0, the result is obtained from
Theorem 4.5 as

Hℤ ∧ X(T)+ ≃ Hℤ ∨ Σ�a0+�b0Hℤ ∨
(⋁

T0

Σ�Hℤ
)
∨

( ⋁

Te∕G
G∕e+ ∧ Σ

2Hℤ
)

where Te = {v ∈ T ∣ Stab(v) = e}. In the complementary situation p must
divide av − bv for some v ∈ T0. If further p ∣ a0 or b0, we are in the situation
dealt in Theorem 4.9, so that we have

Hℤ ∧ X(T)+ ≃ Hℤ ∨ Σ�+2Hℤ ∨
( ⋁

�(T)
Σ�Hℤ

)
∨ (

⋁

 (T)
Σ2Hℤ) ∨

( ⋁

Te∕G
G∕e+ ∧ Σ

2Hℤ
)

where �(T) = #{v ∈ T0 ∣ p ∤ av − bv}, and  (T) = #{v ∈ T0 ∣ p divides av −
bv}. For the remaining case, we prove

Theorem 5.7. Let G = Cp and T be an admissible weighted G-equivariant tree
of type I such that p ∤ a0, b0 but p ∣ av − bv for some v ∈ T0. Then,

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�+2Hℤ ∨
( ⋁

�(T)+1
Σ�Hℤ

)

∨
( ⋁

 (T)−1
Σ2Hℤ

)
∨

( ⋁

Te∕G
G∕e+ ∧ Σ

2Hℤ
)
.

Proof. By givenhypothesis, there exist a vertex vl ∈ T0withw(vl) = (al, bl;p)
such that al−bl ≡ 0 (mod p). We further assume that vl is closest to the root
vertex v0 in terms of number of edges from v0 to vl. We prove the statement
for T0 ⊆ T. The result follows from this because when we attach a free orbit
to any level, the resulting connecting map becomes a map of underlying non-
equivariant spectra, which is trivial.

Let Γ denote the path from v0 to vl passing through vertices v0, v1,… , vl, and
let for vi ∈ Γ, w(vi) = (ai, bi;p). We reorient Γ, as in Example 5.5, so that now
vl becomes the root vertex u0; vi ∈ Γ becomes the vertex ul−i. Observe that
the weight at ui = vl−i becomes ±(al−i+1,−bl−i+1;p) and the weight at u0 is
(al − bl,−bl;p). Since al − bl ≡ 0 (mod p), the choice of cellular �ltration
of ℂP2(al, bl;p), as in Example 5.1, leads to

Hℤ ∧ ℂP2(al, bl;p) ≃ Σ�+2Hℤ ∨ Σ�Hℤ.

Theorem 4.9 implies

Hℤ ∧ X(Γ) ≃ Σ�+2Hℤ ∨ Σ�Hℤ ∨
( l⋁

i=1
Σ�

al−i+1+bl−i+1Hℤ
)

≃ Σ�+2Hℤ ∨ Σ�Hℤ ∨
(⋁

l
Σ�Hℤ

)

To deduce the second equivalence we show that for i = 1 to l, p ∤ ai + bi. The
condition p ∤ a0, b0, a0 − b0 in turn implies p ∤ a1, b1, a1 + b1 as by 7(a) of
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De�nition 2.9 ±(a1, b1) ∈ {(a0,−b0), (a0 − b0, b0), (a0, b0 − a0)}. The fact that
for 1 ≤ i ≤ l, p ∤ ai−1 − bi−1, let us continue this process up to l − 1.

Next we attach vertices of T ⧵ Γ to Γ proceeding by induction as in Theorem
4.9, and observe that in each step the connecting map for the co�bre sequence
is null. This completes the proof. �

The rest of the section is devoted to proving homology decompositions in the
case G = Cpn . We start with the following observation

Lemma5.8. LetG = Cpn andT be an admissibleweightedG-equivariant tree of
type I. Let � be themaximumpower of p that divides av−bv among the vertices
of T0, and p� does not divide a0 and b0. Then for v ∈ T ⧵ T0, Stab(v) ≤ Cp� .

Proof. Choose a vertex u ∈ T ⧵ T0 such that Stab(u) is maximum among
vertices of T ⧵ T0, and u is closest to the root vertex. This implies if u is in
level L, then the vertex v in level L − 1 connected to u belongs to T0. So let
w(v) = (av, bv, pn). We claim that Cmu

= Stab(u) ≤ Cp� . On the contrary
suppose Cmu

> Cp� . From 7(b) of De�nition 2.9, we get mu divides one of
av, bv, av − bv. Sincemu can not divide av − bv,mu divides av or bv. Further, if
v is connected to a level L − 2 vertex v′ with w(v′) = (av′ , bv′ ;pn), then

±(av, bv) ∈ {(av′ ,−bv′), (av′ , bv′ − av′), (av′ − bv′ , bv′)}.

This means mu divides av′ or bv′ . Continuing this process we end up with p�
dividing a0 or b0, hence, a contradiction.

�

Proceeding as in the Cp-case, we have that if p ∤ av − bv for all v ∈ T0, by
Theorem 4.5

Hℤ∧X(T)+ ≃ Hℤ∨Σ�a0+�b0Hℤ∨
(⋁

T0

Σ�Hℤ
)
∨
( ⋁

Td∕G, d≠pn
G∕Cd+ ∧Σ

�Hℤ
)
.

In the complementary case p divides av − bv for some v ∈ T. Let � > 0 be the
maximum power of p that divides av − bv among the vertices of T0. If further
p� ∣ a0 or b0, then proceeding exactly as in Theorem 4.9 we obtain

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�a0+�b0Hℤ ∨
( n⋁

i=0
(Σ�p

i
Hℤ)∨ZT(i)

)

∨
( ⋁

[�]∈Td∕G, d≠pn
G∕Cd+ ∧ Σ

�a�−b�Hℤ
) (5.9)

where for �xed 0 ≤ i ≤ n, ZT(i) ∶= #{v ∈ T0, w(v) = (av, bv;pn) ∣ gcd(av −
bv, pn) = pi}.

We also de�ne

WT(i) =
⎧

⎨
⎩

ZT(i) + 1 if i = 0
ZT(i) − 1 if i = �
ZT(i) otherwise.
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Observe that the conditions on weights in De�nition 2.9 does not change if we
replace the weight (a0, b0;pn) at the root vertex by one of (a0 − b0,−b0;pn) or
(b0 − a0,−a0;pn). This allows us to further assume p ∤ a0, b0 in the theorem
below.

Theorem 5.10. Let G = Cpn and T be an admissible weighted G-equivariant
tree of type I. Suppose � > 0 is the maximum power of p that divides av − bv
among the vertices of T0 and p ∤ a0, b0. Then

Hℤ ∧ X(T)+ ≃Hℤ ∨ Σ�+�p
�
Hℤ ∨

( n⋁

i=0
(Σ�p

i
)∨WT(i)Hℤ

)

∨
( ⋁

[�]∈Td∕G, d≠pn
G∕Cd+ ∧ Σ

�a�−b�Hℤ
)
.

Proof. Let vl ∈ T0 withw(vl) = (al, bl;pn) be a vertex for which p� ∣ al−bl,
and vl is closest to the root in terms of number of edges. Let Γ denote the path
from v0 to vl passing through the vertices v0, v1,… , vl withw(vi) = (ai, bi;pn).
We �rst computeHℤ ∧ X(Γ), thenHℤ ∧ X(T0) and �nallyHℤ ∧ X(T).

We reorient Γ so that now vl becomes the root vertex u0, and vl−i becomes
the vertex ui. Note that the weight at ui = vl−i becomes ±(al−i+1,−bl−i+1;pn)
and the weight at u0 is (al − bl,−bl;pn). Since gcd(al − bl, pn) = p�,

Σ�
al−blHℤ ≃ Σ�p

�
Hℤ. (5.11)

We use the following co�bre sequence for ℂP2(al, bl;pn)

S�al → ℂP2(al, bl;pn)→ S�al−bl+�−bl .
This together with the identi�cation (5.11) leads to the following decomposi-
tion

Hℤ ∧ ℂP2(al, bl;pn)+ ≃ Hℤ ∨ Σ�+�p
�
Hℤ ∨ Σ�Hℤ.

Proceeding as in the proof of Theorem 5.7 we see that for i = 0 to l − 1, p� ∤
ai+1 + bi+1. Now (5.9) implies

Hℤ ∧ X(Γ) ≃ Σ�+�p
�
Hℤ ∨ Σ�Hℤ ∨

( l⋁

i=1
Σ�

al−i+1+bl−i+1Hℤ
)

≃ Σ�+�p
�
Hℤ ∨

( n⋁

i=0
(Σ�p

i
Hℤ)∨WΓ(i)

)
.

The last equivalence is obtained from Proposition 3.6 and the following claim
Claim: Given � and Γ as above, we have for s < �

#{1 ≤ i ≤ l ∣ �p(ai + bi) = s} = #{0 ≤ j ≤ l − 1 ∣ �p(aj − bj) = s},

where �p(r) = max{k ∣ pk divides r} is the p-adic valuation.
Proof of the claim. Suppose ps divides ai + bi for some 1 ≤ i ≤ l and vi−1 is

not the root vertex. Applying 7(a) of De�nition 2.9, we see ps divides ai−1 or
bi−1 (this implies p ∤ ai−1− bi−1). Going one step further we see ps divides one
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of ai−2 − bi−2, ai−2 or bi−2, and the other two are relatively prime to p. Since
p ∤ a0, b0, continuing this process we end up with ps dividing aj − bj for some
0 ≤ j < i − 1 and p ∤ aq − bq or aq + bq for j < q ≤ i − 1. If ps ∣ a1 + b1, we
must have ps ∣ a0 − b0 by (5) of 2.9 and the fact that p ∤ a0, b0. Therefore, the
left-hand side is less than or equal to right-hand side.

In the reverse direction, suppose ps ∣ aj − bj for some 0 ≤ j ≤ l − 1 and vj
is not the root vertex. Then by 7(a) of De�nition 2.9, we see ps divides one of
aj+1, bj+1, and hence, p divides neither of aj+1+bj+1 or aj+1−bj+1. Continuing
further we see that ps divides one of aj+2+bj+2, aj+2 or bj+2. Since p ∣ al−bl,
p ∤ al, bl. Thus iterating this process, we see ps divides ai+bi for some j+1 <
i < l and p ∤ aq + bq or aq − bq for j + 1 ≤ q < i. If ps ∣ a0 − b0, then by (5) of
De�nition 2.9, ps divides one a1 + b1, a1 or b1. If ps ∤ a1 + b1, then continuing
one step further we see ps divides one of a2+ b2, a2 or b2. Iterating this way we
obtain the required. This completes the proof of the claim.

Next we attach vertices of T0 ⧵Γ to Γ proceeding by induction as in the proof
of Theorem 4.9, except the fact that now levels are de�ned according to the dis-
tance from Γ instead of the root vertex. For the inductive step suppose the state-
ment holds for the tree up to level L,T0(L) andwe adjoin an orbitOx containing
a level L + 1-vertex vx to T0(L). Suppose w(vx) = (ax, bx;pn). By Proposition
3.6, we may write Σ�ax−bxHℤ ≃ Σ�p

t
Hℤ for some 0 ≤ t < �. Then we obtain

the following co�bre sequence ofHℤ-modules after applying the induction hy-
pothesis

Σ�p
t
Hℤ→ Hℤ ∧ X(T0(L) +Ox)→ Σ�+�p

�
Hℤ ∨

( n⋁

i=0
(Σ�p

i
Hℤ)∨WT0(L)(i)

)
.

The fact that p� is the highest power ensures the connecting maps are zero
by Theorem 3.8. Hence, the above co�bre sequence splits and the required
homology decomposition is obtained.

Finally, to complete the proof, we adjoin vertices of T⧵T0 to T0, i.e., vertices
on which G acts non-trivially. Again we proceed by induction on levels where
levels are de�ned according to the distance from T0. Assume the statement
holds for the tree up to levelL′,T(L′) andwe attach an orbitOy of the levelL′+1-
vertices to T(L′). Suppose for vy ∈ Oy, w(vy) = (ay, by;Cmy

), and Σ�
ay−byHℤ ≃

Σ�p
t′

Hℤ for some 0 ≤ t′ ≤ n. Proceeding along the lines of Theorem 4.5, we
obtain the following co�bre sequence ofHℤ-modules

G∕Cmy+
∧ Σ�

pt′
Hℤ→ Hℤ ∧ X

(
T(L′) +Oy

)
+
→ Hℤ ∧ X(T(L′))+ (5.12)
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where by the induction hypothesis

Hℤ ∧ X(T(L′))+ ≃Hℤ ∨ Σ�+�p
�
Hℤ ∨

( n⋁

i=0
(Σ�p

i
Hℤ)∨WT(L′)(i)

)

∨
( ⋁

[�]∈T(L′)d∕G
G∕Cd+ ∧ Σ

�a�−b�Hℤ
)
.

The connecting map

Σ�+�p
�
Hℤ→ G∕Cmy+

∧ Σ�p
t′+1Hℤ

is classi�ed up to homotopy by �
Cmy
0 (Σ�p

t′+1−�−�p�Hℤ). Since Lemma 5.8 as-

serts that Cmy
≤ Cp� , the above group reduces to �

Cmy
0 (Σ�p

t′−�−1Hℤ), which is
trivial by Theorem 3.8. Analogously all other connecting maps can be seen to
be zero. Hence, the co�bre sequence (5.12) splits and we obtain the required
decomposition. �
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