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The main supergraph of �nite groups

Alireza Khalili Asboei and Seyed Sadegh Salehi Amiri

Abstract. Let G be a �nite group. The main supergraph S(G) is a graph
with vertex set G in which two vertices x and y are adjacent if and only if
o(x) ∣ o(y) or o(y) ∣ o(x). In this paper, we will show that if S(G) ≅ S(S),
where S belongs to a large class of �nite non-solvable groups, then G ≅ S.
This work is an important step in solving Thompson’s problem.
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1. Introduction
Let G be a �nite group and x ∈ G. The order of x is denoted by o(x). The set

of all element orders of G is denoted by �e(G) and the set of all prime factors
of |G| is denoted by �(G). We set Mi(G) = |{g ∈ G| the order of g is i}|. The
other notations and terminologies in this paper are standard, and the reader is
referred to [14] if necessary.

De�ne the graph S(G)with the vertex setG such that two vertices x and y are
adjacent if and only if o(x) ∣ o(y) or o(y) ∣ o(x). This graph is called the main
supergraph of P(G) (power graph of G) and was introduced in [20]. The proper
main supergraph S∗(G) is the graph constructed from S(G) by removing the
identity element of G. We write x ∼ y when two vertices x and y are adjacent.

De�nition 1.1. LetG be a �nite group. We say thatG is recognizable by its main
supergraph if for every groupH we have S(G) ≅ S(H), then G ≅ H.

Note that not all groups are recognizable by themain supergraph. For exam-
ple, we have S(ℤ4) ≅ S(ℤ2 ×ℤ2), but ℤ4 is not isomorphic to ℤ2 ×ℤ2.

De�nition 1.2. Two �nite groups G1 and G2 are called of the same order type if
and only ifMt(G1) = Mt(G2) for all t.
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In 1987, J. G. Thompson [37, Problem 12.37] posed the following problem:
Thompson’s Problem. Suppose that G1 and G2 are two �nite groups of the
same order type. If G1 is solvable, is it true that G2 is also necessarily solvable?

Another form of this problem can be stated as follows.
Thompson’s Problem. Suppose that G1 and G2 are two �nite groups of the
same order type. If G1 is non-solvable, is it true that G2 is also necessarily non-
solvable?

By de�nition of the main supergraph, it is clear that if G1 and G2 are groups
with the same order type, then S(G1) ≅ S(G2). So, if a �nite group G is recog-
nizable by the main supergraph, then for G Thompson’s problem is true.

In [3], the authors of this paper proved that alternating groups of degree p,
p + 1, p + 2 and symmetric groups of degree p are recognizable by their main
supergraph. Also, in [6], [4], [2] and [5], it is proved that the groups L2(p),
PGL2(p), where p is prime, all sporadic simple groups, L2(q), small Ree groups
2G2(32n+1), where n is a natural number and Suzuki Ree groups are recogniz-
able by their main supergraph.

The prime graph of G, is denoted by Γ(G) and is de�ned as follows. The
vertex set of Γ(G) is �(G) and two distinct vertices p and q are adjacent if and
only ifG contains an element of order pq. Let t(G) be the number of connected
components ofΓ(G) and�i = �i(G), 1 ≤ i ≤ t(G) be the connected components
of Γ(G). For a group of even order we let 2 ∈ �1(G). Then the order of G can
be expressed as the product of m1, m2, … , mt(G), where mi (1 ≤ i ≤ t(G)) are
positive integers with �(mi) = �i. Thesemi (1 ≤ i ≤ t(G)) are called the order
components of G. We write OC(G) = {m1, m2,… , mt(G)} and call it the set of
order components of G (see [9]).

In this paper, �rst we prove if G and S are two arbitrary groups such that
S(G) ≅ S(S), then their order components are equal. Then, we conclude that if
S is one of the nonabelian simple groups

∙ Ap, where p and p − 2 are primes,
∙ An, where n = p, p + 1, p + 2,
∙ Ln(q), where n = 2, 3, 5,
∙ Up(q), Lp+1(q),
∙ Lp+1(2),
∙ Up+1(q),
∙ Cn(q), where q is an even prime power,
∙ C2(q), where q > 5,
∙ E8(q),
∙ F4(q), where q = 2n > 2,
∙ G2(q) (3 ∣ q),
∙ G2(q) (2 < q ≡ 1 (mod 3)),
∙ 2G2(q),
∙ 3D4(q),
∙ 2Dn(3), where 9 ≤ n = 2m + 1 not a prime,
∙ 2Dp+1(q), where 5 < p ≠ 2m − 1,
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∙ 2Dp(3), where p ≥ 5 is a prime number not of the form 2m + 1,
∙ 2Dn(2), where n = 2m + 1 ≥ 5,
∙ Dp+1(2),
∙ Dp+1(3),
∙ 2Dn(2), where n = 2m,
∙ Suzuki Ree groups,
∙ Sporadic simple groups,
∙ 2E6(q),
∙ Lp(q),
∙ Un(q), where n = 3, 5, 11,
∙ almost sporadic simple groups, except Aut(McL) and Aut(J2),
∙ Sn, for n = p, p + 1, where p ≥ 3 is a prime number,

then S is recognizable by the main supergraph.
Main Theorem. Let G and S be two arbitrary groups such that S(G) ≅ S(S).
Then OC(G) = OC(S).

To get the main result of this paper, we need to the following lemma.

Lemma1.3. LetOC(G) = OC(S), whereS is one of the nonabelian simple groups
listed before the main theorem, then G ≅ S.

Proof. See [1, 7, 8, 10, 11, 12, 13, 17, 15, 18, 16, 21, 24, 25, 26, 27, 23, 22, 28, 29,
31, 32, 36, 34, 35, 33, 30, 38, 39]. �

Corollary 1.4. Let G be a �nite group listed in the above lemma. Then G is rec-
ognizable by the main supergraph.

Corollary 1.5. Let G be a �nite group listed in the above lemma. Then Thomp-
son’s problem is true for G.

According to research conducted on non-solvable groups of order less than
2000 by using GAP and Corollary 1.4, we pose the following two conjectures:

Conjecture 1.6. Let S be a �nite simple group andG be an arbitrary �nite group
such that S(G) ≅ S(S). Then G ≅ S.

Conjecture 1.7. Let S be a �nite non-solvable group andG be an arbitrary �nite
group such that S(G) ≅ S(S). Then G is a non-solvable group.

It is clear that if Conjecture 1.7 is true, then Thompson’s problem is also true.
Note that there exist non-solvable groups S and G such that S(G) ≅ S(S), but G
and S are not isomorphic. For example, if G = ℤ4×A5 and S =< a, b >, where

a = (1, 20, 17, 5, 12)(2, 3, 9, 19, 10)(4, 14, 22, 11, 6)(7, 8, 15, 13, 16)

b = (2, 18)(5, 11)(6, 21)(7, 24)(9, 17)(10, 16)(12, 23)(13, 20)(14, 19)(15, 22)
(in fact S has structure description SL(2, 5) ∶ ℤ2), then S(G) ≅ S(S), but G

and S are not isomorphic.
The next lemma is used in the proof of the main theorem.
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Lemma 1.8. [40, Theorem 3] Let G be a �nite group. Then the number of el-
ements whose order is a multiple of n is either zero, or a multiple of the greatest
divisor of |G| that is prime to n.

2. Proof of main theorem
By de�nition of themain supergraph and our assumption, we have |G| = |S|

and S∗(S) ≅ S∗(G). First, let S∗(G) be a connected graph. We show that Γ(G)
and Γ(S) are connected. If �(G) = {p}, then Γ(G) = Γ(S) has one vertex. So,
Γ(G) and Γ(S) are connected. Let |�(G)| ≥ 2. If Γ(G) or Γ(S) are disconnected,
then Γ(G) or Γ(S) have two or more connected components. By de�nition of
the main supergraph S∗(G) is a disconnected graph, which is a contradiction.

Now, let S∗(G) be a disconnected graph. Then it has two or more connected
components. Suppose that K1 and K2 are two connected components of S∗(G).
We show that if x, y are two arbitrary vertices of K1 and K2, respectively such
that o(x) = r and o(y) = s, where r and s are primes, then r and s are not joined
by an edge in the prime graph of G. Assume that r and s are joined by an edge
in the prime graph of G. Then rs ∈ �e(G). So, there exists an element of order
rs in G. Assume z ∈ G and o(z) = rs. By de�nition of the main supergraph
x ∼ z and y ∼ z. Thus K1 and K2 are connected, which is a contradiction.

Suppose that K1, K2,..., and Kn are all connected components of S∗(G). Let
�(K) be all prime numbers that divide the order of vertices ofK, whereK is one
of the connected components of S∗(G). We claim that �(Ki) for every 1 ≤ i ≤ n
is the set of vertices of one of the connected components of Γ(G). Assume that
Ti is a component in the prime graph G such that the vertices of Ti are subset
of �(Ki). Thus, rs ∉ �e(G) for every r ∈ V(Ti) and s ∈ �(Ki)∖V(Ti). By
de�nition of the main supergraph, we can conclude that Ki is not connected,
a contradiction. Therefore, there exists a one-to-one correspondence between
connected components of S∗(G) and Γ(G). It follows that �(Ki) for every 1 ≤
i ≤ n is the set of vertices of one connected component of Γ(G).

Let K be one of the connected components of S∗(G). The vertices of K are
elements of G and their orders are divided by some prime numbers. We will
show how to �nd these prime numbers.

Suppose thatK1,K2 are two arbitrary connected components of S∗(G). Since
K1 and K2 are isolated, we have rs ∉ �e(G), where r ∈ �(K1) and s ∈ �(K2).

Let p ∈ �(K1) be arbitrary. If �(K2) = {p1}, then considering n = p1 in
Lemma 1.8, |P| ∣∑t is a multiple of p1

Mt = (Mp1+Mp1 2 + ⋅ ⋅ ⋅+Mpk1
) = |K2| (pk1 ∈

�e(G)), where P is a Sylow p-subgroup of G. Assume that �(K2) = {p1, p2}.
Considering n = p1p2 in Lemma 1.8, we have |P| ∣ ∑t is a multiple of p1p2

Mt. On
the other hand, considering n = p1 in Lemma 1.8, |P| ∣ ∑t is a multiple of p1

Mt =
(∑t is a multiple of p1p2

Mt)+(Mp1+Mp1 2+⋅⋅⋅+Mpk1
). It follows that |P| ∣ (Mp1+Mp1 2+

⋅ ⋅ ⋅ +Mpk1
). Similarly, |P| ∣ (Mp2+Mp2 2 + ⋅ ⋅ ⋅ +Mpe2 ) (p

e
2 ∈ �e(G)). Therefore,

|P| ∣ (Mp1+Mp1 2+⋅⋅⋅+Mpk1
)+(Mp2+Mp2 2+⋅⋅⋅+Mpe2 )+(

∑
t is a multiple of p1p2

Mt) =
|K2|. If �(K2) = {p1, p2, p3}, then considering n = p1p2p3, p1p2, p1p3 and p1
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in Lemma 1.8, |P| ∣ ∑t is a multiple of p1p2p3
Mt, |P| ∣

∑
t is a multiple of p1p2

Mt, |P| ∣∑
t is a multiple of p1p3

Mt and |P| ∣
∑

t is a multiple of p1
Mt. Thus, |P| ∣ (Mp1+Mp1 2+⋅⋅

⋅+Mpk1
). Similarly, |P| ∣ (Mp2+Mp2 2+⋅⋅⋅+Mpe2 ) and |P| ∣ (Mp3+Mp3 2+⋅⋅⋅+Mpl3

).
Therefore, |P| ∣ |K2|.

Arguing as above, if �(K2) = {p1, p2, .., pr}, then |P| ∣ |K2|. Also, |P| ∣ |Ki|
for every connected component Ki (i ≠ 1) of S∗(G). Since |P| ∣ |G| = (1 +
|K1|+ |K2|+ ⋅ ⋅ ⋅+ |Kn|), we have |P| ∤ |K1|. Now, letK be one of the connected
components of S∗(G). If p ∈ �(G) is such that |P| ∤ |K|, then p ∈ �(K).

Since there exists a one-to-one correspondence between connected compo-
nents of S∗(G) and Γ(G) and |G| = |S|, we have OC(G) = OC(S). This com-
pletes the proof of the main theorem.
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