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Examples of non-minimal open books with
high fractional Dehn twist coe�cient

Peter Feller and Diana Hubbard

Abstract. For a �xed surface S, one can ask if there are conditions on open
books with pages S that imply maximality of the Euler characteristic of S
among all pages of open books encoding the same 3-manifold (or at least im-
ply maximality among those open books that encode the same 3-manifold
and support the same contact structure). In this short note we propose an
explicit variant of this question with a condition that involves the amount of
twisting of the monodromy and the topological type of S, and we construct
examples of open books for 3-manifolds that support our choice of condition.
In particular, our examples show that the condition on twisting necessarily
depends on the topological type of S. We �nd these examples of open books
as the double branched covers of families of closed braids studied byMalyutin
and Netsvetaev.
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1. Introduction
Denote by Sg,b the compact oriented connected surface of genus g ≥ 0 with

b ≥ 1 boundary components. Denote byMCG(Sg,b) the mapping class group of
Sg,b. We recall (see e.g. [Etn06]) that every (conjugacy class of a)� ∈ MCG(Sg,b)
determines a unique closed oriented connected 3-manifoldM� togetherwith an
open bookO� onM� with pages homeomorphic to Sg,b and� as itsmonodromy.
We denote by !(�) ∈ ℚ the fractional Dehn twist coe�cient of � ∈ MCG(Sg,1).
Roughly, !(�)measures the amount of twisting e�ected around the boundary
of Sg,1 by �.

Question 1.1. Fix an integer g ≥ 1. Let � inMCG(Sg,1) satisfy |!(�)| > g − 1
2
.
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(i) Do the pages of open books forM� have Euler characteristic at most 1 − 2g?
(ii) Do the pages of open books for M� that support the same contact structure

as O� have Euler characteristic at most 1 − 2g?

Etnyre and Ozbagci de�ned the norm of a contact structure as the minimum
of the negative Euler characteristic of the pages among all open books support-
ing the contact structure [EO08]. In their language, the second part of Ques-
tion 1.1 can be rephrased as follows. If � inMCG(Sg,1) satisfy |!(�)| > g − 1

2
,

does the open book O� realize the norm of the contact structure on M� sup-
ported by O�?

As a variant of Question 1.1, we ask: does there exist a family of constants
{cg}g∈ℕ such that there are positive answers to the above questions when re-
placing the assumption |!(�)| > g − 1

2
with |!(�)| > cg? A �rst naive hope

could be that the variant of Question 1.1 can be answered in the positive for
cg = 1 or at least for cg = c, where c is some universal constant. In other words,
maybe there exists a c > 0 such that if |!(�)| > c, then the pages of the open
bookO� have the largest Euler characteristic among the pages among the open
books forM�, or at least among the open books that support the same contact
structure as O�. This hope is motivated by the fact that |!(�)| > 1 implies that
the the open book O� on M� cannot be destabilized (destabilization is an op-
eration that increases the Euler characteristic of pages without changing the
manifold). However, this is wrong. In fact, the following theorem implies that
any constants cg as above have to grow at least linearly in g.

Theorem 1.2. For every integer k ≥ 0, there exists a Stein �llable contact 3-
manifold supported by an open book with connected binding and pages of genus
k+1whose monodromy has fractional Dehn twist equal to k such that its contact
structure is also supported by an open book with connected binding and pages of
genus k.

We point to the end of Section 2 for (circumstantial) evidence that such con-
stants cg might exist and can be chosen to grow at most linearly in g; in other
words, evidence that Question 1.1 could have a positive answer. In addition to
Theorem1.2, this evidence iswhat brings us to propose the lower-bound g− 1

2
in

Question 1.1 as the potentially correct one (rather than any other a�ne linear
expression in g).

We conclude the introduction by brie�y comparing Question 1.1(ii) to an
open question in contact geometry. Every overtwisted contact structure is sup-
ported by a planar open book, but the same is not true for tight contact struc-
tures: there exist such structures that require pages of genus one [Etn04]. It is
an open question whether there exist any tight contact structures that are not
supported by an open book whose pages have genus zero or one. By [HKM08]
any contact structure that is supported by an open book O (with connected
binding) whose fractional Dehn twist coe�cient is greater than or equal to one
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must be tight. A positive answer to Question 1.1(ii), when restricted just to pos-
itive fractional Dehn twist coe�cients, would provide information about what
types of open books for such tight contact structures are possible; but, it would
not directly address the open question. One may also ask Question (1.1)(ii),
when replacing Euler characteristic at most 1−2gwith genus at least g. Namely,
in the language of [EO08], if � inMCG(Sg,1) satis�es |!(�)| > g − 1

2
, does the

open book O� realize the support genus of the contact structure on M� sup-
ported by O�?

Organization. In Section 2, we discuss the setup andmotivation, in Section 3,
we �nd the open books in Theorem 1.2 as the double branched covers of fam-
ilies of closed braids studied by Malyutin and Netsvetaev [MN03], and in Sec-
tion 4, we discuss the distinctness of the underlying 3-manifolds of the open
books we construct.

2. From braided links to open books via double branched
covering
A general reference for open books and contact structures is [Etn06]. For a

general reference for braids, we point to [Bir74, BB05].

Braids, braided links, and transverse links. Links are isotopy classes of
smooth nonempty closed oriented 1-manifolds in S3. A braiding of a link L
is a choice of representative of L that is transverse to the trivial open book of S3
(the one with binding the unknot U). We consider braidings up to isotopy in
the complement ofU transverse to all pages. We refer to a link with a choice of
braiding as a braided link. The number of transverse intersections of a braided
linkwith a page is called the number of strands. Theminimal number of strands
among braidings of a link L is called the braid index of L. Braided links with
n ≥ 1 strands are canonically identi�ed with conjugacy classes in Artin’s braid
group on n-strands Bn [Art25]. Elements in Bn are called braids. Denoting by
Dn the closed disc with n punctures, Bn can be de�ned as the mapping class
groupMCG(Dn). We write �̂ for the braided link given by the conjugacy class
of a braid �. Any two braidings of a given link are related by a sequence of
so-called Markov stabilizations and destabilizations.

A braided link canonically determines a transverse link—a transverse isotopy
class of a link transverse to the standard contact structure on S3 (the one cor-
responding to the trivial open book). In fact, two braided links determine the
same transverse link if and only if they are related by positive Markov stabiliza-
tions and destabilizations [Wri02, OS03].

Doublebranchedcovers. Thedouble branched cover construction associates
to a linkL an oriented closed connected 3-manifoldΣ(L). This extends to braided
links and open books:

Σ∶ {braided links}→ {open books on closed connected oriented 3-manifolds}.
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Indeed, denoting by � ∶ Σ(L) → S3 the double branched covering where a
braiding of L is �xed, every page P of the trivial open book on S3 has �−1(P) as
the pages of an open book: � restricts to a double branched covering �−1(P)→
P of P along the intersection of P with the braiding. In particular, a braided
link with n-strands yield an open book with pages Σ(Dn), where Σ(Dn) is S n−1

2
,1

respectively S n−2
2
,2 for n odd and even, respectively.

For another perspective, we note that Σ is induced by the Birman-Hilden
embedding of groups

BH∶ Bn ↪ MCG(Σ(Dn)),

by considering the induced map that maps a conjugacy class �̂ of a braid � to
the conjugacy class [BH(�)] of BH(�) and considering the corresponding open
book OBH(�). This follows from the fact that BH is de�ned by taking the lift to
the double branched cover; see e.g. [FM11, Chapter 5].

Recall that from an open book on a closed oriented 3-manifold one can con-
struct others by so-called stabilizations anddestabilizations (also knownasHopf
plumbing and Hopf deplumbing). If two open books are related by so-called
positive stabilization and destabilization then they support the same contact
structure; and conversely, any two open books that support the same contact
structure are related by a sequence of positive stabilizations and destabiliza-
tions by a result known as Giroux’s correspondence [Gir03]. With this setup
we note the following.

If a braided link �̂′ is obtained from a braided link �̂ by a positive (nega-
tive) Markov stabilization, then the open book Σ

(
�̂′

)
is obtained from Σ

(
�̂
)
by

a positive (negative) stabilization. In particular, a transverse link (i.e. a class
of braided links related by positive Markov stabilizations and destabilizations)
give rise to a class of open books up to positive stabilizations and destabiliza-
tions, and hence a contact structure on the double branched cover of the link;
see e.g. [Pla06].

Fractional Dehn twist coe�cient. For a compact connected surface of �-
nite type with boundary Sg,b,p (genus g ≥ 0, b ≥ 1 boundary components,
p ≥ 0 punctures), one considers the so-called fractional Dehn twist coe�cient,
a homogeneous quasimorphism

!∶ MCG(Sg,b,p)→ ℚ

with respect to a �xed boundary component; see [HKM07, HKM08] and com-
pare also, for instance, to [HM18, IK18]. To avoid dependence on the choice of
boundary, we restrict to the case b = 1.

Under the Birman-Hildenmap, the fractional Dehn twist coe�cient behaves
simply: for all odd n ≥ 1,

!(BH(�)) = !(�)
2 for all � ∈ Bn; (1)
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see [IK18, Theorem 4.2]. (The assumption that n is odd is to assure that Σ(Dn)
has one boundary component.) A key observation to see (1) is the following.
For the full-twist ∆2 = �n ∈ Bn—the positive Dehn twist along the boundary
of Dn—we have that BH((∆2)2) is the Dehn twist along the boundary of Σ(Dn).
Analogue of Question 1.1 for braidings of links. Before we use the above
setup to discuss our examples in Section 3, we discuss why we dare to hope that
Question 1.1 has a positive answer. Considering the double branched cover
construction, the following is an analogue of Question 1.1.

Question 2.1. Fix an integer n ≥ 3. Let � inBn satisfy |!(�)| > n−2 and denote
by L and Ltrans the link isotopy class and transverse link isotopy class obtained as
the closure of �, respectively.

∙ Does every braidwith closureL have at leastn strands? [FH19, Quest. 7.3]
∙ Does every braid with transverse closure Ltrans have at least n strands?

And indeed, taking n odd, and noting that

!(BH(�)) (1)= !(�)
2 and g ∶= genus(Σ(Dn)) =

n−1
2
,

we see that the assumptions of the two questions correspond:

|!(�)| > n − 2 if and only if |!(BH(�))| > g − 1
2
.

Wewere able to answerQuestion 2.1 in the positive for n = 3 and, for general
n, with the stronger assumption |!(�)| > n − 1; see [FH19]. Hence, we feel
justi�ed to ask Question 1.1.

3. Construction of the examples
We describe our examples for the proof of Theorem 1.2 as double branched

covers of braided links. To describe braids, we use the standardArtin generators
�1,⋯, �n−1 for the braid group on n-strands [Art25].

For any pair of integers n,m ≥ 1, de�ne the braid
�n,m ∶= (��∆)m−1�,

where
� ∶= �1�2⋯�n−1 and �∆ ∶= �n−1�n−2⋯�1.

Malyutin andNetsvetaev observed that the closures of�n,m and�m,n are isotopic
as links in S3; see [MN03, Figure 2]. In fact, we can say more: Etnyre and Van
Horn-Morris showed that any two positive braids representing the same link
L are related by positive Markov stabilizations and destabilizations and braid
isotopy [EVHM11, Corollary 1.13]. In particular, since both �n,m and �m,n are
positive braids, we have the �rst two items of the following.

Proposition 3.1. Fix integers n,m ≥ 1 and denote by L the closure of �n,m and
�m,n as links in S3. Set

On,m ∶= OBH(�n,m) = Σ
(
�̂n,m

)
and Om,n ∶= Σ

(
�̂m,n

)
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for the open books on Σ(L) corresponding to �n,m and �m,n, respectively. We have
that
i) the closures of �n,m and �m,n as transverse links in S3 with the standard con-

tact structure are transversely isotopic,
ii) the two open books On,m and Om,n correspond to the same contact structure

�{n,m} on Σ(L),
iii) the contact manifold (Σ(L), �{n,m}) is Stein �llable (and therefore tight)
iv) for n odd, the fractional Dehn twist coe�cients of BH(�n,m) inMCG(Σ(Dn)),

namely, the monodromy of the open bookOn,m, is !(BH(�n,m)) = (m−1)∕2.
Proof. i) holds since �n,m and �m,n are related by positiveMarkov stabilizations
and destabilizations. ii) holds since the corresponding open books On,m and
Om,n are related by corresponding positive stabilizations and destabilizations.

We discuss iii). It is a theorem of Giroux ([Gir03]; see also Etnyre [Etn06,
Theorem 5.11]) that a contact manifold is Stein �llable if and only if there is an
open book for it whose monodromy can be written as a composition of positive
Dehn twists. The monodromy of On,m is [BH(�n,m)], and BH(�n,m) is a com-
position of positive Dehn twists since �n,m is a composition of positive braid
generators.

For iv), we use !(�n,m) = m − 1 (see [FH19, Example 6.1]) and (1). �

Proof of Theorem 1.2. Fix an non-negative integer k. We consider the braid
�2k+3,2k+1 and denote by Kk its closure as a knot in S3. The fractional Dehn
twist coe�cient of the monodromy of the corresponding open book O2k+3,2k+1
onΣ(Kk) is k. The pages ofO2k+3,2k+1 have genus k+1. As the proposed contact
manifold, we take the contact manifold (Σ(Kk), �{2k+3,2k+1}) corresponding to
the open book decomposition O2k+3,2k+1. By Proposition 3.1, the contact man-
ifold (Σ(Kk), �{2k+3,2k+1}) is the same as to one corresponding to the open book
O2k+1,2k+3. We conclude the proof by noting that the pages of O2k+1,2k+3 have
genus k and that the contact manifold (Σ(Kk), �{2k+3,2k+1}) is Stein �llable by
Proposition 3.1. �

4. Distinctness
The examples of contact manifolds we provided in our proof of Theorem 1.2

are pairwise distinct. In fact, the underlying manifolds are all pairwise non-
homeomorphic.

Proposition 4.1. For every integer k ≥ 1, denote by Kk the closure of �2k+1,2k+3
as a knot in S3. We have

|H1(Σ(Kk);ℤ)| = 4k2 + 4k − 1.
Remark 4.2. Evenwithout Proposition 4.1, it is clear that for every k, there exists
an l0 such that Σ(Kl) is not homeomorphic to Σ(Kk) for l ≥ l0. Indeed, for
every closed oriented 3-manifold M, there exists a constant cM such that all
monodromies � of open books with connected binding on M satisfy |!(�)| ≤
cM ; see [HM18].



EXAMPLES OF NON-MINIMAL OPEN BOOKS WITH HIGH FDTC 923

We establish Proposition 4.1 using that

|H1(Σ(K);ℤ)| = |det(K)| = |∆K(−1)|

for all knots K, where det(K) and ∆(K) denote the knot determinant and the
Alexander polynomial ofK, respectively, and using the following connection to
the Burau representation. For integers n ≥ 1, we have

|∆K(−1)| = |||det (In−1 − f∗(�))||| for all � ∈ Bn,

where In−1 denotes the identity matrix in GLn−1(ℤ) and f∗∶ Bn → GLn−1(ℤ)
denotes the reduced Burau representation evaluated at t = −1; see [Bir74]
or [BB05, Equation (15)].

Proof of Proposition 4.1. For integers i ≥ 1, n ≥ 1, we set �i,n ∶= f∗(�i) for
�i ∈ Bn. Using the following explicit matrices for f∗(�i) for n ≥ 3.

f∗(�i) =

⎡
⎢
⎢
⎢
⎢
⎣

Ii−2 0 0 0 0
0 1 0 0 0
0 −1 1 1 0
0 0 0 1 0
0 0 0 0 In−i−2

⎤
⎥
⎥
⎥
⎥
⎦

for 1 < i < n − 1,

f∗(�1) =
⎡
⎢
⎣

1 1 0
0 1 0
0 0 In−3

⎤
⎥
⎦
, and f∗(�n−1) =

⎡
⎢
⎣

In−3 0 0
0 1 0
0 −1 1

⎤
⎥
⎦
.

Note that this agrees with the matrices used in [Bir74, BB05] up to replacing
matrices by their inverse transpose.

With these explicit matrices one �nds, for n ≥ 3:

f∗(�) = �1,n�2,n⋯�n−1,n =
⎡
⎢
⎢
⎢
⎣

0 ⋯ 0 1
1

−In−2 ⋮
1

⎤
⎥
⎥
⎥
⎦

and (2)

f∗(�∆) = �n−1,n�k−2,n⋯�1,n =

⎡
⎢
⎢
⎢
⎢
⎣

1
−1 In−2
⋮

(−1)n−1
(−1)n 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

. (3)
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Indeed, (2) and (3) are easily checked for n = 3, and, for n ≥ 4, (2) and (3)
follow inductively using that we have

�1,n�2,n⋯�n−2,n =
⎡
⎢
⎢
⎢
⎣

1
�1,n−1�2,n−1⋯�n−2,n−1 ⋮

1
0 ⋯ 0 1

⎤
⎥
⎥
⎥
⎦

and

�n−2,n�n−3,n⋯�1,n =
⎡
⎢
⎢
⎢
⎣

1
�n−2,n−1�n−3,n−1⋯�1,n−1 ⋮

1
0 ⋯ 0 1

⎤
⎥
⎥
⎥
⎦

.

So, we see that, for n ≥ 3 odd, we have

(f∗(��∆))2 = (f∗(�)f∗(�∆))2
(2),(3)=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 ⋯ 0
−2
0
−2 −In−2
⋮
0
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
4
0
4 In−2
⋮
0
4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and hence, for all integers l ≥ 1, we have that f∗(��∆)2lf∗(�) equals

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0⋯ 0
4
0
4 In−2
⋮
0
4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

l

f∗(�) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0⋯ 0
4l
0
4l In−2
⋮
0
4l

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0⋯ 0 1
1
1

−In−2 1
⋮
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0⋯ 0 1
4l + 1
1

−In−2 4l + 1
⋮
1

4l + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We conclude that the determinant

det
(
I2k − f∗(�2k+3,2k+1)

)
= det

(
I2k − f∗(��∆)2(k+1)f∗(�)

)

equals

det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0 −1
1 1 0 ⋯ 0 −4(k + 1) − 1
0 1 1 −1

⋱ ⋮
1 1 −1

1 −4(k + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= −4k2 − 4k + 1,

where the last equality follows for example by developing the determinant us-
ing the last column. �
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