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Segre quartic surfaces and
minitwistor spaces

Nobuhiro Honda

Abstract. The Segre surfaces of the title are by de�nition those quartic sur-
faces in ℂℙ4 that arise as images of weak del Pezzo surfaces of degree four
under the anti-canonical map. We �rst show that under some minimality
condition, minitwistor spaces of genus one are exactly Segre quartic surfaces.
By a kind of Penrose correspondence, Zariski open subsets of the projective
dual varieties of these surfaces admit Einstein-Weyl structure. We investi-
gate structures of these dual varieties in detail. In particular, we determine
the degrees of these varieties (namely the classes of the Segre surfaces), as
well as structure of several components of the divisors at in�nity, which are
the complements of the Einstein-Weyl spaces in the projective dual varieties.
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1. Introduction
In a classical terminology, a non-degenerate irreducible quartic surface in

ℂℙ4 which is neither a cone over a quartic curve in ℂℙ3 nor a projection of a
quartic surface in ℂℙ5 is called a Segre quartic surface. In a modern language,
these are exactly the images of weak del Pezzo surfaces of degree four under
the anti-canonical maps, and are realized in ℂℙ4 as complete intersections of
pairs of quadrics. Segre quartic surfaces are classi�ed into 16 kinds in terms of
normalized quadratic equations of the complete intersections. Aside from the
smooth examples, all these surfaces have isolated singularities, all of which are
rational double points.
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The notion of minitwistor space was originally introduced by Hitchin [4]
and Jones-Tod [9] as an analogue of Penrose’s twistor space for a self-dual 4-
manifold, and is a complex surface which has a smooth rational curve whose
self-intersection number is two. Such a rational curve is called a minitwistor
line, and they are parameterized by a 3-dimensional complex manifold. This
complexmanifold carries a natural geometric structure called an Einstein-Weyl
structure, which is a pair consisting of a conformal structure and a compati-
ble torsion free connection for which the symmetric-trace-free part of the Ricci
tensor vanishes. A smooth quadric and a quadratic cone in ℂℙ3 are compact
minitwistor spaces, and minitwistor lines are irreducible hyperplane sections
of them. These two examples are essentially the only ones that arise from com-
pact minitwistor spaces, as understood in Hitchin’s original sense.

Generalizing Hitchin’s framework, we then showed in [8] that, if we allow
the rational curves to have nodes and at the same time increase their self-
intersection numbers in such a way that the parameter space of the maximial
family of nodal curves is 3-dimensional, then their parameter space still ad-
mits an Einstein-Weyl structure. We then generalized the meaning of the term
minitwistor space by also applying it to surfaces that contain nodal curves of
this kind. Con�ning our attention henceforth to compact complex surfaces, it
then follows that these nodal curves, whichwewill persist in callingminitwistor
lines, are mutually linearly equivalent. If we write g for the number of nodes
of minitwistor lines, then the linear system generated by minitwistor lines on a
compact minitwistor space is (3+g)-dimensional, and the map induced by this
linear system is always a birational morphism over the image. We call a com-
pact minitwistor space essential if this birational morphism is an embedding.
Hence, compact essential minitwistor spaces are naturally projective surfaces
in ℂℙ3+g, and minitwistor lines on them are obtained as hyperplane sections
of the surfaces. So the situation is quite similar to the classical case of g = 0,
but when g > 0 a generic member of the linear system is not a minitwistor line
because such a member is a smooth curve whose genus is exactly g. For this
reason we call the number of nodes the genus of a minitwistor space.

In this article we shall investigate compact essential minitwistor spaces of
genus one, and their associated Einstein-Weyl spaces. Our �rst main result
means that suchminitwistor spaces are exactly the Segre quartic surfaces (The-
orem 2.7). This implies that, in contrast to the classical case of g = 0, there
are a variety of compact minitwistor spaces with g = 1, but they can still be
concretely classi�ed. Minitwistor lines on a Segre quartic surface S ⊂ ℂℙ4
are obtained as hyperplane sections of the surface, where the hyperplanes are
tangent to S at exactly one point. A completion of the space of such hyper-
planes is nothing but the projective dual variety of the Segre surface. Hence,
the Einstein-Weyl spaces associated to the Segre quartic surfaces are realized as
Zariski-open subsets of the dual varieties of the surfaces. From a re�exibility
for the operation of taking the projective dual, a Penrose type correspondence
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between compact essential minitwistor spaces of genus one and the associated
Einstein-Weyl spaces can be understood as a projective duality.

By this reason, a large part of this article is devoted to investigate the dual
varieties of Segre quartic surfaces. We show that all these dual varieties are ra-
tional threefolds (Proposition 2.8). Next in Section 2.3, we give a formula which
expresses the degrees of the dual varieties of any Segre surfaces in terms of the
types of singularities of the surfaces (Theorem 2.11). The degree of the dual
variety will be smaller as the singularities of the surface become complicated.

The complements of the Einstein-Weyl spaces in the dual varieties of Segre
surfaces are of special interest, because in the case of the smooth quadric Q in
ℂℙ3, the complement is exactly the dual quadric Q∗ ⊂ ℂℙ∗3 of Q, and this can
be regarded as a complexi�cation of the ideal boundary of the hyperbolic space,
which is the real form of the complex Einstein-Weyl space ℂℙ∗3∖Q∗. We call 2-
dimensional components of the Einstein-Weyl space in the dual variety divisors
at in�nity.

In order to study these divisors at in�nity, in Section 3.1, we recall Segre sym-
bol by which all Segre quartic surfaces can be classi�ed in a systematic way, and
complete a classi�cation of Segre surfaces (Proposition 3.1). In Section 3.2, we
investigate double covering structure on many kinds of Segre surfaces, which
can be detected from the Segre symbols. The base space of the double cover-
ing is either a smooth quadric or a quadratic cone inℂℙ3 (Propositions 3.2 and
3.3). In Section 3.3 we investigate divisors at in�nity on the dual varieties of
Segre surfaces. We will �nd two kinds of such divisors. A �rst kind arises from
straight lines lying on Segre surfaces, and the divisors are 2-planes (Proposition
3.4). The second kind comes from smooth conics lying on Segre surfaces, or
equivalently, the double covering structure over a smooth quadric given in Sec-
tion 3.2, and they are smooth quadric surfaces which are dual to the last smooth
quadrics (Proposition 3.10). We determine the numbers of these divisors at in-
�nity, for each type of Segre quartic surface (Tables 1, 2 and 3). Furthermore,
by using deformation theoretic argument, we show that the dual varieties of
Segre surfaces have ordinary double points along these two kinds of divisors at
in�nity (Proposition 3.12). In other words, the dual varieties of Segre quartic
surfaces have self-intersection along the 2-planes and the smooth quadrics. We
have to remark that these divisors do not exhaust all divisors at in�nity in the
dual varieties, because there can exist a divisor at in�nity whose generic points
correspond to rational curves having a cusp as their only singularity. These ‘cus-
pidal locus’ of the dual varieties of Segre surfaces is studied in detail in another
article [7].

As mentioned at the beginning, Segre surfaces are classi�ed into 16 types.
In Section 4.1, we discuss several typical transitions between di�erent types
of Segre quartic surfaces. Finally, in Section 4.2, we give a remark about null
surfaces in some of the present Einstein-Weyl spaces, and also pose a question
about present minitwistor spaces, in connection with twistor spaces associated
to self-dual 4-manifolds.
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2. Minitwistor spaces of genus one and Segre quartic surfaces
2.1. Minitwistor spaces and 3-dimensional Einstein-Weyl manifolds.
We begin with the de�nition of minitwistor spaces in the sense of [8]. This
naturally includes minitwistor spaces in the original sense given in [4] as the
simplest case. Let g ≥ 0 be an integer. By a g-nodal rational curve, we mean
a rational curve which has exactly g nodes (i.e. ordinary double points) as its
only singularities. In particular, when g = 0, it is just a smooth rational curve.

De�nition 2.1. Let g ≥ 0 be an integer and S a normal, compact and irre-
ducible complex surface. A g-nodal rational curveC on S is called aminitwistor
line if it is contained in Sreg, the smooth locus of S, and the self-intersection
number satis�es C2 = 2 + 2g. A normal compact complex surface having a
minitwistor line with g nodes as above is called aminitwistor space of genus g.

By [8, Proposition 2.6], any minitwistor space in this sense is a rational sur-
face. Furthermore, by [8, Proposition 2.8], the linear system |C| generated by
minitwitor lines on a minitwistor space S as above is (3 + g)-dimensional and
base point free. Moreover, we have:

Proposition 2.2. In the situation of the above de�nition, a generic member of the
system |C| is smooth and it is a curve of genus g.

Proof. The smoothness of a generic member of |C| follows from Bertini’s the-
orem. LetC ⊂ S be aminitwistor line, � ∶ S̃ → S the blowup of S at the g nodes
of C, and C̃ the strict transform of C into S̃. Evidently the curve C̃ is a smooth
rational curve. If E1,… , Eg are the exceptional curves of �, we have

KS̃ ⋅ C̃ =
(
�∗KS +

g∑

i=1
Ei

)
⋅
(
�∗C − 2

g∑

i=1
Ei

)
= KS ⋅ C + 2g (1)

and

C̃2 =
(
�∗C − 2

g∑

i=1
Ei

)2
= C2 − 4g = 2 − 2g. (2)

Further, since C̃ is a smooth rational curve, we have by adjunction

KS̃ ⋅ C̃ + C̃2 = −2.

Substituting (1) and (2) to this equality, we obtain KS ⋅ C = −4. Hence, if C′ is
a smooth member of |C|, we have KS ⋅C′ = −4. Again by adjunction and using
(C′)2 = C2 = 2 + 2g, we obtain that the genus of the curve C′ is exactly g. �

This is why we call g the genus of a minitwistor space. Thus minitwistor
lines are obtained as a degeneration of smoothmembers of the linear system |C|
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into irreducible curves which have exactly g nodes. We denote the morphism
associated to the (3 + g)-dimensional system |C| by

� ∶ S ⟶ ℂℙ3+g. (3)

By [8, Proposition 2.8], thismorphism is always birational over the image. How-
ever, the morphism � can contract curves on S. Indeed, any blow-up of a mini-
twistor space of genus g is again a minitwistor space of genus g, but the map
associated to the system generated by minitwistor lines contracts the excep-
tional curve of the blow-up. In order to ignore these redundant spaces, we call
a minitwistor space S essential if the birational morphism � in (3) is an em-
bedding, so that it does not contract any curves. This is a kind of minimality
condition, but note that it is little stronger than the minimality introduced in
[8] to the e�ect that in [8] minimality means that the curves contracted by �
were (−1)-curves only, while in the present paper we are allowing other curves
(e.g. a (−2)-curve) to be contracted. The present notion seems more natural.

Since the system |C| is base point free and the associated morphism � is bi-
rational over the image as above, for the degree of the image surface �(S) ⊂
ℂℙ3+g, we always have

deg�(S) = C2 = 2 + 2g. (4)

When g = 0, the conditions in De�nition 2.1 mean that C is a smooth ra-
tional curve satisfying C2 = 2, and this agrees with the original de�nition of
a minitwistor space given in [4]. In this case, the image surface �(S) ⊂ ℂℙ4
is either a smooth quadric or the cone over an irreducible conic. These are all
examples of minitwistor spaces classically known, and essential minitwistor
spaces of genus zero are exactly these two surfaces [8, Proposition 2.14].

Next we de�ne a Severi variety of rational curves associated to a minitwistor
space in the present sense.

De�nition 2.3. Let S ⊂ ℂℙ3+g be a essential minitwistor space of genus g > 0.
Let W0 be the subset of the dual projective space ℂℙ∗3+g consisting of hyper-
planes H ⊂ ℂℙ3+g such that the hyperplane sections S ∩ H are minitwistor
lines (with g nodes). We writeW for the closure ofW0, taken in ℂℙ∗3+g. This is
a subvariety inℂℙ∗3+g, and we call it the Severi variety of g-nodal rational curves
on S.

The spaceW0 is a Zariski-open subset of the closureW. In other words, the
Severi varietyW is a compacti�cation ofW0. We note that in the above de�ni-
tion of the spaceW0, since we are requiring that a minitwistor line is included
in Sreg as in De�nition 2.1, we are requiring that the hyperplane sections S ∩H
do not pass through any singularity of S. If a hyperplane H passes through a
singularity of S, say p, then the section S ∩ H is always singular at p, and the
section S∩H can be a nodal rational curve with a correct number of nodes. But
in general such a section does not admit an equisingular displacement in the
linear system |C| which avoids the singularity of S, and in that case H ∉ S∗.
See Remark 2.6 for concrete examples of this kind.
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Remark 2.4. Although it seems quite likely, we do not know whether the
Zariski open subsetW0 inW is precisely the smooth locus of the Severi variety
W.

Now from [8, Proposition 2.6 and Theorem 2.10], as a natural generalization
of a well-known result in the case of genus zero given in [4], we have

Proposition 2.5. The subsetW0 ⊂ ℂℙ∗3+g is a 3-dimensional complexmanifold,
and it admits a torsion-free Einstein-Weyl structure.

2.2. Compact minitwistor spaces of genus one. In the rest of this article,
we are mainly interested in essential minitwistor spaces of genus one. In this
case the Severi varietyW is a classical object that will be familiar to many read-
ers. To explain this object precisely, let S be an irreducible, non-denenerate
2-dimensional subvariety in ℂℙ4. We write S∗ ⊂ ℂℙ∗4 for the dual variety of S.
This is by de�nition [12, Def. 1.1] the closure in the dual projective space ℂℙ∗4
of the locus of hyperplanes which contain tangent planes of S at some smooth
points of S. (If S is smooth, we do not need to take the closure.) Let I(S) be the
incidence variety for S and S∗. Namely I(S) is the closure of the set

{
(p,H) ∈ ℂℙ4 × ℂℙ

∗
4 |p ∈ Sreg, TpS ⊂ H

}
,

taken inℂℙ4 ×ℂℙ
∗
4 . This is a subvariety inℂℙ4 ×ℂℙ

∗
4, and the dual variety S∗

is the image of I(S) under the the projection to the second factor ℂℙ∗4 . Hence,
there is a double �bration

I(S)

S S∗

�
��	

@
@@R

(5)

Over the smooth locus Sreg of S, the incidence variety I(S) is a �ber bundle
whose �bers are projective lines. In particular, I(S) is 3-dimensional. Also,
sinceS is supposed to be irreducible, I(S) is always an irreducible variety. There-
fore, so is the dual variety S∗.

Now suppose that S is a essential minitwistor space of genus one. So the
morphism (3) provides a projective embedding S ⊂ ℂℙ4. If H ⊂ ℂℙ4 is a hy-
perplanewhich belongs to the subsetW0, the intersection S∩H is aminitwistor
line from De�nition 2.3. If p is the node of this minitwistor line then we have
TpS ⊂ H because otherwise S ∩ H would be smooth at the point p. Thus
H ∈ W0 implies H ∈ S∗. NamelyW0 ⊂ S∗. Therefore, since S∗ is closed, we
obtainW ⊂ S∗ for the closureW ofW0. Since S∗ is irreducible as above and at
most 3-dimensional, this means thatW = S∗. Thus in the case of a minitwistor
space of genus one, the Severi varietyW in De�nition 2.3 is nothing but the dual
variety S∗, and it is always irreducible.

Remark 2.6. From this we can easily obtain an example of a 1-nodal rational
curve on aminitwistor space of genus one, which does not belong to the Zariski-
open subsetW0 (namely which is not a minitwistor line) as follows. Take any
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essential minitwistor space S ⊂ ℂℙ4 of genus one which has at least one ordi-
nary double point p. (See Section 3.2 for examples such minitwistor spaces.)
Let p∗ ⊂ ℂℙ∗4 be the hyperplane which is dual to p. So a hyperplane H ⊂ ℂℙ4
belongs to p∗ i� p ∈ H. By the irreducibility of S∗, we have p∗ ⊄ S∗. Therefore,
the hyperplane section S∗ ∩ p∗ is a divisor on p∗ = ℂℙ3. If we take a generic
H ∈ p∗ which does not belong to S∗, the section S ∩ H is a 1-nodal rational
curve whose node is exactly p, and it cannot be deformed into a minitwistor
line by any small displacement in S since H ∉ S∗. This implies that S ∩ H is
not a minitwistor line.

As is alreadymentioned, the structure of essentialminitwistor spaces of genus
zero is strongly constrained. Next we would like to see that a constraint for the
structure of essential minitwistor spaces of genus one is somewhat moderate,
and they are exactly particular surfaces that are classically known. In order to
explain what are these surfaces and put them in a broader context, we discuss
classical results on del Pezzo surfaces of arbitrary degrees.

Suppose n ≥ 3. All surfaces in ℂℙn appearing below are assumed to be
irreducible and non-degenerate, but smoothness and even normality are not
assumed. It is classically known [3, p. 174] that the degree of any surface S in
ℂℙn is bounded from below as

deg S ≥ n − 1.

Surfaces which attain the minimal degree (n − 1) are classically classi�ed [3,
p. 525]. Surfaces with the second smallest degree, namely surfaces with degree
n inℂℙn are also classi�ed, and they belong to one of the following three kinds
of surfaces [2, Section 8.1]:

(a) the images of surfaces of degree n in ℂℙn+1 under projections from
points,

(b) the cones over irreducible curves of degree n in ℂℙn−1,
(c) surfaces not included in (a) nor (b).

A di�erence between these surfaces is that generic hyperplane sections of sur-
faces in (a) have arithmetic genus zero, while they are one for surfaces in (b)
and (c). See [2, Section 8.1]. So an irreducible non-degenerate surface of degree
n in ℂℙn belongs to (c) i� a generic hyperplane section has arithmetic genus
one and the surface is not the cone over a curve of degree n in ℂℙn−1.

According to [2, De�nition 8.1.5], in a classical terminology, an irreducible
non-degenerate surface in ℂℙn belonging to the case (c) is called a del Pezzo
surface of degree n. The degree of a del Pezzo surface is at most 9 [2, Proposi-
tions 8.1.7 and 8.1.8]. Any del Pezzo surface is normal and has at worst rational
double points. For smooth ones, these surfaces are exactly del Pezzo surfaces
in modern de�nition. For singular ones, the minimal resolutions of del Pezzo
surfaces in this classical sense have (−2)-curves, and in modern language they
are often called weak del Pezzo surfaces.
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Classically del Pezzo surfaces of degree four are called Segre quartic surfaces
([2, Section 8.6]). By [2, Theorem 8.6.2], any Segre quartic surface is a com-
plete intersection of two quadrics in ℂℙ4. From this we readily obtain that the
anti-canonical class of a Segre quartic surface is the class of hyperplane sec-
tions. Any Segre quartic surface has at most �nite number of lines on it (see
[2, Section 8.6.3]). Note that a complete intersection of two quadrics in ℂℙ4 is
not necessarily a Segre surface because the cone over a quartic curve in ℂℙ3 is
typically a complete intersection of two quadrics in ℂℙ4.

With these preliminaries, we have

Theorem 2.7. Any essential minitwistor space of genus one is a Segre quartic
surface. Conversely, any Segre quartic surface is a essential minitwistor space of
genus one.

Proof. Let S be a essential minitwistor space of genus one. IfC is aminitwistor
line on S, as is already remarked, the surface S is embedded inℂℙ4 by the com-
plete linear system |C|, and in particular S is non-degenerate in ℂℙ4. Since
C2 = 2 + 2g = 4, we have deg S = 4. Thus, S is a non-degenerate irreducible
quartic surface inℂℙ4. Hence, by lettingn = 4 in the above classi�cation of sur-
faces in ℂℙn of degree n, in order to show that S is a Segre surface, it is enough
to show that the surface S does not belong to the above classes (a) nor (b). The
class (a) is immediately rejected since the arithmetic genus of a generic hyper-
plane section of surfaces in (a) is zero, while it is one for minitwistor spaces of
genus one by Proposition 2.2. Next, we show that the cones as in the class (b)
cannot be a minitwistor space. Recall that we are supposing normality for a
minitwistor space (see De�nition 2.1). Therefore, because the cone over a sin-
gular curve is non-normal, the cone can be a minitwistor space of genus one
only when the base curve is smooth. But even in that case the cone cannot be a
minitwistor space of genus one because a hyperplane section of the cone is sin-
gular only when it passes through the vertex of the cone, and a section of the
cone by such a hyperplane consists of generating lines of the cone and therefore
it cannot be aminitwistor line. Hence the surface S belongs to the class (c), and
this means that S has to be a Segre quartic surface.

To prove the converse, let S ⊂ ℂℙ4 be a Segre quartic surface. We �rst show
that the dual variety S∗ of S is 3-dimensional. Recall that a surface in ℂℙ4 is
said to be ruled if any point of the surface is passed through by a line lying on
the surface. By [12, Theorem 1.18], the strict inequality dim S∗ < 3 happens
only for ruled surfaces But any Segre quartic surface is not ruled because it has
only a �nite number of lines on it. Therefore, dim S∗ = 3. As in [13, Section
2.1], if the dimension of the dual variety is maximal (i.e. it is a hypersurface in
the dual projective space), then a hyperplane section of S which corresponds
to a generic element of the dual variety S∗ has precisely one node as its only
singularity. From genericity such a hyperplane section can be assumed not to
pass through any singularity of S, and if C is such a hyperplane section, we
have C2 = H.H.S = 4. Moreover, the curve C is rational since it has exactly
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one node as its only singularity and its arithmetic genus is one. Therefore,
C is a minitwistor line with one node, and hence the surface S is a essential
minitwistor space of genus one. �

Thus, essential minitwistor spaces of genus one are exactly Segre quartic sur-
faces. Hence from Proposition 2.5, the open subsetW0 of the dual variety (or
equivalently of Severi variety) in De�nition 2.3 of any Segre surface admits a
torsion-free Einstein-Weyl structure. For a birational property of the dual vari-
eties of Segre quartic surfaces, we have the following

Proposition 2.8. The dual variety of any Segre quartic surface is rational.

Proof. Let S ⊂ ℂℙ4 be a Segre quartic surface. Recall that, writing I(S) for the
incidence variety as before, we have the diagram

I(S)

S S∗

�
��	

@
@@R

(6)

Take and �x a point q ofℂℙ4 in which S is embedded. Then for a generic point
p ∈ Sreg, we have q ∉ TpS. Hence the linear subspace H(p) spanned by a
2-plane TpS and the point q is a hyperplane, and it contains TpS. Hence the
pair (p,H(p)) ∈ ℂℙ4 × ℂℙ

∗
4 belongs to I(S). So the assignment p ↦ (p,H(p))

de�nes a rational section of the projection I(S)→ S. Generic �bers of this pro-
jection are projective lines, and therefore, the presence of the rational section
implies [1, Lemma 3.4] that I(S) is birational to the product S×ℂℙ1. Moreover,
as mentioned right after De�nition 2.1, any minitwistor space is a rational sur-
face. Hence the variety I(S) is rational. Since the variety S∗ is the image of I(S)
under the projection to ℂℙ∗4, this means that S∗ is unirational. For the ratio-
nality, it is enough to show that the projection I(S) → S∗ is of degree-one. If
the degree is greater than one, a hyperplaneH ∈ S∗ which is generic in S∗ con-
tains at least two distinct tangent spaces of S. This means thatH∩S has at least
two singularities. But as mentioned in the last part of the proof of Theorem 2.7,
the intersection H ∩ S has exactly one node as its only singularity for generic
H ∈ S∗. Hence the projection I(S)→ S∗ is of degree-one. �

Note that the proof works for any rational variety X ⊂ ℂℙN which is not
ruled.

2.3. The class formula for Segre quartic surfaces. In this subsection we
determine the degrees of the dual varieties of Segre quartic surfaces, namely
the classes of the surfaces, by blowing up the surfaces at the intersection with
a generic 2-plane in ℂℙ4 and then investigating singular �bers of the result-
ing elliptic �brations induced on the blowups. This idea was used in [10] to
calculate the classes for Segre surfaces which have at most two nodes as their
only singularity, but the argument there for proving non-existence of reducible
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�bers of the elliptic �bration seems to require a clari�cation as we will provide
in Lemma 2.9 below in full generality.

First, we explain how one can obtain an elliptic �bration. Let S ⊂ ℂℙ4 be
any Segre quartic surface, and P ⊂ ℂℙ4 a 2-plane which is su�ciently general
so thatP intersects S transversally at any point of S∩P. This in particularmeans
that S ∩ P consists of four points as deg S = 4, and S is smooth at these four
points. If p is any one of these points, from the transversality we have TpS ∩
TpP = 0 for the intersection of tangent spaces. Therefore, for any hyperplane
H containing P, we have TpS ⊄ H, and hence the hyperplane section

SH ∶= S ∩H

is smooth at any of the four points S∩P. These hyperplane sections are quartic
curves in H = ℂℙ3, and belong to the anti-canonical class of S. Further for
any two distinct hyperplanes containing P, the anti-canonical curves intersect
transversally at the four points S∩P. Letℂℙ4 → ℂℙ1 be the generic projection
from the 2-planeP. Fibers of this projection are hyperplanes that containP, and
by intersecting with S, we obtain a pencil of anti-canonical curves on S. This
pencil has the four points S∩P as the base locus. Let S′ → S be the blowing-up
at the four points S ∩ P. Equivalently the surface S′ is the strict transform of
S under the blowing-up of ℂℙ4 along the 2-plane P. By the transversality the
base points of the above pencil on S are eliminated through the blowup, and
we obtain a morphism. We write it as

f′ ∶ S′ → ℂℙ1. (7)

All �bers of f′ are isomorphic to the corresponding members of the original
pencil on S. By Bertini’s theorem �bers of f′ are smooth except for �nite ones.
Obviously all �bers of f′ are anti-canonical curves on S′. In particular it is an
elliptic curve as long as it is smooth. Thus the morphism f′ ∶ S′ → ℂℙ1 is
an elliptic �bration. Since all blown-up points on S are smooth points of S, the
surface S′ has the same singularities as S has.

Let S̃′ → S′ be theminimal resolution of all singularities of S′. If S is smooth
we promise S̃′ = S′. Since all singularities of S′ are rational double points, all
components of the exceptional divisors of the resolution are (−2)-curves. We
write

f̃′ ∶ S̃′ → ℂℙ1 (8)

for the composition S̃′ → S′
f′
→ ℂℙ1. This is also an elliptic �bration, but this

time S̃′ is smooth. Since all singularities of S′ are rational double points, �bers
of f̃′ are still anti-canonical curves on S̃′, and therefore we have K2 = 0 for
the surface S̃′. By Hartogs theorem this readily means that any �ber of f̃′ does
not contain a (−1)-curve. Namely the elliptic �bration f̃′ in (8) is relatively
minimal.

Obviously, these constructions depend only on the choice of the 2-plane P ⊂
ℂℙ4, where the 2-plane has to satisfy the transversality for intersection with S.
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But for the purpose of calculating the degrees of the dual varieties of the Segre
surfaces, we need to choose the plane P more carefully to make singular �bers
of the elliptic �bration (7) or equivalently (8) in most generic forms. For this
purpose, we show

Lemma 2.9. There exists a plane P ⊂ ℂℙ4 such that the (singular) elliptic �bra-
tion f′ ∶ S′ → ℂℙ1 induced by P as in (7) satis�es the following properties.

(i) Two singularities of the surface S′ do not belong to the same �ber of f′.
(ii) Any singular �ber of f′ on which a singularity of S′ belongs has no singu-

larity other than that singularity of S′.
(iii) If a singular �ber of f′ has no singularity of S′ on it, the �ber is of type I1.

Proof. This is a problem of the existence of a line in the dual spaceℂℙ∗4 which
de�nes a pencil on S whose associated morphism f′ ∶ S′ → ℂℙ1 satis�es the
three genericity conditions in the lemma.

First let S be the set of hyperplanes in ℂℙ4 such that the sections of S by
the hyperplanes are singular. By Bertini’s theorem S is a strict subvariety of
the dual space ℂℙ∗4 . Obviously the dual variety S∗ is an irreducible component
of the subvariety S . Also if p1,… , pk are all singularities of S, the dual hy-
perplanes p∗1 ,… , p

∗
k ⊂ ℂℙ∗4, which are the sets of hyperplanes in ℂℙ4 which

pass through the singular points p1,… , pk respectively, are components of S .
To show that these are all components of S , let H ⊂ ℂℙ4 be any hyperplane
such that SH ∶= S ∩ H is singular, and suppose that H does not belong to
S∗ ∪ (p∗1 ∪⋯ ∪ p∗k). If there is a singularity, say p, of SH which is a smooth
point of S, we have TpS ⊂ H and from the de�nition of the dual variety S∗, this
means H ∈ S∗ which contradicts our choice of H. Hence, all singularities of
SH have to be singular points of S. This implies H ∈ p∗i for some i, and again
this cannot happen from our choice ofH. Hence we have

S = S∗ ∪
(
p∗1 ∪⋯ ∪ p∗k

)
. (9)

For a portion of the locus in the dual space ℂℙ∗4 which should be avoided
from a line to pass, for any di�erent indices i, j ≤ k, we put Pij ∶= p∗i ∩ p

∗
j .

This is a 2-plane in ℂℙ∗4 and is the space of hyperplanes which pass through pi
and pj. When the surface S has at most one singularity, we do not need these
in the following argument. In particular, for any H ∈ Pij, the section SH has
singularities at least at pi and pj. For each index i ≤ k, let Di be the subset of
the dual hyperplane p∗i such that if H ∈ Di, the section SH has a singularity
other than pi. We show that for each i = 1,… , k,

Di = (S∗ ∩ p∗i ) ∪
(⋃

j≠i
Pij

)
(10)

holds, whereDi is the closure ofDi inℂℙ
∗
4 . The inclusion ‘⊃’ is obvious. For the

reverse inclusion, take any H ∈ Di which does not belong to Pij for any j ≠ i.
Then the section SH has a singularity which is necessarily a smooth point of S.
This means H ∈ S∗ and hence, H ∈ S∗ ∩ p∗i . Therefore, Di is included in RHS
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of (10). Since Di is obviously a subvariety of ℂℙ
∗
4 and in particular closed, this

implies the inclusion ‘⊂’ in (10). Thus, the equality (10) holds.
Next, as in De�nition 2.1, letW0 be the subset of S∗ formed by hyperplanes

H ⊂ ℂℙ4 such that S∩H is a minitwistor line (with one node in the present sit-
uation). From the de�nition of a minitwistor line, the node is not a singularity
of S. We denote A ∶= S∗∖W0. SinceW0 is Zariski-open inW = S∗ and non-
empty, A is a strict subvariety of S∗. In particular any irreducible component
of A is at most 2-dimensional.

Finally, we consider the set of 2-planes inℂℙ4whichdonot intersect transver-
sally with S. This is a strict subvariety of the Grassmanian of 2-planes in ℂℙ4.
LetT be the complement of this subvariety in the Grassmanian, andT∗ the sub-
set of Grassmanian of lines in ℂℙ∗4 whose elements are lines which are dual to
2-planes belonging to T. This is a Zariski-open subset of the last Grassmanian.
This �nishes preliminary considerations.

Since any irreducible component of the subvarieties A and D1,… , Dk are at
most 2-dimensional, by a dimensional reason, there exists a line l ⊂ ℂℙ∗4 which
does not intersect any of these subvarieties. Moreover, the line l can be taken
from the subset T∗ since T∗ is Zariski-open in the Grassmanian of lines inℂℙ∗4 .
LetP ⊂ ℂℙ4 be the 2-planewhich is dual to l, andf′ ∶ S′ → ℂℙ1 ≃ l the elliptic
�bration determined by the 2-plane P as in (7). Since l ∈ T∗, the intersection
S ∩ P is transversal, and in particular we have pi ∉ P for any i = 1,… , k. For
i = 1,… , k, we put Hi ∶= l ∩ p∗i . In other words, Hi is a hyperplane in ℂℙ4
spanned by P and the point pi. Since l ∩ Di = ∅, from (10) we have l ∩ Pij = ∅
for any j ≠ i. This means pj ∉ Hi for any j ≠ i. Hence, for any i = 1,… , k, on
the section S ∩ Hi there is no singular point of S other than the point pi ∈ S.
This means the property (i) in the lemma. Moreover, the assumption l∩Di = ∅
means that the section S ∩ Hi does not have a singularity other than the point
pi. This means that the �bration f′ satis�es the property (ii) in the lemma.

Next, letH ∈ l be ahyperplane onwhichno singularity ofS belongs. Because
a hyperplane section SH is singular only when H belongs to the subvariety S ,
by (9) the �ber (f′)−1(H) ≃ SH is singular only when H ∈ S∗ or H = Hi for
some i = 1,… , k. From the choice ofH, the latter cannot occur. Moreover, since
we have chosen a line l which satis�es l ∩ A = ∅, we have H ∉ A = S∗∖W0
and therefore if H ∈ S∗ then H ∈ W0. Therefore, the section SH has a unique
node as its only singularity and it is a smooth point of S. In particular the �ber
(f′)−1(H) is of type I1 and no singularity of S′ belongs to the same �ber. This
means that the �bration f′ satis�es the property (iii) in the lemma. �

By taking the minimal resolutions of all singularities for the elliptic surface
S′ which satis�es the three properties in the lemma, we immediately obtain the
following
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Corollary 2.10. Let S ⊂ ℂℙ4 be any Segre quartic surface and p1,… , pk the sin-
gularities of S. Then there exists a 2-plane P ⊂ ℂℙ4 which intersects S transver-
sally at four points and for which the induced elliptic �bration f̃′ ∶ S̃′ → ℂℙ1 in
(8) satsis�es the following properties.

(i) If Xi is the dual graph of the exceptional curves of the singularity pi , then
the dual graph of the singular �ber which includes the exceptional curves
of that singularity is the extended Dynkin diagram X̃i .

(ii) All other singular �bers of f̃′ are of type I1.

Now we are able to prove the class formula for Segre surfaces.

Theorem 2.11. Let S ⊂ ℂℙ4 and X1,… , Xk be as in the previous corollary, and
e1,… , ek the topological Euler characteristics of the singular �bers of the elliptic
�bration (8), so that the dual graphs of the �bers are of type X̃1,… , X̃k respectively.
Then we have the formula

deg S∗ = 12 − (e1 +⋯ + ek). (11)

In particular we have deg S∗ = 12 if the Segre surface S is smooth.

Proof. We take a 2-planeP ⊂ ℂℙ4 as in the previous corollary and let f̃′ ∶ S̃′ →
ℂℙ1 be the associated elliptic �bration. Then the set of critical values of f̃′ con-
sists of hyperplanesHi = l∩p∗i , 1 ≤ i ≤ k, as well as the points corresponding to
the singular �bers of type I1. The singular �bers over the former kind of critical
values are reducible since each of them includes the exceptional curves of the
minimal resolution of the singularity as components. Hence the two kinds of
critical values do not have a common point. Moreover, we have Hi ∉ S∗ since
if not, we have Hi ∈ S∗ but from our choice we have l ∩ A = ∅ and therefore
the hyperplaneHi would belong toW0, which contradicts p∗i ∩W0 = ∅. On the
other hand, if H ⊂ ℂℙ4 is a hyperplane for which S ∩ H corresponds to a sin-
gular �ber of type I1, the node of this singular �ber is a smooth point of S. This
means that H ∈ W0. These imply l ∩ S∗ = l ∩W0, and that points belonging
to the intersection l ∩W0 are in one-to-one correspondence with the singular
�bers of type I1 of f̃′.

Since the elliptic surface S̃′ is rational and relatively minimal as seen before,
the topological Euler characteristic of S̃′ is 12. Hence, from the additivity of
the topological Euler characteristic to the elliptic �bration f̃′ ∶ S̃′ → ℂℙ1 , we
obtain that the number of singular �bers which are of type I1 is exactly 12 −
(e1 +⋯+ ek). From the conclusion in the �rst paragraph, this directly implies
the desired equality (11). �

3. The divisors at in�nity in the dual varieties of Segre surfaces
3.1. The Segre symbol. As is already mentioned, any Segre quartic surface is
a complete intersection of two quadrics in ℂℙ4. In general, complete intersec-
tions of two quadrics in ℂℙn for arbitrary n can be systematically investigated
by using so called the Segre symbol. In this section, following [5, Chapter XIII,
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Section 10] and [2, Section 8.6], We �rst recall Segre symbol and next present a
classi�cation of Segre surfaces in terms of the Segre symbol.

Let X0,… , Xn be homogeneous coordinates on ℂℙn. Any quadric in ℂℙn is
de�ned as the zero locus of a quadratic form in X0,… , Xn, and quadratic forms
are in one-to-one correspondence with symmetric matrices of size (n + 1) ×
(n + 1) in a standard way. Let Y be a complete intersection of two quadrics in
ℂℙn. We write Q for the pencil of quadrics generated by equations of Y. Let
U and V be symmetric matrices which correspond to distinct two elements of
Q. Assume that some member (and hence a generic member) of Q is smooth.
Then we may suppose |V| ≠ 0. If � is an indeterminate, the determinant |U −
�V| is a polynomial in � whose degree is precisely n + 1. Let

(� − �1)e1 , (� − �2)e2 , … , (� − �s)es

be all elementary divisors of the matrix U − �V, so that �1,… , �s are roots of
the equation |U − �V| = 0. Unlike the presentation in [2] we do not assume
�i ≠ �j for i ≠ j, but we put indices for the roots �i in such a way that the same
roots are adjacent in the sense that �i = �j for some i < j implies �i = �i+1 =
�i+2 =⋯ = �j. From |V| ≠ 0, we have

0 < s ≤ n + 1 and
s∑

i=1
ei = n + 1.

For a positive integer e, we de�ne two e × e matrices by

Pe(�) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 … 0 0 �
0 0 … 0 � 1
0 0 … � 1 0
⋮ ⋮ ⋱⋮ ⋮ ⋮
0 � ⋯ 0 0 0
� 1 … 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, Qe =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 … 0 0 1
0 0 … 0 1 0
0 0 … 1 0 0
⋮ ⋮ ⋱⋮ ⋮ ⋮
0 1 … 0 0 0
1 0 … 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where� is any complex number. Note that the elementary divisor ofPe(�)−�Qe
is (�−�)e. ThematricesU andV can be simultaneously normalized in the sense
of the theory of quadratic forms respectively into the matrices

⎛
⎜
⎜
⎝

Pe1(�1) 0 … 0
0 Pe2(�2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … Pes(�s)

⎞
⎟
⎟
⎠

,
⎛
⎜
⎜
⎝

Qe1 0 … 0
0 Qe2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … Qes

⎞
⎟
⎟
⎠

.

Under this situation, the Segre symbol for the complete intersection Y is given
by

[e1e2… es],
with the exception that if some of the roots �i are equal, namely if �i = �i+1 =
�i+2 = ⋯ = �j for some i < j and if all other roots are di�erent from this
common number, then the sequence of the entries eiei+1ei+2… ej is enclosed by
round brackets.
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For example, if n = 4 and the Segre symbol is [2111], the elementary divisors
of the matrix U − �V are (� − �1)2, � − �2, � − �3 and � − �4 for some distinct
numbers �1,… , �4, and we have e1 = 2, e2 = e3 = e4 = 1. Hence the symmetric
matricesU andV are simultaneously normalized respectively into thematrices

⎛
⎜
⎜
⎜
⎝

0 �1 0 0 0
�1 1 0 0 0
0 0 �2 0 0
0 0 0 �3 0
0 0 0 0 �4

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎟
⎟
⎠

.

Therefore, the complete intersection Y is de�ned by the equations

2�1X0X1 + X2
1 + �2X2

2 + �3X2
3 + �4X2

4 = 2X0X1 + X2
2 + X2

3 + X2
4 = 0.

As the second example, if n = 4 and the Segre symbol is [32], all elementary
divisors of the matrix U − �V are (� − �1)3 and (� − �2)2 for some distinct
numbers �1 and �2, and we have e1 = 3, e2 = 2. The symmetric matricesU and
V are simultaneously normalized respectively into the matrices

⎛
⎜
⎜
⎜
⎝

0 0 �1 0 0
0 �1 1 0 0
�1 1 0 0 0
0 0 0 0 �2
0 0 0 �2 1

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟
⎟
⎟
⎠

.

Therefore, the complete intersection Y is de�ned by

2�1X0X2 + �1X2
1 + 2X1X2 + 2�2X3X4 + X2

4 = 2X0X2 + X2
1 + 2X3X4 = 0.

Instead, if the Segre symbol of Y is [(32)], we just need to let �1 = �2 in this
argument. But the case [(32)] does not give a Segre surface since it turns out
from the normalized equations that it is a cone over a quartic curve.

A complete intersection of two quadrics inℂℙ4 is smooth i� its Segre symbol
is [11111]. A list of Segre symbols for complete intersections of two quadrics
in ℂℙ4 which de�ne Segre quartic surfaces and whose pencil Q of quadrics
contains a smooth member is given in Dolgachev’s book [2, p. 398], and they
consist of 16 kinds as in the following list in terms of the number of distinct
roots of the equation |U − �V| = 0, or equivalently the number of singular
members of the pencil Q.

∙ [11111]
∙ [2111] [(11)111]
∙ [(11)(11)1] [(11)21] [311] [221] [(12)11]
∙ [41] [(31)1] [3(11)] [32] [(12)2] [(12)(11)]
∙ [5] [(41)]

The above assumption on smoothness for members of the pencil Q is in ef-
fect not necessary (i.e. the above list covers all Segre quartic surfaces) by the
following
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Proposition 3.1. If the pencilQ of quadrics inℂℙ4 does not have a smoothmem-
ber, the complete intersection de�ned by Q is not a Segre quartic surface.

Proof. Weuse the notations and results in [5, Chap. XIII, Sect. 10 & 11]. Under
the hypothesis on Q, we have |V| = 0. We again let (� − �1)e1 ,… , (� − �s)es be
the elementary divisors of the matrix U − �V, where in the present situation
s = 0 if |U − �V| = 0. There exist integers k > 0 and r0 ≥ 0 as well as a
collection of integers r1,… , rk > 0 which are determined from U and V, such
that the relation

s∑

i=1
ei = n + 1 − 2

k∑

i=1
ri − k − r0 (12)

holds ([5, p.290]). The integer r0 is the number of variables among X0,… , Xn
which do not appear in any equations of quadrics in Q, and since Segre sur-
faces are not a cone we have r0 = 0. Even so, since we have n = 4 (as we are
considering complete intersections in ℂℙ4), if k > 1 would hold, RHS of (12)
would be negative which is a contradiction. So we have k = 1, and the relation
(12) becomes

s∑

i=1
ei = 4 − 2r1. (13)

Since LHS of this equation is non-negative, we have r1 = 1, 2.
If r1 = 1, we have

∑s
i=1 ei = 2 and the possibilities for all elementary divisors

of U − �V are
s = 1 (∴e1 = 2) ⇒ (� − �1)2,
s = 2 (∴e1 = e2 = 1) ⇒ (� − �1), (� − �2).

Segre symbols of these cases are respectively [2; 1] if s = 1, and [11; 1] or [(11); 1]
if s = 2 according as �1 ≠ �2 or �1 = �2 respectively. (The numbers put
after the semicolon are r1,… , rk in general.) The normalized equations for these
complete intersections are (see [5, p.294])

[2; 1] ⇒ 2X0X1 + 2�1X3X4 + X2
4 = 2X1X2 + 2X3X4 = 0,

[11; 1] ⇒ 2X0X1 + �1X2
3 + �2X2

4 = 2X1X2 + X2
3 + X2

4 = 0,

[(11); 1] ⇒ 2X0X1 + �1X2
3 + �1X2

4 = 2X1X2 + X2
3 + X2

4 = 0,

where �1 ≠ �2 for the middle one. The �rst one is reducible since it contains
the 2-plane X1 = X4 = 0. The last one is also reducible since it contains the
2-planeX1 = X3+ iX4 = 0 (and also the planeX1 = X3− iX4 = 0). So these are
not Segre surfaces. For themiddle one it can be readily seen that the surface has
singularities along the line X1 = X3 = X4 = 0. Since any singularity of a Segre
surface is isolated, this means that the surface is not a Segre quartic surface.

Finally, if r1 = 2, the Segre symbol of the complete intersection is [; 2], and
the normalized equations are

2X0X1 + 2X2X3 = 2X1X2 + 2X3X4 = 0.



688 NOBUHIRO HONDA

This is again reducible since it contains the planeX1 = X3 = 0, and hence does
not give a Segre surface. Therefore, |V| ≠ 0. �

3.2. Double covering structures on Segre quartic surfaces. As explained
in the previous subsection, the Segre symbol is useful for a systematic study
of complete intersections of two quadrics. Especially, it provides us a pair of
normalized forms for quadratic polynomials which de�ne the surface. In this
subsection by using the normalized equations, we see that most Segre quartic
surfaces have a structure of a double covering over an irreducible quadric in
ℂℙ3. This structure can be used to determine the types of singularities for most
Segre surfaces. We note that in [2, p.401] the types of all singularities of any
Segre surfaces are presented without a proof. The double covering structure
will also be used in the next subsection to investigate the divisors at in�nity for
the Einstein-Weyl spaces associated to Segre surfaces.

We begin with an easy observation which is useful for our purpose.

Proposition 3.2. Suppose that the symbol of a Segre quartic surface S has at least
one ‘1’ not living in a pair of round brackets. Then by a generating projection from
a point not lying on the surface, S has a structure of a �nite double covering over
a smooth quadric in ℂℙ3, whose branch curve B is a complete intersection of the
smooth quadric and another quadric. Further, the Segre symbol of the curve B is
obtained from that of S by just removing the ‘1’.

For example, if the Segre symbol of a Segre surface S is [1112], since this con-
tains (indeed three) ‘1’ and each of them do not live in a pair of round brackets,
S is a double cover over a smooth quadric surface whose branch is a complete
intersection with another quadric, and the Segre symbol of the branch curve is
[112]. On the contrary, if the Segre symbol of a Segre surface S is [(11)(12)] for
instance, then since all ‘1’ in the symbol are living in a pair of round brackets,
we cannot apply the proposition to such an S.

Proof of Proposition 3.2. The e�ect of changes of the order of the entry num-
bers in Segre symbol is just the exchanges for the variables in homogeneous co-
ordinates on a projective space. Hence, wemay suppose that the ‘1’ corresponds
to the �rst variable X0. Since the ‘1’ is not living in a pair of round brackets, the
corresponding elementary divisor is of the form � − �1 for some �1 ∈ ℂ. Let F
and G be a pair of normalized quadratic polynomials of S in these coordinates.
From the above elementary divisor, monomials in F and G which contain the
variable X0 are (a constant multiple of) X2

0 only, and we have

F = �1X2
0 + f, G = X2

0 + g, (14)

where the residual quadratic polynomials f and g do not contain X0. Let � ∶
ℂℙ4 → ℂℙ3 be the generic projection from the point (1, 0, 0, 0, 0). Namely �
is the map which drops the coordinate X0. Eliminating X2

0 from the equations
F = G = 0, we obtain

f − �1g = 0. (15)
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This is a quadratic equation in X1, X2, X3, X4, and the corresponding symmet-
ric 4 × 4matrix is readily seen to be of full rank (i.e. rank 4) by using that �1 is
di�erent from other roots appearing in the polynomial f. Hence if Q ⊂ ℂℙ3
is the quadric which is de�ned by (15), it is smooth. From (14), the generating
point of the projection � is not on S, and the restriction �|S provides S a struc-
ture of �nite double cover over Q, with the branch divisor B being de�ned by
f − �1g = g = 0. Hence the branch divisor is a complete intersection of two
quadrics in ℂℙ3. The last equations are equivalent to f = g = 0, so we have
B = {f = g = 0}. Moreover, obviously the two polynomials f and g are already
in normalized forms, and the Segre symbol of the complete intersection B is
exactly the one given in the proposition. �

When the symbol of a Segre surface is as in the proposition, principal struc-
ture of the surface may be read o� from the structure of the branch curve B in
the smooth quadricQ. In turn structure of the curve B is known from the Segre
symbol of B, because the symbol provides normalized forms of the quadratic
equations of B, and it is not di�cult to obtain concrete structure from the equa-
tions, by projecting B to ℂℙ2 from a point. Below we present a list of structure
of B which actually arise from Segre surfaces as in Proposition 3.2. These can
also be found in [5, pp. 305–8] where arbitrary complete intersections of two
quadrics in ℂℙ3 are treated. See also Figure 1 for these curves.

[1111] ⇒ smooth elliptic curve, [112] ⇒ 1-nodal rational curve, [13] ⇒ 1-
cuspidal rational curve, [11(11)] ⇒ two conics intersecting transversally at
two points, [1(12)] ⇒ two conics touching at one point, [22] ⇒ one line and
one rational normal curve intersecting transversally at two points, [4] ⇒ one
line and one rational normal curve touching at one point, [2(11)] ⇒ two lines
and one conic, forming a ‘triangle’, [(13)] ⇒ two lines and one conic, sharing
one point, [(11)(11)] ⇒ a ‘square’ of four lines.

From these, the types of all singularities of Segre surfaces whose symbols sat-
isfy the property in Proposition 3.2 are obtained. We present them in the second
column of Table 1. Then by using Theorem 2.11, the classes of these Segre sur-
faces are obtained, and they are listed in the third column in Table 1. The forth
column of the table presents the numbers of ‘1’ in the symbols which are not
living in a pair of round brackets. These are in one-to-one correspondence with
generating projections from a point which induces the double covering map to
the smooth quadric surface as in Proposition 3.2. We will show in Section 3.3
that the dual quadric Q∗ of the smooth quadric Q is always contained in the
dual variety S∗, and this is why we are writing Q∗ in the table. The numbers
of lines on S are listed in the �fth column, and they are taken from [2, p. 401].
Among them the number of lines on S which do not pass through any singu-
larity of S are listed in the sixth column. In Section 3.3 we will also show that
the 2-plane in ℂℙ∗4 which is formed by hyperplanes in ℂℙ4 that contain such a
line is always contained in S∗.
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[112] [13] [11(11)] [1(12)]

[(11)(11)][(13)][22] [4] [2(11)]

Figure 1. The branch curves B

Segre symbol Sing S deg S∗ #{Q∗⊂S∗} #{lines⊂S} #{ℂℙ2⊂S∗} AuteS
[11111] none 12 5 16 16 {id}
[1112] A1 10 3 12 8 {id}

[111(11)] 2A1 8 3 8 0 ℂ∗

[12(11)] 3A1 6 1 6 0 ℂ∗

[1(11)(11)] 4A1 4 1 4 0 ℂ∗ × ℂ∗

[113] A2 8 2 8 4 {id}
[122] 2A1 9 1 9 4 {id}
[11(12)] A3 8 2 4 0 {id}
[14] A3 8 1 5 2 ℂ∗

[1(13)] D4 6 1 2 0 ℂ∗ or {id}

Table 1. Segre quartic surfaces which are realizable as a dou-
ble cover over a smooth quadric surface

Next, we discuss the case where the Segre symbol contains ‘1’ but where it
lives in a pair of round brackets. Then the situation is little di�erent from that
in the previous proposition, but it happens to be still simple.

Proposition 3.3. Suppose that the Segre symbol of a Segre quartic surface S in-
cludes ‘1’ which is enclosed by a pair of round brackets. Then by a generating pro-
jection from a point not lying on the surface, S has a structure of a �nite double
covering over the cone over an irreduble conic, and the branch curve is a complete
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intersection of the cone with another quadric. Further, the Segre symbol of the
branch curve is obtained from that of S by removing the ‘1’ and next removing the
pair of round brackets in which the ‘1’ lives.

For example, the symbol [(11)12] (resp. [(14)]) enjoys the assumption of the
proposition, and the symbol of the branch curve on the cone is [112] (resp. [4]).
Combining with Proposition 3.2, this means that if the symbol has two ‘1’, and
if one of them is included in a pair of round brackets while the other one is not
(like [(11)12]), then S is a double cover of a smooth quadric and also is a double
cover of the cone over an irreducible conic.

Proof of Proposition 3.3. From the list for the Segre symbols of all Segre sur-
faces given right before Proposition 3.1, the Segre symbols in the situation of
the present proposition are of the forms [(11)e], [(12)e′] for some e and e′, or
exactly one of [(13)1] and [(14)]. We verify the proposition on case-by-case basis
depending on these distinctions.

For the �rst case (in which the symbol is of the form [(11)e]), e is one of
111, 12, 3, (11)1, (12). (16)

The pair of normalized symmetric matrices which de�ne the surface S are of
the forms

U =
⎛
⎜
⎜
⎝

�1 0 00 �1

0 U′

⎞
⎟
⎟
⎠

, V =
⎛
⎜
⎜
⎝

1 0 00 1

0 V′

⎞
⎟
⎟
⎠

, (17)

where U′ and V′ are 2 × 2 matrices which are determined from e. In terms
of these symmetric matrices, an elimination of the variable X0 (or equivalently
X1) from the pair of the quadratic equations corresponds to considering the
matrixU − �1V, and we obtain a quadratic polynomial in X2, X3, X4. The 3 × 3
symmetric matrix corresponding to this polynomial is exactlyU′−�1V′, and it
is not di�cult to see from the list (16) using �i ≠ �j for i ≠ j, that this matrix is
of full rank. So the quadratic polynomial de�nes an irreducible conic in ℂℙ2.
The point (1, 0, 0, 0, 0) is again not on S, and if� ∶ ℂℙ4 → ℂℙ3 is the projection
from this point, the image �(S) ⊂ ℂℙ3 is contained in the cone over the last
conic. The restriction�|S ∶ S → �(S) is of degree-two over the image, so�(S) is
2-dimensional. Hence we obtain that the image �(S) is the cone over the conic.
Moreover, we �nd that the branch divisor of �|S is a complete intersection of
two quadrics in ℂℙ3 whose symmetric matrices are

(0 0
0 U′ − �1V′) and (1 0

0 V′) . (18)

Again, by using �1 ≠ �i if i > 1, it is readily seen (again by case-by case check-
ing relying on (16)) that this pair is already in normal forms, and that the cor-
responding Segre symbol is exactly [1e], the �rst ‘1’ being corresponding to the
1×1-components of the upper-left in the matrices (18). Thus, the Segre symbol
of the branch curve of �|S is certainly as in the proposition.
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Next, if the Segre symbol of S is of the form [(12)e′] for some e′, all the pos-
sibilities for e′ are 11, (11) and 2. Then we have

U =

⎛
⎜
⎜
⎜
⎝

�1 0 0
00 0 �1

0 �1 1

0 U′

⎞
⎟
⎟
⎟
⎠

, V =

⎛
⎜
⎜
⎜
⎝

1 0 0
00 0 1

0 1 0

0 V′

⎞
⎟
⎟
⎟
⎠

, (19)

where U′ and V′ are two symmetric matrices that are determined from e′. By
the same procedure as in the last case of [(11)e], we obtain that the projection
� ∶ ℂℙ4 → ℂℙ3 from the point (1, 0, 0, 0, 0) ∉ S induces a double covering
map to the cone over an irreducible conic, and the branch curve is a complete
intersection of two quadrics in ℂℙ3 de�ned by two symmetric matrices

⎛
⎜
⎜
⎝

0 0 00 1

0 U′ − �1V′

⎞
⎟
⎟
⎠

and
⎛
⎜
⎜
⎝

0 1 01 0

0 V′

⎞
⎟
⎟
⎠

. (20)

Again, by using �1 ≠ �i for any i > 1, we can see that this pair is already in
normal forms, and the corresponding Segre symbol is [2e′], where the �rst ‘2’
being corresponding to the 2× 2matrices in the upper-left in the matrices (20).
Thus, the Segre symbol of the branch curve of �|S is again as in the proposition.

The cases where the Segre symbol of S is [(13)1] or [(14)] can be shown in
the same manner, and we omit them. �

When Proposition 3.3 can be applied to a Segre surface S, since the double
coveringmap is �nite, S always has singularity over the vertex of the cone. Let v
be the vertex of the cone andB the branch divisor on the cone. If v ∉ B, then the
surfaceS has twoA1-singularities over v. If v ∈ B, then the surfaceS has exactly
one singularity over v. Since the curve B can have a singularity at a smooth
point of the cone, S can have other singularity in general, but again the types
of them are known from that of the branch curve B. When v ∈ B, the type of
the singularity of S over v is known by transforming B through blowing up at v,
and noticing that the exceptional curve of the blowup is always included in the
branch locus of the new double covering. This way the types of all singularities
of S are again known, and we display them in Table 2. Again, the classes of the
surfaces are obtained from Theorem 2.11, andwe list them in the third column.
Positioning of the vertex v and the branch curve B is shown in the �fth column.
Wenote that it is possible to show that any line on S passes through a singularity
of S for any Segre surface S which appears in Table 2, and therefore we obtain
no plane in the dual variety S∗ in the situation of Proposition 3.3. Also, we note
that [(11)(12)] and [(12)(11)] represent Segre surfaces of the same kind, and we
are taking di�erent projections to the cone.

Evidently at least one of Propositions 3.2 and 3.3 is applied if the Segre symbol
contains at least one ‘1’. Among 16 symbols for Segre quartic surfaces, there are
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Segre symbol Sing S deg S∗ #{lines ⊂ S} the vertex v AuteS
[(11)111]∗ 2A1 8 8 v ∉ B ℂ∗

[(12)11]∗ A3 8 4 v is a node of B {id}
[(11)12]∗ 3A1 6 6 v ∉ B ℂ∗

[(11)(11)1]∗ 4A1 4 4 v ∉ B ℂ∗ × ℂ∗

[(11)3] 2A1 + A2 5 4 v ∉ B ℂ∗ × ℂ∗

[(13)1]∗ D4 6 2 v is a cusp of B ℂ∗ or {id}
[(12)2] A1 + A3 6 3 v is a node of B ℂ∗

[(11)(12)] 2A1 + A3 4 2 v is a node of B ℂ∗ × ℂ∗

[(12)(11)] 2A1 + A3 4 2 v ∉ B ℂ∗ × ℂ∗

[(14)] D5 5 1 SingB = {v} ℂ∗ or {id}

Table 2. Segre quartic surfaces which are realizable as a dou-
ble cover of the cone over an irreducible conic. Symbols which
appeared in Table 1 are associated by ‘∗’.

exactly two symbols which do not contain any ‘1’, and they are

[23] and [5]. (21)

According to [2, Table 8.6], the former surface has exactly two singularities and
they are of types A1 and A2, and the latter surface has exactly one singularity,
which is of type A4. For these Segre surfaces, we cannot obtain a double cover-
ing structure over a quadric by a generic projection from a point which does not
belong to S. Similarly to the previous two tables, we display principal structures
of these surfaces in Table 3.

Segre symbol Sing S deg S∗ #{lines⊂ S} #{ℂℙ2 ⊂ S∗} AuteS
[23] A1 + A2 7 6 2 ℂ∗

[5] A4 7 3 1 ℂ∗

Table 3. Segre quartic surfaces which cannot be realized as a
double cover over a quadric surface

3.3. Self-intersection loci of the dual varieties. Recall that if S ⊂ ℂℙ4 is a
Segre quartic surface, the dual variety S∗ ⊂ ℂℙ∗4 contains a Zariski-open sub-
set W0 parameterizing 1-nodal rational curves that are contained in Sreg, the
smooth locus of S, and W0 is a complex 3-manifold which has an Einstein-
Weyl structure (see De�nition 2.3 and Proposition 2.5). The subsetW0 cannot
coincide with the full set S∗ since 1-nodal rational curves can always be de-
formed in S to a 2-nodal (and hence reducible) curve or a 1-cuspidal rational
curve. So the complement S∗∖W0 is always a non-empty subvariety in S∗. This
subvariety may be regarded as the natural boundary set or a kind of conformal
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in�nity of the complex Einstein-Weyl spaceW0. As in the introduction, we call
2-dimensional components of S∗∖W0 divisors at in�nity. In this subsection we
�nd several components of the divisors at in�nity in concrete forms, and show
that the dual varieties have self-intersection along these divisors.

In order to �nd and describe divisors at in�nity, we �rst make use of lines
lying on a Segre surface. Let S ⊂ ℂℙ4 be a Segre quartic surface and l a line on
S. The number of lines on Segre surfaces are presented in Tables 1–3. We write
l∗ for the set of hyperplanes inℂℙ4 which contain the line l. So l∗ is a 2-plane in
the dual space ℂℙ∗4 . IfH ∈ l∗, the line l is contained in the hyperplane section
S ∩ H, and since S is of degree four, the section is reducible. This means that
the section S ∩ H is not a minitwistor line. So it does not belong to the open
subsetW0 of S∗. But we have

Proposition 3.4. Suppose that the line l ⊂ S does not pass through any singu-
larity of S. Then the 2-plane l∗ ⊂ ℂℙ∗4 is contained in the dual variety S∗. In
particular, it is a divisor at in�nity.

For the proof of the proposition, we use the following three lemmas, for
which we omit the proofs as they can be shown in a standard way.

Lemma 3.5. Let S ⊂ ℂℙ4 be a Segre quartic surface. Then any 2-plane in ℂℙ4
does not contain a curve on S whose degree in ℂℙ4 is greater than two.

Lemma 3.6. If a Segre surface S ⊂ ℂℙ4 contains an irreducible conic C which
does not pass through any singularity of S, we have C2 = 0 on S.

Lemma 3.7. Let S ⊂ ℂℙ4 be a Segre surface. For each singularity of S, conics on
S which pass through that singularity constitute at most 1-dimensional family.

By using these three lemmas, we next show

Lemma 3.8. A generic secant pq, p, q ∈ S, of any Segre quartic surface S ⊂ ℂℙ4
has the properties that it does not intersect any line on S, and that any 2-plane
which contains pq does not include any curve on S.

Proof. By Lemmas 3.6 and 3.7, any component of the variety of conics in ℂℙ4
which are contained in S is at most 1-dimensional. A generic element C of this
variety de�nes a 2-plane P ⊂ ℂℙ4 by the condition C ⊂ P. Hence the variety
of conics on S is identi�ed with the variety of 2-planes inℂℙ4 which contains a
conic on S. We then de�ne V to be the variety consisting of lines in ℂℙ4 which
are contained in some 2-plane belonging to the last variety of 2-planes. In other
words,V is the set of lines lying on the same 2-plane inℂℙ4 as some conic on S.
Then obviously each component ofV is at most 3-dimensional. Moreover, ifW
denotes the variety formed by secants of the surface S, thenwe have dimW = 4,
and moreover V ⊂ W.

Next letK be the set of secants of S which intersect some line in S. Evidently
K is a 3-dimensional subvariety ofW. By a dimensional reason, wemay choose
a secantpq ∈Wwhich does not belong to the subvarietyV∪K. Thenpq∩l = ∅
for any line l ⊂ S. Let P ⊂ ℂℙ4 be any 2-plane containing pq. By Lemma 3.5,
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P does not contain any curve on S whose degree is greater than two. Moreover
from pq ∉ V, the 2-plane P does not contain any conic on S. �

Proof of Proposition 3.4. Let l be a line on a Segre surface S ⊂ ℂℙ4. LetH be
a generic hyperplane which contains l. We �rst show that there exists a secant
of S which is included in H and which satis�es the property in Lemma 3.8.
Since S is quartic we have S ∩H = l ∪ C, where C is a cubic curve. By Lemma
3.5, C is non-degenerate in the sense that it is not contained in a 2-plane. Any
secant of S included inH is a secant of the hyperplane section S∩H = l∪C. Any
secant of the cubic curveC is of course such a secant, and sinceC is a curve they
constitute 2-dimensional family of secants of S. Because C is non-degenerate
as above, generic two distinct secants in the family do not intersect. If a generic
secant of S inH does not satisfy the property in Lemma 3.8, then to each secant
of C we have a conic in S which lies on the same 2-plane as the secant. These
mean that there exists a 2-dimensional family of conics in S, which contradicts
Lemmas 3.6 and 3.7. Therefore, there is a secant pq of S which is contained
inH and which satis�es the property in Lemma 3.8. Obviously, we can choose
such a secant which does not pass through the line l. Then the hyperplane H
is spanned by l and pq.

We �x any one of such secants pq ⊂ H, and let $ ∶ ℂℙ4 → ℂℙ2 be the
projection from the line pq. Fibers of $ are 2-planes which contain pq. We
use the same letter$ for the restriction of the projection to the surface S. Then
$ ∶ S → ℂℙ2 has the two points p and q as the set of indeterminacy, and if S′

is the blowing-up of S at these two points, then the composition S′ → S
$
→ ℂℙ2

is a morphism. We write$′ for this morphism. This is the anti-canonical map
from S′. Since S is of degree four, the morphism$′ is of degree two. Moreover,
since there exists no 2-plane in ℂℙ4 which contains a curve on S, the degree-
two morphism$′ ∶ S′ → ℂℙ2 does not contract any curve on S′. Namely$′

is a �nite morphism. Since K2
S = deg S = 4, we have K2

S′ = 2. From these we
readily obtain that the branch divisor of$′ ∶ S′ → ℂℙ2 is a quartic curve.

Now assume that the line l on S does not to pass through any singularity of
S. Then l is a (−1)-curve on S. Let l′ be the strict transform of l into S′. Then
since the secant pq does not intersect l from our choice, l′ is still a (−1)-curve.
Hence we have K−1

S′ . l
′ = 1. So the image$′(l′) = $(l) ⊂ ℂℙ2 is a line, and l′

is isomorphic to this line by$′. Further the pullback ($′)−1($′(l′)) is an anti-
canonical curve on S′. On the other hand, since the hyperplane H contains
the center of the projection $, the image $(H) is also a line, and as l ⊂ H,
we have $′(l′) = $(H). If the line $′(l′) would be contained in the branch
quartic of $′, the branch curve is singular at some point on the line $′(l′).
Since $′ does not contract any curve on S′, this means that there would exist
a singular point of S′ on l′. Hence S would have a singularity at some point
of the line l, which contradicts the assumption on l. Therefore, the line$′(l′)
is not contained in the branch quartic of $′. Hence, the curve ($′)−1($′(l′))
on S′ has a component other than the line l which is mapped to the bitangent
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1

−1
C

l

$′(l′) isomorphically. Since the branch curve is of degree four, this can hap-
pen exactly when the line $′(l′) = $(l) is a bitangent of the branch quartic.
Now we move the line along the branch quartic in a way that it is a regular
tangent of the branch quartic. The preimages of such a tangent under $ and
$′ are still anti-canonical curves on S and S′ respectively, and generically have
respectively an ordinary double point over the tangent point as their only sin-
gularity. This means that the preimage to S of the tangent is a minitwistor line
on S. Therefore, the curve$−1($(l)) on S is a limit of minitwistor lines on S.
Since S∗ is closed and$−1($(l)) = H ∩ S, this means H ∈ S∗. Hence l∗ ⊂ S∗,
as desired. �

From the proof, it is not di�cult to obtain the following

Proposition 3.9. If l is a line on a Segre surface S ⊂ ℂℙ4 which does not pass
through any singularity of S as in Proposition 3.4, for a generic hyperplane H
which contains l, the section S ∩ H is as in Figure 3.3, where the numbers are
self-intersection numbers in S.

Proof. We keep the notations in the previous proof. The image$(l) = $′(l′)
was a bitangent of the branch curve of the double covering$′ ∶ S′ → ℂℙ2, and
the preimage ($′)−1($′(l′)) is of the form l′+C′ for some smooth rational curve
C′ ⊂ S′ which is mapped isomorphically to the bitangent by$′. Moreover the
intersection l′ ∩ C′ consists of two points, which are over the tangent points
of the bitangent, and both intersections are transversal. Let C be the image of
C′ by the blow-down S′ → S. Since S|H = l + C, C is a cubic curve and by
rationality it is a rational normal curve inH. Also C is contained in the smooth
locus of S, and the intersectionC∩l consists of two points and both intersections
are transversal. For �nishing a proof of the proposition, since l is a (−1)-curve,
it remains to see that C2 = 1. Since C + l is a hyperplane section of S, we have
(C + l)2 = deg S = 4. Moreover we have C. l = 2 as above. This means C2 = 1,
as desired. �

Next we �nd another type of divisors at in�nity. For this purpose we use the
double covering structure over a smooth quadric obtained in Proposition 3.2. So
let S be any one of Segre surfaces listed in Table 1. As in the proof of Proposition
3.2 we denote � ∶ ℂℙ4 → ℂℙ3 for the generating projection from a point that
induces the double covering map from S to a smooth quadric Q ⊂ ℂℙ3. We
denote the generating point of � and its dual hyperplane respectively by

w and w∗. (22)
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In the coordinates of the proof of Proposition 3.2,w = (1, 0, 0, 0, 0). The projec-
tion � induces the dual inclusion

�∗ ∶ ℂℙ∗3 ↪ ℂℙ∗4, (23)

and we have �∗(ℂℙ∗3) = w∗. In the following we often think subvarieties in
ℂℙ∗3 as those in ℂℙ

∗
4 through this inclusion.

If B ⊂ ℂℙ3 is an irreducible curve and is not a straight line, the dual variety
B∗ ⊂ ℂℙ∗3 is de�ned in the same way to the case for the surface S explained
in Section 2, and it is irreducible and 2-dimensional. If B ⊂ ℂℙ3 is reducible
and does not have a straight line as a component, we de�ne the dual variety B∗
to be the union of the dual varieties of all its irreducible components. If B is
reducible and have a straight line as a component, we de�ne B∗ to be the union
of the dual varieties of all its irreducible components which are not a straight
line. So B∗ is empty if all components of B are lines.

Proposition 3.10. Assume that a Segre surface S is a �nite double cover over a
smooth quadric surface Q by a projection from a point of ℂℙ4 as in Proposition
3.2. Let w ∈ ℂℙ4 and w∗ ⊂ ℂℙ∗4 be as in (22). Then if B ⊂ Q denotes the branch
divisor of the double cover, the hyperplane section by w∗ of the dual variety S∗
satis�es

Q∗ ∪ B∗ ⊂ S∗ ∩ w∗, (24)

where Q∗ and B∗ are the dual varieties of Q and B respectively.

Proof. The inclusion Q∗ ∪ B∗ ⊂ w∗ is obvious because we are using the inclu-
sion (23), so it is enough to show Q∗ ∪ B∗ ⊂ S∗.

First, we show B∗ ⊂ S∗. From the above convention for the dual varieties,
it is enough to show that for any irreducible component B1 of B which is not
a straight line, the inclusion B∗1 ⊂ S∗ holds. In the following for simplicity we
write B for B1. Then since B is not a line, as a curve on Q ≃ ℂℙ1 × ℂℙ1, it
is not a curve of bidegree (1, 0) nor (0, 1). Therefore, a smooth generic point q
of B satis�es TqB ⊄ Q. For such a point q ∈ B, the intersection of Q with a
2-plane ℎ ⊂ ℂℙ3 containing TqB is a smooth (1, 1)-curve on Q unless ℎ = TqQ.
Moreover except for a �nite number of such 2-planes, the intersection ℎ ∩ B
consists of three points, and one of them is the tangent point q, while the other
two intersections are transversal. If we put H ∶= �−1(ℎ), then the hyperplane
section S ∩H has a node at the point (�|S)−1(q) because the curve Q∩ ℎ is tan-
gent to B at q, and it has no other singularity because ℎ intersects transversally
at the other two intersection points with B. This means H ∈ W0, where as be-
foreW0 is the Zariski-open subset of S∗ which parameterizes minitwistor lines
(see De�nition 2.3 and Proposition 2.5). Hence, for a generic ℎ ∈ B∗, we have
�−1(ℎ) ∈ S∗. Since B∗ is closed, this implies B∗ ⊂ S∗.

It remains to showQ∗ ⊂ S∗. So let ℎ ⊂ ℂℙ3 be a tangent plane toQ, and q the
tangent point. The section Q∩ℎ consists of two lines intersecting transversally
at the point q. Let l1 and l2 be these lines. We choose the tangent plane ℎ in
such a generic way that q ∉ B and that the two lines l1 and l2 intersect the
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0

C1

C2

branch divisor B transversally. Since B is a cut of Q by a quadric by Proposition
3.2, the intersections B ∩ l1 and B ∩ l2 consist of two points respectively. From
these the preimages

C1 ∶= (�|S)−1(l1) and C2 ∶= (�|S)−1(l2) (25)

are smooth rational curves on S, and they intersect transversally at the two
points (�|S)−1(q). Wewritep1 andp2 for these two points, and putH = �−1(ℎ).
The latter is a hyperplane spanned by the generating point w of the projection
� and the tangent plane ℎ, and contains the tangent spaces Tp1S and Tp2S since
TqQ = ℎ and q ∉ B. Obviously we have H|S = C1 + C2, C1 ∩ C2 = {p1, p2}.
Moving the tangent point q ∈ Q, we obtain a 2-dimensional family of reducible
curves belonging to the system ||||Oℂℙ4(1)|S

|||| =
||||K

−1
S

||||, whose members have two
nodes as their only singularity. In particular,H ∉W0.

In order to show Q∗ ⊂ S∗ it is enough to show that the curve C1 + C2 is a
limit of curves which belong to the Zariski-open subsetW0 of S∗ = W. Since
l21 = l22 = 0 on S, from (25), we have C21 = C22 = 0 on S. Hence by adjunction
we have KS. C1 = KS. C2 = −2 < 0. From [11, Prop. (2.11)], this means that
any one of the two nodes p1 and p2 of the curve C1 + C2 can be smoothed out
under a small displacement by moving the curve on S while the other node is
not smoothed out. Clearly the curve obtained as such a partial smoothing of
the curve C1 + C2 belongs to the subsetW0 of S∗. This means that C1 + C2 is a
limit of curves which belong toW0, and so we obtain Q∗ ⊂ S∗, as desired. �

Note that from the proof, generic points of B∗ belong toW0. Therefore,W0
is not entirely contained in the a�ne space ℂℙ∗4∖w∗ (≃ ℂ4). The following
proposition is also obvious from the proof.

Proposition 3.11. In the situation of the previous proposition, for a generic hy-
perplaneH that belongs to the dual quadric Q∗, the section S ∩H is as in Figure
3.3.

Thus, we have found two kinds of divisors at in�nity, and both consist of
two smooth rational curves intersecting transversally at two points. These two
kinds of curves are distinguished by the self-intersection numbers of the two
components.

We next show that the dual variety S∗ intersects itself along the dual plane
l∗ and the dual quadric Q∗. More precisely, we show

Proposition 3.12. Let l ⊂ S and Q ⊂ ℂℙ3 be as in Propositions 3.4 and 3.10
respectively. Then the dual variety S∗ has ordinary double points along the dual
plane l∗ and the dual quadric Q∗.
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Proof. Weuse results and notations in [11]. (In [11] the letterD is used instead
of C.) The proofs for l∗ andQ∗ are almost the same, so for a generic hyperplane
H belonging to l∗ or Q∗ we write H|S = C = C1 + C2 and C1 ∩ C2 = {p1, p2}.
By choosing H ∈ l∗ ∪ Q∗ in a su�ciently generic way, we may suppose that
C ∩ Sing S = ∅. Put NC ∶= OC(C). This is an invertible sheaf on the curve C,
and there is a natural isomorphism

TH
||||Oℂℙ4(1)

|||| ≃ H0(NC) ≃ ℂ4.

Moreover from the exact sequence

0 ⟶ OS ⟶ OS(C) ⟶ NC ⟶ 0 (26)

and rationality of S, we haveH1(NC) ≃ H1(OS(C)
)
. Let S̃ → S be the minimal

resolution of all singularities of S and C̃ the strict transform of C into S̃. Then
C̃ is an anti-canonical curve on S̃, and it is nef and big. Hence by Kodaira-
Ramanujan vanishing, we haveH1(OS̃(C̃)

)
= 0. So as C ∩ Sing S = ∅, we have

H1(OS(C)
)
= 0, and hence from (26) we obtainH1(NC) = 0.

Next write T1C ∶= Ext1
OC
(ΩC ,OC), where ΩC is the sheaf of Kähler di�eren-

tials on C. Then from the standard exact sequence 0 → OS(−C)
d
→ ΩS|C →

ΩC → 0, there is a natural homomorphism NC → T1C . Since C is normal cross-
ing at p1 and p2, we have T1C ≃ ℂp1⊕ℂp2 and since S is smooth at these points,
the homomorphism NC → T1C is surjective. Let N′

C be the kernel sheaf of this
homomorphism, so that we have an exact sequence

0 ⟶ N′
C ⟶ NC ⟶ T1C ⟶ 0. (27)

The Zariski-tangent space at the point [C] of the locus in the linear system
|K−1

S | ≃ ||||Oℂℙ4(1)
|||| which corresponds to equisingular displacements of C is

given byH0(N′
C), and the obstruction for smoothness of this locus is inH1(N′

C).
Now in case H ∈ l∗, namely in case l ⊂ H, as in the proof of Proposition

3.4, the image $(l) is a bitangent of the branch quartic of the double cover
$′ ∶ S′ → ℂℙ2 obtained by choosing a secant pq as in Lemma 3.8, and the two
singularities p1 and p2 of the curve C are mapped to the tangent points of the
bitangent. Evidently there are two ways of moving the bitangent to a regular
tangent by respecting the tangency atp1 orp2. Accordingly, the reducible curve
C = C1+C2 admits a displacement in S for which exactly any one of the singu-
larities p1 and p2 is smoothed out. This means that in case H ∈ l∗ the natural
map H0(NC) → H0(T1C) ≃ ℂ2 is surjective. In case H ∈ Q∗, as in the last part
of the proof of Proposition 3.10, the curve C admits a displacement in S which
induces a smoothing for exactly any one of the singularities p1 and p2. Hence
the natural mapH0(NC)→ H0(T1C) ≃ ℂ2 is again surjective. Hence, regardless
of H ∈ l∗ or H ∈ Q∗, from (27) and H1(NC) = 0, we obtain H1(N′

C) = 0. We
also obtain ℎ0(N′

C) = ℎ0(NC) − ℎ0(T1C) = 4 − 2 = 2.
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Finally, we de�ne the sheaves N′′
C (p1) and N

′′
C (p2) on C by the properties

N′′
C (p1)|C∖{p1} ≃ NC|C∖{p1} and N′′

C (p1)|C∖{p2} ≃ N′
C|C∖{p2},

N′′
C (p2)|C∖{p2} ≃ NC|C∖{p2} and N′′

C (p2)|C∖{p1} ≃ N′
C|C∖{p1}.

SinceNC andN′
C are canonically isomorphic overC∖{p1, p2}, these two sheaves

are well-de�ned. Note that the these sheaves are slightly larger thanN′
C , and if

{i, j} = {1, 2}, we have exact sequences

0 ⟶ N′
C ⟶ N′′

C (pi) ⟶ ℂpj ⟶ 0. (28)

As in [11, Remark (1.7)], for i = 1, 2, the space H0(N′′
C (pi)

)
is the Zariski-

tangent space at the point [C] of the locus in ||||OS(C)
|||| which corresponds to

equisingular displacements of C, where equisingularity is imposed only for the
node pi. Moreover the space H1(N′′

C (pi)
)
is the obstruction space for such dis-

placements. We then have natural inclusions

H0(N′
C) ⊂ H0(N′′

C (pi)
)
⊂ H0(NC), i = 1, 2, (29)

and the codimensions of the two inclusions are both one. Since the nodes p1
and p2 can be independently smoothed out as above, we have H0(N′′

C (p1)
)
≠

H0(N′′
C (p2)

)
as subspaces inH0(NC). Hence we obtain the transversality

H0(N′′
C (p1)

)
∩H0(N′′

C (p2)
)
= H0(N′

C). (30)

Since H1(N′
C) = 0 as above, from (28), we obtain H1(N′′

C (pi)
)
= 0 for i = 1, 2.

Thus, the above two equisingular displacements of C in S are unobstructed,
and each partially equisingular deformations constitute a smooth threefold in
the linear system ||||OS(C)

||||. By the transversality (30), these two components in-
tersect transversally along the locus of equisingular displacements of C, where
this time equisingularity is imposed on both p1 and p2. Evidently the last lo-
cus is identi�ed with a neighborhood of the point H in the dual 2-plane l∗ or
the dual quadric Q∗. Therefore, the dual variety S∗ has ordinary double points
along l∗ or Q∗. �

When the quadric�(S) ⊂ ℂℙ3 is not smooth but the cone over an irreducible
conic as in Proposition 3.3, we writeΛ for an irreducible conic, and Cone (Λ) ⊂
ℂℙ3 for the cone over Λ. Also, similarly to the notation in Proposition 3.10,
we write w for the generic point of the projection which induces the double
covering map S → Cone (Λ), and w∗ ⊂ ℂℙ∗4 for the dual hyperplane to w.
Then the following proposition can be shown in the same way to the assertion
B∗ ⊂ S∗ ∩ w∗ in Proposition 3.10.

Proposition 3.13. Assume that a Segre surface S is a �nite double cover over
Cone (Λ) by a projection from the point w ∈ ℂℙ4 as in Proposition 3.3. Then if
B ⊂ Cone (Λ) denotes the branch divisor of the double cover, then the hyperplane
section by w∗ of the dual variety of S satis�es

B∗ ⊂ S∗ ∩ w∗. (31)
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4. Examples of transitions and concluding remarks
4.1. Typical transitions between Segre quartic surfaces. Next, we discuss
adjacent relations (or degeneration relations) between some Segre quartic sur-
faces. First, the transitions [1111] → [112] → [13] for complete intersections
of two quadrics in ℂℙ3 provide a standard degeneration of a smooth elliptic
curve into cuspidal rational curve via a nodal rational curve, and accordingly,
through the double cover, the transitions [11111] → [1112] → [113] for Segre
surfaces provide modest degenerations of the surfaces. From Table 1, in this
degeneration, the classes of the Segre surfaces decrease as 12→ 10→ 9, while
those of the branch curves can be seen to decrease as 8 → 6 → 5. Thus, all
decreases of the classes of Segre surfaces come from those of the branch curves.

For another typical degenerations of complete intersections of two quadrics
in ℂℙ3, we take

[112]→ [11(11)]→ [2(11)]→ [(11)(11)]. (32)

These are 1, 2, 3 and 4-nodal curves respectively, and the numbers of irreducible
components of the curves are 1,2,3 and 4 respectively. The �rst one is a 1-nodal
rational curve, and the second one consists of two conics (i.e. (1, 1)-curves in
Q ≃ ℂℙ1×ℂℙ1) intersecting transversally at two points. The third one consists
of two lines and one conic, and they form a ‘triangle’ of smooth rational curves.
The �nal one consists of four lines, forming a ‘square’ of rational curves. Using
that the dual variety of a smooth conic in ℂℙ3 is the cone over the conic and
in particular quadratic, we obtain that the degrees of the dual varieties of these
quartic curves are respectively 6, 2 + 2 = 4, 2 and 0. Adding a single ‘1‘ to each
symbol in the series (32), we obtain a series of Segre surfaces whose symbols
are

[1112]→ [111(11)]→ [12(11)]→ [1(11)(11)]. (33)

From the above description of the quartic curves, these Segre surfaces have one,
two, three and four A1-singularities respectively, and have no other singulari-
ties. Hence by Theorem 2.11, the classes of these surfaces are 10, 8, 6, 4 respec-
tively. Thus, again the decreases of the classes of the surfaces exactly come from
those of the branch quartic curves.

For one more interesting example of a degeneration, we take the transition
[22] → [4] for complete intersections in ℂℙ3. Both curves consist of one ra-
tional normal curve and one line in ℂℙ3, but for the symbol [22] the two com-
ponents intersect transversally at two points, while for the symbol [4] the two
components are tangent at one point. If we consider the transition [122]→ [14]
for Segre surfaces, the singularities are two A1 for the former and a single A3
for the latter, Hence, from Theorem 2.11, for both kinds of surfaces, we have
deg S∗ = 12 − 4 = 8 (see Table 1). Thus, no decrease occurs for the classes in
this degeneration.

As a �nal example of a degeneration, we consider the transition [(11)3] →
[(13)1] for Segre surfaces. Both of these kinds of Segre surfaces have a structure
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of double covering over a quadratic cone as in Proposition 3.13. The branch
curves have [13] as the Segre symbol for both, and this is a cuspidal rational
curves. The vertex v of the cone is on the branch curve only for the latter kind
of surfaces. So certainly, the latter kind of surfaces is obtained from the former
kind of surfaces as a degeneration. The former kind of surface has two A1-
singularities and one A2-singularity, and hence the class is 12 − 2 − 2 − 3 = 5
by Theorem 2.11. On the other hand, the latter kind of surfaces have exactly
one singularity which is of type D4 (This is over the vertex of the cone.) Hence,
we have deg S∗ = 12 − 6 = 6 by Theorem 2.11. Thus, the class increases under
this degeneration, The added one is a consequence of the fact that, the surface
[(13)1] includes the the plane v∗ formed by hyperplanes passing through the
vertex v is included in S, while the surface [(11)3] does not. In other words,
in the case of [(13)1], a hyperplane section of S which passes through the D4-
singularity admits a displacement which avoids the singularity andwhich gives
a 1-nodal curve which is really a minitwistor line. This is in contrast with the
situation mentioned in Remark 2.6.

4.2. Concluding remarks. We end this article by giving two remarks. The
�rst one is about a relation between null surfaces in Einstein-Weyl space asso-
ciated to the Segre surfaces and their divisors at in�nity. For this, we recall that
each Segre quartic surface S ⊂ ℂℙ4 has a structure of a minitwistor space in
the sense of De�nition 2.1 and therefore the 3-dimensional complex manifold
W0 which parameterizes minitwistor lines in S has an Einstein-Weyl structure.
Many Segre surfaces admit double covering structure over a smooth quadric Q
as in Proposition 3.2. As in Propositions 3.10 and 3.12. the dual quadric Q∗,
considered as included in the dual spaceℂℙ∗4 via the generic projection, is con-
tained in the completion W = S∗ of W0 as a self-intersection locus. We see
that the completions of null surfaces in these Einstein-Weyl spacesW0 are always
tangent to the dual quadrics Q∗ ⊂ S∗.

Before doing so, we �rst consider the case where the minitwistor space is
a smooth quadric Q ⊂ ℂℙ3. In this case, a hyperplane H ⊂ ℂℙ3 cuts out a
minitwistor line in the original sense i� it is not tangent to Q. Tangent planes
to Q are in one-to-one correspondence with its tangent point of Q, and thus a
hyperplane section H ⊂ ℂℙ3 does not cut out a minitwistor line i� H ∈ Q∗,
whereQ∗ ⊂ ℂℙ∗3 is the dual quadric. This meansW∗

0 = ℂℙ∗3∖Q∗. So we callQ∗

a quadric at in�nity ofW0 = ℂℙ∗3∖Q∗. Null surfaces in the Einstein-Weyl space
W0 = ℂℙ∗3∖Q∗ are nothing but the intersectionswith the dual planesp∗ ⊂ ℂℙ∗3,
where p is chosen from the minitwistor space Q. For such a dual plane p∗, the
intersection p∗ ∩Q∗ consists of the two lines consisting of planes inℂℙ3 which
is tangent to Q at some point on the two lines that pass through the point p.
This implies that the completion of any null surface in the Einstein-Weyl space
ℂℙ∗3∖Q∗ is tangent to the in�nite quadric Q∗.

Returning to the case of genus one, let S be a Segre quartic surface which has
a structure of double covering over a smooth quadricQ ⊂ ℂℙ3 as in Proposition
3.2. As before let � ∶ ℂℙ4 → ℂℙ3 be the generic projection from the point
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w ∉ S which induces the double covering map. By the dual embedding �∗ ∶
ℂℙ∗3 ↪ ℂℙ∗4 we identify the dual quadric Q∗ ⊂ ℂℙ∗3 with its image �∗(Q∗). We
call this a quadric at in�nity. Again null surfaces inW0 are of the form p∗∩W0,
where p∗ ⊂ ℂℙ∗4 is the dual hyperplane to the point p chosen from S. Since
the completionW ofW0 contains the dual quadric �∗(Q∗), this means that the
intersections of the completions of the null surfaces with the quadric at in�nity
are of the form

p∗ ∩ �∗(Q∗) =
{
�−1(ℎ) |ℎ ∈ Q∗, �(p) ∈ ℎ

}
, p ∈ S. (34)

The RHS can be identi�ed with the union of two lines on Q ⊂ ℂℙ3 which pass
through the point �(p). Of course, these two lines intersect transversally at
the point �(p). This means that the hyperplane p∗ ⊂ ℂℙ∗4 and the comple-
tion of the null surface p∗ ∩W0 is tangent to the quadric �∗(Q∗) at the point
�−1(T�(p)Q) ∈ �∗(Q∗).

The second remark is about a relationship between Segre quartic surfaces
and twistor spaces associated to self-dual metrics on 4-manifolds. By Jones-
Tod [9], a 3-dimensional Einstein-Weyl manifold is obtained from a self-dual
4-manifold as a quotient space under an action of 1-dimensional Lie group
preserving the self-dual structure. Correspondingly, a minitwistor space is ob-
tained from the twistor space of a self-dual 4-manifold as a quotient space with
respect to the holomorphic action of 1-dimensional complex Lie group. Among
the 16 kinds of the Segre surfaces, only the ones whose symbol is [111(11)] are
known to be obtained thisway. There, the source 4-manifolds are the connected
sums of arbitrary number of complex projective planes, and their twistor spaces
were constructed in [6]. It might be an interesting question as to whether other
Segre surfaces can be obtained as quotient spaces of compact twistor spaces.
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