New York Journal of Mathematics

New York J. Math. 28 (2022) 610-616.

Direct products of null semigroups and rectangular bands in $\beta \mathbb{N}$

Yevhen Zelenyuk and Yuliya Zelenyuk

Abstract

We show that, for every $m \in \mathbb{N}$, the direct product of the m element null semigroup and the $2^{c} \times 2^{c}$ rectangular band has copies in $\beta \mathbb{N}$. In particular, the direct product of the 2 -element null semigroup and the 2×2 rectangular band has copies in $\beta \mathbb{N}$. We also point out a Ramsey theoretic consequence of the latter fact.

The addition of the discrete semigroup \mathbb{N} of natural numbers extends to the Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} so that for each $a \in \mathbb{N}$, the left translation $\beta \mathbb{N} \ni x \mapsto a+x \in \beta \mathbb{N}$ is continuous, and for each $q \in \beta \mathbb{N}$, the right translation $\beta \mathbb{N} \ni x \mapsto x+q \in \beta \mathbb{N}$ is continuous.

We take the points of $\beta \mathbb{N}$ to be the ultrafilters on \mathbb{N}, identifying the principal ultrafilters with the points of \mathbb{N}. For every $A \subseteq \mathbb{N}, \bar{A}=\{p \in \beta \mathbb{N}: A \in p\}$ and $A^{*}=\bar{A} \backslash A$. The subsets \bar{A}, where $A \subseteq \mathbb{N}$, form a base for the topology of $\beta \mathbb{N}$, and \bar{A} is the closure of A. For $p, q \in \beta \mathbb{N}$, the ultrafilter $p+q$ has a base consisting of subsets of the form $\bigcup_{x \in A}\left(x+B_{x}\right)$, where $A \in p$ and for each $x \in A, B_{x} \in q$.

Being a compact Hausdorff right topological semigroup, $\beta \mathbb{N}$ has a smallest two sided ideal $K(\beta \mathbb{N})$ which is a disjoint union of minimal right ideals and a disjoint union of minimal left ideals. Every right (left) ideal of $\beta \mathbb{N}$ contains a minimal right (left) ideal, the intersection of a minimal right ideal and a minimal left ideal is a group, and the idempotents in a minimal right (left) ideal form a right (left) zero semigroup, that is, $x+y=y(x+y=x)$ for all x, y.

The semigroup $\beta \mathbb{N}$ is interesting both for its own sake and for its applications to Ramsey theory and to topological dynamics. The first application to Ramsey theory was the proof of Hindman's theorem: whenever \mathbb{N} is finitely colored, there is an infinite subset all of whose sums are monochrome. An elementary introduction to $\beta \mathbb{N}$ can be found in [1].

In [3] D. Strauss showed that if φ is a continuous homomorphism from $\beta \mathbb{N}$ to \mathbb{N}^{*}, then $\varphi(\beta \mathbb{N})$ is finite and $\varphi\left(\mathbb{N}^{*}\right)$ is a group. In 1996 the author proved that $\beta \mathbb{N}$ contains no nontrivial finite groups (see [1, Theorem 7.17]). In contrast, it does contain bands (= semigroups of idempotents). For example, apart from

[^0]mentioned already left (right) zero semigroups, it contains chains of idempotents ($x \leq y$ if and only if $x+y=y+x=x$). A large enough class of finite bands that have copies in $\beta \mathbb{N}$ was constructed in [4]. It includes, in particular, all finite rectangular bands ($=$ direct products of a left zero semigroup and a right zero semigroup, so $\left.\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{2}\right)\right)$. In [2] it was shown that $\beta \mathbb{N}$ contains even $2^{\mathrm{c}} \times 2^{\text {c }}$ rectangular bands. The question of whether there are finite semigroups in $\beta \mathbb{N}$ distinct from bands is equivalent to asking whether there exist nontrivial continuous homomorphisms from $\beta \mathbb{N}$ to \mathbb{N}^{*} and it was an open problem since 1992. It was solved in [6] by constructing a 2 -element null semigroup $(x+x=y+y=x+y=y+x=y)$ in $\beta \mathbb{N}$. In [7] it was shown that all finite null semigroups have copies in $\beta \mathbb{N}$ and a connection of finite semigroups in $\beta \mathbb{N}$ with Ramsey theory was established.

In this paper we modify construction in [7] and show that
Theorem 1. For every $m \in \mathbb{N}$, the direct product of the m-element null semigroup and the $2^{\mathfrak{c}} \times 2^{\mathfrak{c}}$ rectangular band has copies in $\beta \mathbb{N}$.

In particular, by Theorem 1, the direct product of the 2 -element null semigroup and the 2×2 rectangular band has copies in $\beta \mathbb{N}$. This fact and [7, Theorem 4.4] give us the following Ramsey theoretic consequence.

Define $r: \mathbb{N} \rightarrow\{1,2,3,4\}$ by $n \equiv r(n)(\bmod 4)$.
Corollary 2. There exists a partition $\left\{A_{1}, \ldots, A_{8}\right\}$ of \mathbb{N} with the following property: for any finite partitions \mathcal{B}_{i} of A_{i}, there exist $B_{i} \in \mathcal{B}_{i}$ and a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \in B_{r(n)} \cap 2^{n} \mathbb{N}$ for each $n \in \mathbb{N}$ and for each finite $F \subseteq \mathbb{N}$ with $|F| \geq 2$, if $j=r(\min F)$ and $k=r(\max F)$, then $\sum_{n \in F} x_{n} \in B_{i}$, where

$$
i= \begin{cases}5 & \text { if } j \in\{1,4\} \text { and } k \in\{1,2\} \\ 6 & \text { if } j \in\{2,3\} \text { and } k \in\{1,2\} \\ 7 & \text { if } j \in\{2,3\} \text { and } k \in\{3,4\} \\ 8 & \text { if } j \in\{1,4\} \text { and } k \in\{3,4\} .\end{cases}
$$

Proof. Let S be a subsemigroup of \mathbb{N}^{*} splitting into the direct product of a null semigroup $\left\{a_{1}, a_{0}\right\}$ and a rectangular band $\left\{b_{10}, b_{00}, b_{01}, b_{11}\right\}$. Enumerate S as

$$
S=\left\{q_{1}, \ldots, q_{8}\right\}=\left\{a_{1} b_{10}, a_{1} b_{00}, a_{1} b_{01}, a_{1} b_{11}, a_{0} b_{10}, a_{0} b_{00}, a_{0} b_{01}, a_{0} b_{11}\right\} .
$$

Then for any $j, k \in\{1,2,3,4\}$, one has $q_{j}+q_{k}=q_{i}$, where i is as in statement of Corollary 2 . Pick a partition $\left\{A_{1}, \ldots, A_{8}\right\}$ of \mathbb{N} such that $A_{i} \in q_{i}$. Let $\left(z_{n}\right)_{n=1}^{\infty}$ be a sequence guaranteed by [7, Theorem 4.4] and take the subsequence

$$
z_{1}, z_{2}, z_{3}, z_{4}, z_{9}, z_{10}, z_{11}, z_{12}, z_{17}, z_{18}, z_{19}, z_{20}, \ldots
$$

as $\left(x_{n}\right)_{n=1}^{\infty}$.
Notice that it is not true that if each of two finite semigroups has copies in $\beta \mathbb{N}$, so does their direct product. Indeed, the direct product of the 2-element chain of idempotents with itself contains a 3-element semilattice which has no copy in $\beta \mathbb{N}$ [5, Lemma 3].

In the rest of the paper we prove Theorem 1. In fact, we prove a bit stronger result.

Any $x \in \mathbb{N}$ can be uniquely written as $x=\sum_{n \in F} 2^{n}$ for some finite nonempty $F \subseteq \omega$. Let supp $x=F, \phi(x)=\max F$, and $\theta(x)=\min F$. We shall need the continuous extension $\beta \mathbb{N} \rightarrow \beta \omega$ of the function ϕ and we denote it by the same letter ϕ. If $x, y \in \mathbb{N}$ and $\phi(x)<\theta(y)$, then $\phi(x+y)=\phi(y)$. If $\phi(x) \leq \phi(y)$, then $\phi(x+y) \in\{\phi(y), \phi(y)+1\}\}$, and if $\phi(x)+1<\phi(y)$, then $\phi(y-x) \in$ $\{\phi(y), \phi(y)-1\}\}$. It then follows that for any $v \in \mathbb{N}^{*}$ and $w \in \beta \mathbb{Z}, \phi(w+v) \in$ $\{\phi(v)-1, \phi(v), \phi(v)+1\}$, and if $v \in \mathbb{H}$, where $\mathbb{H}=\bigcap_{n<\omega} \overline{2^{n} \mathbb{N}}$, and $w \in \beta \mathbb{N}$, then $\phi(w+v)=\phi(v)$ (see [1, Lemma 6.8 and Lemma 13.4]). The last statement implies that for every $u \in \omega^{*}, \phi^{-1}(u) \cap \mathbb{H}$ is a left ideal of \mathbb{H} (since $\phi\left(2^{n}\right)=n$, $\left.\phi(\mathbb{H})=\omega^{*}\right)$.

Pick an increasing sequence $U_{0} \subseteq U_{1} \subseteq \ldots \subseteq U_{m}=\omega$ of infinite subsets of ω such that $U_{i+1} \backslash U_{i}$ is infinite for each $i \in\{0, \ldots, m-1\}$. Define a function h from \mathbb{N} onto the decreasing $(m+1)$-element chain $0>1>\ldots>m$ of idempotents (with the operation $i \wedge j=\max \{i, j\}$) by

$$
h(x)=\min \left\{i \in\{0,1, \ldots, m\}: \operatorname{supp} x \subseteq U_{i}\right\}
$$

(here max and min refer to the usual order, and \wedge is the operation induced by the order $0>1>\ldots>m$) and let the same letter h denote its continuous extension $\beta \mathbb{N} \rightarrow\{0,1, \ldots, m\}$. If $x, y \in \mathbb{N}$ and $\phi(x)<\theta(y)$, then $h(x+y)=$ $h(x) \wedge h(y)$. Consequently, for any $v \in \mathbb{H}$ and $w \in \beta \mathbb{N}, h(w+v)=h(w) \wedge$ $h(v)$, in particular, the restriction of h to \mathbb{H} is a homomorphism. For each $i \in$ $\{0,1, \ldots, m\}$, let $T_{i}=h^{-1}(\{0, \ldots, i\}) \cap \mathbb{H}$.
Lemma 3. For each $i \in\{0,1, \ldots, m\}, h\left(K\left(T_{i}\right)\right)=\{i\}$, and $K\left(T_{m}\right)=K(\beta \mathbb{N}) \cap T_{m}$.
Proof. This is [7, Lemma 3.1].
We thus have that $T_{0} \subseteq T_{1} \subseteq \ldots \subseteq T_{m}=\mathbb{H}$ is an increasing sequence of closed subsemigroups of \mathbb{H} such that $T_{i} \cap \overline{K\left(T_{i+1}\right)}=\emptyset$ for each $i \in\{0, \ldots, m-1\}$ and $K\left(T_{m}\right)=K(\beta \mathbb{N}) \cap T_{m}$, and for every $u \in U_{0}^{*}, \phi^{-1}(u) \cap T_{0}$ is a left ideal of T_{0}.

Pick an injective sequence $\left(u_{n}\right)_{n<\omega}$ in U_{0}^{*}. Choose a minimal right ideal R_{0} of T_{0}, and for every $n<\omega$, a minimal left ideal $L(n)$ of T_{0} contained in $\phi^{-1}\left(u_{n}\right) \cap T_{0}$, and let $p(n)$ be the identity of the group $R_{0} \cap L(n)$. Then $\{p(n): n<\omega\}$ is a right zero semigroup. Let $p_{0}=p(0)$.

Enumerate $\left\{2^{n}: n \in U_{1} \backslash U_{0}\right\}^{*}$ without repetitions as $\left\{r_{\alpha}: \alpha<2^{c}\right\}$.
Lemma 4. $\left(p_{0}+r_{\alpha}+T_{m}\right) \cap\left(p_{0}+r_{\beta}+T_{m}\right)=\emptyset$ if $\alpha \neq \beta$.
Proof. This is [7, Lemma 3.2].
For every $\alpha<2^{\text {c }}$, choose a minimal right ideal $R_{1, \alpha}$ of T_{1} contained in $p_{0}+$ $r_{\alpha}+T_{1}$, and choose a minimal left ideal L_{1} of T_{1} contained in $T_{1}+p_{0}$, and let $p_{1, \alpha}$ denote the identity of the group $R_{1, \alpha} \cap L_{1}$ and $p_{1}=p_{1,0}$. Then by Lemma $4, p_{1, \alpha} \neq p_{1, \beta}$ if $\alpha \neq \beta, p_{1, \alpha}+p_{0}=p_{0}+p_{1, \alpha}=p_{1, \alpha}$, and $\left\{p_{1, \alpha}: \alpha<2^{c}\right\}$ is a left zero semigroup.

Inductively, for each $i \in\{2, \ldots, m\}$, choose a minimal right ideal R_{i} of T_{i} contained in $p_{i-1}+T_{i}$ and a minimal left ideal L_{i} of T_{i} contained in $T_{i}+p_{i-1}$, let p_{i} denote the identity of the group $R_{i} \cap L_{i}$, and for every $\alpha<2^{\text {c }}$, let $p_{i, \alpha}=$ $p_{1, \alpha}+p_{i}$. Then $p_{i}+p_{i-1}=p_{i-1}+p_{i}=p_{i}$, so $p_{0}>p_{1}>\ldots>p_{i}$ is a chain, and $p_{i, 0}=p_{i}$. By Lemma $4, p_{i, \alpha} \neq p_{i, \beta}$ if $\alpha \neq \beta$, and since $p_{i, \alpha} \in K\left(T_{i}\right)$, it follows that all elements $p_{i, \alpha}$, where $i \in\{1, \ldots, m\}$ and $\alpha<2^{\text {c }}$, are distinct.

We then obtain that $p_{i, \alpha}+p_{0}=p_{0}+p_{i, \alpha}=p_{i, \alpha}$ and

$$
\begin{aligned}
p_{i, \alpha}+p_{j, \beta} & =p_{1, \alpha}+p_{i}+p_{1, \beta}+p_{j}=p_{1, \alpha}+\left(p_{i}+p_{1}\right)+p_{1, \beta}+p_{j} \\
& =p_{1, \alpha}+p_{i}+\left(p_{1}+p_{1, \beta}\right)+p_{j}=p_{1, \alpha}+p_{i}+p_{1}+p_{j}=p_{1, \alpha}+p_{i \wedge j} \\
& =p_{i \wedge j, \alpha} .
\end{aligned}
$$

For every $i \in\{1, \ldots, m\}$ and $\alpha<2^{c}$, let $D_{i, \alpha}=\left\{p_{i, \alpha}+p(n): n<\omega\right\}$ and pick $q_{i, \alpha} \in \overline{D_{i, \alpha}} \backslash D_{i, \alpha}$. Notice that $\phi\left(p_{i, \alpha}+p(n)\right)=\phi(p(n))=u_{n}$. (It is easy to see, although it is not directly important to us, that $D_{i, \alpha}$ is a right zero semigroup.)

Lemma 5. $q_{i, \alpha}+p_{0}=p_{i, \alpha}$, and so $q_{i, \alpha}+p_{j, \beta}=p_{i \wedge j, \alpha}$.
Proof. Since the right translation by p_{0} is continuous and

$$
\left(p_{i, \alpha}+p(n)\right)+p_{0}=p_{i, \alpha}+\left(p(n)+p_{0}\right)=p_{i, \alpha}+p_{0}=p_{i, \alpha},
$$

one has $q_{i, \alpha}+p_{0}=p_{i, \alpha}$. Then

$$
q_{i, \alpha}+p_{j, \beta}=q_{i, \alpha}+\left(p_{0}+p_{j, \beta}\right)=\left(q_{i, \alpha}+p_{0}\right)+p_{j, \beta}=p_{i, \alpha}+p_{j, \beta}=p_{i \wedge j, \alpha} .
$$

Define $Q \subseteq \mathbb{N}^{*}$ by

$$
Q=\left\{p_{i, \alpha}+q_{j, \beta}: i, j \in\{1, \ldots, m\} \text { and } \alpha, \beta<2^{c}\right\} .
$$

Using Lemma 5 , we obtain that

$$
\begin{aligned}
\left(p_{i, \alpha}+q_{j, \beta}\right)+\left(p_{k, \gamma}+q_{l, \delta}\right) & =p_{i, \alpha}+\left(q_{j, \beta}+p_{k, \gamma}\right)+q_{l, \delta}=p_{i, \alpha}+p_{j \wedge k, \beta}+q_{l, \delta} \\
& =p_{i \wedge j \wedge k, \alpha}+q_{l, \delta} .
\end{aligned}
$$

Now we shall show that all elements $p_{i, \alpha}+q_{j, \beta}$ of the semigroup Q are distinct.

An ultrafilter $p \in \mathbb{Z}^{*}$ is
(i) prime if $p \notin \mathbb{Z}^{*}+\mathbb{Z}^{*}$, and
(ii) right cancelable if the right translation of $\beta \mathbb{Z}$ by p is injective.

An ultrafilter $p \in \mathbb{Z}^{*}$ is right cancelable if and only if $p \notin \mathbb{Z}^{*}+p$ (see [7, Lemma 3.5]). Thus, every prime ultrafilter is right cancelable.

Lemma 6. Let D be a countable subset of \llbracket and suppose that ϕ is injective on D. Then every $q \in \bar{D} \backslash D$ is prime.
Proof. Assume the contrary. Then $q \in \mathbb{Z}^{*}+v$ for some $v \in \mathbb{Z}^{*}$. Since $-\mathbb{N}^{*}$ is a left ideal of $\beta \mathbb{Z}$, one has $v \in \mathbb{N}^{*}$. Let $Z=\{n \in \mathbb{Z}: n+v \notin \mathbb{H}\}$ and let $D^{\prime}=\{p \in D: \phi(p) \notin\{\phi(v)-1, \phi(v), \phi(v)+1\}\}$. Notice that $|\mathbb{Z} \backslash Z| \leq 1$ and $\left|D \backslash D^{\prime}\right| \leq 3$. We then have that $q \in \overline{D^{\prime}} \cap \overline{Z+v}$, so by [1, Theorem 3.40], either
$n+v \in \overline{D^{\prime}}$ for some $n \in Z$ or $p \in \overline{Z+v}=\bar{Z}+v$ for some $p \in D^{\prime}$. In the first case, $n+v \in \mathbb{H}$. In the second, $p=w+v$ for some $w \in \bar{Z}$, so

$$
\phi(p)=\phi(w+v) \in\{\phi(v)-1, \phi(v), \phi(v)+1\} .
$$

In either case we have a contradiction.
Statement (3) of the next lemma tells us that all elements $p_{i, \alpha}+q_{j, \beta}$ of the semigroup Q are distinct.
Lemma 7. (1) All subsets $\overline{D_{i, \alpha}}$, where $i \in\{1, \ldots, m\}$ and $\alpha<2^{c}$, are pairwise disjoint.
(2) All elements $q_{i, \alpha}$, where $i \in\{1, \ldots, m\}$ and $\alpha<2^{c}$, are distinct.
(3) All elements $p_{i, \alpha}+q_{j, \beta}$, where $i, j \in\{1, \ldots, m\}$ and $\alpha, \beta<2^{c}$, are distinct.

Proof. (1) Assume on the contrary that $\overline{D_{i, \alpha}} \cap \overline{D_{j, \beta}} \neq \emptyset$ for some $(i, \alpha) \neq(j, \beta)$. Then either $D_{i, \alpha} \cap \overline{D_{j, \beta}} \neq \emptyset$ or $\overline{D_{i, \alpha}} \cap D_{j, \beta} \neq \emptyset$. It suffices to consider the first case. Since $D_{i, \alpha} \cap D_{j, \beta}=\emptyset$, it follows that $p_{i, \alpha}+p(n)=q$ for some $n<\omega$ and $q \in \overline{D_{j, \beta}} \backslash D_{j, \beta}$. But by Lemma 6, q is prime, a contradiction.
(2) is immediate from (1).
(3) Suppose that $p_{i, \alpha}+q_{j, \beta}=p_{k, \gamma}+q_{l, \delta}$. Then by [1, Corollary 6.21], either $q_{j, \beta} \in \beta \mathbb{N}+q_{l, \delta}$ or $q_{l, \delta} \in \beta \mathbb{N}+q_{j, \beta}$. In either case $q_{j, \beta}=q_{l, \delta}$, since both of them are prime and in \mathbb{H}, so by (2), $(j, \beta)=(l, \delta)$. We thus have that $p_{i, \alpha}+$ $q_{j, \beta}=p_{k, \gamma}+q_{j, \beta}$. But then $p_{i, \alpha}=p_{k, \gamma}$, since $q_{j, \beta}$ is right cancelable, and so $(i, \alpha)=(k, \gamma)$.

We have constructed Q as a subsemigroup of \mathbb{N}^{*}. We now describe it without mentioning ultrafilters.

Given a semilattice I and a cardinal κ, let $S=S(I, \kappa)$ denote the semigroup whose underlying set is $I \times \kappa \times I \times \kappa$ and the operation is defined by

$$
(i, \alpha, j, \beta)+(k, \gamma, l, \delta)=(i \wedge j \wedge k, \alpha, l, \delta) .
$$

The semigroup S decomposes into the semilattice I of the subsemigroups

$$
S_{t}=\{(i, \alpha, j, \beta) \in S: i \wedge j=t\}
$$

where $t \in I$ (that is, $S_{i}+S_{j} \subseteq S_{i \wedge j}$). For every $(i, \alpha, j, \beta) \in S_{t}$, if $i=t$, then

$$
(t, \alpha, j, \beta)+(t, \alpha, j, \beta)=(t, \alpha, j, \beta),
$$

so (t, α, j, β) is an idempotent, and if $i \neq t$, then

$$
\begin{aligned}
(i, \alpha, j, \beta)+(i, \alpha, j, \beta) & =(t, \alpha, j, \beta) \\
& =(i, \alpha, j, \beta)+(t, \alpha, j, \beta)=(t, \alpha, j, \beta)+(i, \alpha, j, \beta)
\end{aligned}
$$

so $\{(i, \alpha, j, \beta),(t, \alpha, j, \beta)\}$ is a null semigroup.
If I is a decreasing chain $1>\ldots>m$, we write $S(m, \kappa)$ instead of $S(I, \kappa)$. For each $t \in\{1, \ldots, m\}$, the component S_{t} of $S=S(m, \kappa)$ is the union of $\kappa \times$ $(\{1, \ldots, t\} \times \kappa)$ rectangular band

$$
B_{t}=\{(t, \alpha, j, \beta): j \in\{1, \ldots, t\} \text { and } \alpha, \beta<\kappa\},
$$

which is the smallest ideal of S_{t}, and the subsemigroup

$$
S_{t, t}=\{(i, \alpha, t, \beta): i \in\{1, \ldots, t\} \text { and } \alpha, \beta<\kappa\} .
$$

The intersection of B_{t} and $S_{t, t}$ is $\kappa \times \kappa$ rectangular band

$$
B_{t, t}=\{(t, \alpha, t, \beta): \alpha, \beta<\kappa\},
$$

which is the smallest ideal of $S_{t, t}$, and $S_{t, t}$ is a disjoint union of t-element null subsemigroups $\{(i, \alpha, t, \beta): i \in\{1, \ldots, t\}\}$, where $\alpha, \beta<\kappa$, so $S_{t, t}$ is isomorphic to the direct product of t-element null semigroup and $B_{t, t}$.

Define $\varepsilon: S\left(m, 2^{c}\right) \rightarrow Q$ by

$$
\varepsilon(i, \alpha, j, \beta)=p_{i, \alpha}+q_{j, \beta} .
$$

Then ε is an isomorphism. Furthermore,

$$
\varepsilon(m, \alpha, j, \beta)=p_{m, \alpha}+q_{j, \beta} \in K(\beta \mathbb{N})
$$

because $p_{m, \alpha} \in K(\beta \mathbb{N})$, and

$$
\varepsilon(i, \alpha, m, \beta)=p_{i, \alpha}+q_{m, \beta} \in \overline{K(\beta \mathbb{N})}
$$

because $q_{m, \beta} \in \overline{D_{m, \beta}} \subseteq \overline{K(\beta \mathbb{N})}$ and $\overline{K(\beta \mathbb{N})}$ is an ideal of $\beta \mathbb{N}$ [1, Theorem 4.44].
Thus, we have established the following result.
Theorem 8. Let $m \in \mathbb{N}$ and $S=S\left(m, 2^{c}\right)$. Then there is an isomorphic embedding $\varepsilon: S \rightarrow \mathbb{N}^{*}$. Furthermore, ε can be chosen so that $\varepsilon\left(S_{m}\right) \subseteq \overline{K(\beta \mathbb{N})}$ and $\varepsilon\left(K\left(S_{m}\right)\right) \subseteq K(\beta \mathbb{N})$.

Since $S_{m, m}$ is isomorphic to the direct product of the m-element null semigroup and the $2^{c} \times 2^{c}$ rectangular band, Theorem 1 is a partial case of Theorem 8.

References

[1] Hindman, Neil; Strauss, Dona. Algebra in the Stone-Čech Compactification. Theory and Applications. Second revised and extended edition. De Gruyter Textbook series. Walter de Gruyter \& Co., Berlin, 2012. xviii+591 pp. ISBN: 978-3-11-025623-9. MR2893605, Zbl 1241.22001, doi: 10.1515/9783110258356. 610, 612, 613, 614, 615
[2] Hindman, Neil; Strauss, Dona; Zelenyuk, Yevhen. Large rectangular semigroups in Stone-Čech compactifications. Trans. Amer. Math. Soc. 355 (2003), no. 7, 2795-2812. MR1975400, Zbl 1028.22004, doi: 10.1090/S0002-9947-03-03276-8. 611
[3] Strauss, Dona. \mathbb{N}^{*} does not contain an algebraic and topological copy of $\beta \mathbb{N}$. J. London Math. Soc. (2) 46 (1992), no. 3, 463-470. MR1190430, Zbl 0723.54035, doi: $10.1112 / \mathrm{jlms} / \mathrm{s} 2-46.3 .463 .610$
[4] Zelenyuk, Yevhen. On subsemigroups of $\beta \mathbb{N}$ and absolute coretracts. Semigroup Forum 63 (2001), no. 3, 457-465. MR1851825, Zbl 1009.22005, doi: 10.1007/S002330010073. 611
[5] Zelenyuk, Yevhen; Zelenyuk, Yuliya. Three-element bands in $\beta \mathbb{N}$. New York J. Math. 21 (2015), 1263-1267. MR3441641, Zbl 1330.22004. 611
[6] Zelenyuk, Yevhen. Elements of order 2 in β N. Fund. Math. 252 (2021), no. 3, 355-359. MR4178872, Zbl 1475.22005, doi: 10.4064/fm902-5-2020. 611
[7] ZELENYUK, YEVHEN Finite semigroups in $\beta \mathbb{N}$ and Ramsey theory. Bull. London Math. Soc. 53 (2021), no. 3, 710-722. MR4275083, Zbl 07381903, doi: 10.1112/blms.12453. 611, 612, 613
(Yevhen Zelenyuk) School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
yevhen.zelenyuk@wits.ac.za
(Yuliya Zelenyuk) School of Mathematics, University of the Witwatersrand, Private BAG 3, Wits 2050, SoUTH AFRICA
yuliya.zelenyuk@wits.ac.za
This paper is available via http://nyjm.albany.edu/j/2022/28-24.html.

[^0]: Received June 1, 2021.
 2010 Mathematics Subject Classification. Primary 22A15, 05D10; Secondary 22A30, 54D80.
 Key words and phrases. Stone-Čech compactification, idempotent, right cancelable ultrafilter, null semigroup, rectangular band, Ramsey theory.

