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On families of imaginary abelian fields with
pseudo-null unramified Iwasawa modules

Satoshi Fujii

ABSTRACT. Let p be a prime number. We show that, there exists an infinite
family of imaginary abelian fields such that, the Iwasawa module of the max-
imal multiple Z,-extension is non trivial and pseudo-null for each field in
the family. We also discuss on an application to non-abelian Iwasawa theory
in the sense of Ozaki.
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1. Introduction

All algebraic extensions of the field of rational numbers Q are assumed to be
contained in a fixed algebraic closure of Q. Let k/Q be a finite extension. For
a prime number p, let Z, be the ring of p-adic integers. Let k be the composite
field of all Z,-extensions of k. Then, by theorem 3 of [Twa73] (see also theo-
rem 13.4 of [Was97]), there exists a non negative integer § such that Gal(k/k)

is isomorphic to Z;,ZHJ”S as a topological group, here r, denotes the number of
complex primes of k. We should remark that if Leopoldt’s conjecture for p and
k holds then § = 0. It is known from Brumer’s result [Bru67] that if k is con-

tained in an abelian extension of an imaginary quadratic field then Leopoldt’s
conjecture for p and k holds, and hence k/k is a Z?H-extension.

Let L,g~/ k be the maximal unramified abelian pro-p extension and put X =
Gal(L;/k), which is often called the unramified Iwasawa module of k. The
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Galois group Gal(k/k) acts on X} via the inner automorphism, and then, the
complete group ring

A= Zﬂ[Gal(E/k)]] = I(E Zp[Gal(k’/k)]
kCk!'Ck,[k’ : k]<oo

of Gal(k /k) with coefficients in Z p acts on Xg, the projective limit is taken with
respect to restriction maps of Galois groups. It is shown that X} is a finitely
generated torsion A-module, see theorem 1 of [Gre73]. A finitely generated
torsion A-module M is called pseudo-null if the annihilator ideal of M over
A is not contained in any height one prime ideals of A, and write M ~ 0 for
pseudo-null A-modules M. For example, M = 0 is a pseudo-null module since
the annihilator ideal of 0 is A. In [Gre01], Greenberg proposed the following
conjecture.

Conjecture (Greenberg’s generalized conjecture, [Gre01]). For each prime
number p and each number field k, it holds that X; ~ 0.

In [Gre76], Greenberg originally proposed so called Greenberg’s conjecture
(GC for short), which asserts the finiteness of the unramified Iwasawa mod-
ule of the cyclotomic Z ,-extension of totally real fields. Thereafter, Greenberg
proposed the above conjecture. For Z ,-extensions, on the unramified Iwasawa
module, it is well known that the finiteness is equivalent to the pseudo-nullity.
If Leopoldt’s conjecture holds for a totally real field k and a prime number
D, then the cyclotomic Z ,-extension is the unique Z,-extension of k. Hence,
Greenberg’s generalized conjecture (GGC for short) is in fact a generalization
of GC in this sense. No counterexamples of GC and GGC have been found yet.

In this article, we will discuss on families of prime numbers p and number
fields k such that X; ~ 0. Aswe will see in section 2, it has been shown that, for
each prime number p, there exist infinitely many imaginary quadratic fields k
such that X; = 0. The main result of this article is as follows.

Main Theorem (Theorem 2.7 of Section 2). Let p be a prime number.
Then there exist infinitely many imaginary abelian fields k such that Xj; # 0 and
Xjp~0.

From theorem 1 of [Oza04], for each prime number p, there exist infinitely
many cyclotomic Z ,-extensions k, of totally real fields k such that the Iwasawa
module of k, /k is non trivial and finite, namely pseudo-null. In fact Ozaki has
obtained a much stronger conclusion about the structure of Iwasawa modules.
Although we cannot mention on the structure of Xj here, we will prove that
at least there is an infinite family of imaginary abelian fields with non trivial
pseudo-null Iwasawa modules.

2. Examples of prime numbers and number fields

In this section, first, we introduce some results (propositions 2.2, 2.5, and
2.6, and corollary 2.3), which can be deduced directly from combining known
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results. Second we present our main result (theorem 2.7). Let h; be the class
number of a number field k. Let P be a prime number or a finite prime of a
number field. When P divides an integer b we write P | b, if not, we write
P}b.

Lemma 2.1 (See [Iwa56]). Let p be a prime number. Let L/K be a finite p-
extension of a finite extension K/Q. Suppose that L/K is ramified at only one
prime of K and is totally ramified. If p 4 hx then p } h;.

Let p be a prime number. It is known that X}, is also defined to be the projec-
tive limit with respect to the norm maps of the p-Sylow subgroups of the ideal
class groups of intermediate fields k’ of k/k which are finite over k. Hence if
p } hy for each k’ then X; = 0. Assume that the prime number p does not
splitin k/Q and p } hy. Then, k/k is totally ramified at the unique prime of k
lying above p. By lemma 2.1 and p + hy, we have p } h;,. Hence we have the
following.

Proposition 2.2. Let p be a prime number and k/Q a finite extension. If p does
not splitin k/Q and if p 4 hy, then X = 0. In particular, X ~ 0.

Let k/Q be a finite cyclic extension. There exist infinitely many prime num-
bers p such that, p does not divide the discriminant of k, p } h;, and that the
Frobenius of p in k/Q generates Gal(k/Q). For such prime numbers p, it holds
that X; = 0 by proposition 2.2. Thus we have the following.

Corollary 2.3. Let k/Q be a finite cyclic extension. Then there exist infinitely
many prime numbers p such that X; = 0.

In the rest of Section 2, we discuss on the existence of families of number
fields with pseudo-null Iwasawa modules for each prime number. Minardi
proved the following result.

Proposition 2.4 (Minardi [Min86]). Let p be a prime number and k an imagi-
nary quadratic field. If p } hy, then X ~ 0.

In particular, if k is an imaginary quadratic field of class number 1, then
Xi ~ 0 for all prime numbers p.

Let p = 2. By Dirichlet’s theorem, there exist infinitely many prime numbers
g such that ¢ = 7 mod 8. Put k = @(\/—_q). Then, the prime 2 splits in k, and
by genus theory we have 2 } hj,. Let p = 3. By Nakagawa-Horie’s theorem
[NH88], there exist infinitely many imaginary quadratic fields k such that the
prime 3 splits in k and that 3 4 hy. Let p > 5. By Horie-Onishi’s theorem
[HOB88], there exist infinitely many imaginary quadratic fields k such that the
prime p splits in k and that p } hy. Therefore, for each prime number p, there
exist infinitely many of imaginary quadratic fields k in which p splits such that
P + hy. We then have the following by proposition 2.4.

Proposition 2.5. Let p be a prime number. Then, there exist infinitely many
imaginary quadratic fields k such that p splits in k and that X ~ 0.
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By the way, in general, to understand whether X; = 0 or not is difficult. For
each prime number p, we can find an infinite family of imaginary quadratic
fields k in which p splits such that Xz = 0. Let 4, (k) be the Iwasawa A-invariant
of the cyclotomic Z ,-extension of k. When p = 2, let g be a prime number
with g = 7 mod 16 and let k = @(\/—_q). As explained in the above, the prime
number 2 splits in k, and it holds that 2 } k. By the result proved by Ferrero
[Fer80] and by Kida [Kid79] independently, it holds that A,(k) = 1. For odd
prime numbers p, thanks to works of Jochnowitz [Joc94|, Byeon [Bye05] and
Ito [Ito15], we can see that there exist infinitely many imaginary quadratic fields
k in which p splits such that 1,(k) = 1. It is known that, if a prime number p
splits in an imaginary quadratic field k and if 1,(k) = 1, then X = 0. Thus, we
have the following.

Proposition 2.6. Let p be a prime number. Then there exist infinitely many imag-
inary quadratic fields k in which p splits such that X; = 0.

We are then interested in finding families of number fields k such that X; # 0
and Xj; ~ 0. In this article, we show the following.

Theorem 2.7. Let p be a prime number. Then there exist infinitely many imagi-
nary abelian fields k such that X; # 0 and Xj; ~ 0.

Some results on sufficient conditions of the pseudo-nullity of X} for abelian
fields or CM-fields k under elementary situations have been obtained, see
[Min86], [Itoh11] and [Fuj17]. However, as stated in the above, even if we know
the pseudo-nullity of X}, further to know whether X; = 0 or not is basically dif-
ficult. Hence, the author thinks that what the existence of families of imaginary
abelian fields of theorem 2.7 are guaranteed is important in the study of GGC.
As we will see in the proof of theorem 2.7, we choose k as imaginary quadratic
fields if p = 2, and as imaginary cyclic fields of degree 2p if p > 2. For each
odd prime number p, to find an infinite family of imaginary quadratic fields k
such that X; # 0 and Xj; ~ 0 is an interesting problem.

In section 3, we will give the proof of theorem 2.7. In section 4, we will give
an application to non-abelian Iwasawa theory in the sense of Ozaki [0za07].

3. Proof of theorem 2.7

In this section, we prove theorem 2.7. For a number field K and a prime
number p, let K, /K be the cyclotomic Z ,-extension and 1,(K) the Iwasawa
A-invariant of K, /K. We need the following well known lemma.

Lemma3.1. Let p bea prime number and K /Q a finite extension. Suppose that p
splits completely in K /Q. Then K /K, is an unramified abelian pro-p extension.

Proof. Let p be a prime of K lying above p and I the inertia subgroup of p
in K/K. Then p is unramified in K/Q and has degree 1. This implies that
I ~7, Since K, = KQ, and Q,/Q is totally ramified at p, K, /K is ramified
at p. Thus the restriction map I — Gal(K, /K) is injective, and hence K /K, is
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unramified at all primes lying above p. Since K /K is unramified outside primes
lying above p, we can conclude that K /K, is unramified at all primes. O

First, suppose that p = 2. Let g be a prime number such that g = 15 mod 16
and putk = @(\/—_q). Then, the prime 2 splits in k, and by genus theory, we
have 2 } hj. Thus X} is a pseudo-null A-module by proposition 2.4. Further-
more, by the result of Ferrero [Fer80] and Kida [Kid79], it holds that 1,(k) > 3.
Since k/k,, is an unramified Z,-extension by lemma 3.1, there is a surjective
morphism Xj; — Zg. Therefore it holds that Xj # 0.

Next, suppose that p > 3. We show the following.

Theorem 3.2. Let p be an odd prime number. Then there exist infinitely many
imaginary cyclic fields k of degree 2p in which p splits completely such that X; # 0
and X ~ 0.

In principle, for each odd prime number p, we can find an imaginary abelian
field k which satisfies the conditions of theorem 3.2.

From here, we begin the proof of theorem 3.2. Let p be an odd prime number.
We need the following.

Proposition 3.3 (Theorem 1 of [Fuj17]). Let p be an odd prime number, k a
CM-field of degree greater than 2 and k' the maximal totally real subfield of k.
Suppose that, the prime number p splits completely in k/Q, p } hy, and all of the
Iwasawa A-, u- and v-invariants of the cyclotomic Z ,-extension kX of k* areO.
Then Xj; ~ 0.

Remark 3.4. (1) In [Itoh11], Itoh showed a result for quartic imaginary abelian
fields precisely analogous to proposition 2.4. Proposition 3.3 is a generalization
of Ttoh’s result.

(2) In theorem 1 of [Fuj17], the author put the assumption that Leopoldt’s con-
jecture holds for p and k*. The author must remark here that, if an odd prime
number p splits completely in k* /Q, Leopoldt’s conjecture for p and k% is im-
plied by the vanishing of Iwasawa invariants A and u of k%, /k*, that is, GC for
p and k holds. For this, see proposition 1 of [0za97]. Hence, in theorem 1 of
[Fuj17], the assumption on Leopoldt’s conjecture is not needed.

By proposition 3.3, to prove theorem 3.2, it suffices to find infinitely many
imaginary abelian fields k of degree 2p which satisfy the conditions of propo-
sition 3.3 and Xj; # 0.

When p = 3, put F = Q(v/ —47). Itis known that hr = 5 (the author checked
by using Pari/gp [Par18]). When p > 5, By Horie-Onishi’s result [HOS88], there
is an imaginary quadratic field F such that the prime p splits in F/Q and that
p + hp. Alternatively, Ito [Ito15] showed that the class numbers of imaginary

quadratic fields Q(4/1 — p) and Q(+/4 — p) are not divisible by p, see lemma

2.4 of [Ito15], hence we can choose F as Q(1/1 — p) or Q(+/4 — p). We fix once
such an imaginary quadratic field F for each odd prime number p.
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For a positive integer n, let u, be the group of n-th roots of unity. For each
non-negative integer n and a number field K, let K,, be the n-th layer of the
cyclotomic Z ,-extension K, /K.

Lemma 3.5. Restrictions of Galois groups induce the following isomorphism

Gal(FQ;Q(u,, ¥p)/Q) ~ Gal(F/Q) x Gal(Q, /Q) x Gal(Q(u,, {/p)/Q),

where Q, denotes the 1-st layer of the cyclotomic Z ,-extension of Q.

Proof. Since [F : Q] = 2and [Q; : Q] = p > 2, it holds that F n Q; = Q.
Note that Q(u,)/Q is abelian and Q(u,, §/p)/Q is non-abelian. This implies
that
(FQ1) N Qup, {/p) = (FQ1) N Q).

Since [Q(u,) : Q] = p — 1, it holds that Q; € (FQ;) N Q(u,). By the choice
of F,if F C (FQ;) N Q(u,), then F is a subfield of Q(u,) decomposed at p.
This is a contradiction because Q(u,)/Q is totally ramified at p. Hence F ¢
(FQ,) N Q(up). Therefore, it holds that

(FQy) N Q,, §/P) = (FO1) N Q(k,) = Q.
This completes the proof. O

By the Chebotarev density theorem and lemma 3.5, there exist infinitely many
prime numbers ¢ such that all of the following three conditions are satisfied:
(1) ¢ isinertin F/Q,
(2) ¢isinertin Q,/Q,
(3) ¢ splits completely in Q(u,, ¢/p)/Q.
We fix once such a prime number ¢. For a finite prime q of a number field,
we identify finite primes and prime numbers when a number field is Q, let [,
be the residue class field at q.

Lemma 3.6. A prime number ¢ splits completely in Q(up, ¥/p)/Q if and only if
the following two conditions are satisfied.

« £ =1 mod p.

+ pmod ¢ € (F))P.

Proof. Let £ be a prime of Q(u,) lying above ¢. The prime number ¢ splits
completely in Q(u,) if and only if £ = 1 mod p. The prime £ splits completely
in Q(up, \'/E) if and only if the equation X? — p = 0 mod R has a root in Fg
since Q(up, \P/ﬁ) /Q(u,) is unramified at L. This assertion is equivalent to that
pmod 8 € ([FE)P. Since & has degree 1, we have [F, ~ Fq. Hence p mod & €
(Fg)? if and only if p mod ¢ € (F5)P. O

By the condition (3) and lemma 3.6, there is the unique subfield k* of Q(u,)
such that [k* : @] = p in which p splits completely. Since k*/Q is unramified
outside ¢, it holds that p } i+ by lemma 2.1.
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Let n > 0 be an integer. It is well known that p { hg_ by lemma 2.1. By the
condition (2), the prime ¢ remains a prime of Q,, for each n. Since k' /Q,, is
ramified at only the unique prime of Q,, lying above ¢, it holds that p { h;+ by
lemma 2.1 for all n. This implies that all of ITwasawa invariants A, x and v of
k% /k* are 0.

Put k = Fk*. From the choices of F and k™, p splits completely in k/Q.
From the condition (1), the prime ¢ is inert in F/Q. Since k/F is ramified
at only the unique prime of F lying above ¢ and since p } hp, it holds that
p + hy by lemma 2.1. By combining all of the above arguments, we have seen
that the imaginary cyclic field k of degree 2p satisfies all of the assumptions of
proposition 3.3.

Finally, we show that X; # 0. Since p splits completely in k/Q, Leopoldt’s
conjecture holds for k and p, and since [k : Q] = 2p, bylemma 3.1, it holds that
k/k is an unramified Zg-extension. Suppose that p = 3. By using Mizusawa’s

software [MizWeb], we find that 1;(F) = 1;(Q(\/ —47)) = 2. By Kida’s formula
[Kid80], one sees that 1;(k) = 6. As stated in the above, it holds that k/k.,
is an unramified Zg—extension, and therefore, there is a surjective morphism
Xi — Zg. In particular, we have Xj; # 0.

Suppose that p > 3. For an algebraic extension K /Q and a prime number p,
let Xx be the Galois group of the maximal unramified abelian pro-p extension
of K. When K/Q is finite, let y be a topological generator of Gal(K, /K), and
putR = Z,[Gal(K/K)]. We need the following two lemmas.

Lemma 3.7. Let p be a prime number and let K/Q be a finite extension. Let
r, and r, be the number of real primes and the number of complex primes of K
respectively. For each non negative integer n, let E,, be the unit group of K,,. Let
E= I(En E, ® Z, be the projective limit of modules E,, ® Z, with respect to the

norm maps. Suppose that K ., /K is totally ramified at all primes of K lying above
p. Thenthe Z y-rank of E/(y — D)E isry +15.

Remark 3.8. Lemma 3.7 can be deduced from theorem 10.3.25 and theorem
11.3.11 of [NSWO08]. Because we need only to know the Z,-rank of E/(y — 1)E
here, we prefer to prove lemma 3.7 briefly.

Proof. For a R-module M, let M%¥(K«/K) he the maximal submodule of M on
which Gal(K,/K) acts trivially. For each non negative integer n, let U, be
the principal local unit group at a prime p,, of K, lying above p, and let U =
l(iEn Dy, 1pUp, be the projective limit of modules Dy, 1pUp, with respect to the
norm maps. By theorem 25 of [Iwa73], we can see that U is a finitely generated
R-module of rank [K : Q] = r; + 2r,, and UG &K«/K) = (. Let ¥ be the Galois
group of the maximal abelian pro-p extension over K, unramified outside all
primes lying above p. By class field theory and by remark 2 of theorem 4.2 of
[Kuz73], there is the following exact sequence

0-E->U—->X->Xg_ —0
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of R-modules. It is well known that the R-rank of X is r,, see theorem 17 of
[Twa73] (see also theorem 13.31 of [Was97]). Combining the above, since Xx_
is a torsion R-module, we find that E is a finitely generated R-module of rank
1 + 15, and that EG¥K«/K) = (. In particular, E has no non trivial finite R-
submodules.

Let TRE be the R-submodule of E which consists of all R-torsion elements
of E. By the structure theorem of R-modules, we have an injective morphism
E — R"*"2 @ TRE with a finite cokernel. Then we have an exact sequence

(finite) - E/(y — 1)E — Z;;”Z @ TRE/(y — 1)TRxE — (finite)

of Z,-modules. Since E¢¥K=/K) = 0, we find that TRE/(y — 1)TRE is finite.
Therefore the Z-rank of E/(y — DE is ry +r». O

Lemma 3.9. Let p be a prime number and K/Q a totally imaginary finite ex-
tension in which the prime number p splits completely. Assume that Leopoldt’s
conjecture for p and K holds. Then we have [K : Q] <6 if Xg = 0.

Proof. For an algebraic extension L/Q, not necessary finite, let G; be the Galois
group of the maximal unramified pro-p extension of L. It holds that [K : Q] =
2r,. By lemma 3.1, G¢ is a closed normal subgroup of 9k and it holds that

9k /9k ~ Gal(K/K,).

Assume that Xg = 0. By pro-p version of Burnside’s basis theorem, if Xz = 0
then G = 1. By lemma 3.1, it holds that

9k, =Xk, = Gal(K/Ky) ~ Z},

since Leopoldt’s conjecture for p and K holds. Note that Gal(K,,/K) acts on
Xk trivially since K/K is abelian.
By theorem C of [0za07] for i = 2, since Gk, = Xk, wWe have a surjective
morphism
E - Hy(Xg_,Zp) ~ Xg NXk,»
of R-modules, where the exterior product A is taken over Z,. The action of y
onx Ay € Xg_ AXg_ isgiven by

Y(xAY)=@x)AFY).

Since Gal(K,/K) acts on X _ trivially, the above morphism factors through
E/(y — 1)E. Thus, since
ra(ra—1)
XKoo /\)(Kc>° =~ Zp 2 ,
we also have a surjective morphism

ra(ra-1

E/(y-1E—Z, °
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By the assumption that K is totally imaginary and by lemma 3.7, the Z,-rank
of E/(y — 1)E is equal to r,. This implies that

ry(r, — 1)
Sl
Therefore we have [K : Q] = 2r, < 6. O

We finish the proof of theorem 3.2. By our assumption that p > 3, it holds
that[k : Q] = 2p > 6. Bylemma 3.9, we have X; # 0. Since there are infinitely
many prime numbers such as ¢, this completes the proof of theorem 3.2.  [J

Remark. Okano [Okal2] has obtained a result stricter than lemma 3.9 for
certain imaginary abelian fields. In fact, the non-triviality of X} is also deduced
from theorem 1.2 of [Okal2] when p > 3.

4. Non-freeness conjecture

We give an application to non-abelian Iwasawa theory in the sense of Ozaki
[0za07]. Let p be a prime number and k, /k the cyclotomic Z ,-extension of a
number field k. Recall we have denoted by G the Galois group of the maximal
unramified pro-p extension over k, in the proof of lemma 3.9. In his lecture
[OzaSem], Ozaki proposed the following conjecture.

Conjecture (Non-freeness Conjecture [OzaSem]). For each prime number p
and each finite extension k /Q, the group G never be a non-abelian free pro-p
group.

Each abelian free pro-p group is isomorphic to Z,. We have checked that
there exist infinitely many imaginary quadratic fields k in which p splits such
that Xj ~ Z, for each prime number p, and hence G, ~ Z,, see proposition
2.6.

In [Fuj11], the author showed following.

Lemma 4.1 ([Fujl1]). Let p be a prime number and k/Q a finite extension. If a
prime number p splits completely in k and X ~ 0, then Gy is not a non-abelian

free pro-p group.

As a consequence of lemma 4.1, the proof of theorem 2.7 and results given
by several authors, we have the following.

Corollary 4.2. Let p be a prime number. Then there exist infinitely many imag-
inary abelian fields k satisfying the following three conditions.

(1) The prime number p splits completely in k/Q.

(2) Gi_, is a non-abelian pro-p group.

(3) Gk, is not a free pro-p group.

Proof. Let p = 2 and g be a prime number with ¢ = 31 mod 32. Put k =
Q(y/—q). Then, by proposition 2.4, X is a pseudo-null A-module. Hence, by
lemma 4.1, G is not a non-abelian free pro-2 group. Further, by theorem 2 of
[MO10], Gy, is not abelian.
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Let p > 3. We have checked that X} is a pseudo-null A-module. By lemma
4.1, Gy is not a non-abelian free pro-p group. By theorem 1.2 of [Okal2], Gy
is not abelian, since A;(F) = 2 when p = 3. O
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