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Alexander and Markov theorems for
virtual doodles

Neha Nanda and Mahender Singh

Abstract. Study of certain isotopy classes of a finite collection of im-
mersed circles without triple or higher intersections on closed oriented
surfaces can be thought of as a planar analogue of virtual knot theory
where the genus zero case corresponds to classical knot theory. Alexan-
der and Markov theorems for the genus zero case are known where the
role of groups is played by twin groups, a class of right angled Coxeter
groups with only far commutativity relations. The purpose of this paper
is to prove Alexander and Markov theorems for higher genus case where
the role of groups is played by a new class of groups called virtual twin
groups which extends twin groups in a natural way.
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1. Introduction

The study of doodles on surfaces began with the work of Fenn and Taylor
[9] who defined a doodle as a finite collection of simple closed curves lying
in a 2-sphere without triple or higher intersections. The idea was extended
by Khovanov [18] to a finite collection of closed curves without triple or
higher intersections on a closed oriented surface. An analogue of the link
group for doodles was also introduced in [18] and several infinite families
of doodles whose fundamental groups have infinite centre were constructed.
Recently, Bartholomew-Fenn-Kamada-Kamada [4] extended the study of
doodles to immersed circles on a closed oriented surface of any genus, which
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can be thought of as virtual links analogue for doodles. An invariant of
virtual doodles by coloring their diagrams using a special type of algebra has
been constructed in [6]. Recently, an Alexander type invariant for oriented
doodles which vanishes on unlinked doodles with more than one component
has been constructed in [8].

The role of groups for doodles on a 2-sphere is played by twin groups.
The twin groups Tn, n ≥ 2, form a special class of right angled Coxeter
groups and appeared in the work of Shabat and Voevodsky [24], who re-
ferred them as Grothendieck cartographical groups. Later, these groups
were investigated by Khovanov [18] under the name twin groups, who also
gave a geometric interpretation of these groups similar to the one for clas-
sical braid groups. Consider configurations of n arcs in the infinite strip
R × [0, 1] connecting n marked points on each of the parallel lines R × {1}
and R×{0} such that each arc is monotonic and no three arcs have a point
in common. Two such configurations are equivalent if one can be deformed
into the other by a homotopy of such configurations in R × [0, 1] keeping
the end points of arcs fixed. An equivalence class under this equivalence is
called a twin. The product of two twins can be defined by placing one twin
on top of the other, similar to that in the braid group Bn. The collection
of all twins with n arcs under this operation forms a group isomorphic to
Tn. Taking the one point compactification of the plane, one can define the
closure of a twin on a 2-sphere analogous to the closure of a braid in R3.
Khovanov also proved an analogue of the classical Alexander Theorem for
doodles on a 2-sphere, that is, every oriented doodle on a 2-sphere is closure
of a twin. An analogue of the Markov Theorem for doodles on a 2-sphere
has been established recently by Gotin [12]. From a wider perspective, a
recent work [2] look at which Alexander and Markov theories can be defined
for generalized knot theories.

The pure twin group PTn is the kernel of the natural surjection from Tn
onto the symmetric group Sn on n symbols. Algebraic study of twin and
pure twin groups has recently attracted a lot of attention. In a recent paper
[1], Bardakov-Singh-Vesnin proved that PTn is free for n = 3, 4 and not free
for n ≥ 6. González-León-Medina-Roque [11] recently showed that PT5 is a
free group of rank 31. A lower bound for the number of generators of PTn is
given in [13] while an upper bound is given in [1]. It is worth noting that [13]
physicists refer twin and pure twin groups as traid and pure traid groups,
respectively. Description of PT6 has been obtained recently by Mostovoy
and Roque-Márquez [21] where they prove that PT6 is a free product of the
free group F71 and 20 copies of the free abelian group Z ⊕ Z. A complete
presentation of PTn for n ≥ 7 is still not known and seems challenging to
describe. Automorphisms, conjugacy classes and centralisers of involutions
in twin groups have been explored in recent works [22, 23].

One can think of the study of isotopy classes of immersed circles without
triple or higher intersection points on closed oriented surfaces as a planar
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analogue of virtual knot theory with the genus zero case corresponding to
classical knot theory. As mentioned earlier Alexander and Markov theorems
for the genus zero case are already known in the literature where the role
of groups is played by twin groups. The purpose of this paper is to prove
Alexander and Markov theorems for higher genus case. We show that virtual
twin groups introduced in a recent work [1] as abstract generalisation of twin
groups play the role of groups for the theory of virtual doodles. A virtual
twin group extends a twin group and surjects onto a symmetric group in a
natural way. A pure analogue of the virtual twin group is defined analogously
as the kernel of the natural surjection onto the symmetric group.

The paper is organised as follows. We define twin and virtual twin groups
in Section 2. A topological interpretation of virtual twins is given in Section
3. We discuss virtual doodle diagrams and their Gauss data in Section 4.
Finally, we prove Alexander Theorem for virtual doodles in Section 5 and
Markov Theorem in Section 6.

2. Twin and virtual twin groups

For an integer n ≥ 2, the twin group Tn is defined as the group with the
presentation

〈
s1, s2, . . . , sn−1 | s2i = 1 for 1 ≤ i ≤ n− 1 and sisj = sjsi for |i− j| ≥ 2

〉
.

Elements of Tn are called twins and the generator si can be geometrically
presented by a configuration shown in Figure 1.

1 i− 1 i i+ 1 i+ 2 n ni+ 2i+ 1ii− 11

si ρ̃i

Figure 1. The twin si

The kernel of the natural surjection from Tn onto Sn, the symmetric group
on n symbols, is called the pure twin group and is denoted by PTn.

The virtual twin group V Tn, n ≥ 2, was introduced in [1, Section 5] as an
abstract generalisation of the twin group Tn. The abstract group V Tn has



ALEXANDER AND MARKOV THEOREMS FOR VIRTUAL DOODLES 275

generators {s1, s2, . . . , sn−1, ρ1, ρ2, . . . , ρn−1} and defining relations

s2i = 1 for i = 1, 2, . . . , n− 1, (2.1)

sisj = sjsi for |i− j| ≥ 2,

ρ2i = 1 for i = 1, 2, . . . , n− 1,

ρiρj = ρjρi for |i− j| ≥ 2,

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, 2, . . . , n− 2,

ρisj = sjρi for |i− j| ≥ 2,

ρiρi+1si = si+1ρiρi+1 for i = 1, 2, . . . , n− 2.

The kernel of the natural surjection from V Tn onto Sn is called the virtual
pure twin group and is denoted by V PTn. We show that virtual twin groups
play the role of groups in the theory of virtual doodles.

3. Topological interpretation of virtual twins

Consider a set Qn of n points in R. A virtual twin diagram on n strands
is a subset D of R× [0, 1] consisting of n intervals called strands with ∂D =
Qn × {0, 1} and satisfying the following conditions:

(1) the natural projection R × [0, 1] → [0, 1] maps each strand homeo-
morphically onto the unit interval [0, 1],

(2) the set V (D) of all crossings of the diagram D consists of transverse
double points of D where each crossing has the pre-assigned infor-
mation of being a real or a virtual crossing as depicted in Figure 2.
A virtual crossing is depicted by a crossing encircled with a small
circle.

Figure 2. Real and virtual crossings

Two virtual twin diagrams D1 and D2 on n strands are said to be equiv-
alent if one can be obtained from the other by a finite sequence of moves
as shown in Figure 3 and isotopies of the plane. We define a virtual twin
as an equivalence class of such virtual twin diagrams. Let VT n denote the
set of all virtual twins on n strands. The product D1D2 of two virtual twin
diagrams D1 and D2 is defined by placing D1 on top of D2 and then shrink-
ing the interval to [0, 1]. It is clear that if D1 is equivalent to D′1 and D2

is equivalent to D′2 , then D1D2 is equivalent to D′1D
′
2. Thus, there is a

well-defined binary operation on the set VT n. It is easy to observe that this
operation is indeed associative.
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Figure 3. Moves for virtual twin diagrams

Figure 4. Forbidden Moves

Remark 3.1. Every classical link diagram can be regarded as an immersion
of circles in the plane with an extra structure (of over/under crossing) at
the double points. If we take a diagram without this extra structure, then
it is simply a shadow of some link in R3 and such crossings are called flat
crossings in the literature [17]. An easy check shows that if one is allowed to
apply the classical Reidemeister moves to such a diagram, then the diagram
can be reduced to a disjoint union of circles. However, this does not happen
in flat virtual diagrams, that is, diagrams which have both flat and virtual
crossings. It is worth noting that if we include the first forbidden move
in the moves for virtual twin diagrams, then we get precisely the theory of
flat virtual links initiated in [17]. We note that the moves in Figure 4 are
forbidden and cannot be obtained from moves in Figure 3 (see Proposition
3.5).

1 i− 1 i i+ 1 i+ 2 n ni+ 2i+ 1ii− 11

s̃i ρ̃i

Figure 5. Generators s̃i and ρ̃i
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Lemma 3.2. For each n ≥ 2, the set VT n of virtual twins forms a group
under the operation defined above.

Proof. We begin by noting that the virtual twin represented by a diagram
of n strands with no crossings is the identity element of the set VT n of
virtual twins. For each i = 1, 2, . . . , n − 1, let us define s̃i and ρ̃i to be
the virtual twins represented by diagrams as in Figure 5. Let β be any
arbitrary element in VT n. Then after applying isotopies of the plane β
can be represented by a diagram D ⊂ R × [0, 1] such that the projection
R× [0, 1]→ [0, 1] restricted to the set V (D) of all crossings is injective, that
is, each crossing is at a distinct level. Further, it follows from the moves
given in Figure 3 that s̃2i = 1 and ρ̃2i = 1 for all i = 1, 2, . . . , n − 1. Thus,
we can write β = s̃ε1i1 ρ̃

ε2
i2
. . . s̃εkik for some k, where εi ∈ {0, 1}. Since s̃i and ρ̃i

are self inverses, the element β has the inverse s̃εkik . . . ρ̃
ε2
i2
s̃ε1i1 . �

Proposition 3.3. The diagrammatic group VT n and the abstract group
V Tn are isomorphic for all n ≥ 2.

Proof. It follows from the definition of equivalence of two virtual twin di-
agrams on n strands that the generators s̃i and ρ̃i satisfy the following
relations.

s̃2i = 1 for i = 1, 2, . . . , n− 1,

s̃is̃j = s̃j s̃i for |i− j| ≥ 2,

ρ̃2i = 1 for i = 1, 2, . . . , n− 1,

ρ̃iρ̃j = ρ̃j ρ̃i for |i− j| ≥ 2,

ρ̃iρ̃i+1ρ̃i = ρ̃i+1ρ̃iρ̃i+1 for i = 1, 2, . . . , n− 2,

ρ̃is̃j = s̃j ρ̃i for |i− j| ≥ 2,

ρ̃iρ̃i+1s̃i = s̃i+1ρ̃iρ̃i+1 for i = 1, 2, . . . , n− 2.

Thus, there exists a unique group homomorphism

fn : V Tn → VT n
given by fn(si) = s̃i and fn(ρi) = ρ̃i for i = 1, 2, . . . , n − 1. Since every
β ∈ VT n can be written as a product of s̃i and ρ̃i, the map fn is surjective.
For an element s̃ε1i1 ρ̃

ε2
i2
. . . s̃εkik ∈ VT n, where εi ∈ {0, 1}, define

gn : VT n → V Tn

by gn
(
s̃ε1i1 ρ̃

ε2
i2
. . . s̃εkik

)
= sε1i1ρ

ε2
i2
. . . sεkik . We prove that gn is well-defined. Let D

be a virtual twin diagram representing the element s̃ε1i1 ρ̃
ε2
i2
. . . s̃εkik . A diagram

obtained by a planar isotopy on D that does not change the order of the
image of V (D) in [0, 1] under the projection map R× [0, 1]→ [0, 1] is again
represented by the element s̃ε1i1 ρ̃

ε2
i2
. . . s̃εkik . Any move that interchanges two

points in the image of V (D) under the projection R×[0, 1]→ [0, 1] exchanges
the subwords s̃is̃j and s̃j s̃i, s̃iρ̃j and ρ̃j s̃i or ρ̃iρ̃j and ρ̃j ρ̃i in the word
s̃ε1i1 ρ̃

ε2
i2
. . . s̃εkik for some |i − j| ≥ 2. Under each of these cases, the images of
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the corresponding words under gn are the same element in V Tn. The move
that adds (respectively, removes) two points in V (D) adds (respectively,
removes) subwords of the form s̃is̃i or ρ̃iρ̃i in the word s̃ε1i1 ρ̃

ε2
i2
. . . s̃εkik . But

s2i = 1 = ρ2i in V Tn, and hence both the words are mapped to same element
under gn. The third move interchanges the subwords ρ̃iρ̃i+1ρ̃i and ρ̃i+1ρ̃iρ̃i+1

in the word s̃ε1i1 ρ̃
ε2
i2
. . . s̃εkik . But V Tn has the relation ρiρi+1ρi = ρi+1ρiρi+1.

Finally, the last move replaces the subwords ρ̃iρ̃i+1s̃i and s̃i+1ρ̃iρ̃i+1, but
V Tn has the relation ρiρi+1si = si+1ρiρi+1, and hence gn is well-defined.
Since gn ◦ fn = id, fn is injective and the proof is complete. �

Since the diagrammatic group VT n and the abstract group V Tn have been
identified, from now onwards, the generators si and ρi will be represented
geometrically as in Figure 5.

A representation µn : Tn → Aut(Fn), from the twin group to the auto-
morphisms group of the free group, has been constructed in [22, Theorem
7.1]. It turns out that µn extends easily to a representation of V Tn.

Proposition 3.4. The map µn : V Tn → Aut(Fn) defined by the action of
generators of V Tn by

µn(si) :


xi 7→ xixi+1,

xi+1 7→ x−1i+1,

xj 7→ xj , j 6= i, i+ 1,

µn(ρi) :


xi 7→ xi+1,

xi+1 7→ xi

xj 7→ xj , j 6= i, i+ 1,

is a representation of V Tn.

As a consequence of Proposition 3.4, it follows that the forbidden moves
in Figure 4 cannot be obtained from the moves in Figure 3.

Proposition 3.5. The following holds in V Tn:

(1) sisi+1si 6= si+1sisi+1.
(2) ρisi+1si 6= si+1siρi+1.

Proof. An easy check gives

µn(sisi+1si)(xi) 6= µn(si+1sisi+1)(xi)

and

µn(ρisi+1si)(xi) 6= µn(si+1siρi+1)(xi)

for each i. �
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4. Virtual doodle diagrams

A virtual doodle diagram is a generic immersion of a closed one-dimensional
manifold (disjoint union of circles) on the plane R2 with finitely many real
or virtual crossings (as in Figure 2) such that there are no triple or higher
real intersection points.

Example 4.1. An example of a virtual doodle is shown in Figure 6. The
figure represents a flat virtual knot called the flat Kishino knot which was
proved to be non-trivial as a flat virtual knot in [10, 14]. Thus, the flat
Kishino knot is also non-trivial as a virtual doodle. Note that, the original
Kishino knot diagram is a diagram of a virtual knot and its non-triviality as
a virtual knot is proven, for example, in [3, 19].

Figure 6. Flat Kishino knot as virtual doodle

Two virtual doodle diagrams are equivalent if they are related by a finite
sequence of R1, R2, V R1, V R2, V R3, M moves as shown in Figure 7 and
isotopies of the plane. Note that V R1, V R2, V R3 and M are flat versions of
virtual Reidemeister moves in virtual knot theory [17]. The moves R1 and
R2 are referred as flat versions of Reidemeister moves for classical knots [5].

An oriented virtual doodle diagram is a doodle diagram with an orientation
on each component of the underlying immersion. It is easy to see that there
are a total of 28 moves for oriented virtual doodle diagrams. Further, any
oriented move can be obtained as a composition of moves in Figure 8 and
planar isotopies. From here onwards, by a virtual doodle diagram we mean
an oriented virtual doodle diagram unless stated otherwise.

It is known due to [4] that there is a natural bijection between the set of
oriented (or unoriented) virtual doodles on the plane and the set of oriented
(or unoriented) doodles on surfaces. This is an analogue of a similar fact that
there is a natural bijection between the set of oriented (or unoriented) virtual
knots and the set of stable equivalent classes of oriented (or unoriented) knot
diagrams on surfaces [7, 15, 20].

Gauss data. Let K be a virtual doodle diagram on the plane with n real
crossings. Let N1, N2, . . . , Nn be closed 2-disks each enclosing exactly one
real crossing of the diagram K and W (K) the closure of R2 \ ∪ni=1Ni in the
plane. Note that W (K) consists of immersed arcs and loops in the plane
where the intersection points are the virtual crossings. Let VR(K) be the
set of real crossings of K. Since we are considering oriented virtual doodle
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R1 VR1

VR2

MVR3

R2

Figure 7. Moves for virtual doodle diagrams

Figure 8. Moves for oriented virtual doodle diagrams
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diagrams, for each real crossing ci, the set ∂Ni ∩ ci consists of four points
and are assigned symbols as in Figure 9.

c1i c2i

c3i c4i

Figure 9. Labelling at real crossing

Define

V∂(K) =
{
cji | i = 1, 2, . . . , n and j = 1, 2, 3, 4

}
and

X(K) =
{

(a, b) ∈ V∂(K)× V∂(K) | there is an arc in K ∩W (K) starting

at a and ending at b
}
.

We define the Gauss data of a virtual doodle diagram K to be the pair(
VR(K), X(K)

)
. See [4, Section 6] for a related discussion. The Gauss data

will be crucial in establishing Alexander and Markov theorems for virtual
doodles which we prove in the remaining two sections.

Let K and K ′ be two virtual doodle diagrams each with n real crossings.
We say that K and K ′ have the same Gauss data if there is a bijection
σ : VR(K)→ VR(K ′) such that whenever (a, b) ∈ X(K), then

(
σ̄(a), σ̄(b)

)
∈

X(K ′), where σ̄ : V∂(K)→ V∂(K ′) is defined as

σ̄(cji ) = σ(ci)
j .

The following result is proved in [4, Lemma 6.1].

Lemma 4.2. Let K and K ′ be virtual doodle diagrams with the same number
of real crossings. Then the following are equivalent:

(1) K and K ′ have the same Gauss data,
(2) K and K ′ are related by a finite sequence of V R1, V R2, V R3, M

moves and isotopies of the plane,
(3) K and K ′ are related by a finite sequence of Kauffman’s detour moves

(shown in Figure 10) and isotopies of the plane.

5. Alexander Theorem for virtual doodles

Consider the space R2 \ D◦, where D◦ is the interior of the closed unit
2-disk D centred at the origin. A closed virtual twin diagram of degree n is
an oriented virtual doodle diagram K on the plane satisfying the following:

(1) K is contained in R2 \ D◦.
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Figure 10. Kauffman’s detour move

(2) If π : R2 \ D◦ → S1 is the radial projection and k : t S1 → R2 \ D◦
the underlying immersion of K, then

π ◦ k : t S1 → S1

is an n-fold covering, where S1 is the boundary of D and we assume
it to be oriented counterclockwise.

(3) The map π restricted to V (K), the set of all crossings of K, is
injective.

(4) The orientation of K is compatible with a fixed orientation of S1.
Consider a point p ∈ S1 such that π−1(p)∩V (K) = φ. Then cutting along

the ray emanating from the origin and passing through p gives a virtual twin
diagram on n strands. The closure of a virtual twin diagram on the plane
is defined to be the doodle obtained from the diagram by joining the end
points with non-intersecting curves as shown in Figure 11. We note that
there are many ways of taking closure of a virtual twin diagram.

β ββ

β

Figure 11. Different closures of a virtual twin diagram
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We observe that in the case of classical twins, due to forbidden move
sisi+1si 6= si+1s1si+1, taking closure of a twin diagram on a plane is not
well-defined. The following result shows that the operation of taking closure
on a plane in virtual setting is well-defined.

Lemma 5.1. Any two closures of a virtual twin diagram on the plane gives
equivalent virtual doodle diagrams on the plane.

Proof. Let β be a virtual twin diagram and K and K ′ two different closures
of β. Then K and K ′ are a finite sequence of Kauffman’s detour move
depicted in Figure 10. By Lemma 4.2, K and K ′ are equivalent virtual
doodle diagrams on the plane. �

We now prove Alexander Theorem for virtual doodles.

Theorem 5.2. Every oriented virtual doodle on the plane is equivalent to
closure of a virtual twin diagram.

Proof. Let K be a virtual doodle diagram with n real crossings. The idea is
to construct a closed virtual twin diagram with the same Gauss data as that
of K. The proof then follows from Lemma 4.2. We label each real crossing
of K as in Figure 9. Next, we consider R2 \ D◦ and orient the boundary
S1 of D, say, counter clockwise. Considering the real crossings of K with
the information assigned as in Figure 9, we place them in R2 \ D such that
π(ci) ∩ π(cj) = φ for all i 6= j and the orientation is compatible with the
orientation of S1. Next, we join these crossings in R2 \ D according to the
Gauss data such that each intersection of arcs is marked as a virtual crossing
and the orientation of arcs/loops are compatible with the orientation of S1,
as illustrated in Figure 12. In other words, for each (a, b) ∈ X(K) the
orientation of the arc joining a to b should be compatible with the orientation
of S1, that is, there is a possibility that we will have to wind the arc around
S1 to join a and b. Also, whenever it intersects with some other arc, then
the intersection point should be marked as a virtual crossing. Note that this
process is well defined upto detour moves shown in Figure 10, and virtual
doodle so obtained is a closed virtual twin diagram which has the same
Gauss data as that of K. Finally, cutting along π−1(p) for a point p ∈ S1
such that π−1(p) does not pass through any crossing gives the desired virtual
twin diagram whose closure is K. �

Following [16], for convenience in writing, we refer the process of con-
struction of a virtual twin in Theorem 5.2 as the braiding process which is
illustrated for virtual Kishino doodle in Figure 13.

6. Markov Theorem for virtual doodles

For β ∈ V Tn, let m ⊗ β ∈ V Tn+m denote the virtual twin obtained by
putting trivial m strands on the left of β. For n ≥ 2 and virtual twins
α, β, β1, β2 ∈ V Tn, consider the following moves as illustrated in Figures 14
and 15:
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Figure 12.

Figure 13. Application of braiding process on virtual
Kishino doodle

(M0) Defining relations 2.1 in V Tn (cf. Figure 3).
(M1) Conjugation: α−1βα ∼ β.
(M2) Right stabilization of real or virtual type: βsn ∼ β or βρn ∼ β.
(M3) Left stabilization of real type: (1⊗ β)s1 ∼ β.
(M4) Right exchange: β1snβ2sn ∼ β1ρnβ2ρn.
(M5) Left exchange: s1(1⊗ β1)s1(1⊗ β2) ∼ ρ1(1⊗ β1)ρ1(1⊗ β2).

We observe that the left stabilization of virtual type (1 ⊗ β)ρ1 ∼ β is
a consequence of the other moves as shown in Figure 16. Note that the
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moves M0−M5 can be defined for closed virtual twin diagrams in a similar
manner.

ββ

β β

β β

ββ

Figure 14. Left and right stabilisation of real and virtual type

β2β2

β1β1

β1β1

β2 β2

Figure 15. Left and right exchange

β M1 β M0 β M0

β M0 β M0,M2
β

Figure 16. Left stabilization of virtual type as a conse-
quence of M0−M5
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Lemma 6.1. Let n ≥ 2 and 1 ≤ i ≤ n. Under the assumption of moves
M0−M5, the following hold:

(1) βsnsn−1 . . . si+1sisi+1 . . . sn−1sn ∼ β, where β ∈ V Tn.
(2) snsn−1 . . . si+1siβ1sisi+1 . . . snβ2 ∼ ρnρn−1 . . . ρi+1ρiβ1ρiρi+1 . . . ρnβ2,

where β1 ∈ V Ti and β2 ∈ V Tn.
(3) τnτn−1 . . . τi+1τiβ1τiτi+1 . . . τn−1τnβ2 ∼ ρnρn−1 . . . ρi+1ρiβ1ρiρi+1 . . . ρnβ2,

where β1 ∈ V Ti, β2 ∈ V Tn and τj = sj or ρj for each j.

(4) βτnτn−1 . . . τiτi−1τi . . . τn−1τn ∼ β, where β ∈ V Tn and τj = sj or ρj for

each j.

Proof. We begin by observing that the case i = n holds due to move M2.
Also, for i = n− 1, we have

βsnsn−1sn
M4∼ βρnsn−1ρn

M0∼ βρn−1snρn−1

M1∼ ρn−1βρn−1sn
M2∼ ρn−1βρn−1

M1∼ β.

Let us suppose that

βsnsn−1 . . . si+2si+1si+2 . . . sn−1sn ∼ β (6.1)

for 1 ≤ i ≤ n− 2 and for any β ∈ V Tn. Then, we have

βsnsn−1 . . . si+1sisi+1 . . . sn−1sn
M4∼ βρnsn−1sn−2 . . . si+1sisi+1 . . . sn−2sn−1ρn

M0∼ βρnsn−1ρn . . . si+1sisi+1 . . . ρnsn−1ρn

M0∼ βρn−1snρn−1sn−2 . . . si+1sisi+1 . . . sn−2ρn−1snρn−1

M0∼ βρn−1snρn−1sn−2ρn−1 . . . si+1sisi+1 . . . ρn−1sn−2ρn−1snρn−1

M0∼ βρn−1snρn−2sn−1ρn−2 . . . si+1sisi+1 . . . ρn−2sn−1ρn−2snρn−1

M0∼ βρn−1ρn−2snsn−1ρn−2 . . . si+1sisi+1 . . . ρn−2sn−1snρn−2ρn−1.

Repeating the above steps gives

βsnsn−1 . . . si+1sisi+1 . . . sn−1sn

∼ βρn−1ρn−2 . . . ρi+1snsn−1 . . . si+2ρi+1siρi+1si+2 . . . sn−1snρi+1 . . . ρn−2ρn−1

M0∼ βρn−1ρn−2 . . . ρi+1snsn−1 . . . si+2ρisi+1ρisi+2 . . . sn−1snρi+1 . . . ρn−2ρn−1

M0∼ βρn−1ρn−2 . . . ρisnsn−1 . . . si+2si+1si+2 . . . sn−1snρi . . . ρn−2ρn−1

M1∼ ρi . . . ρn−2ρn−1βρn−1ρn−2 . . . ρisnsn−1 . . . si+2si+1si+2 . . . sn−1sn.
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Since ρi . . . ρn−2ρn−1βρn−1ρn−2 . . . ρi ∈ V Tn, by (6.1) and move M1, we
get

βsnsn−1 . . . si+1sisi+1 . . . sn−1sn
(6.1)∼ ρi . . . ρn−2ρn−1βρn−1ρn−2 . . . ρi

M1∼ β.

This proves assertion (1).
For assertion (2), note that the case i = n follows from moves M1 and

M4. Let us suppose that for any β1 ∈ V Ti+1 and β2 ∈ V Tn, we have

snsn−1 . . . si+2si+1β1si+1si+2 . . . snβ2

∼ ρnρn−1 . . . ρi+2ρi+1β1ρi+1ρi+2 . . . ρnβ2. (6.2)

We claim that

snsn−1 . . . si+1siβ1sisi+1 . . . sn−1snβ2

∼ ρnρn−1 . . . ρi+1ρiβ1ρiρi+1 . . . ρn−1ρnβ2

for β1 ∈ V Ti and β2 ∈ V Tn. For 1 ≤ i ≤ n− 1, we have

snsn−1 . . . si+1siβ1sisi+1 . . . sn−1snβ2
M1∼ β2snsn−1 . . . si+1siβ1sisi+1 . . . sn−1sn
M4∼ β2ρnsn−1 . . . si+1siβ1sisi+1 . . . sn−1ρn
M1∼ ρnsn−1sn−2 . . . si+1siβ1sisi+1 . . . sn−2sn−1ρnβ2

M0∼ ρnsn−1ρn . . . si+1siβ1sisi+1 . . . ρnsn−1ρnβ2

M0∼ ρn−1snρn−1 . . . si+1siβ1sisi+1 . . . ρn−1snρn−1β2
M0∼ ρn−1snρn−1sn−2ρn−1 . . . siβ1si . . . ρn−1sn−2ρn−1snρn−1β2

M0∼ ρn−1snρn−2sn−1ρn−2 . . . siβ1si . . . ρn−2sn−1ρn−2snρn−1β2

M0∼ ρn−1ρn−2snsn−1ρn−2 . . . siβ1si . . . ρn−2sn−1snρn−2ρn−1β2.

Repeating the preceding process yields

snsn−1 . . . si+1siβ1sisi+1 . . . sn−1snβ2

∼ ρn−1ρn−2 . . . ρisnsn−1 . . . si+1ρiβ1ρisi+1 . . . sn−1snρi . . . ρn−2ρn−1β2.
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Notice that ρiβ1ρi ∈ V Ti+1 and ρi . . . ρn−2ρn−1β2ρn−1ρn−2 . . . ρi ∈ V Tn.
By (6.2) and M1, we get

snsn−1 . . . si+1siβ1sisi+1 . . . sn−1snβ2

∼ ρn−1ρn−2 . . . ρisnsn−1 . . . si+1ρiβ1ρisi+1 . . . sn−1snρi . . . ρn−2ρn−1β2

M1∼ (snsn−1 . . . si+1)(ρiβ1ρi)(si+1 . . . sn−1sn)(ρi . . . ρn−2ρn−1β2ρn−1ρn−2 . . . ρi)

(6.2)∼ (ρnρn−1 . . . ρi+1)(ρiβ1ρi)(ρi+1 . . . ρn−1ρn)(ρi . . . ρn−2ρn−1β2ρn−1ρn−2 . . . ρi)

M1∼ ρn−1ρn−2 . . . ρiρnρn−1 . . . ρi+1ρiβ1ρiρi+1 . . . ρn−1ρnρi . . . ρn−2ρn−1β2
M0∼ ρn−1ρn−2 . . . ρi+1ρnρn−1 . . . ρiρi+1ρiβ1ρiρi+1ρi . . . ρn−1ρnρi+1 . . . ρn−2ρn−1β2

M0∼ ρn−1ρn−2 . . . ρi+1ρnρn−1 . . . ρi+1ρiρi+1β1ρi+1ρiρi+1 . . . ρn−1ρnρi+1 . . . ρn−1β2

∼ ρn−1 . . . ρi+1ρnρn−1 . . . ρi+1ρiβ1ρiρi+1 . . . ρn−1ρnρi+1 . . . ρn−1β2,

(ρi+1’s gets canceled as β1 ∈ V Ti).

Repeating the above steps finally gives

snsn−1 . . . si+1siβ1sisi+1 . . . sn−1snβ2 ∼ ρnρn−1 . . . ρi+1ρiβ1ρiρi+1 . . . ρn−1ρnβ2,

which proves assertion (2).
Repeatedly applying (2) on the expression τnτn−1 . . . τi+1τiβ1τiτi+1 . . . τn−1τnβ2

yields assertion (3). For example,

snρn−1sn−2ρn−3β1ρn−3sn−2ρn−1snβ2

∼ ρnρn−1sn−2ρn−3β1ρn−3sn−2ρn−1ρnβ2

∼ snsn−1sn−2ρn−3β1ρn−3sn−2sn−1snβ2

∼ ρnρn−1ρn−2ρn−3β1ρn−3ρn−2ρn−1ρnβ2.

For assertion (4), if we put β1 = τi−1 and β2 = β in assertion (3), then
we get

τnτn−1 . . . τi+1τiτi−1τiτi+1 . . . τn−1τnβ

M1∼ βτnτn−1 . . . τi+1τiτi−1τiτi+1 . . . τn−1τn

∼ βρnρn−1 . . . ρi+1ρiτi−1ρiρi+1 . . . ρn−1ρn

by taking β1 = τi−1 and β2 = β in (3).



ALEXANDER AND MARKOV THEOREMS FOR VIRTUAL DOODLES 289

If τ = ρ, then

βρnρn−1 . . . ρiρi−1ρi . . . ρn−1ρn

∼ βρnρn−1 . . . ρi−1ρiρi+2ρi+1ρi+2ρiρi−1 . . . ρn−1ρn

(by repeated application of M0)

∼ βρi−1ρi . . . ρn−1ρnρn−1 . . . ρiρi−1

(by repeated application of the preceding step)
M1∼ ρn−1 . . . ρiρi−1βρi−1ρi . . . ρn−1ρn
M2∼ ρn−1 . . . ρiρi−1βρi−1ρi . . . ρn−1

M1∼ β.

Finally if τ = s, then we get

βρnρn−1 . . . ρisi−1ρi . . . ρn−1ρn

(2)∼ βsnsn−1 . . . sisi−1si . . . sn−1sn

(1)∼ β,

which completes the proof. �

Recall that for β ∈ V Tn, m⊗β ∈ V Tn+m denotes the virtual twin obtained
by putting trivial m strands on the left of β.

Lemma 6.2. Let n ≥ 2 and 1 ≤ i ≤ n. Under the assumption of moves
M0−M5, the following hold:

(1) (1⊗ β)s1s2 . . . si−1sisi−1 . . . s2s1 ∼ β, where β ∈ V Tn.
(2) s1s2 . . . si−1si(i⊗ β1)sisi−1 . . . s2s1(1⊗ β2) ∼

ρ1ρ2 . . . ρi−1ρi(i⊗β1)ρiρi−1 . . . ρ2ρ1(1⊗β2), where β1 ∈ V Tn+1−i and
β2 ∈ V Tn.

(3) τ1τ2 . . . τi−1τi(i⊗ β1)τiτi−1 . . . τ2τ1(1⊗ β2) ∼
ρ1ρ2 . . . ρi−1ρi(i ⊗ β1)ρiρi−1 . . . ρ2ρ1(1 ⊗ β2), where β1 ∈ V Tn+1−i,
β2 ∈ V Tn and τj = sj or ρj for each j.

(4) (1⊗ β)τ1τ2 . . . τi−1τiτi−1 . . . τ2τ1 ∼ β, where β ∈ V Tn and τj = sj or
ρj for each j.

Proof. The proof is similar to that of Lemma 6.1. �

Recall that for a virtual doodle diagram K on the plane, W (K) denotes
the closure of the complement of union of closed disk neighbourhoods of
real crossings of K. The proofs of the following two lemmas are similar to
[16, Lemma 5 and Lemma 6]. We give proofs in our setting for the sake of
completeness.

Lemma 6.3. Let K and K ′ be two closed virtual twin diagrams such that
K ′ is obtained from K by replacing K ∩W (K) by K ′ ∩W (K ′). Then K
and K ′ are related by a finite sequence of M0 and M2 moves.
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Proof. We use notation from sections 4 and 5. Let π be the radial pro-
jection. Let N1, N2, . . . , Nn be closed 2-disks enclosing real crossings of K
and hence of K ′ such that π(Ni) ∩ π(Nj) = φ for all i 6= j, that is, real
crossings lie at separate levels. Let a1, a2, . . . , as be arcs/loops in K∩W (K)
and a′1, a

′
2, . . . , a

′
s be the corresponding arcs/loops in K ′ ∩W (K ′). Consider

a point p ∈ S1 such that π−1(p) does not intersect either of the crossing sets
V (K) and V (K ′). If there exists some arc/loop ai and its corresponding
arc/loop a′i such that |ai ∩ π−1(p)| 6= |a′i ∩ π−1(p)|, then we bring a segment
of ai or a′i closer to the origin by repeated use of ρ2i = 1 and some M2 moves
of virtual type such that |ai ∩ π−1(p)| = |a′i ∩ π−1(p)|. Thus, we can assume
that |ai ∩ π−1(p)| = |a′i ∩ π−1(p)| for all i.

Let k and k′ be the underlying immersions t S1 → R2 \ D◦ of K and
K ′, respectively, such that they are identical in preimage of each Ni. Let
I1, I2, . . . , Is be intervals/circles in t S1 such that k(Ii) = ai and k′(Ii) = a′i.
We note that π ◦k|Ii and π ◦k′|Ii are orientation preserving immersions with
π ◦k|∂Ii = π ◦k′|∂Ii . Since |ai∩π−1(p)| = |a′i∩π−1(p)| for any i, there exists
a homotopy kti : Ii → R2 \ D◦ relative to boundary ∂Ii such that k0i = k|Ii
and k1i = k′|Ii and π ◦ kti is an orientation preserving immersion. If we take
the homotopy generically with respect to K ∩W (K), K ′ ∩W (K ′) and the
2-disks Nj , we see that a′i can be transformed to ai by a sequence of V R2,
V R3 and M moves in R2 \ D◦. Consequently, K and K ′ are related by a
finite sequence of M0 and M2 moves. �

Lemma 6.4. Let K and K ′ be closed virtual twin diagrams having the same
Gauss data. Then K and K ′ are related by a finite sequence of M0 and M2
moves.

Proof. Let N1, N2, . . . , Nn be closed 2-disks enclosing real crossings of K
and N ′1, N

′
2, . . . , N

′
n be the corresponding closed 2-disks enclosing real cross-

ings of K ′. We consider two cases depending on the position of Ni and N ′j
with respect to the map π.
Case I. Suppose that π(N1), π(N2), . . . , π(Nn) and π(N ′1), π(N ′2), . . . , π(N ′n)
appear in the same cyclic order on boundary S1. Then we deform K by
isotopies of the plane such that Ni = N ′i for all i and diagrams of K and K ′

are identical in Ni for all i. Thus, K ′ can be obtained from K by replacing
K ∩W (K) by K ′ ∩W (K ′), and we are done by Lemma 6.3.
Case II. Suppose that π(N1), π(N2), . . . , π(Nn) and π(N ′1), π(N ′2), . . . , π(N ′n)
do not appear in the same cyclic order on S1. Without loss of generality,
we may assume that the two sequences of sets appear in the same order
except π(N1) and π(N2). Notice that the diagram K looks as shown in the
leftmost part in Figure 17, where β1 is a virtual twin diagram with no real
crossing and β2 a virtual twin diagram. As shown in Figure 17, we can make
π(N1), π(N2), . . . , π(Nn) and π(N ′1), π(N ′2), . . . , π(N ′n) to appear in the same
cyclic order on S1 using M0 and M2 moves. Thus, we get back to Case I
and we are done. �
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N1

N2

N1

N2

N1 N1 N1 N2

N2 N2 N2

β1 β1

β1

β2 β2
β2

β1

β2 β2

β1 β1

β2 β2

β1

M0 M0 M2

M0 M2 M0

N1

Figure 17.

Corollary 6.5. A closed virtual twin diagram for any oriented virtual doodle
is uniquely determined upto M0 and M2 moves.

Proof. It follows from the fact that any two closed virtual twin diagrams
for a virtual doodle have the same Gauss data (as in the proof of Theorem
5.2). The result then follows from Lemma 6.4. �

We now state and prove Markov Theorem for virtual doodles.

Theorem 6.6. Two virtual twin diagrams on the plane (possibly on different
number of strands) have equivalent closures if and only if they are related by
a finite sequence of moves M0−M5.

Proof. The proof of the converse implication is immediate. For the forward
implication, let K and K ′ be two closed virtual twin diagrams which are
equivalent as virtual doodles. That is, there is a finite sequence of virtual
doodle diagrams, say, K = K0,K1, . . . ,Kn = K ′ such that Ki is obtained
from Ki−1 by one of the moves as shown in Figure 8. Note that the virtual
doodle diagrams obtained in the intermediate steps may not be closed virtual

twin diagrams. Let K̃i be a closed virtual twin diagram for Ki obtained
by the braiding process as in the proof of Theorem 5.2. Without loss of

generality, we can assume that K̃0 = K0 and K̃n = Kn. By Corollary 6.5,

we know that each K̃i is uniquely determined up to M0 and M2 moves.

Thus, it suffices to prove that K̃i−1 and K̃i are related by M0−M5 moves.
We proceed by considering each move in Figure 8.
Case I. Let Ki be obtained from Ki−1 by applying any one of the V R1,
V R2, V R3 or M moves. Then Ki and Ki−1 have the same Gauss data,

which means that K̃i and K̃i−1 also have the same Gauss data. Then, by

Lemma 6.4, K̃i−1 and K̃i are related by M0 and M2 moves.
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Case II. If Ki is obtained from Ki−1 by an R2 move, then K̃i−1 and K̃i are
related by a M0 move and we are done.

For the remaining moves, let D be the closed 2-disk in the plane where
one of the remaining moves is applied so that Ki−1∩(R2\D) = Ki∩(R2\D).
We apply the braiding process to Ki−1 ∩ (R2 \ D) = Ki ∩ (R2 \ D) to get

diagrams K̃ ′i−1 and K̃ ′i such that K̃ ′i−1 ∩ D = Ki−1 ∩ D, K̃ ′i ∩ D = Ki ∩ D
and K̃ ′i−1 ∩ (R2 \ D) = K̃ ′i ∩ (R2 \ D).

Case III. If Ki is obtained from Ki−1 by an R1a or R1b move, then after the

braiding process, the diagrams K̃ ′i−1 and K̃ ′i looks like as in Figure 18. Note

that up to conjugation, virtual twins obtained from K̃ ′i−1 and K̃ ′i are either
of the following forms

β and βτnτn−1 . . . τiτi−1τi . . . τn−1τn

or

β and (1⊗ β)τ1τ2 . . . τi−1τiτi−1 . . . τ2τ1,

where β ∈ V Tn, τj = sj or ρj and 1 ≤ i ≤ n. In each case, both the virtual

twins are equivalent to each other by Lemma 6.1 or Lemma 6.2. Thus, K̃i−1
and K̃i are related by M0−M5 moves.

β ββ

Figure 18. K̃ ′i−1 and K̃ ′i corresponding to R1a or R1b move

Case IV. If Ki is obtained from Ki−1 by an MVR1 move, then after braiding

process, the diagrams K̃ ′i−1 and K̃ ′i looks as in Figure 19. The virtual twins

obtained from K̃ ′i−1 and K̃ ′i are of the form

τnτn−1 . . . τi+1siβ1siτi+1 . . . τn−1τnβ2

and

τnτn−1 . . . τi+1ρiβ1ρiτi+1 . . . τn−1τnβ2,

respectively. By Lemma 6.1, both these virtual twins are equivalent, and

hence K̃i−1 and K̃i are related by M0−M5 moves.

Case V. If the move applied is MVR2, then after the braiding process, the

diagrams K̃ ′i−1 and K̃ ′i looks as in Figure 20. The virtual twins obtained
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β1 β1

β2 β2

Figure 19. K̃ ′i−1 and K̃ ′i corresponding to MVR1 move

β1 β1

β2 β2

Figure 20. K̃ ′i−1 and K̃ ′i corresponding to MVR2 move

from K̃ ′i−1 and K̃ ′i are of the form

τ1τ2 . . . τi−1si(i⊗ β1)siτi−1 . . . τ2τ1(1⊗ β2)
and

τ1τ2 . . . τi−1ρi(i⊗ β1)ρiτi−1 . . . τ2τ1(1⊗ β2),
respectively. By Lemma 6.2, both of these virtual twins are equivalent, and

hence K̃i−1 and K̃i are related by M0−M5 moves. �
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