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On equivariant oriented cohomology of
Bott-Samelson varieties

Hao Li and Changlong Zhong

ABSTRACT. For any Bott-Samelson resolution of the flag variety, and any
torus equivariant oriented cohomology, we compute the restriction formula
of certain basis 7, of equivariant oriented cohomology of Bott-Samelson vari-
ety determined by the projective bundle formula. As an application, we show
that the equivariant oriented cohomology of Bott-Samelson variety embeds
into the equivariant oriented cohomology of T-fixed points, and the image
can be characterized by using the Goresky-Kottwitz-MacPherson (GKM) de-
scription. Furthermore, we compute the push-forward of the basis 5, onto
equivariant oriented cohomology of flag variety, and their restriction formula.
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1. Introduction

Let G/B be a flag variety. For each w in the Weyl group W, and a reduced
decomposition w = s; --- s, one defines the variety (see Definition 3.1)

Xlw = Pil XB Piz XB XB Pil/B'
Here P; is the minimal parabolic subgroup corresponding to the simple root a;,.

Multiplication of all the coordinates defines a canonical map g : X 1, — G/B,
which is proper and birational over the Schubert variety X(w) of w. This is
called a Bott-Samelson resolution of X (w). These resolutions play an important
role in Schubert calculus and representation theory.
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Let T be a split maximal torus in Borel subgroup B of G. One has a natural
T-action on the flag variety. We are interested in hp(X 1,)» Where hy is an (equi-
variant) oriented cohomology theory in the sense of Levine-Morel. Examples
of h include the Chow group (singular cohomology) and K-theory. For any h, it
is proved in [CZZ12, CZZ19, CZZ14] that, after fixing a reduced decomposition
I, for each w € W, the push-forward (q; ).(1) in hy(G/B) of the fundamen-
tal class defines a basis of h(G/B) over the base ring hr(pt). This enables the
authors of loc. it. to construct the algebraic replacement of hy(G/B), and pro-
vides a standard setting for generalized Schubert calculus. For further study on
equivariant oriented cohomology of T-varieties following this method, please
refer to [DZ20, GZ20, LZZ16, CNZ19, Z20].

Let us consider hp(X;) for a general sequence I = (iy, ..., i;). The set XIT of
T-fixed points of X; is in bijection with the power set of [I] = {1, 2, ..., [}. Denote
byj : XI — X; the canonical embedding. Our main result is the following:

Theorem 1.1. (Corollary 4.4) For any sequence I, the pull-back to T-fixed points
i* ¢ hr(Xp) = hp(X]) is injective.

Furthermore, we show that elements in the image of j* satisfy the Goresky-
Kottwitz-MacPherson (GKM) description (see Theorem 4.5). Indeed, in the
case where the sequence I = (i, ..., i;) consists of distinct i;’s, we prove that
the GKM description uniquely characterizes the image (Theorem 4.6).

Let us mention the idea of the proof briefly. Since X; is constructed as a tower
of P!-bundles, there are canonically defined algebra generators 7 i € he (X))
corresponding to each parabolic subgroup Py, in X;. Each 7 ; satisfies certain
quadratic relation. Therefore, for each subset L of [], denoting by #; the prod-
uct of 7; with j in L, then {5, |L € [l]} forms a basis of hp(X)).

We compute the restriction j*(n; ) explicitly (Theorem 4.3). The computation
uses the characteristic map ¢ : hy(pt) — hp(X;) induced by the map sending
a character A of T to the first Chern class of the associated line bundle over X;.
We then use the explicit formula of j*(7;) to prove Theorem 1.1, and use the
GKM description to characterize the image of j*.

As another application of the computation of j*(3;), we also compute the
push-forward of 7;, via the canonical map q; : X; — G/B. We show that the
push-forward (q;)..(n;) coincides with the Bott-Samelson class corresponding
to the sequence I'\L.

For future applications, one would apply the restriction formula (Theorem
4.3) and the push-forward formula (Theorem 5.4) in the study of motivic Chern
(mC) classes in K-theory. MC classes are certain K-theory classes associated to
constructible subsets of T-varieties. For details, please refer [AMSS17, RTV15,
RTV17]. They are closely related with the K-theoretic stable basis of Springer
resolutions, defined by Maulik-Okounkov [MO12, O15] and studied in [SZZ17,
S7719]. Indeed, Mihalcea has some recent work on the relationship between
push-forward of MC classes of Bott-Samelson varieties and the Kazhdan-Lusztig
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basis of Hecke algebra. The authors hope to apply the computation of this paper
to understanding this relationship.

The paper is organized as follows: In Section 2, we recall necessary notions
of equivariant oriented cohomology theory, formal group algebra, and the char-
acteristic map c. In Section 3, we recall some basic facts about Bott-Samelson
varieties. In Section 4, we compute the restriction formula (Theorem 4.3) which
was used to prove the injectivity of the pull-back map j* and the GKM descrip-
tion (Theorem 4.5). In Section 5, we compute the push-forward of the basis {5, }
onto hp(G/B).

Acknowledgments: The second author would like to thank Leonardo Mihal-
cea and Rebecca Goldin for helpful conversations.

2. Equivariant oriented cohomology theory

In this section, we define some notation, and collect some basic notions and
facts about equivariant oriented cohomology theory.

Let G be a split semisimple linear algebraic group over a field k, with rank
n. Let T be a split maximal torus of G and B C G be a Borel subgroup. Let
¥ be the set of roots of G, and IT = {a;,a,, ..., a,} be the set of simple roots
corresponding to B. Let P; be the minimal parabolic subgroup corresponding
to the simple root ¢;. The Weyl group W of G is generated by {s,, . San} where
S, 1s the reflection corresponding to a;. Note that W can be identified with
Ng(T)/T. Sometimes we will understand s; = s, as a lifting of an element in
G. We denote the group of characters of T by A. For each positive integer I,
denote [I] =1{1, 2, ..., 1}.

Let F be a formal group law over the commutative ring R. Examples include
the additive formal group law F, = x + y over Z, and the multiplicative formal
group law F = x +y — Bxy over Z[B, B71].

Definition 2.1. Let R[x,] := R[x;|]1 € A] be the power series ring. Let Jx
be the closure of the ideal generated by x, and x;,, — F(x3,x,), 4,4 € A. We
define the formal group algebra R[A]r to be the quotient

R[A]r = R[xa] /TF-

It is proved in [CPZ13, Corollary 2.13] that R[A] is non-canonically isomor-
phic to the formal power series ring with n variables. For simplicity, we denote
S = R[A]g. Note that by definition, x_; is the formal inverse of x;, that is,
F(x;,x_;) = 0. Since any formal group law F is always of the form

F(x,y) = x +y + a;; xy + higher order terms, a;; €R,

so it is not difficult to see that x_; = —x; + xﬁf(x/l) for some f(t) € R[[t]].

X . . . .
Therefore, —* is an invertible element in S.
X_2

Example 2.2. (1) Let F, be an additive formal group law, then we have a
ring isomorphism
R[AJF, = Sg(A)*, X3+ 4,
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where Sz(A) is the symmetric algebra of A and the completion is done
at the augmentation ideal.

(2) Let R[A] be the group algebra {ZJ a je’lf laj €ER,A; € A}. Then we have
isomorphism

R[A]r, = RIAIY, x3 0 (1 —eh),
where the completion * is done at the augmentation ideal.

Throughout this paper, we assume that the root datum of G together with the
formal group law F satisfy the regularity condition of [CZZ12, Definition 4.4].
For example, this is satisfied if 2 is regular in R. Please consult loc.it. for more
details. In particular, x, is regular in S, for any root a of G. The Weyl group
action on A induces an action of W on R[A] by s,(x;) = x,_(z). In particular,
we have

Lemma 2.3. [CPZ13, Corollary 3.4] For any v,w € W, any root a of G and
p € S, we have
vs,w(p) — vw
«w(p) (p) cs.

Xo(a)

Proof. According to [CPZ13, Corollary 3.4], we know that s, w(p) — w(p) is
uniquely divisible by x,. In other word,

sqw(p) — w(p) cs.
Xo
Then
sqw(p) — w(p)) _ Usgw(p) — vw(p) cs.
Xo xv(oc)

u(

O

In particular, taking w = v = e, we see that x,|(p — s,(p)). We can then
define the Demazure operator A, : S — S by

— S2(p)
Au(p) = B (1)
xa
Remark 2.4. By direct calculation, we have the following formulas: for p,q €
S,
SaAoc(p) = _A—a(p) (2
Aa(pq) = Aoc(p)q + PAa(Q) - Aa(p)Acx(q)xa- (3)

We follow [CZZ14, §2] on the assumption of equivariant oriented cohomol-
ogy, however, we only consider the case when the group is fixed to be the torus
T. Roughly speaking, it is an additive contravariant functor hy from the cat-
egory of smooth quasi-projective T-varieties to the category of commutative
rings with units, satisfying the following axioms: existence of push-forwards
for projective morphisms, existence of total equivariant characteristic class for
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T-equivariant bundle, Quillen’s formula, etc. [CZZ14, §2]. Moreover, there ex-
ists a formal group law F over R = hy(pt) such that if £, and £, are locally free
sheaves of rank one, then

c1(£1 ® L,) = F(c1(£4),¢1(£7)).
It is proved in [CZZ14, Theorem 3.3] that
S =R[A]r = h(pt), x5 = (L),

where £ is the associated line bundle. As an immediate consequence, we see
that if the variety X is finite set of points of the form Spec(k) (with trivial T-
action), then

hr(X) = F(X;S),
where the latter is the set of all maps from X (k) to S. It has a S-basis f,,x € X,
and is a ring with product defined by

fx . fy = ax,yfx, and unlt Z fX'
xeX

By functoriality, if p : X — Y is a T-equivariant map between two finite
discrete sets of points on which T acts trivially, then

p*(fy) = 2 fro P(fx)= fp(x)' 4)
xef-1(y)

We recall the definition of the characteristic map. Let X be a T-variety on
which B acts on the right, and the T and B actions commute. Moreover, suppose
the quotient X /B exists and X — X/B is a T-equivariant principal bundle.
Following [CPZ13, §10.2], we can define a ring homomorphism

¢ S=hp(pt) = hp(X/B), x;3 = c1(Ly).

It is called the characteristic map.

Let o be a simple root with corresponding minimal parabolic subgroup P,,.
Consider the fiber product X’ = X xB P, then X’ is a T-equivariant principal
P_-bundle over X /B. Denote p : X’'/B — X /B, and there is a zero section

oc:X/B—-X"/B,x (x,1). (5)
As in [CPZ13, §10.5], we have

hr(X'/B) = hp(X/B)§1/(§* = y§), §=0.(1), y=p'c*s.  (6)
The following properties can be proved similarly as their non-equivariant
versions in [CPZ13, §10].
Lemma 2.5. Denotec : S — hp(X/B)andc’ : S — hp(X'/B). Foreach A € A,
denote the associated line bundles on X /B and X’ /B by £; and L;l, respectively.
(1) We have c*& = ¢;(L_,) = c(x_,).
(2) y=p*o*& =pre(x_q).
(3) Foranyu € S, we have

o*c'(u) = c(w), ¢'(u) = p*c(s.(w)) + p*e(d_o(w)) - §.
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Note that in [CPZ13, §10], the projective bundle theorem plays a key role.
The equivariant projective bundle theorem for equivariant P!-bundle is proved
in [CZZ14, Lemma 4.6], which then can be used to prove Lemma 2.5.

Lemma 2.6. If X = B,X' = P,, there are two T-fixed points in P, /B, indexed
by e,s, € W, whose embeddings are denoted by c,,0, : pt — P,/B. Then
oic/(w) = u,0%c' (u) = s (w).

Proof. We have c(u) = u, po, = id, po, = id, and g, coincides with o in (5), so
the first identity of Lemma 2.5.(3) implies o c¢/(u) = c(u). On the other hand,
applying o} on the the second identity of Lemma 2.5.(3), and using o3(&) =
0:(0,).(1) = 0, we get that o;c’(u) = s,(u). O

3. Bott-Samelson varieties

In this section, we collect some facts about Bott-Samelson varieties .

Definition 3.1. For any sequence I = (i, iy, ..., ;) with 1 < ij < n,we define
the variety X; to be

XI =Pi1 XBPiZ XB XBPil/B,
which is the orbit space in P; X P;, X ... X P; under Bl-action defined by
(g1, > 8)(by, -+, b)) = (g1b1, b goby, -+, bt giby),
where b; € Band g; € P;,. Here the right B-action is given by right multipli-

cation on the last coordinate. If I = @, then we set X = pt. The variety X; is
called the Bott-Samelson variety corresponding to I. It has an obvious T-action
by left multiplication on the first coordinate. We denote T-fixed points on X;
by 81.

Since P; /B = P!, so we have a sequence of P!—bundles:

XI ~_ X(il

..... i) —= - —=X@) —= Dt (7
g Ol-1

02 01

where 0;, 1 < i < I are the zero sections. Multiplication of all factors of X;
induces a map

q; : X; —» G/B.
Denote by 7r; : G/B — G/P; the canonical map, and denote I’ = (iy, ..., ij_;).
We then have the following transverse Cartesian diagram:

X —2 _G/B. (8)
-

A T, Oqy

Xy L~ G/P,

So we have the base-change formula

(qp«p* = ﬂ;,(ﬂal%f)*-
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The operator
n;kf,(n'al)* : hT(G/B) - hT(G/B)
is called the push-pull operator.
Denote by ¢; : S — hp(X)) the characteristic map. The following propo-
sition describes the R-algebra structure of equivariant oriented cohomology of
Bott-Samelson varieties.

Proposition 3.2. [CPZ13, §11.3] We have the following presentation

hp(X;) = he(pH)[n1, 2 ---’771]/({771'2 —yinili=1,.., l}),
where
yj= p;fc(i1 ,,,,, ij,l)(x-aij), nj = P;(Uj)*(l),

.....

For ordinary oriented cohomology, this theorem is proved in [CPZ13]. The
idea of the proof is to apply the projective bundle formula to the sequence of
P!—bundle (7). One can check that all the arguments hold in the equivariant
setting, which can be used to prove Proposition 3.2.

For each subset L € [I], define

nL = H’?j € hr(X)).
jeL

Since in Proposition 3.2, the y; does not belong to the coefficient ring hr(pt),

the presentation of h;(X) is not satisfactory. To get a polynomial presentation
of it, we follow the idea in [CPZ13, Theorem 11.4].

Lemma 3.3. For any sequence I = (i, ..., i;), we have
cw)= ), O (W, u€eS,

Lc[l]

A_,, ifjeL,
where 0y, = 6, -G with©; =1 /] .

Si;» otherwise.

Proof. We prove it by induction on [. Ifl = 1, from Lemma 2.5, we have
¢, () = p*ey(s, W) + preg(bq, (W) - 1.

Note that the characteristic map ¢4 : S — hr(pt) is the identity map. So it
holds.

Now assume the conclusion holds for I’ := (iy, ..., ij_;). Denote the canoni-
cal projection from X; to X, by p. By Lemma 2.5 we have

¢;(w) = prep(sy (W) + prep(Ag, (W) - 7
= Z O1-1,.(s;, W)nL + Z el—l,L(A—aij )y -m

Lc[l-1] Le[l-1]

= Z O, (wny.- g

Lc]l]
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Proposition 3.4. [CPZ13, Theorem 11.4] The ring hy(X;) is a quotient of the
polynomial ring S[n,,n,, ..., ;] modulo the relations

77]2-= Z ej—l,L(x—oz,-j)nLnj’ jelll
Lc[j-1]

Proof. Denote K = (iy,..,i;_;) and p : X; — Xg. By definition of y; and
Lemma 3.3, we have

yj = P*CK(xai.) = p*( Z 9]—1,L(x—a,.)77L) = Z 9]—1,L(x—oc,.)77L~
! Lclj-1] ’ Lclj-1] ’

The statement then follows from the fact that 77]2. =Yjnj- O

Corollary 3.5. The S-module hy(X;) is free with basis {n;|L € P,}.

Example 3.6. For SL(4) whose simple roots are o, a5, &3, let us consider Bott-
Salmelson X; = P, x® P, x® P, /B. Then hy(X;) is a polynomial algebra
generated by 7, 1,, n; with following quotient relations:

2 _
N = X—a M
X — X
2 _ —03 G —a;
N =X—q -+ —————Mh
X_g,
X — X Xo, — X
2 _ —a3—0a; 20—, —a3 as at+ay—as
N3 = Xoy—cty—a 13 + MmNz + ———————"M27)3
x_al x—ocl—ocz
X _ e by - X
as xaz—a3 —asz Ap—a1—a3
+( 11273
Xy X—ay Koy —ayX—ay

Let us consider some geometry information on X, and its T-fixed points. We
fix some notations first. For any L C [I], define

XD = {ler, &2 -8l € X/ g EBifj¢L,andg ¢ Bif j € L} c Xy,

and
L _ ) L ._ L _ )
v = | | S, VT I=Uf= | |slk.

keLn[j] keL
The following lemma will be used in the proof of Theorem 4.6.

Lemma 3.7. Let I = (i, ...,ij) be a sequence such that i; are all distinct. Let
L c [1], then vJL._l(ocj),j € L are all distinct. In particular, U]L'—1(x—aij)’j € L
are all distinct.

Proof. Suppose ji, j, € L¢ and j; < j,. Then LN[j;] € LN[j,]. There are two

cases.
Case 1: LN [j;] = LnN[j,]. Then

vi ) =CIT s,

keLn[ji]
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and

UJL'2—1(aij2) =( H sp (e, ) = ( H Sy, (et

keLN[j,] keLn[j]
They are not equal since a, #* a, -
Case 2. LN [j;] € LN[j,]. Denote M = (L N [j,D\(L N [j;]). Then
L -
Ujl_l(aih) - ( H Sik)(aijl )’

keLn[j;]

U]L-z_l(o‘ijz) =( H Sik)( H Sik’)(aijz)'

keLn[j;] k'eM
By definition of the Weyl group action,
(H Sik,)(aijz) =a; + Z Cuy,, Cp €Z,
k'eM k'eM
which is different from a, since the set {oc,-j1 , ocijz} U{za, |k’ € M} is linearly
independent. Thus 0;1—1(“%1) and UJL'2_1(°‘ij2) are not equal to each other. [
The following lemma recalled from [W04, Proposition 2.6] provides some

geometric information on the Bott-Samelson variety, which is useful for our
computation.

Lemma 3.8. (1) ThesetX] of T-fixed points in X;, consists of 2! points
1. 82, > 81
where g; € {e, sl-j} . Here we think ofsl-j asin W = Ng(T)/T and pick a
preimage for §;; in Ng(T) C G. Consequently, we have bijection of sets
from the power set P; := P([1]) to X7,

Sijy lf.] € La

e, ifjéL.

(2) The set (X;);, is T-stable, contains the fixed point pt;, and is isomorphic
to the affine space of dimension |L|. The variety X; has a decomposition
HLEEI (XI)L'

(3) Suppose L,L' C [l]. thenpt, € (X;), ifand only if L C L. The weights
of the T-action on the tangent space of (X;),, at pt; are

(~vla)lj € L'}

Lept i=[g,...8] &=

Example 3.9. For the A,-case, consider X(; ;) = P; X8 P,/B. There are four
T-fixed points, denoted by {00, 01, 10, 11}, corresponding to
{[ea e]a [es SZ]a [Sls e]s [Sla Sz]},

or

g,{2},{1},{1,2}
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as subsets of [2]. The weights of the tangent spaces of X(l,Z) at the four points
are:

00 : —0ty, =0ty 01 : —0y, 0y

101 o,—a;—a, 11 ag,a1 +as.

We denote the set of functions on &; with values in S by F(&r;S). Itisa
free S-module with basis f7,L € &; defined by f; (L") = 8 1/, and have a ring
structure given by

Sfr-fv=06rufL
Moreover, we have
hr(&p) = F(ELS),

where the total Chern class of the tangent space at the fixed point pt,, corre-
sponds to the basis element f; up to a scalar.

Letj’ : X] — X; be the embedding of fixed points. For each L C [I], denote
by ji the embedding of pt; into X;. Sometimes we will drop the superscript I
for simplicity. Then

i =2 iOfL fehr&p.

Lc|l]

Denote

XpL = H U?(x—ocij)- 9

1<j<l
We have
Lemma 3.10. Forany L C [l], we have j*j.(f1) = x; 1 f1.

Proof. This follows easily from [CZZ14, §2.A8] and Lemma 3.8 concerning the
weights of the tangent space of X; at the point L. O

Example 3.11. Following Example 3.9, with I = («, «,), we have

X100 = X—q; X—ays X110 = Xy X—a;—ay»

X101 = X—qqXa,>  X1,11 = Xy, Xy +a,-

4. Restriction to T-fixed points

In this section, we compute the restriction formula of the #; basis. We first
compute the restriction formula of the image of the characteristic map.

Lemma4.1. Let] be a sequence of lengthl, and ¢; : S — X, be the characteristic
map, then

o) = Z vt fr.

Lc(l]
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Proof. We prove it by induction on the length [ of I. If I = (i;), then it follows
from Lemma 2.6.

Now assume it holds for all sequences of length < [ — 1, and assume I =
(iy,...,i;). Denote I' = (iy,...,ij_;) and o : Xp — X; the zero section. By
induction assumption, for each L' C [l — 1], we have

i ep(u) = vl (). (10)

Concerning L C [l], we have two cases:
Case 1: | € L. In this case, pt, & a(X;), so

() o0, = 0. 1D
Moreover, we have the following commutative diagram

A
pt——=X;

AN

I/
Ing .
I’

that is, poj£ = jf\{l}, SO
o] \x % _ 3l *
QL) Op - (]L\{l}) . (12)
Denote ¢ = 0,(1), then by Lemma 2.5, we have
i) ocr(u) = G )*[p*ep (s, (W) + prep(Ag () - €]
= () p*er (s, (W) + () prer(A_q, W) - (1) (0.(1)

b

:1 i\{l}) CI’(Sil(u))

1 !

= vlL_\i }osil(u) = vlL(u).

Here the identity #; follows from (11) and (12), and {, follows from (10).
Case 2: [ ¢ L. In this case, we can view L C [l — 1], so we have commutative
diagrams:
i i
pt ; XI N pt ; XI 5

i N BN
XI/ XI’
so pojl =j' and oojl = ji. The latter implies that

j1)70.(1) = G oo, = G e iy, ). (13)

Therefore,
i*(erw) = GH*[p*en(s;(w) + prep(Ag, () - €]
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= () p*er (s, (W) + () prer(A_q, W) - (1) (0.(1)

= (i) ep (s, () + G er(A—q, W) - G er (X, )
. u—s;(u)
= (i )er (s, (W) + ———x_,)
—a

= () er(w)

— L _ L

= v, W) = vy (w).
The proof is finished. O

Before computing the restriction formula of 7y, we first consider an example.

Example 4.2. Consider the case of A,. Let {a;, a,} be the set of simple roots.
We consider the Bott-Samelson variety X; = P;x2P,/BforI = (1, 2). Following
Example 3.9, there are four torus-fixed points, denoted by P, = {00, 01,10, 11}.
Similarly, denote (P; /B)' by P; = {0,1}. Denotej : & < X;andj' : P, &
(P,/B)T. Consider the following commutative diagram:

Py xP P,/B =—— P, ={00,01,10,11} .

(jp J lp;

Pl/B ?1={0,1}

jl
Ul(jpl

pt

Here o; are the zero sections, p; is induced by the projection map p,, so it maps
00,01 to 0, and 10 and 11 to 1. Moreover, by definition, j; = o; and o,0j] = j{o
fori = 0,1. We have

m = p5(01):(1), 1= (02).(1),
and

hT((XI)T) = S{foo, f01,f10’f11}, hT((Pl/B)T) = S{anfl}-
Denotec; : S — hy(P,/B).
First of all, from the definition of p; and (4), we know
(Pg)*(fo) = foo + for, (P;)*(fl) = fio+ fu-
Moreover, since j, coincides with o; and ji(pt) & o;(pt), so (j})*(o1). = 0 and
G (011 = Gg)*(01):(1) = 05(a1):(1) = x_g, fo»

where the last identity follows from the fact that the tangent space of P, /B at 0
has weight —a;. Hence,

() = G p3(e1).(1) (14)
= (p)* (" (01):(1) = (p))*(x—g, f0) = X—a, (foo + fo)-  (15)
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We then compute (j')*(1,), by using the identity
GI)*(Uz) = Z G;)*(Uz)fx-

xe.’P3

Since 01,11 & 0,(P;/B), we have (j, )*(1,) = (j},)*(,) = 0. From Lemma 2.5,
we know that 63(03).(1) = ¢;(x_g,)- So

j00) (12) = ()" (02).(1) = ()*03(02). (1) = (Jp)*(€1(x_q,)) z X_a,s

where §f follows from Lemma 4.1. Similarly, from j{o = azoji, we have

i10)"(12) = (o)* (02)(1)
= (iP*05(02).(1)
= () (e1(x_a,))
= S1(x—a2) =X —a,-
Therefore,
G (m2) = x_a, foo + X—ay—a, f10- (16)
Now we compute the restriction formula of 7; .

Theorem 4.3. Let I be a sequence of length l. For any two subsets L,M C [I]
denote L¢ = [I]\L and
arm = H v (x—ocl

keL
Then

) = Z armfm-

McLe

Proof. We first consider L = {k}, and prove the following identity
Fao =Y oM e )

McCLe
Write I; = (iy, ..., i;) for j = k and j = k — 1. Firstly, we compute (j;’})*(ok)*(l)
for gach M C [k], with o : X;  — X;. Ifk € M, then the point jf\’}(pt) 2
ox(Xy,_,), 80

(l )*(Uk) 1 =o.

Ifk & M,thenM C [k—1],v and we have the following commutative

diagram

kl’

Jr

pt ﬁM Xlk

O
i1

v
Xr_,-
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Therefore
() (0101 = Gy )07 (01).(1) 17)
FE G e, (e, (18)
FEYOM (g, ). (19)

Here ¢;,_, is the characteristic map on X I,.,- Then we consider the following
commutative diagram

N i N
&' ——X%

b
S o
We have
G () = @ p*(e1).(1) = p* ()" (01).(1)

=p"*[ Y G (00D fu]

Mclk]
a7
= p"[ Y, ot (e )ful
Mclk-1]

) M
= Z Uk_l(x—ocik) Z fMUM’

Mclk-1] M'cik+1,..1}
= Z Ui/l_l(x—oc,-k )fM

Mc([I\{kD

So the case L = {k} is proved.
Now for a general subset L C [I], we have

o) =TTirmo

keL

=11 X Uﬁ/l—l(x_aik)fM

keL Mc([I\{k})

= Hvlly—l(x_aik)fM'

McCL¢ keL

For I of length [ and L C [I], note the difference between
ape = [ vp e = I vpGeg,):

1<k<l 1<k<l
They are only related when L = [I], in which case we have

l 1 l
ap = [T ol ) = TT 00, 2= TT v)xa,)-

1<k<l 1<k<I 1<k<l
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Corollary 4.4. The map j* : hy(X;) — hy(X]) is an injection.
Proof. It follows from Theorem 4.3 that
) = Z armfum-

McL¢

Soif we order {j*(;)|L C [11},{f|M C [l]} by inclusion of subsets L’ C L, then
the transition matrix from f,; to j*(»;) will be skew-triangular. Moreover, the
entries on the skew-diagonal will be

LC
S |

keL
which is regular in S. Therefore, j* is injective. (]

Theorem 4.5. Let I be a sequence of length l. Then
ap, —a
imj* c{ apfil—t— €S, VL, L, such that L, = L, U {k}}.
Lc(l] vkl_l x—rxik
Here LI denotes the disjoint union.

Proof. Denote the right hand side by ¥. We first show that W is a ring. It is
clearly additively closed. For the multiplication, consider

f= Z arfr, g= Z byfr €Y,

Lc(l] Lcll]
then
fg= Z Sprapbp fL = Z arbrfr.
Ll Lol
For any L;, L, such that L; = L, LI {k}, by definition we have vil_l = viz_l, SO

Ly _ L
Uk—l(x_aik) = Uk—l(x_“ik)' Therefore,
OLleL1 - aLsz2 = (ClL1 - aLz)bLl - (bL2 - bLl)aLZ:

is divisible by vil_l(x_aik ). We have fg € ¥.
We then show that im j* C W. Since j* is multiplicative, it suffices to show
Fow= Y vk (o f
Lc[l\{m}
belongs to the RHS. Suppose L; = L, U {k}. Clearly k # m. If k > m, then
by definition we have vVLnl_1 = Uanz—l' Thus Ulr;’ll—l(x_“im) = vfnz_l(x_aim), which
implies that j*(n,,) € ¥.
If kK < m, denote
Linm=1]={ji <ja < ji <k <1 < <Jsh
Lynm=1]={ji < jo <+ jy <k <jon1 < <Jsh
(in other words, k is omitted in L,). Then

L L
vml_l(x—aim) - Umz_l(x—ocim) = Sih Sijz S

+S;. 8; S; e 8 (X
Ljg “he =gy ljs( _aim)
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= Sy, Sy, e Sy SuSuy e S (*—,)
—h
= Uk_lsik(sijpr1 8i, )X, )
1
LGy s )X )
According to Lemma 2.3, this is divisible by v (x_a ). O

We can strengthen the conclusion in some cases. The proof essentially uses
the fact that the transition matrix from f;,L C [I] to j*(ny), M C [l] is skew-
triangular, following from Theorem 4.3.

Theorem 4.6. IfI = (iy, ..., i;) with ij all distinct, then we have equality in Theo-
rem 4.5.

Proof. It suffices to show that ¥ C imj*. Suppose

f= Z arfr €¥, witha; =0unlessL = §,
Lc(l]
then for any k € [l], ag = ay — aygq is divisible by v (x_al ) = X_g, - Since
Xq ,1 < j < larealldistinct, by [CZZ19, Lemma 2.7] we see that ay is divisible
i
by [T, cj1 X, - Note that by Theorem 4.3,

i) = 1 x-a, o

kell]

so f is a multiple of j*(ny), i.e., f € imj*.
Assume the conclusion holds for any f that can be written as a linear com-
bination of f; with |[L| <t — 1. Now let

f= Z arf; €Y, witha; =0unless|L| <t.
L[]
Let L, be a subset of [I] of cardinality ¢. For any k € L;, we have a; 4, = 0, so
vi"_l(x_ocik)laL0 Now from Theorem 4.3, we know

() = Z aremfms  Qrer, = HU (x—al

McL, jeL;
By Lemma 3.7, we have that v]L.ﬂl(x_aP) are all distinct for j € L. By [CZZ19,
J
Lemma 2.7], we know that are 1, lar,. Write a;, = Cr,are 1, with¢; € S. There-
fore,
fri=f= 2 e i) = D) afr
Lo|=t |L|<t

By induction hypothesis, f’ € imj*. Therefore, f € imj*. The proof is fin-
ished. U
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Remark 4.7. Let T; be the subtorus of rank 1 corresponding to «;, i.e., T; =
(ker a;)° where «; is viewed as a character T — k*. If I = (i, ..., i;) is a sequence
such that i jare all distinct, it is not difficult to see that forany 1 < k <1,

~

T; .
XI b= {[gI’ ’gl]lg]B € {B’SiJ-B}V.] # k}’
and
X7 ={lg1, -8l g;B € {B, s, B} Vj}

if T” is any subtorus of corank 1 different from Tl-j, j = 1,..,1. In other words,
for any subtorus of corank 1, the irreducible component of the invariant sub-
variety has dimension at most one. This corresponds to the so-called Goresky-
Kottwitz-MacPherson (GKM) condition. In other words, in this case, the Bott-
Samelson variety is a GKM space. This corresponds to the conclusion of Theo-
rem 4.6.

On the other hand, if P;; are not distinct, the space X; will not be GKM. For
instance, if I = (1,2, 1), the T -fixed subspace contains the following subset

{lgr,e. g g, 8 € P1},

so the dimension condition is not satisfied. Indeed, it follows from the proof of
Theorem 4.6 that in this case, the inclusion in Theorem 4.5 is strict. For more
detailed discussion of GKM spaces, see [GKM98, GHZ06].

5. Push-forward to cohomology of flag varieties

In this section, we compute the push-forward of the basis 7 along the canon-
ical map q; : X; — G/B, which generalizes the computation of Bott-Samelson
classes in [CZZ14].

Recall that the set of T-fixed points of G /B is in bijection to W, so we have

hr((G/B)") = @uewS-

Denote by f,, € hp(W) the basis element corresponding to w € W. Denote
i : W — G/B to be the embedding, and denote pt, = (il,).(1) € hy(G/B).
Let 7; : G/B — G/P; be the canonical map, and denote A; = 7}o(7;), :
h7(G/B) — hy(G/B). For any sequence I, denote by I"®¥ the sequence obtained
by reversing I.

Proposition 5.1. [CZZ14, Lemma 7.6] For any sequence I, we have
(qD):(1) = Apev(pt,).
The following is an easy generalization of Proposition 5.1.

Theorem 5.2. Let I be a sequence of length l and 1 < k < L. Denote by I the
subsequence of I obtained by removing the k-th term from I. Then (q;),.(n;) =
AITEV(I).

k
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Proof. Denote the sequence by I = (iy, ..., ;). For any k < [, denote

P, xB P, xBx..xBP, /B ~G/B

P, xB P, xBx..xBP,_ /BXG/B.

Note that q; = g; and g ooy, = g,_;. Denote by p the composition of py,1, -+, p;.
By using the base change formula from diagram (8), we have

(@n):m) = (@) p* (1) (1))
= (@«P[ Pl_y =" Pjey1(01)4(1)
= 75, (e )e(Qi-1) D)y -+ Py 41 (01, (1)
= (g, (e ) (e, (o D) -+ (g, (o, 1)@ (01):(1)

= AilAil_l oo Aik+1 (qk—l)*(l)
= A A, Ay, A, o A (pty) = Ape(pt).

To compute (qr).(nr) for general L C [I], we need the following lemma.

Lemma 5.3. Forany L C [l], we have

arr,.
=, —j.(f,)

Licl] b

where a1, are defined in Theorem 4.3. Note that the coefficients in this formula
belongto Q := S[i|oc e X
xOC

Proof. By Corollary 4.4, we know that j*(n;) becomes a basis of Q ®g hp(W).
In other words, j* induces an isomorphism

i 1 Q®s hr(Xp) — Q ®s hr(W).

Moreover, by Lemma 3.10, we know that j, is the inverse of the j* (after tensor-
ing with Q). Therefore, j.(f1) is a Q-basis of Q ®g hy(X}). Denote

L= Z brrj«(fr,), brr, €Q.
L,C[l]

Then by Theorem 4.3 and Lemma 3.10, we have
Z aL,LZf L, =j*(nL) = Z bL,Llj*j*(f Ll) = Z bL,leI,Llf Ly

L,CL¢ L[] L[]

a
Therefore, b, ; = —X. O
LL,
X1,y

The following is the main result of this section, which computes the push-
forward of 7;, to the cohomology of G/B.
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Theorem 5.4. For any sequence I = (i, ..., i;), we have

L
, arr, - v (xm)
l*(fh)*(m) = E / 1x—fUL1, X = | | X, € S.

L,CL¢ LL a<0
Note that a priori the coefficients of f,., belong to S.

Proof. Consider the following commutative diagram

Note that by definition, ¢’ maps the point corresponding to L C [I] to v- € W.
Therefore,

(@).(fr) = fur € hp(W).

Firstly, we have

(@D (f1) = %10 (f1) = ©*i.(for) = V" Ger) fons

where the last identity follows from [CZZ14, Corollary 6.4]. Consequently, by
Lemma 5.3, we have

. Ll( )
#(g.) = ). Y he(p )= Y Ll T e

L,cLe “Lh LiCLe XLL

O

Remark 5.5. In case 7, = 7y or 1y, as in Proposition 5.1 and Theorem 5.2, one
can express (q;).(7) as the operators A; applied on pt,. By using the method
of formal affine Demazure algebra, started in [KK86, KK90] and continued in
[CZZ12, CZZ19, CZZ14], one will obtain a restriction formula of i*(q;).(n).
Roughly speaking, there is an algebra Dy generated by algebraic analogue of the
push-pull operators A;, whose dual is isomorphic to hp(G/B). The algebra Dg
acts on hy(G/B), via two actions (denoted by « and ® in [LZZ16]). Both actions
will give restriction formulas of A;(pt,). Indeed, by using the two actions, one
will obtain two different, but equivalent formulas, one of which coincides with
the one given by Theorem 5.4.

Corollary 5.6. Let I be any sequence of length I. For any L C [l], denote by
Xy =Xprandqp @ Xy — G/B. Then (qp).(n1) = (qre)«(1).

Proof. From Theorem 5.4 we have

arz, [ e V™ (xa)

*(qp)(m) = Z fou, (20)

L,cLe XL,
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. I, ov"(xa)
i*(qe). (D) = ), —=——fuu. (1)
L,cLe Xre.Ly
By definition
L L
XL, = HU 1(x—cxl )y Xpep, = H v, l(x—cxl ), app, = HU (X—a,
Jel JEL® JjEL

Since LNL, =@,soforany j € L, v.1 = UJL.i , and we have

L L
xp, = [ o) (g, )H 0} (Xay)

JELS
=[] v (e, )H v}y ()
JEL® JEL
= Xper,Qrr,-
Therefore, i*(qr).(nr) = i*(qrc).(1). By [CZZ14, Theorem 8.2], we know i* is
injective. So (qp).(nL) = (qre)«(1). O

Remark 5.7. This corollary shows that for any L C [l], the class in h(G/B)
determined by 7; coincides with the Bott-Samelson class determined by I|;.,
in other words, for the class 7;, the minimal parabolic subgroups P;,j € Lare
‘omitted’.

By using this result, we can derive the Chevalley formula for equivariant ori-
ented cohomology. For each w € W, we fix a reduced sequence I, then the
Bott-Samelson class ¢ is defined to be the push-forward class along the map
qr, : X, > G/B,ie., ¢, = (qr,).(1). Itis proved in [CZZ14, Proposition 8.1]
that {{; |w € W}is a basis of hy(G/B). Denote the characteristic maps from
hr(pt) to G/B and to X 1, by ¢’ and c; , respectively. By definition, ¢;, = q}“w c/

Corollary 5.8 (Chevalley Formula). For any u € hy(pt), we have
(W)= Z Or (W) e,

Lc[¢(w)]
where {;c = (qc),(1) and 67 1 (u) was defined in Lemma 3.3.
Proof. We have
(qr,)«(er, (W) = (qr,)«(er, (W) - 1) = (q1,).(q; (') - 1) = ' W),

where the last identity follows from the projection formula. Then Lemma 3.3
and Corollary 5.6 imply that

(@) (e, ) = 2, 6,)q,)(n)

Lefe(w)]

= > 6, w(g).Q)

Lc[t(w)]
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= D, O,

L[t(w)]
The conclusion then follows. O
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