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Periodic spanning surfaces of periodic knots

Stanislav Jabuka

Abstract. It is awell-known result by Edmonds [1] that every periodic knot
of genus g bounds an equivariant Seifert surface of genus g. We show that this
is not true if one instead considers nonorientable spanning surfaces of a pe-
riodic knot. We demonstrate by example that the di�erence between the �rst
Betti number of an equivariant and a nonequivariant nonorientable spanning
surface of a periodic knot, can be arbitrarily large.
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1. Introduction and results
A knot K in S3 is said to be periodic if there exists an integer p ≥ 2, an ori-

entation preserving di�eomorphism f ∶ S3 → S3 of order p that preserves the
knot K, and whose �xed point set Fix(f) is di�eomorphic to S1. In this case we
say that K is p-periodic, that p is a period of K, and we call Fix(f) the axis of f.
See [3] for more background on periodic knots.

In [1] Edmonds proved, using the theory of surfaces of least area, that if K is
a p-periodic knot of genus g, then there exists a Seifert surface Σ for K of genus
g that is invariant under the di�eomorphism f. Said di�erently, if we de�ne
the p-periodic (or equivariant) 3-genus g3,p(K) of a p-periodic knot K as

g3,p(K) = min{g ≥ 0 | K possesses an f-invariant Seifert surface of genus g},
then Edmonds’ theorem can be seen as saying that g3(K) = g3,p(K) for every
p-periodic knot K (with g3(K) being the Seifert genus of K).

The goal of this note is to show that if one considers nonorientable span-
ning surfaces for periodic knots instead, the analogue of Edmonds’ theorem
is not true. To state our result, we recall the de�nition of the nonorientable
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(nonequivariant) 3-genus 
3(K), and we de�ne the p-periodic (or equivariant)
nonorientable 3-genus 
3,p(K) of a p-periodic knot K as


3(K) = min{b1(Σ) | Σ ⊂ S3 is a nonorientable spanning surface for K},


3,p(K) = min {b1(Σ)
||||

Σ ⊂ S3 is an f-invariant nonorienatble
spanning surface for K } .

It is not hard to see that every p-periodic knot has an equivariant nonorientable
spanning surface, and thus the de�nition of 
3,p(K) is well posed. Indeed, such
a surface can be obtained from an equivariant Seifert surface by attaching p
half-twisted bands along its boundary (thus e�ectively performing p Reide-
meister moves of type I on the knot) in an equivariant manner. It is also not
hard to show that 
3,p(K) ≤ 2g3(K) + p, if K is p-periodic.

Theorem 1.1. Let K be a p-periodic knot with p ≥ 2 and with 
3(K) ≥ 2. Then

3,p(K) ≥ p.

Proof. Let f ∶ S3 → S3 be an orientation preserving di�eomorphism that
displays the p-periodicity of K and let A =Fix(f) be its axis. Let further Σ ⊂ S3
be a nonorientable f-invariant spanning surface for K and let Σ ⊂ S3 be the
quotient of Σ by the action of ℤp generated by f, note that Σ is nonorientable,
as it is being branch-covered by the nonorientable surface Σ. Then Σ → Σ is a
p-fold cyclic cover, branched along � ≥ 0 points, with � being the number of
points in Σ ∩ A. A straightforward computation of Euler characteristics gives

�(Σ) = p ⋅ �(Σ) − (p − 1)�. (1)

Write b1(Σ) = a and b1(Σ) = b. The assumption 
3(K) ≥ 2 forces a ≥ 2, while
by de�nition b ≥ 1 and � ≥ 0. Equation (1) then becomes

a − 1 = p(b − 1) + (p − 1)�. (2)

If b = 1, we obtain a − 1 = (p − 1)� forcing � > 0 since a ≥ 2. This in turn
forces the inequality a−1 ≥ p−1 or a ≥ p. If b ≥ 2 then (2) implies a−1 ≥ p.
Thus, in either case we �nd a ≥ p and hence 
3,p(Kp) ≥ p, since Σ was an
arbitrary equivariant nonorientable spanning surface for K. �

Remark 1.2. Both the proof and the validity of Theorem 1.1 break down for
the case of a p-periodic knot K with 
3(K) = 1. The proof comes to a halt at
Equation (2) which in the event of 
3(K) = 1 allows for the solution a = 1 = b,
� = 0. On the other hand, the p-periodic torus knots T(2, p), with p ≥ 3 and
odd, satisfy 
3(T(2, p)) = 1 = 
3,p(T(2, p)).

2. Applications and examples
Corollary 2.1. Thedi�erence between the equivariant andnonequivariant nonori-
entable 3-genera of a periodic knot can become arbitrarily large. Speci�cally, for
every integer p ≥ 3 there exists a p-periodic knot Kp with


3(Kp) = 2 and 
3,p(Kp) ≥ p.
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Figure 1. The torus knot T(5, 3) shown with an equivariant
nonorientable spanning surface Σ with b1(Σ) = 5.

Proof. Let Kp be the torus knot T(4p, 2p − 1). By [6] (see also [4]) we obtain

3(Kp) = 2 for all p ≥ 3. The periods of a torus knot T(a, b) are precisely the
divisors of |a| and |b|, showing that Kp is p-periodic. Theorem 1.1 implies that

3,p(Kp) ≥ p. �

The preceding proof does not work for p = 2 as 
3(T(8, 3)) = 1, violating the
hypothesis of Theorem 1.1. Nevertheless, each knot T(4p, 2p − 1) is of course
2-periodic, showing that 
3,2(K)−
3(K) can grow to arbitrary size for 2-periodic
knots as well.

The next example shows that the inequality 
3,p(K) ≥ p from Theorem 1.1
is sharp.

Example 2.2. Consider the 5-periodic torus knotK = T(5, 3). It follows from [6]
that 
3(K) = 2 (or use [5] where T(5, 3) is the knot 10124), showing thatKmeets
the hypothesis of Theorem 1.1 and thus 
3,5(K) ≥ 5. An equivariant spanning
surface Σ for K with b1(Σ) = 5 is shown in Figure 1, leading to 
3,5(K) = 5.
The values of a, b, � from the proof of Theorem 1.1 are 5, 1, 1 respectively, and
satisfy equation (2).

Another important result of Edmonds’ [1] is the bound p ≤ 2g3(K) + 1 sat-
is�ed by any period p of the knot K. While it was known prior to Edmonds’
work that a knot may only have �nitely many periods (cf. Theorem 3 in [2]),
the preceding inequality was the �rst quantitative bound on the number of
possible periods of a knot. Corollary 2.1 shows, as yet another contrast to Ed-
monds’ results, that no upper bound on the periods of a knot can exist by any
polynomial function in the nonorientable 3-genus. This conclusion also fol-
lows from considering the p-periodic alternating torus knots T(2, p) for which

3(T(2, p)) = 1 = 
3,p(T(2, p)), with p ≥ 3 odd.
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