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A characterization of
length-factorial Krull monoids

Alfred Geroldinger and Qinghai Zhong

Abstract. An atomic monoid is length-factorial if each two distinct factor-
izations of any element have distinct factorization lengths. We provide a char-
acterization of length-factorial Krull monoids in terms of their class groups
and the distribution of prime divisors in the classes.
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1. Introduction and main results
By an atomic monoid, we mean a commutative unit-cancellative semigroup

with identity in which every non-invertible element is a �nite product of irre-
ducible elements. The monoids we have in mind stem from ring and module
theory. An atomic monoidH is said to be

∙ half-factorial if for every element a ∈ H each two factorizations of a
have the same length;

∙ length-factorial if for every element a ∈ H each two distinct factoriza-
tions of a have distinct lengths.

Thus, an atomic monoid is factorial if and only if it is half-factorial and length-
factorial. A commutative ring is said to be atomic (half-factorial resp. length-
factorial) if itsmonoid of regular elements has the respective property. All these
arithmetical properties can be characterized in terms of catenary degrees. In-
deed, it is easy to verify that a monoid is factorial (half-factorial resp. length-
factorial) if its catenary degree c(H) = 0 (its adjacent catenary degree cadj(H) =
0 resp. its equal catenary degree ceq(H) = 0). Half-factoriality has been studied
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since the beginning of factorization theory and there is a huge amount of lit-
erature. Monotone and equal catenary degrees were �rst studied by Foroutan
([25]), and for some recent contributions we refer to [42, 50, 28, 34, 31]. Length-
factorialitywas �rst studied (in di�erent terminology) byCoykendall and Smith
([16]), who showed that an atomic integral domain is length-factorial if and
only if it is factorial. However, such a result is far from being true in themonoid
case (we refer to recent contributions by Chapman, Coykendall, Gotti, and oth-
ers [11, 39, 40, 15] as well as to work on monoids that are not length-factorial
[12, 7]).

In the present paper, we focus on Krull monoids. Krull monoids are atomic
and they are factorial if and only if their class group is trivial. Let H be a Krull
monoid with class group G and let GP ⊂ G denote the set of classes containing
prime divisors. Then H is half-factorial if and only if the monoid of zero-sum
sequences ℬ(GP) over GP is half-factorial. There is a standing conjecture that
for every abelian group G∗ there is a half-factorial Krull monoid (equivalently,
a half-factorial Dedekind domain) with class group isomorphic to G∗ ([36, Sec-
tion 5]). The conjecture holds true for War�eld groups but not even for �nite
cyclic groups G the structure or the maximal size of subsets G0 ⊂ G, for which
ℬ(G0) is half-factorial, are known in general ([51, 52]).

Ourmain result provides a characterization ofwhen aKrullmonoid is length-
factorial, in terms of the class group and the distribution of prime divisors in
the classes. Recall that reducedKrullmonoids are uniquely determined by their
class groups and by the distribution of prime divisors in the classes [29, Theo-
rem 2.5.4].

Theorem 1.1. LetH be a Krull monoid. ThenH = H× ×ℱ(P0) ×H∗, where P0
is a set of representatives of prime elements ofH,ℱ(P0) ×H∗ ≅ Hred, andH∗ is a
reduced Krull monoid without primes. The class groups C(H) ofH and C(H∗) of
H∗ are isomorphic, andH is length-factorial if and only ifH∗ is length-factorial.
Let GP∗ ⊂ C(H∗) denote the set of classes containing prime divisors.
ThenH is length-factorial but not factorial if and only if every class ofGP∗ contains
precisely one prime divisor,H∗ ≅ ℬ(GP∗),

GP∗ = {e1,1,… , e1,t, e2,1,… , e2,t,… , ek,1,… , ek,t,
g1,… , gk, e0,1,… , e0,t, g0} ,

and

C(H∗) = ⟨e1,1,… , e1,t, g1⟩⊕ …⊕ ⟨ek,1,… , ek,t, gk⟩ ≅ (ℤt ⊕ℤ∕nℤ)k ,

where
∙ t ∈ ℕ0, k, s0, s1,… , st ∈ ℕ with k + 1 ≠ s0 + s1 + … + st ≥ 2, independent
elements e1,1,… , e1,t, e2,1,… , e2,t,… , ek,1,… , ek,t ∈ C(H∗) of in�nite order
and independent elements g1,… , gk ∈ C(H∗), which are of in�nite order
in case t > 0 and of �nite order for t = 0;

∙ s0 is the smallest integer such that s0gi ∈ ⟨ei,1,… , ei,t⟩ and−s0gi = s1ei,1 +
… + stei,t for every i ∈ [1, k];



A CHARACTERIZATION OF LENGTH-FACTORIAL KRULL MONOIDS 1349

∙ e0,j = −
∑k

i=1 ei,j for all j ∈ [1, t], g0 = −
∑k

i=1 gi; and
∙ n = gcd(s0,… , st).

Moreover, C(H∗) is a torsion group if and only if t = 0 and in that case we have
C(H∗) ≅ (ℤ∕nℤ)k, where n ≥ 2, k ∈ ℕ with k + 1 ≠ n, and ord(gi) = n for all
i ∈ [1, k].

Theorem 1.1 shows in particular that, ifH is a length-factorial Krull monoid,
thenH∗ is �nitely generated Krull with torsion-free quotient group, whenceH∗

is a normal a�ne monoid in the sense of combinatorial commutative algebra
([10]). We proceed with a series of corollaries. Based on the algebraic charac-
terization of length-factorial Krull monoids given in Theorem 1.1, we start with
the description of their arithmetic. We explicitly determine the systemℒ(H) of
sets of lengths, which has been done only in seldom cases ([33]). In particular,
the set of distances and the elasticity are �nite (a geometric characterization of
when the elasticity of Krull monoids with �nitely generated class group are �-
nite can be found in [41]). Moreover, we observe thatℒ(H) is additively closed,
a quite rare property ([32]).

Corollary 1.2 (Arithmetic of length-factorial Krull monoids). LetH be a
length-factorial Krull monoid, that is not factorial, and let all notation be as in
Theorem 1.1.

1. The inclusion ℬ(GP∗) ↪ ℱ(GP∗) is a divisor theory with class group iso-
morphic to C(H). The set of atoms

A(GP∗) = {U0,… , Uk, V0,… , Vt} ,
where, for every i ∈ [0, k] and every j ∈ [1, t],

U0 = gs00 e
s1
0,1 ⋅… ⋅ e

st
0,t, Ui = es0i,0 ⋅… ⋅ e

st
i,t, V0 = g0 ⋅… ⋅ gk, Vj = e0,j ⋅… ⋅ ek,j

andU0 ⋅ … ⋅Uk = Vs0
0 ⋅ … ⋅ V

st
t .

2. Every B ∈ ℬ(GP∗) can be written uniquely in the form

B = (U0 ⋅ … ⋅Uk)x
k∏

i=0
Uyi
i

t∏

j=1
V
zj
j ,

where x, y0,… , yk, z0,… , zt ∈ ℕ0, yi = 0 for some i ∈ [0, k], and zj < sj
for some j ∈ [0, t]. Furthermore, we have

L(B) =
k∑

i=0
yi +

t∑

j=0
zj +

{
�(k + 1) + (x − �)

t∑

j=0
sj ∶ � ∈ [0, x]

}
.

3. For the system of sets of lengths ℒ(H), we have

ℒ(H) =
{{
y + �(k + 1) + (x − �)

t∑

j=0
sj ∶ � ∈ [0, x]

}
∶ y, x ∈ ℕ0

}
.

In particular, the system ℒ(H) is additively closed with respect to set addi-
tion as operation.
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Next, we consider Krull monoids having some key properties, namely the
approximation property or the property that every class contains at least one
prime divisor. All Krull domains have the approximation property. Holomor-
phy rings in global �elds are Dedekind domains with �nite class group and
in�nitely many prime divisors in all classes. Cluster algebras that are Krull
([26]) and monoid algebras that are Krull ([23]) are more recent examples of
Krull domains having in�nitely many prime divisors in all classes. Examples
of Krull monoids stemming from module theory and having prime divisors in
all classes will be discussed in Section 2. Corollary 1.3 should be comparedwith
the classical result that a Krull monoid having prime divisors in each class is
half-factorial if and only if its class group has at most two elements.

Corollary 1.3. LetH be a Krull monoid andH∗ be as in Theorem 1.1.
1. IfH satis�es the approximation property, thenH is length-factorial if and

only if it is factorial.
2. Suppose that every nonzero class of H contains a prime divisor. Then H

is length-factorial if and only if H∗ ≅ ℬ(C(H) ⧵ {0}) and
(
|C(H)| ≤ 3 or

C(H) is an elementary 2-group of rank two
)
.

As already said before, it was proved by Coykendall and Smith that a com-
mutative integral domain is length-factorial if and only if it is factorial ([16]).
Our next corollary shows that this result remains true for commutative Krull
rings with zero divisors and for normalizing (but not necessarily commutative)
Krull rings.

Corollary 1.4 (Length-factorial Krull rings).
1. Let R be an additively regular Krull ring. Then R is length-factorial if and

only if R is factorial.
2. Let R be a normalizing Krull ring. Then R is length-factorial if and only if
R is factorial.

We end with a corollary on transfer Krull monoids. A monoid H is said to
be transfer Krull if there is a transfer homomorphism �∶ H → B, where B is a
Krullmonoid. Thus, Krullmonoids are transfer Krull, with � being the identity.
However, in general, transfer Krull monoids need neither be cancellative nor
completely integrally closed nor v-noetherian. We discuss an example after the
proof of Corollary 1.5 (Example 3.4) and refer to the survey [35] for more. In
particular, all half-factorialmonoids are transferKrull but not necessarilyKrull.
But reduced length-factorial transfer Krull monoids are Krull, as we show in
our �nal corollary.

Corollary 1.5 (Length-factorial transfer Krull monoids). LetH be a trans-
fer Krull monoid. If H is length-factorial, then Hred is Krull whence it ful�lls the
structural description given in Theorem 1.1.
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All results of the present paper, as well as prior work done in [11], indi-
cate that length-factoriality is a much more exceptional property than half-
factoriality and that this is true not only for domains (which is known since
[16]) but also for commutative and cancellative monoids. The innocent Exam-
ple 2.2 seems to suggest that the situation is quite di�erent for commutative
semigroups that are unit-cancellative but not necessarily cancellative.

2. Background on Krull monoids
Our notation and terminology are consistent with [29]. We gather some key

notions. For every positive integer n ∈ ℕ, Cn denotes a cyclic group with n
elements. For integers a, b ∈ ℤ, [a, b] = {x ∈ ℤ∶ a ≤ x ≤ b} denotes the
discrete interval between a and b. For subsets A, B ⊂ ℤ, A + B = {a + b∶ a ∈
A, b ∈ B} denotes their sumset and the set of distances∆(A) ⊂ ℕ is the set of all
d ∈ ℕ for which there is an element a ∈ A such that [a, a+d]∩A = {a, a+d}.
For a set L ⊂ ℕ, we let �(L) = sup L∕minL ∈ ℚ≥1 ∪ {∞} denote the elasticity
of L, and we set �({0}) = 1.

LetH be a commutative semigroupwith identity. We denote byH× the group
of invertible elements. We say that H is reduced if H× = {1} and we denote by
Hred = {aH×∶ a ∈ H} the associated reduced semigroup. An element u ∈ H
is said to be cancellative if au = bu implies that a = b for all a, b, u ∈ H.

The semigroupH is called
∙ cancellative if all elements ofH are cancellative;
∙ unit-cancellative if a, u ∈ H and a = au implies that u ∈ H×.

Thus, every cancellative monoid is unit-cancellative.
Throughout this paper, a monoid means a

commutative and unit-cancellative semigroup with identity.
For a set P, let ℱ(P) be the free abelian monoid with basis P. An element

a ∈ ℱ(P) is written in the form

a =
∏

p∈P
pvp(a) ∈ ℱ(P) ,

where vp ∶ ℱ(P)→ ℕ0 denotes the p-adic valuation. Then |a| =
∑

p∈P vp(a) ∈
ℕ0 is the length of a and supp(a) = {p ∈ P∶ vp(a) > 0} ⊂ P is the support of
a. LetH be a multiplicatively written monoid. An element u ∈ H is said to be

∙ prime if u ∉ H× and, for all a, b ∈ H with u ∣ ab, u ∤ a implies u ∣ b.
∙ irreducible (or an atom) if u ∉ H× and, for all a, b ∈ H, u = ab implies
that a ∈ H× or b ∈ H×.

We denote by A(H) the set of atoms of H and, if H is cancellative, then q(H)
is the quotient group of H. The free abelian monoid Z(H) = ℱ(A(Hred)) is the
factorization monoid of H and �∶ Z(H) → Hred, de�ned by �(u) = u for all
u ∈ A(Hred), is the factorization homomorphism ofH. For an element a ∈ H,

∙ ZH(a) = Z(a) = �−1(aH×) ⊂ Z(H) is the set of factorizations of a, and
∙ LH(a) = L(a) = {|z|∶ z ∈ Z(a)} is the set of lengths of a.
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Note that L(a) = {0} if and only if a ∈ H×. Then H is atomic (resp. factorial)
if Z(a) ≠ ∅ (resp. |Z(a)| = 1) for all a ∈ H. Examples of atomic monoids, that
are not necessarily cancellative, include semigroups of ideals and semigroups
of isomorphism classes ofmodules (see [24, Section 3.2 and 3.3], [31, Section 4],
and Examples 2.2 and 3.4). IfH is atomic, then

1 ≤ |L(a)| ≤ |Z(a)| for all a ∈ H .

We say that the monoidH is
∙ half-factorial if 1 = |L(a)| for all a ∈ H, and
∙ length-factorial if 1 ≤ |L(a)| = |Z(a)| for all a ∈ H.

Thus, by de�nition, H is factorial if and only if it is half-factorial and length-
factorial. Furthermore, H is factorial (half-factorial resp. length-factorial) if
and only ifHred has the respective property. Then

ℒ(H) = {L(a)∶ a ∈ H}

is the system of sets of lengths ofH,

∆(H) =
⋃

L∈ℒ(H)
∆(L) ⊂ ℕ

is the set of distances ofH, and

�(H) = sup{�(L)∶ L ∈ ℒ(H)} ∈ ℝ≥1 ∪ {∞}

is the elasticity of H. We say that H has accepted elasticity if there is L ∈ ℒ(H)
such that �(L) = �(H). If H is not half-factorial, then min∆(H) = gcd∆(H).
We start with a simple lemma.

Lemma 2.1. LetH be a length-factorial monoid.
1. �(H) <∞.
2. IfH is cancellative, then the elasticity �(H) is accepted.
3. IfH is cancellative but not factorial, then |∆(H)| = 1.

Proof. Without restriction, we may suppose that H is reduced. By de�nition,
H is half-factorial if and only if �(H) = 1 if and only if ∆(H) = ∅, and if this
holds, then the elasticity is accepted. Thus, we may suppose thatH is not half-
factorial.

1. Assume to the contrary that �(H) is in�nite and choose an element a ∈ H
with �(L(a)) > 1. Then there exist u1,… , ur, v1,… , vs, w1,… , wt ∈ A(H), where
r, s, t ∈ ℕ0, with {v1,… , vs} ∩ {w1,… , wt} = ∅ such that

a = u1 ⋅ … ⋅ urv1 ⋅ … ⋅ vs = u1 ⋅ … ⋅ urw1 ⋅ … ⋅ wt .

with �(L(a)) = (r + t)∕(r + s) > 1. Since �(H) is in�nite, there exists b ∈ H
such that �(L(b)) > t∕s. Moreover, there exist r′, s′, t′ ∈ ℕ0 and

x1,… , xr′ , y1,… , ys′ , z1,… , zt′ ∈ A(H) with {y1,… , ys′} ∩ {z1,… , zt′} = ∅

such that
b = x1 ⋅ … ⋅ xr′y1 ⋅ … ⋅ ys′ = x1 ⋅ … ⋅ xr′z1 ⋅ … ⋅ zt′
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with �(L(b)) = (r′ + t′)∕(r′ + s′) > t∕s. Since

at′−s′bt−s = (u1 ⋅ … ⋅ urv1 ⋅ … ⋅ vs)t
′−s′(x1 ⋅ … ⋅ xr′z1 ⋅ … ⋅ zt′)t−s

= (x1 ⋅ … ⋅ xr′y1 ⋅ … ⋅ ys′)t−s(u1 ⋅ … ⋅ urw1 ⋅ … ⋅ wt)t
′−s′

and sinceH is length-factorial, we obtain that

(u1 ⋅ … ⋅ urv1 ⋅ … ⋅ vs)t
′−s′(x1 ⋅ … ⋅ xr′z1 ⋅ … ⋅ zt′)t−s and

(x1 ⋅ … ⋅ xr′y1 ⋅ … ⋅ ys′)t−s(u1 ⋅ … ⋅ urw1 ⋅ … ⋅ wt)t
′−s′

are equal in the factorization monoid Z(H). Since

{v1,… , vs} ∩ {w1,… , wt} = ∅ and {y1,… , ys′} ∩ {z1,… , zt′} = ∅ ,

it follows that (v1 ⋅ … ⋅ vs)t
′−s′ and (y1 ⋅ … ⋅ ys′)t−s are equal in the factorization

monoid Z(H), whence s(t′ − s′) = s′(t − s). Therefore, t∕s = t′∕s′ > �(L(b)), a
contradiction.

2. This proof runs along similar lines as the proof of the �rst assertion. But,
we need to use cancellativity now which is not needed in 1. (see Example 2.2).
Assume to the contrary that �(H) is not accepted and choose an element a ∈ H
with�(L(a)) > 1. Then there exist r, s, t ∈ ℕ0 andu1,… , ur, v1,… , vs, w1,… , wt ∈
A(H) with {v1,… , vs} ∩ {w1,… , wt} = ∅ such that

a = u1 ⋅ … ⋅ urv1 ⋅ … ⋅ vs = u1 ⋅ … ⋅ urw1 ⋅ … ⋅ wt

with �(L(a)) = (r+ t)∕(r+ s) > 1. Let a0 = v1 ⋅… ⋅vs. Then �(L(a0)) = t∕s > 1.
Since �(H) is not accepted, there exists b ∈ H such that �(L(b)) > �(L(a0)).
Moreover, there exist x1,… , xr′ , y1,… , ys′ , z1,… , zt′ ∈ A(H), where r′, s′, t′ ∈
ℕ0, with {y1,… , ys′} ∩ {z1,… , zt′} = ∅ such that

b = x1 ⋅ … ⋅ xr′y1 ⋅ … ⋅ ys′ = x1 ⋅ … ⋅ xr′z1 ⋅ … ⋅ zt′

with �(L(b)) = (r′ + t′)∕(r′ + s′) > �(a0). Let b0 = y1 ⋅… ⋅ ys′ . Then �(L(b0)) =
t′∕s′ > �(a0). SinceH is length-factorial and

at
′−s′
0 bt−s0 = (v1 ⋅ … ⋅ vs)t

′−s′(z1 ⋅ … ⋅ zt′)t−s = (y1 ⋅ … ⋅ ys′)t−s(w1 ⋅ … ⋅ wt)t
′−s′ ,

it follows from

{v1,… , vs} ∩ {w1,… , wt} = ∅ and {y1,… , ys′} ∩ {z1,… , zt′} = ∅

that (v1 ⋅ … ⋅ vs)t
′−s′ and (y1 ⋅ … ⋅ ys′)t−s are equal in the factorization monoid

Z(H), whence s(t′ − s′) = s′(t − s). Therefore, we infer that �(L(a0)) = t∕s =
t′∕s′ = �(L(b0)), a contradiction.

3. Assume to the contrary that |∆(H)| ≥ 2. Sincemin∆(H) = gcd∆(H), we
may choose d, d0 ∈ ∆(H) with d0 ≠ d such that d0 divides d. Let r, s, k, t ∈ ℕ0
and

u1,… , ur, v1,… , vs, w1,… , ws+d0 , x1,… , xk, y1,… , yt, z1,… , zt+d ∈ A(H)

with

{v1,… , vs} ∩ {w1,… , ws+d0} = ∅ and {y1,… , yt} ∩ {z1,… , zt+d} = ∅
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such that
a = u1 ⋅ … ⋅ urv1 ⋅ … ⋅ vs = u1 ⋅ … ⋅ urw1 ⋅ … ⋅ ws+d0

with
L(a) ∩ [r + s, r + s + d0] = {r + s, r + s + d0}

and
b = x1 ⋅ … ⋅ xky1 ⋅ … ⋅ yt = x1 ⋅ … ⋅ xkz1 ⋅ … ⋅ zt+d

with
L(b) ∩ [k + t, k + t + d] = {k + t, k + t + d} .

Then
adbd0 = (u1 ⋅ … ⋅ urv1 ⋅ … ⋅ vs)d(x1 ⋅ … ⋅ xkz1 ⋅ … ⋅ zt+d)d0

= (x1 ⋅ … ⋅ xky1 ⋅ … ⋅ yt)d0(u1 ⋅ … ⋅ urw1 ⋅ … ⋅ ws+d0)
d .

Since d(r + s) + d0(k + t + d) = d0(k + t) + d(r + s + d0) and H is length-
factorial, we obtain that the two factorizations (v1 ⋅… ⋅ vs)d(z1 ⋅… ⋅ zt+d)d0 and
(y1 ⋅… ⋅yt)d0(w1 ⋅… ⋅ws+d0)

d are equal (in the factorizationmonoid Z(H)). Since
{v1,… , vs} ∩ {w1,… , ws+d0} = ∅, we obtain (v1 ⋅ … ⋅ vs)d divides (y1 ⋅ … ⋅ yt)d0 in
Z(H). Since {y1,… , yt} ∩ {z1,… , zt+d} = ∅, we obtain (y1 ⋅ … ⋅ yt)d0 divides
(v1 ⋅ … ⋅ vs)d in Z(H), whence (v1 ⋅ … ⋅ vs)d = (y1 ⋅ … ⋅ yt)d0 ∈ Z(H). It follows
that y1 ⋅ … ⋅ yt = (v1 ⋅ … ⋅ vs)d∕d0 and hence

b = x1 ⋅ … ⋅ xk(v1 ⋅ … ⋅ vs)d∕d0 = x1 ⋅ … ⋅ xk(v1 ⋅ … ⋅ vs)d∕d0−1w1 ⋅ … ⋅ ws+d0 ,
which implies that k + t + d0 ∈ L(b) ∩ [k + t, k + t + d], a contradiction. �

Ournext example shows that the elasticity of a non-cancellative length-factorial
monoid does not need to be accepted and that the set of distances may contain
more than one element.

Example 2.2.
1. Let R be a ring and C be a small class of left R-modules that is closed under

�nite direct sums, direct summands, and isomorphisms. Then the set V(C) of
isomorphism classes of modules from C is a reduced commutative semigroup,
with operation induced by the direct sum ([6]). Suppose that all modules from
C are directly �nite (or Dedekind �nite), which means that

IfM,N are modules from C such thatM ≅ M ⊕N, then N = 0.
This property holds true for large classes of modules (including all �nitely gen-
eratedmodules over commutative rings; formore see [37, 20]) and is equivalent
to V(C) being unit-cancellative. We will meet such monoids V(C) at several
places of the manuscript (e.g., in Example 3.4).

2. For m ∈ ℕ, let us consider the commutative monoid Hm generated by
Am = {a1,… , am, u1, u2} with relations generated by

Rm = {(a1u21, a1u
3
2), (a2u

4
1, a2u

6
2),… , (amu

2m
1 , amu3m2 )} ,

say
Hm = ⟨a1,… , am, u1, u2 ∣ a1u21 = a1u32, a2u

4
1 = a2u62,… , amu

2m
1 = amu3m2 ⟩ .
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Then Hm is a reduced, commutative, atomic, non-cancellative monoid with
A(Hm) = Am. By construction, we have [1, m] ⊂ ∆(Hm), �(Hm) = 3∕2, and
�(H) is not accepted. We assert thatHm is length-factorial.

We de�ne, for any a, b ∈ Hm, that a ∼ b if there exists c ∈ Hm such that
ac = bc. This is a congruence relation onHm and themonoidHm,canc = Hm∕ ∼
is the associated cancellative monoid of Hm. For every a ∈ Hm, we denote by
[a] ∈ Hm,canc the congruence class ofH. Then

Hm,canc ≅ ℱ({[ai]∶ i ∈ [1, m]}) × ⟨[u1], [u2] ∣ [u1]2 = [u2]3⟩ ,

whence it is easy to see thatHm,canc is length-factorial. Let x1, x2 be two atoms
of Hm. By our construction of H, we have [x1] = [x2] if and only if x1 = x2.
Therefore, the length-factoriality ofHm,canc implies thatHm is length-factorial.
By a result of Bergman-Dicks ([8, Theorems 6.2 and 6.4] and [9, page 315]), the
monoidHm can be realized as a monoid of isomorphism classes of modules, as
introduced in 1.

Next we discuss Krull monoids. A monoid homomorphism '∶ H → D is
called a

∙ divisor homomorphism if a, b ∈ H and '(a) ∣ '(b) (inD) imply that a ∣ b
(inH);

∙ divisor theory (for H) if ' is a divisor homomorphism, D is free abelian,
and for every a ∈ D there are a1,… , am ∈ H such that

a = gcd
(
'(a1),… , '(am)

)
.

A monoid H is a Krull monoid if it is cancellative and satis�es one of the fol-
lowing equivalent conditions ([29, Theorem 2.4.8] ):

(a) H is completely integrally closed and satis�es theACCondivisorial ideals.
(b) H has a divisor homomorphism to a free abelian monoid.
(c) H has a divisor theory.

Property (a) can be used to show that a domain is a Krull domain if and only if
its multiplicative monoid of nonzero elements is a Krull monoid. Examples of
Krull monoids are given in [29] and in the recent survey [35]). In particular, let
V(C) be amonoid of isomorphism classes ofmodules, as introduced inExample
2.2.1. If EndR(M) is semilocal for all M from C, then V(C) is a reduced Krull
monoid ([17, Theorem 3.4]), and every reduced Krull monoid can be realized
as a monoid of isomorphism classes of modules ([22, Theorem 2.1]).

To discuss class groups of Krull monoids, let H be a Krull monoid. Then
there is a divisor theoryHred ↪ F = ℱ(P) and

C(H) = C(Hred) = q(F)∕q(Hred) (2.1)

is the (divisor) class group of H. The divisor class group is isomorphic to the
(ideal theoretic) v-class group of H, and if R is a Krull domain, then the class
group of the Krull monoid R ⧵ {0} coincides with the usual divisor class group
of the domain R. If the monoidH in Theorem 1.1 is length-factorial, thenH∗ is
a reduced �nitely generated Krull monoid. There are various characterizations
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of �nitely generated Krull monoids ([29, Theorem 2.7.14]). In particular, every
suchmonoid is aDiophantinemonoid (themonoid of non-negative solutions of
a system of linear Diophantine equations; [14]). For every a ∈ q(F), we denote
by [a] = aq(Hred) ⊂ q(F) the class containing a. For g ∈ C(H), P ∩ g is the set
of prime divisors lying in g. Concerning the distribution of prime divisors in
Krull monoids of isomorphism classes of modules we refer to [21, 18, 43, 19, 3].

Let G be an additive abelian group and G0 ⊂ G be a subset. We denote
by ⟨G0⟩ ⊂ G the subgroup generated by G0 and by [G0] ⊂ G the submonoid
generated by G0. A tuple (e1,… , er) ∈ Gr, with r ∈ ℕ (respectively, the el-
ements e1,… , er ∈ G) are called independent if ei ≠ 0 for all i ∈ [1, r] and
⟨e1,… , er⟩ = ⟨e1⟩⊕…⊕ ⟨er⟩, and it is called a basis of G if ei ≠ 0 for all i ∈ [1, r]
and G = ⟨e1⟩⊕ …⊕ ⟨er⟩.

We discuss a class of Krull monoids needed in the sequel, namely monoids
of zero-sum sequences. For an element

S = g1 ⋅ … ⋅ gl =
∏

g∈G0

gvg(S) ∈ ℱ(G0) ,

where g1,… , gl ∈ G0, |S| = l =
∑

g∈G0
vg(S) ∈ ℕ0 is the length of S, and

�(S) = g1 + … + gl ∈ G is the sum of S .
We say that S is zero-sum free if

∑
i∈I gi ≠ 0 for all ∅ ≠ I ⊂ [1,l]. The monoid

of zero-sum sequences

ℬ(G0) = {S ∈ ℱ(G0)∶ �(S) = 0} ⊂ ℱ(G0)
over G0 is a Krull monoid, by Property (b), since the inclusion ℬ(G0)↪ ℱ(G0)
is a divisor homomorphism. We denote byA(G0) ∶= A

(
ℬ(G0)

)
the set of atoms

(minimal zero-sum sequences) of ℬ(G0). The subset G0 is called half-factorial
(non-half-factorial resp. minimal non-half-factorial) if the monoid ℬ(G0) is
half-factorial (not half-factorial resp. G0 is not half-factorial but every proper
subset is half-factorial). Half-factorial and (minimal) non-half-factorial subsets
play a central role when studying the arithmetic of Krull monoids (we refer to
[29, Chapter 6] for the basics and to [57, 53]). Note that minimal non-half-
factorial subsets are �nite.

The arithmetic of Krull monoids is studied via transfer homomorphisms to
monoids of zero-sum sequences. We recall the required concepts. A monoid
homomorphism �∶ H → B is called a transfer homomorphism if it has the
following properties:
(T 1) B = �(H)B× and �−1(B×) = H×.
(T 2) If u ∈ H, b, c ∈ B and �(u) = bc, then there exist v, w ∈ H such that

u = vw, �(v) ∈ bB×, and �(w) ∈ cB×.

Lemma 2.3. Let �∶ H → B be a transfer homomorphism of atomic monoids.
1. For every a ∈ H, we have LH(a) = LB

(
�(a)

)
.

2. Let p ∈ H. Then p is an atom in H if and only if �(p) is an atom in B.
Moreover, if p is a prime inH, then �(p) is a prime in B.
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3. ℒ(H) = ℒ(B), whenceH is half-factorial if and only if B is half-factorial.
4. IfH is length-factorial, then B is length-factorial.

Proof. Without restriction, we may suppose that H and B are reduced. Then
(T1) implies that � is surjective.

1. This easily follows from (T 2) (for details in the cancellative setting we
refer to [29, Chapter 3.2]).

2. Let p ∈ H. Since p is an atom inH if and only if LH(p) = {1} and similarly
for �(p) and B, 1. implies that p is an atom in H if and only if �(p) is an atom
in B.

Now suppose that p is a prime in H and let �, � ∈ B such that �(p) ∣ ��.
Then there is c ∈ H such that �� = �(pc). Then (T2) implies that there are
a, b ∈ H such that pc = ab, �(a) = �, and �(b) = �. Without restriction, we
may suppose that p ∣ a, say a = pa′ for some a′ ∈ H, whence � = �(a) =
�(p)�(a′). Thus, �(p) is a prime in B.

3. This follows immediately from 1.
4. Suppose that H is length-factorial and choose some � ∈ B. Let a ∈ H

such that �(a) = �, and let k ∈ LB(�) = LH(a). By (T2), every factorization
of � of length k can be lifted to a factorization of a of length k. Thus, if there
is only one factorization of a of length k, there is only one factorization of � of
length k. This implies that B is length-factorial. �

Let all notation be as in Lemma 2.3. There are examples (even for cancella-
tive monoids) where �(p) is a prime in B but p fails to be prime inH. Further-
more, B may be length-factorial, butH is not length-factorial.

The study of factorial versus length-factorial monoids can be seen as part of
a larger program. We brie�y outline this and introduce (as suggested by the
reviewer) the concept of length-FF-monoids. A monoidH is said to be

∙ an FF-monoid (�nite factorizationmonoid) ifZ(a) is �nite nonempty for
all a ∈ H.

∙ a BF-monoid (bounded factorization monoid) if L(a) is �nite nonempty
for all a ∈ H.

∙ a length-FF-monoid if it is atomic and every element has only �nitely
many factorizations of the same length.

A commutative ring R has one of these properties if the respective property
holds true for its monoid of regular elements. By de�nition, a monoid is an
FF-monoid if and only if it is a BF-monoid and a length-FF-monoid.

Every Krull monoid is an FF-monoid. Let H be a cancellative monoid. If
H satis�es the ACC on divisorial ideals, then H is a BF-monoid and every BF-
monoid satis�es the ACC on principal ideals. Suppose thatH satis�es the ACC
on divisorial ideals and (H ∶ Ĥ) ≠ ∅. Then Ĥ is a Krull monoid, and H is
an FF-monoid if and only if the factor group Ĥ×∕H× is �nite ([29, Theorem
1.5.6]). In particular, a Noetherian domain R, whose integral closure R is a
�nitely generated R-module, is an FF-domain if and only if R

×
∕R× is �nite.
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The ring of integer-valued polynomials Int(ℤ) is an FF-domain and hence a
BF-domain but it does not satisfy the ACC on divisorial ideals. We continue
with two examples.

Example 2.4.
1. LetH ⊂ (ℚ≥0,+) be the additive submonoid of the non-negative rationals

that is generated by {1∕p∶ p is prime}. Then H satis�es the ACC on principal
ideals by [13, Theorem 4.5]. Since A(H) = {1∕p∶ p ∈ ℙ} and 1 = 1∕p + … +
1∕p, it follows thatℙ ⊂ LH(1), whenceH is not a BF-monoid. We assert thatH
is a length-FF-monoid. In order to show this, let r = n

m
∈ H and let k ∈ LH(r),

wherem, n ∈ ℕ such that gcd(m, n) = 1. It su�ces to show that there are only
�nitelymany primes p such that 1∕p can appear in a factorization of r of length
k. Suppose

r = n
m =

t∑

i=1

qi
pi
, where p1,… , pt are pairwise distinct primes ,

q1,… , qt ∈ ℕ and
t∑

i=1
qi = k .

If i ∈ [1, t] and pi does not divide m, then pi must divide qi, whence qi ∈
[pi, k]. Together with the fact thatm has only �nitely many prime divisors, the
assertion follows.

2. LetH be as in 1. and consider the monoid algebra

ℚ[H] =
{ ∑

p∈ℙ
rpX1∕p ∶ rp ∈ ℚ and rp = 0 for almost all p ∈ ℙ

}
.

Since ℚ[H] satis�es the ACC on principal ideals ([38, Proposition 4.2]), it is
atomic. Since X1∕p is an atom for all p ∈ ℙ and X = X1∕p ⋅ … ⋅ X1∕p, it follows
that ℙ ⊂ Lℚ[H](X), whence ℚ[H] is not a BF-monoid. We assert that ℚ[H]
is not a length-FF-monoid. In order to prove this, we introduce some further
notation. For an element f = r0X�0 + r1X�1 + … + rkX�k ∈ ℚ[H] , where
k ∈ ℕ0, r0,… , rk ∈ ℚ, and �0,… , �k ∈ H with 0 = �0 < �1 < … < �k, we
de�ne n(f) = r0, and m(f) = �k. Thus, m(f) = 0 if and only if f ∈ ℚ.

For an odd prime p, we consider the factorization

1 − X = 1 − (X1∕p)p = (1 − X1∕p)(1 + X1∕p + … + X(p−1)∕p) ,

and we assert that both, 1 − X1∕p and 1 + X1∕p + … + X(p−1)∕p, are atoms of
ℚ[H]. If this holds, then 1−X has in�nitely many factorizations of length two,
whence ℚ[H] is not a length-FF-monoid.

Suppose that 1−X1∕p = gℎ for some g, ℎ ∈ ℚ[H]. Then 1∕p = m(g) +m(ℎ)
and, since 1∕p is an atom of H, it follows that m(g) = 0 or m(ℎ) = 0. Thus,
g ∈ ℚ or ℎ ∈ ℚ and 1 − X1∕p is an atom.
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Suppose that 1 + X1∕p + … + Xp−1∕p = gℎ for some g, ℎ ∈ ℚ[H]. Without
loss of generality, we may assume that n(g) = n(ℎ) = 1 and we set

g = 1 + u1X�1 + … + ukX�k and ℎ = 1 + v1X�1 + … + vlX�l ,

where k,l ∈ ℕ0, u0 = v0 = 1, u1,… , uk, v1,… , vl ∈ ℚ ⧵ {0}, and �0,… , �k,
�0,… , �l ∈ H with 0 = �0 < �1 < … < �k and 0 = �0 < �1 < … < �l. We have
to show that either g = 1 or ℎ = 1.

The coe�cient of X�k+�l in gℎ is ukvl ≠ 0, whence �k + �l = (p − 1)∕p.
Since for every i ∈ [1, p − 1], the element i∕p ∈ H has unique factorization
in H, it follows that �k = a∕p and �l = b∕p for some a, b ∈ [0, p − 1] with
a + b = p − 1. Let

I =
{
i ∈ [1, k]∶ �i ∉ {r∕p∶ r ∈ [1, a − 1]}

}
, g2 =

∑

i∈I
uiX�i , g1 = g − g2 ,

and

J =
{
j ∈ [1,l]∶ �j ∉ {r∕p∶ r ∈ [1, b − 1]}

}
, ℎ2 =

∑

j∈J
vjX�j , ℎ1 = ℎ − ℎ2 ,

with the convention that g2 = 0 if I = ∅ and ℎ2 = 0 if J = ∅. Then gℎ −
g1ℎ1 = g1ℎ2 + ℎ1g2 + g2ℎ2 ∈ ℚ[X1∕p]. As above, we use that i∕p has unique
factorization inH for every i ∈ [1, p−1] and infer that the coe�cient ofXi∕p in
g1ℎ2+ℎ1g2+g2ℎ2 equals zero. Therefore, we obtain that g1ℎ2+ℎ1g2+g2ℎ2 = 0,
whence gℎ = g1ℎ1. Since g1, ℎ1 ∈ ℚ[X1∕p], m(g) = m(g1), and m(ℎ) = m(ℎ1),
we set

g1 = 1 + u′1X
1∕p + … + u′aXa∕p, ℎ1 = 1 + v′1X

1∕p + … + v′bX
b∕p ,

where u′0 = v′0 = 1, u′1,… , u
′
a, v′1,… , v

′
b ∈ ℚ with u′a ≠ 0, and v′b ≠ 0. Setting

Y = X1∕p we obtain

1 + Y + … + Yp−1 = (1 + u′1Y + … + u′aYa)(1 + v′1Y + … + v′bY
b) ∈ ℚ[Y] .

Since 1 + Y +…+ Yp−1 is irreducible inℚ[Y], we obtain, after renumbering if
necessary, that b = 0, m(ℎ) = 0, and ℎ = 1.

The examples show that non-BF-monoids may or may not be length-FF-
monoids. Thus, the length-FF-property could be a tool leading to a better un-
derstanding of the non-BF-property. Indeed, although the concepts of BF- and
FF-monoids and domains were introducedmore than thirty years ago ([2]), the
arithmetic of non-BF-monoids has not been studied yet in a systematic way (a
main obstacle is that they miss the ACC on divisorial ideals).

Furthermore, the examples show that the length-FF-property does not al-
ways imply the BF-property, whence it need not imply the FF-property. This is
in analogy to the fact that length-factoriality does not always imply factoriality.
But, since the latter implication does hold true for large classes of monoids in-
cluding all domains, it is a natural question in the same vein to ask in which
classes of monoids or domains the length-FF-property implies the FF-property.
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3. Proof of Theorem 1.1 and of its corollaries
In this section we prove our main results. To do so, we start with three lem-

mas on Krull monoids.

Lemma 3.1. Let H be a reduced Krull monoid with divisor theory H ↪ F =
ℱ(P), class group G = C(H), and let GP = {[p]∶ p ∈ P} ⊂ G be the set of classes
containing prime divisors.

1. The map � ∶ H → ℬ(GP), de�ned by a = p1 ⋅ … ⋅ pl ↦ [p1] ⋅ … ⋅ [pl]
where l ∈ ℕ and p1,… , pl ∈ P, is a transfer homomorphism.

2. The map � is an isomorphism if and only if every class g ∈ GP contains
precisely one prime divisor.

3. We have G = [GP] and G = [GP ⧵ {g}] for all classes g ∈ GP that contain
precisely one prime divisor.

Proof. 1. This follows from [29, Theorem 3.4.10].
2. Since ℬ(GP) is reduced, (T 1) implies that � is surjective. Thus, � is an

isomorphism if and only if every class g ∈ GP contains precisely one prime
divisor.

3. This follows from [29, Theorem 2.5.4]. �

Lemma 3.2. LetG be an abelian group and letG0 ⊂ G ⧵ {0} be a subset such that
G = [G0 ⧵ {g}] for all g ∈ G0. Suppose there is B ∈ ℬ(G0) having two distinct
factorizations

B = U1 ⋅ … ⋅Uk = V1 ⋅ … ⋅ Vl ,

where k,l ≥ 2 andU1,… , Uk, V1,… , Vl ∈ A(G0).
1. For any distinct g, ℎ ∈ G0, there exist two atomsA1, A2 ∈ A(G0) such that
vg(A1) = 1 and ℎ ∈ supp(A2) ⊂ G0 ⧵ {g}.

2. Ifℬ(G0) is length-factorial, thenA(G0) = {U1,… , Uk, V1,… , Vl}.

Proof. 1. Let g, ℎ ∈ G0 with g ≠ ℎ. Since−ℎ ∈ G = [G0 ⧵ {g}], there is an atom
A2 ∈ A(G0 ⧵ {g}) such that ℎ ∈ supp(A2) ⊂ G0 ⧵ {g}. Since−g ∈ G = [G0 ⧵ {g}],
there is an atom A1 ∈ A(G0) such that vg(A1) = 1.

2. Supposeℬ(G0) is length-factorial. Assume to the contrary there is an atom
A ∈ A(G0) ⧵ {U1,… , Uk, V1,… , Vl}. If | supp(A)| = 1, say supp(A) = {g}, then
ord(g) is �nite and by 1. there exists an atomA1 with vg(A1) = 1, whenceA1 ≠
A. Therefore, A divides Aord(g)

1 . If | supp(A)| ≥ 2, then for every g ∈ supp(A),
it follows by 1. that there exists an atom Ag ∈ A(G0) with g ∈ supp(Ag) such
that supp(A) ⊄ supp(Ag). Then A ≠ Ag for every g ∈ supp(A) and A divides
∏

g∈supp(A)A
vg(A)
g .

To sum up, there exist s ∈ ℕ and atoms W1,… ,Ws with A ≠ Wi for every
i ∈ [1, s] such that A divides W1 ⋅ … ⋅ Ws. We may suppose W1 ⋅ … ⋅ Ws =
AX2 ⋅ … ⋅ Xt, where t ≥ 2 and X2,… , Xt ∈ A(G0). If l = k or t = s, then ℬ(G0)
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is not length-factorial, a contradiction. Suppose l ≠ k and t ≠ s. By symmetry,
we may suppose that l > k. If t > s, then

(W1 ⋅ … ⋅Ws)l−k(V1 ⋅ … ⋅ Vl)t−s = (U1 ⋅ … ⋅Uk)t−s(AX2 ⋅ … ⋅ Xt)l−k

has two distinct factorizations of length lt − sk, whence ℬ(G0) is not length-
factorial, a contradiction. If s > t, then

(W1 ⋅ … ⋅Ws)l−k(U1 ⋅ … ⋅Uk)s−t = (V1 ⋅ … ⋅ Vl)s−t(AX2 ⋅ … ⋅ Xt)l−k

has two distinct factorizations of length sl − tk, whence ℬ(G0) is not length-
factorial, a contradiction. �

Lemma 3.3. Let G be an abelian group and let G0 ⊂ G ⧵ {0} be a subset such
that [G0 ⧵ {g}] = G for all g ∈ G0. Suppose thatℬ(G0) is length-factorial but not
factorial.

1. G0 is a minimal non-half-factorial set.
2. For every g ∈ G0, there exist A1 ∈ A(G0) such that vg(A1) = 1 and |{A ∈
A(G0)∶ vg(A) > 0}| = 2.

3. For any two distinct atoms A1, A2 ∈ A(G0), either

supp(A1) ∩ supp(A2) = ∅ or | gcd(A1, A2)| = 1 .

Proof. Since ℬ(G0) is length-factorial but not factorial, it is not half-factorial.
1. There is a B0 ∈ ℬ(G0) such that |L(B0)| ≥ 2, which implies that supp(B0)

is not half-factorial. Let G1 ⊂ supp(B0) be a minimal non-half-factorial subset
and let B1 ∈ ℬ(G1) such that |L(B1)| ≥ 2. Then Lemma 3.2.2 implies A(G0) =
A(G1).

Assume to the contrary that G0 ⧵ G1 ≠ ∅. Let ℎ ∈ G0 ⧵ G1. Then by Lemma
3.2.1, there is an atom A ∈ A(G0) with ℎ ∈ supp(A), whence A ∉ A(G1), a
contradiction. Therefore, G0 = G1 is a minimal non-half-factorial subset.

2. Let g ∈ G0. By Lemma 3.2.1, there exists an atomA1 such that vg(A1) = 1
and hence | supp(A1)| ≥ 2. Let ℎ0 ∈ supp(A1)⧵ {g}. Then Lemma 3.2.1 implies
there exists an atomAg ∈ ℬ(G0 ⧵ {ℎ0}) such that g ∈ supp(Ag). Thus,Ag ≠ A1.
Furthermore, for every ℎ ∈ supp(A1) ⧵ {g}, Lemma 3.2.1 implies that there
exists an atom Aℎ ∈ ℬ(G0 ⧵ {g}) such that ℎ ∈ supp(Aℎ).

Assume to the contrary that there exists an atomA3 ∈ A(G0)⧵ {A1, Ag} such
that g ∈ supp(A3). Therefore,

A3
∏

ℎ∈G0⧵{g}
A
vg(A3)vℎ(A1)
ℎ = A

vg(A3)
1 X1 ⋅ … ⋅ Xs ,

where s ∈ ℕ and X1,… , Xs ∈ A(G0 ⧵ {g}). It follows by Lemma 3.2.2 that
Ag ∈ {A1, A3} ∪ {Aℎ ∶ ℎ ∈ supp(A) ⧵ {g}} ∪ {Xi ∶ i ∈ [1, s]}, a contradiction.

3. Let A1, A2 ∈ A(G0) be distinct such that supp(A1) ∩ supp(A2) ≠ ∅. As-
sume to the contrary that there are g, ℎ ∈ G0 such that gℎ divides gcd(A1, A2).
By 2., there is no other atom A such that supp(A) ∩ {g, ℎ} ≠ ∅. If g = ℎ,
then there is no atom A with vg(A) = 1, a contradiction to 2. If g ≠ ℎ, then
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−ℎ ∈ [G0⧵ {g}] implies that there is an atomA ∈ A(G0⧵ {g})with ℎ ∈ supp(A),
a contradiction. �

Proof of Theorem 1.1. LetH be aKrullmonoid. By [29, Theorem2.4.8], there
is a decomposition H = H× × H0, where H0 is a reduced Krull monoid, iso-
morphic to Hred. If P0 ⊂ H0 is the set of prime elements of H0 and H∗ = {a ∈
H0∶ p ∤ a for all p ∈ P0}, thenH0 = ℱ(P0)×H∗ ([29, Theorem 1.2.3]). Clearly,
H∗ is a reduced Krull monoid. By de�nition, H is length-factorial if and only
if Hred ≅ H0 is length-factorial, and H0 is length-factorial if and only if H∗ is
length-factorial.

Let H∗ ↪ ℱ(P∗) be a divisor theory. Then H0 = ℱ(P0) × H∗ ↪ ℱ(P0) ×
ℱ(P∗) = ℱ(P), where P = P0 ⊎ P∗, is a divisor theory, whence we obtain that
(we use (2.1))

C(H) = C(H0) = q(ℱ(P))∕q(H0)
= q(ℱ(P0)) × q(ℱ(P∗))∕q(ℱ(P0)) × q(H∗)
≅ q(ℱ(P∗))∕q(H∗) = C(H∗) .

Let GP∗ ⊂ C(H∗) denote the set of classes containing prime divisors, and note
that 0 ∉ GP∗ . It remains to prove the characterization of length-factoriality.
Note that theMoreover statement, dealing with the case of torsion class groups,
follows immediately from the main statement. We proceed in two steps.

Step 1. Suppose thatH andH∗ are length-factorial but not factorial.
Assume to the contrary that there exist distinct p, q ∈ P∗ such that 0 ≠

[p] = [q] ∈ C(H∗). Since H∗ ↪ ℱ(P∗) is a divisor theory, there exist r ≥ 2 and
pairwise distinct a1,… , ar ∈ H∗ such that p = gcd(a1,… , ar). Without loss of
generality, we may assume that a1,… , ar ∈ A(H∗).

Let a1 = pkq1 ⋅… ⋅qsp2 ⋅… ⋅pl, where k ≥ 1, s ≥ 0, l ≥ 1, q1,… , qs ∈ P∗ ⧵ {p}
with [qj] = [p] for j ∈ [1, s], and p2,… , pl ∈ P∗ with [pi] ≠ [p] for i ∈ [2,l].
If k + s ≥ 2, then b1 = pk+sp2 ⋅ … ⋅ pl and b2 = qk+sp2 ⋅ … ⋅ pl are both atoms
ofH∗. We observe that

b1b2 = (pk+s−1qp2 ⋅ … ⋅ pl)(pqk+s−1p2 ⋅ … ⋅ pl)

has two distinct factorizations of length two, a contradiction. Thus, k + s = 1
and a1 = pp2 ⋅… ⋅ pl. Similarly, we may assume that a2 = pp′2 ⋅… ⋅ p

′
l′ , where

l′ ≥ 2 with [p′i ] ≠ [p] for i ∈ [2,l′]. We observe that

a1(qp′2 ⋅ … ⋅ p
′
l′) = (qp2 ⋅ … ⋅ pl)a2

has two distinct factorizations of length two, a contradiction. Therefore, every
nonzero class g ∈ C(H∗) contains at most one prime divisor. Thus, Lemma
3.1.2 implies that � ∶ H∗ → ℬ(GP∗) is an isomorphism, whence H∗ ≅ ℬ(GP∗)
and ℬ(GP∗) is length-factorial but not factorial.

It remains to determine the structure of GP∗ . Since H∗ ↪ ℱ(P∗) is a divisor
theory and every class of C(H∗) contains at most one prime divisor, we obtain
that C(H∗) = [GP∗ ⧵ {g}] for all g ∈ GP∗ by Lemma 3.1.3. Thus, the assumption
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of Lemma 3.3 is satis�ed which implies thatGP∗ is a minimal non-half-factorial
set. Let B ∈ ℬ(GP∗) with |L(B)| ≥ 2 and let |B| be minimal with this property,
say

B = U0U1 ⋅ … ⋅Uk = V0V1 ⋅ … ⋅ Vl ,

where k,l ∈ ℕ with k ≠ l, and U0, U1,… , Uk, V0, V1,… , Vl ∈ A(GP∗). Then
Lemma 3.2.2 implies that

{U0, U1,… , Uk, V0, V1,… , Vl} = A(GP∗) .

The minimality of |B| implies that Ui ≠ Vj for every i ∈ [0, k] and every
j ∈ [0,l]. If there exist j ∈ [0,l] and a proper subset I ⊊ [0, k] such that
Vj divides

∏
i∈I Ui, then

∏
i∈I Ui has two distinct factorizations, a contradic-

tion to either the minimality of |B| or the length-factoriality of ℬ(GP∗). There-
fore, gcd(Ui, Vj) ≠ 1 ∈ ℱ(GP∗) for every i ∈ [0, k] and j ∈ [0,l], whence
| gcd(Ui, Vj)| = 1 by Lemma 3.3.3. It follows that |Ui| = l+1 and |Vj| = k+1
for every i ∈ [0, k] and j ∈ [0,l]. Since

| gcd(
∏

i∈I
Ui, B)| = |I|(l + 1), | gcd(

∏

i∈I
Ui,

∏

j∈J
Vj)| ≤ |I||J|, and

| gcd(
∏

i∈I
Ui,

∏

j∈[0,l]⧵J
Vj)| ≤ |I|(l + 1 − |J|)

for every I ⊂ [0, k] and every J ⊂ [0,l], we obtain that

| gcd(
∏

i∈I
Ui,

∏

j∈J
Vj)| = |I||J| . (3.1)

For every g ∈ GP∗ , there exist i ∈ [0, k] and j ∈ [0,l] such that g ∈ supp(Ui) ∩
supp(Uj). Then, by Lemma 3.3.2, for any i1, i2 ∈ [0, k] and any j1, j2 ∈ [0,l]
we have either Ui1 = Ui2 or supp(Ui1) ∩ supp(Ui2) = ∅ and either Vj1 = Vj2 or
supp(Vj1) ∩ supp(Vj2) = ∅.

Assume to the contrary that there exist distinct i1, i2 ∈ [0, k] and distinct
j1, j2 ∈ [0,l] such that Ui1 = Ui2 and Vj1 = Vj2 . Then gcd(Ui1 , Vj1) = g for
some g ∈ GP∗ and hence gcd(Ui1Ui2 , Vj1Vj2) = g2, a contradiction to Equation
(3.1). Thus, by symmetry, we may suppose Ui1 ≠ Ui2 for any distinct i1, i2 ∈
[0, k]. Therefore supp(Ui1)∩supp(Ui2) = ∅ for all distinct i1, i2 ∈ [0, k]. Assume
to the contrary that there exist g ∈ GP∗ and j ∈ [0,l] such that vg(Vj) ≥ 2.
Then there is i ∈ [0, k] such that vg(Ui) ≥ 2, and hence there is no atom A ∈
A(GP∗) with vg(A) = 1, a contradiction to Lemma 3.3.2. Thus, vg(Vj) = 1 for
all g ∈ supp(Vj) and all j ∈ [0,l].

We set U1 = gs01 e
s1
1,1 ⋅ … ⋅ e

st
1,t, where s0,… , st ∈ ℕ and g1, e1,1,… , e1,t ∈ GP∗

are pairwise distinct. After renumbering if necessary, we may suppose e1,i ∈
supp(Vi) for every i ∈ [1, t] and g1 ∈ supp(V0). Note that if supp(Vj1) ∩
supp(Vj2) ≠ ∅, then Vj1 = Vj2 , where j1, j2 ∈ [0,l]. Therefore,

B = U0 ⋅ … ⋅Uk = V0 ⋅ … ⋅ Vl = Vs0
0 V

s1
1 ⋅ … ⋅ V

st
t .
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The length-factoriality of ℬ(GP∗) implies that k + 1 ≠ s0 + … + st. Since
supp(Ui1) ∩ supp(Ui2) = ∅ for any two distinct i1, i2 ∈ [0, k], U1,… , Uk and
V1,… , Vt can be written as the form

Ui = gs0i e
s1
i,1 ⋅ … ⋅ e

st
i,t, Vj = e0,je1,j ⋅ … ⋅ ek,j

and
U0 = gs00 e

s1
0,1… e

st
0,t, and V0 = g0g1 ⋅ … ⋅ gk ,

where e2,1,… , e2,t,… , ek,1,… , ek,t, g2,… , gk ∈ GP∗ , g0 = −
∑k

i=1 gi, and e0,j =
−

∑k
i=1 ei,j for every j ∈ [1, t]. For each i ∈ [0, k], ℬ({gi, ei,1,… , ei,t}) is half-

factorial and length-factorial, whence it is factorial and for its set of atoms we
have A({gi, ei,1,… , ei,t}) = {Ui}. Thus, we obtain that s0 is the minimal integer
such that −s0gi ∈ ⟨ei,1,… , ei,t⟩.

In order to show that (e1,1,… , e1,t, e2,1,… , e2,t,… , ek−1,1,… , ek−1,t) is indepen-
dent we set

G1 = {e1,1,… , e1,t, e2,1,… , e2,t,… , ek−1,1,… , ek−1,t} .

Assume to the contrary that the above tuple is not independent. Then there
are two distinct T1, T2 ∈ ℱ(G1) such that �(T1) = �(T2). By symmetry, we
may assume that T1 ≠ 1ℱ(G1). There exist non-negative integers x1,… , xt with
x1 + … + xt = |T1| such that T1 divides V

x1
1 ⋅ … ⋅ Vxt

t in ℱ(G1), whence V
x1
1 ⋅

… ⋅ Vxt
t T2T

−1
1 is a zero-sum sequence. Since Vx1

1 ⋅ … ⋅ Vxt
t T2T

−1
1 has only one

factorization and V1,… , Vt are the only atoms dividing Vx1
1 ⋅ … ⋅ Vxt

t T2T
−1
1 , it

follows thatVx1
1 ⋅…⋅V

xt
t T2T

−1
1 = Vx1

1 ⋅…⋅V
xt
t and henceT1 = T2, a contradiction.

Next we show that ⟨gi, ei,1,… , ei,t⟩∩ ⟨gj, ej,1,… , ej,t ∶ j ∈ [1, k]⧵ {i}⟩ = {0} for
every i ∈ [1, k]. Assume to the contrary that there exists 0 ≠ ℎ ∈ ⟨gi, ei,1,… , ei,t⟩∩
⟨gj, ej,1,… , ej,t ∶ j ∈ [1, k] ⧵ {i}⟩. Since ⟨gi, ei,1,… , ei,t⟩ = [gi, ei,1,… , ei,t] and
⟨gj, ej,1,… , ej,t ∶ j ∈ [1, k] ⧵ {i}⟩ = [gj, ej,1,… , ej,t ∶ j ∈ [1, k] ⧵ {i}], there exist
a zero-sum free sequence T1 over {gi, ei,1,… , ei,t} and a zero-sum free sequence
T2 over {gj, ej,1,… , ej,t ∶ j ∈ [1, k] ⧵ {i}} such that ℎ = �(T1) = �(T2). Let N be
large enough such that T1 divides UN

i . Then U
N
i T2T

−1
1 is a zero-sum sequence

such that supp(UN
i T2T

−1
1 )∩ {gj, ej,1,… , ej,t ∶ j ∈ [1, k]⧵ {i}} ≠ ∅, which implies

that there exists � ∈ [1, k] ⧵ {i} such that U� divides UN
i T2T

−1
1 and hence U�

divides T2, a contradiction. Therefore, we obtain that

C(H∗) = ⟨GP∗⟩ = ⟨e1,1,… , e1,t, g1⟩⊕ …⊕ ⟨ek,1,… , ek,t, gk⟩ .

Let i ∈ [1, k] and setGi = ⟨gi, ei,1,… , ei,t⟩. ThenGi ≅ ℤt⊕ℤ∕mℤ, wherem ∈
ℕ is the maximal order of all the torsion elements of Gi. Let gcd(s0, s1,… , st) =
n. Then the fact that ℎ = �(gs0∕ni es1∕ni,1 ⋅… ⋅ est∕ni,t ) has order n implies that n ≤ m.
It remains to verify that n ≥ m. Let � ∈ Gi such that ord(�) = m. Suppose
� = w0gi + w1ei,1 + … + wtei,t, where w0,… , wt ∈ ℕ0. Then (gw0i ew1i,1 ⋅ … ⋅
ewti,t )

m = Uw
i for some w ∈ ℕ with gcd(m,w) = 1, which implies thatm divides

gcd(s0, s1,… , st) = n.
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Step 2. Suppose that H∗ ≅ ℬ(GP∗) and that GP∗ has the given form. We have
to show that ℬ(GP∗) is length-factorial but not factorial.

We use the simple fact that if an abelian groupG is a direct sum, sayG = G1⊕
G2, and if G′i ⊂ Gi are subsets for i ∈ [1, 2], then A(G′1 ⊎ G

′
2) = A(G′1) ⊎A(G

′
2).

We de�ne, for every i ∈ [0, k] and every j ∈ [1, t],

U0 = gs00 e
s1
0,1 ⋅ … ⋅ e

st
0,t, Ui = es0i,0 ⋅ … ⋅ e

st
i,t,

V0 = g0 ⋅ … ⋅ gk, and Vj = e0,j ⋅ … ⋅ ek,j .

Clearly, we obtain that

A(GP∗) = {U0,… , Uk, V0,… , Vt} and U0 ⋅ … ⋅Uk = Vs0
0 ⋅ … ⋅ V

st
t . (3.2)

Thus,ℬ(GP∗) is not factorial. By de�nition, we have |Ui| =
∑t

j=0 sj, |Vj| = k+1
for every i ∈ [0, k] and every j ∈ [0, t]. Assume to the contrary that there exists
B0 ∈ ℬ(GP∗) such that B0 has two distinct factorizations of the same length.
We may assume that B0 is a counterexample with minimal length. Suppose

B0 =
∏

i∈I1

Uai
i

∏

j∈J1

V
bj
j and B0 =

∏

i∈I2

U
a′i
i

∏

j∈J2

V
b′j
j

are two distinct factorizations of the same length, where I1, I2 ⊂ [0, k], J1, J2 ⊂
[0, t], ai ∈ ℕ0 for every i ∈ I1, a′i ∈ ℕ0 for every i ∈ I2, bj ∈ ℕ0 for every
j ∈ J1, and b′j ∈ ℕ0 for every j ∈ J2. The minimality of |B0| implies that
I1 ∩ I2 = ∅ and J1 ∩ J2 = ∅. If I1 ∪ I2 = ∅, then those two factorizations of B0
must be equal, a contradiction. By symmetry, we may suppose I1 ≠ ∅. Then

∪i∈I1 supp(Ui) ⊂ supp(
∏

i∈I2
U
a′i
i

∏
j∈J2

V
b′j
j ) implies that J2 = [0, t] and J1 = ∅,

whence I1 = [0, k] and I2 = ∅. It follows that

B0 =
k∏

i=0
Uai
i =

t∏

j=0
V
b′j
j ,

whence (s0 + … + st)
∑k

i=0 ai =
∑k

i=0 ai|Ui| = |B0| =
∑t

j=1 b
′
j|Vj| = (k +

1)
∑t

j=1 b
′
j. Since s0+…+ st ≠ k+1, we obtain

∑k
i=0 ai ≠

∑t
j=1 b

′
j, a contradic-

tion to the fact that the two factorizations have the same length. �

The system of sets of lengths ℒ(H) of an atomic monoid H is said to be ad-
ditively closed if the sumset L1 + L2 ∈ ℒ(H) for all L1, L2 ∈ ℒ(H). Clearly,
L1 + L2 = L1 implies that L2 = {0} for all nonempty sets L1, L2 ⊂ ℕ0, whence
set addition is a unit-cancellative operation. Thus, ℒ(H) is additively closed if
and only if (ℒ(H),+) is a reduced monoid with set addition as operation.

Let H be a Krull monoid with class group G and let G0 ⊂ G denote the set
of classes containing prime divisors. Then the inclusion ℬ(G0) ↪ ℱ(G0) is a
divisor homomorphism but it need not be a divisor theory ([54]). In Corollary
1.2 we prove that in case of length-factorial Krull monoids this inclusion is a
divisor theory.
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Proof of Corollary 1.2. Let H be a length-factorial Krull monoid, that is not
factorial, and let all notation be as in Theorem 1.1.

1. Since the inclusion H∗ ↪ ℱ(P∗) is a divisor theory, H∗ ≅ ℬ(GP∗), and
every class of GP∗ contains precisely one prime divisor, the inclusionℬ(GP∗)↪
ℱ(GP∗) is a divisor theory with class group isomorphic to C(H∗) ≅ C(H). The
assertion on A(GP∗) follows from Equation (3.2).

2. Let B ∈ ℬ(GP∗) and z ∈ Z(B). By (3.2), z can be written in the form

z =
k∏

i=0
Uci
i

t∏

j=0
V
dj
j ∈ Z(B) ,

where ci, dj ∈ ℕ0 for every i ∈ [0, k] and every j ∈ [0, t], and we have to
determine the relations between the exponents c1,… , ck, d1,… , dt. Let

x1 = min{ci ∶ i ∈ [0, k]} and x2 = min {
⎢
⎢
⎣

dj
sj

⎥
⎥
⎦
∶ j ∈ [0, t]} .

Then

z =
k∏

i=0
Uci
i

t∏

j=0
V
dj
j = (U0 ⋅ … ⋅Uk)x1(V

s0
0 ⋅ … ⋅ V

st
t )

x2
k∏

i=0
Uci−x1
i

t∏

j=0
V
dj−x2sj
j .

We set x = x1 + x2, yi = ci − x1, and zj = dj − x2sj for every i ∈ [0, k] and
every j ∈ [0, t]. Thus,

B = (U0 ⋅ … ⋅Uk)x
k∏

i=0
Uyi
i

t∏

j=0
V
zj
j

has a factorization of the required form. Since for every � ∈ [0, x],

z′ = (U0 ⋅ … ⋅Uk)�(V
s0
0 ⋅ … ⋅ V

st
t )

x−�
k∏

i=0
Uyi
i

t∏

j=0
V
zj
j ∈ Z(B) ,

we have

|z| ∈
k∑

i=0
yi +

t∑

j=0
zj +

{
�(k + 1) + (x − �)

t∑

j=0
sj ∶ � ∈ [0, x]

}
⊂ L(B) .

If B can be written uniquely in the asserted form then, since z is chosen arbi-
trary, it follows that

L(B) =
k∑

i=0
yi +

t∑

j=0
zj +

{
�(k + 1) + (x − �)

t∑

j=0
sj ∶ � ∈ [0, x]

}
.

It remains to verify the uniqueness assertion. Suppose that

B = (U0 ⋅… ⋅Uk)x
k∏

i=0
Uyi
i

t∏

j=0
V
zj
j = (U0 ⋅… ⋅Uk)x

′
k∏

i=0
U
y′i
i

t∏

j=0
V
z′j
j , where
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∙ x, y0,… , yk, z0,… , zt ∈ ℕ0, yi = 0 for some i ∈ [0, k], and zj < sj for
some j ∈ [0, t], and

∙ x′, y′0,… , y
′
k, z

′
0,… , z

′
t ∈ ℕ0, y′i0 = 0 for some i0 ∈ [0, k], and z′j0 < sj0 for

some j0 ∈ [0, t].

Note, if there would exist i ∈ [0, k] such that Ui divides
∏t

j=1 V
z′j
j , then

sj0 = vei,j0 (Ui) ≤ vei,j0 (
t∏

j=1
V
z′j
j ) = zj′0 ,

a contradiction. If x > x′, then U
yi0+1
i0

divides
∏k

i=1U
y′i
i

∏t
j=1 V

z′j
j . Since

supp(Ui0) ∩ supp(Ui) = ∅ for every i ∈ [0, k] ⧵ {i0}, we have U
yi0+1
i0

divides

U
y′i0
i0

∏t
j=1 V

z′j
j =

∏t
j=1 V

z′j
j , a contradiction. Thus, x ≤ x′. By symmetry, we

obtain that x′ ≤ x, whence x = x′. If yi > y′i for some i ∈ [0, k], then Ui

must divide
∏t

j=1 V
z′j
j , a contradiction. Thus, yi ≤ y′i for every i ∈ [0, k]. By

symmetry, we obtain that y′i ≤ yi, whence yi = y′i for every i ∈ [0, k]. Since

x = x′ and yi = y′i for every i ∈ [0, k], we infer that
∏t

j=1 V
zj
j =

∏t
j=1 V

z′j
j ,

whence zj = z′j for every j ∈ [0, t].

3. ByLemma2.3.3, Lemma3.1.1, andTheorem1.1, wehaveℒ(H) = ℒ
(
ℬ(GP∗)

)
.

By item 2., we infer that

ℒ(H) ⊂
{{
y + �(k + 1) + (x − �)

t∑

j=0
sj ∶ � ∈ [0, x]

}
∶ y, x ∈ ℕ0

}
.

Conversely, if y, x ∈ ℕ0 and B = (U0 ⋅ … ⋅ Uk)xU
y
0 , then {y + �(k + 1) + (x −

�)
∑t

j=0 sj ∶ � ∈ [0, x]} = L(B) ∈ ℒ(H), whence

ℒ(H) =
{{
y + �(k + 1) + (x − �)

t∑

j=0
sj ∶ � ∈ [0, x]

}
∶ y, x ∈ ℕ0

}
.

The given description shows immediately that ℒ(H) is additively closed with
respect to set addition. �

Before proving Corollary 1.3we brie�y recall the involved concepts. LetH be
a Krull monoid andHred ↪ F = ℱ(P) be a divisor theory. ThenH satis�es the
approximation property if one of the following equivalent conditions is satis�ed
([29, Proposition 2.5.2]):

(a) For all n ∈ ℕ and distinct p, p1,… , pn ∈ P there exists some a ∈ H such
that vp(a) = 1 and vpi (a) = 0 for all i ∈ [1, n].

(b) For all a, b ∈ F, there exists some c ∈ F such that [a] = [c] ∈ G and
gcd(b, c) = 1.
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Proof of Corollary 1.3. LetH be a Krull monoid. Without restriction we may
suppose that H is reduced. Using the notation of Theorem 1.1, we have H =
ℱ(P0) × H∗ and a divisor theory ℱ(P0) × H∗ ↪ ℱ(P0) × ℱ(P∗). Let GP∗ ⊂
C(H∗) ≅ C(H) denote the set of classes containing prime divisors.

1. IfH andH∗ are length-factorial but not factorial, then P∗ is �nite by The-
orem 1.1. Thus, Condition (b) above cannot hold, whence H does not satisfy
the approximation property.

2. Suppose that every nonzero class of G = C(H∗) contains a prime divisor.
Note that 0 ∈ A(G) is the only prime element of ℬ(G) and ℬ(G) = ℱ({0}) ×
ℬ(G ⧵ {0}). Thus ℬ(G) is length-factorial if and only if ℬ(G ⧵ {0}) is length-
factorial.

First, we suppose thatH∗ ≅ ℬ(G⧵{0}) and that either |G| ≤ 3 orG ≅ C2⊕C2.
We have to verify thatℬ(G) is length-factorial. If |G| ≤ 2, thenℬ(G) is factorial
and hence length-factorial. If |G| = 3 or G ≅ C2 ⊕ C2, then it can be checked
directly that ℬ(G) is length-factorial.

Conversely, suppose that H∗ is length-factorial. Since G ⧵ {0} ⊂ GP∗ , the
description of GP∗ achieved in Theorem 1.1 implies that |G| ≤ 3 or G ≅ C2 ⊕
C2. �

In order to prove Corollary 1.4, we �rst gather some basics from the theory of
rings with zero-divisors. Let R be a commutative ring with identity and let R∙
denote its monoid of regular elements. Then R is additively regular if for each
pair of elements a, b ∈ R with b regular, there is an element r ∈ R such that
a + br is a regular element of R ([44, 46]). Every additively regular ring is a
Marot ring and every Marot ring is a v-Marot ring. The ring R is a Krull ring
if it is completely integrally closed and satis�es the ACC on regular divisorial
ideals. If R is a Krull ring, then R∙ is a Krull monoid and if R is a v-Marot ring,
then the converse holds ([30, Theorem 3.5]). We say that R is atomic (factorial,
half-factorial, resp. length-factorial) if R∙ has the respective property.

Next we need the concept of normalizing Krull rings. A cancellative but not
necessarily commutative semigroup S (resp. a ringR) is said to benormalizing if
aS = Sa for all a ∈ S (resp. aR = Ra for all a ∈ R). A prime Goldie ring is said
to be a Krull ring (or a Krull order) if it is completely integrally closed (equiv-
alently, a maximal order) and satis�es the ACC on two-sided divisorial ideals.
Thus, every commutative Krull domain is a normalizing Krull ring. For exam-
ples and background on non-commutative (normalizing) Krull rings we refer
to [56, 45, 48, 1], and for background on factorizations in the non-commutative
setting to [5, 55]. In particular, normalizing Krull monoids are transfer Krull.

Proof of Corollary 1.4. 1. Let R be an additively regular Krull ring. Then R∙
satis�es the approximation property by [49, Theorem 2.2] (this needs the as-
sumption that R is additively regular). Thus, R∙ is a Krull monoid satisfying
the approximation property, whence the assertion follows from Corollary 1.3.1.

2. Let R be a normalizing Krull ring. Then R satis�es the approximation
property ([45, Proposition 2.9], [47, Theorem 4]). If H denotes the monoid of
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regular elements, then Hred is a commutative Krull monoid by [27, Corollary
4.14 and Proposition 5.1]. Thus, the assertion follows from Corollary 1.3.1. �

Proof of Corollary 1.5. LetH be a length-factorial transfer Krull monoid. We
have to show thatHred is aKrullmonoid. SinceHred is a length-factorial transfer
Krull monoid, we may suppose thatH is reduced. Let B be a Krull monoid and
let �′∶ H → B be a transfer homomorphism. Wemay suppose thatB is reduced
and start with the following assertion.
A.H is cancellative.
Proof of A. Let a, b, c ∈ H such that ab = ac. Since �′(a)�′(b) = �′(a)�′(c),
we obtain that �′(b) = �′(c). If �′(b) = �′(c) = 1B, then b = c = 1H . If
�′(b) = �′(c) = w1 ⋅… ⋅wr, where r ∈ ℕ andw1,… , wr ∈ A(B), then there exist
b1,… , br, c1,… , cr ∈ A(H) such that b = b1 ⋅ … ⋅ br and c = c1 ⋅ … ⋅ cr. Suppose
a = a1 ⋅…⋅ak, where k ∈ ℕ0 and a1,… , ak ∈ A(H). Then the two factorizations
z1 = a1 ⋅… ⋅akb1 ⋅… ⋅br ∈ Z(ab) and z2 = a1 ⋅… ⋅akc1 ⋅… ⋅cr ∈ Z(ab) of ab have
the same length k + r, whence z1 = z2. Thus, b1 ⋅ … ⋅ br = c1 ⋅ … ⋅ cr ∈ Z(H),
whence b = c ∈ H. �(Proof of A).

Thus, H is a reduced cancellative length-factorial transfer Krull monoid. If
H is factorial, then H is Krull. Suppose that H is not factorial. Then H is not
half-factorial. Let G be the class group of B and let G0 ⊂ G be the set of classes
containing prime divisors. Thus, Lemma 2.3 implies that B is length-factorial
but not half-factorial. Theorem 1.1 implies that every class of G0 contains pre-
cisely one prime divisor. Lemma 3.1.1 implies that there is a transfer homo-
morphism � ∶ B → ℬ(G0). Since every class ofG0 contains precisely one prime
divisor, Lemma 3.1.3 implies that G = [G0 ⧵ {g}] for every g ∈ G0. Since the
composition of transfer homomorphisms is a transfer homomorphism again,
we obtain a transfer homomorphism � = �◦�′∶ H → ℬ(G0).

Let P0 ⊂ H be the set of prime elements of H and H0 = {a ∈ H∶ p ∤
a for all p ∈ P0}. SinceH is cancellative, we obtain thatH = ℱ(P0)×H0. Since
G = [G0 ⧵ {g}] for every g ∈ G0, the only possible prime element of ℬ(G0) is
the sequence S = 0 ∈ ℱ(G0). Thus Lemma 2.3.2 implies that, if P0 ≠ ∅, then
�(P) = {0}. Thus, we obtain that �(H0) = ℬ(G0 ⧵ {0}) and hence �H0

∶ H0 →
ℬ(G0 ⧵ {0}) is a surjective transfer homomorphism. By Lemma 2.3,ℬ(G0 ⧵ {0})
is length-factorial but not half-factorial. By Corollary 1.2.1,A(G0 ⧵ {0}) is �nite,
say A(G0 ⧵ {0}) = {U′

1,… , U
′
k, V

′
1,… , V

′
l}, U

′
1 ⋅ … ⋅U

′
k = V′

1 ⋅ … ⋅ V
′
l, k,l ∈ ℕ≥2,

k ≠ l, and U′
i ≠ V′

j for all i ∈ [1, k] and j ∈ [1,l].
Assume to the contrary that �H0

is not injective. Then there exist a, b ∈ H0
with a ≠ b such that T = �(a) = �(b), say T = W1 ⋅ … ⋅Wr, where r ∈ ℕ and
W1,… ,Wr ∈ A(G0 ⧵ {0}). Then there exist a1,… , ar, b1,… , br ∈ A(H0) such
that a = a1 ⋅… ⋅ar, b = b1 ⋅… ⋅br, and �(ai) = �(bi) =Wi for all i ∈ [1, r]. Since
a ≠ b, there exists i0 ∈ [1, r], say i0 = 1, such that a1 ≠ b1. After renumbering
if necessary, we may supposeW1 = U′

1. Let c ∈ H0 such that �(c) =
∏k

i=2U
′
i .

Therefore, �(a1c) = �(b1c) = U′
1 ⋅ … ⋅ U

′
k = V′

1 ⋅ … ⋅ V
′
l, which implies that
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there exist u1,… , ul, v1,… , vl such that a1c = u1 ⋅… ⋅ ul, b1c = v1 ⋅… ⋅ vl, and
�(uj) = �(vj) = V′

j for all j ∈ [1,l]. We observe that

a1b1c = a1v1 ⋅ … ⋅ vl = b1u1 ⋅ … ⋅ ul .
If there exists j ∈ [1,l] such that a1 = uj, then U′

1 = �(a1) = �(uj) = V′
j,

a contradiction. Thus, a1b1c has two distinct factorization of length l + 1, a
contradiction. Therefore �H0

is injective, whenceH0 ≅ ℬ(G0 ⧵ {0}) is Krull and
soH = ℱ(P0) ×H0 is Krull. �

The monoids, discussed in Example 2.2.2, are reduced and length-factorial
but not cancellative. Thus, they cannot be transfer Krull by Corollary 1.5. We
end with an example of transfer Krull monoids.

Example 3.4. Let R be a Bass ring and let T(R) be the monoid of isomorphism
classes of torsion-free �nitely generated R-modules, together with the opera-
tion induced by the direct sum (this is a monoid as discussed in Example 2.2.1).
Then T(R) is a reduced transfer Krull monoid by [4, Theorem 1.1]. There are
algebraic characterizations of when T(R) is factorial, resp. half-factorial, resp.
cancellative (see [4, Proposition 3.13, Corollary 1.2, Remark 3.17]). These char-
acterizations show that T(R) is rarely cancellative, whence rarely Krull, and
thus, by Corollary 1.3, it is rarely length-factorial.

Acknowledgement. We thank the reviewers for their careful reading and for
all their comments which led to the introduction of length-FF monoids.
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