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The rational Cherednik algebra of type A,
with divided powers

Daniil Kalinov and Lev Kruglyak

ABSTRACT. Motivated by the recent developments of the theory of Cherednik
algebras in positive characteristic, we study rational Cherednik algebras with
divided powers. In our research we have started with the simplest case, the
rational Cherednik algebra of type A,;. We investigate its maximal divided
power extensions over R[c]| and R for arbitrary principal ideal domains R of
characteristic zero. In these cases, we prove that the maximal divided power
extensions are free modules over the base rings, and construct an explicit ba-
sis in the case of R[c]. In addition, we provide an abstract construction of the
rational Cherednik algebra of type A, over an arbitrary ring, and prove that
this generalization expands the rational Cherednik algebra to include all of
the divided powers.
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1. Introduction

In this paper we study the rational Cherednik algebra of type A,,_;, which we
denote by J(; .(©,,, ). Cherednik algebras, also known as double affine Hecke
algebras (DAHA), are a large family of algebras introduced by Cherednik in [4]
to prove Macdonald’s conjectures concerning orthogonal polynomials for root
systems. Since then Cherednik algebras have been discovered to be useful in
many different contexts, most notably in the study of quantum Calogero-Moser
systems (see [9]). Cherednik algebras have also been applied to topology, har-
monic analysis, Verlinde algebras, Kac-Moody algebras and more. For a thor-
ough exposition of theory of DAHA in general, see [5]. Another good overview
of the theory of rational Cherednik algebras is given in [10].
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The representation theory of Cherednik algebras over fields of characteristic
zero has been well studied (see [11], [10]), but more recently a theory of Chered-
nik algebras in positive characteristic started to develop. Cherednik algebras in
positive characteristic were investigated in [1] and [2]. In [13], the case of rank
one algebras was discussed. Later in [6], [7], and [3] the Hilbert polynomials of
some irreducible finite dimensional representations were calculated.

The current paper is a continuation of this research. Our main goal was to
develop a theory of Cherednik algebras with divided powers in positive charac-
teristic, so we have started with the simplest example, the rational Cherednik
algebra of type A,. To define the maximal divided power extension even in this
case turned out to be an interesting problem. For more information on alge-
bras with divided powers see [12] and [14]. The main reason for the study of
this construction is the fact that naive reduction of the Cherednik algebra to
positive characteristic makes the algebra “too small”, because a lot of operators
become central and act by zero on important representations. To make rep-
resentation theory richer one can work with the algebra extended by divided
powers.

1.1. Main results. In Section 1, we define the rational Cherednik algebra of
type A, introduce our notion of divided power extensions, and show an example
of this notion applied to an algebra of differential operators. In Section 2, we
prove Theorem 2.2 and Theorem 2.4 which show the freeness of the maximal
divided power extension of the rational Cherednik algebra of type A; over R
and R|[c], constructing a basis in the latter case. In Section 3, we construct the
maximal divided power extension in an abstract way over an arbitrary ring, and
prove equivalence in most cases.

1.2. The rational Cherednik algebra of type A. In this section we will de-
fine the rational Cherednik algebra of type A,,_;, which we denote 7, .(&,, §).
In general we will work with the rational Cherednik algebra over an arbitrary
ring, but here we introduce the standard notion over the field of complex num-
bers. Let &,, be the symmetric group on n elements and consider its permu-
tation representation on §) = C”" and its dual §*. Forany1 < i # j < n,
let s;; € ©,, denote the reflection switching i and j. For each reflection s;;, let
P;; C hbe the hyperplane of fixed points of s;;, i.e. P;; = {(oty, ..., @) oy = i}
Let hreg = B\ Ui < P;; be the set of regular points of b, i.e. the set of points
which are not fixed by any reflection. Let D(},,) be the algebra of differential
operators on the set §.,. We have a natural action of &, on b, and hence on

D(Byeg)- Note that D(,) is isomorphic to the localization {x;—x; }i_;jDiff(C[I)])

where x4, ..., X, are the standard generators of C[§]. The following results and
definitions are taken from [10].
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Definition 1.1. Forany 1 <i < nandt,c € C, the Dunkl operator is defined

as 5
Dy=t— —
b ox; CZ X
J#

Proposition 1.2. We have the following properties for Dunkl operators:

ix.(l - Sij) € D(f)reg) X C[@n]
t J

« Foro € ©,, we have cD;o™! = Dy

. [Dl’Dj] =0
[Dlaxj] _csl]
[Dl’x cz‘]#l

We can now define the rational Cherednik algebra of type A.

Definition 1.3. Forany ¢,c € Cwitht # 0, let 7(; .(&,, ) be the C-subalgebra
of D(Breg) X C[©,,] generated by h*, &, and D; for i = 1,...,n. This is the
rational Cherednik algebra of type A,,_; associated to ¢, c.

Proposition 1.4. Foranyt,c € Cwith t # 0, the algebra 7, .(©,,, }) is isomor-
phic to the quotient of the algebra C(xy, ..., Xy, Y1, - » Yn) X C[ .| by the relations
[xix] =0, [yuyl=0, xl=esy [yxl=t- sy

J#
Theorem 1.5 (PBW Theorem). Let Sym(V') be the symmetric algebra of V. Let

X1, ..., X, be the standard basis for §* and let y4, ..., ¥, be the corresponding basis
of . Then the map

Sym(h) ®c C[&,] ®c Sym(h*) — H; (S,. h),
which sends y; ® g ® x; — D;gx;, is an isomorphism of C-vector spaces.

There is another useful algebra to consider when studying divided power
extensions of 7, .(&,, ). Consider the permutation representation of &, on
h and its dual *, with bases yy, ..., ¥y, and xq, ..., x,, respectively. Consider the
subrepresentation I = Span{y; = y; —y; : 1 < i < n}and its dual [* =
H*/(x1 + x5, + -+ + x,,). Let T (1 @ [¥) be the tensor algebra of [ ¢ [*.

Definition 1.6. 7(; .(&,, ) is the C-subalgebra of End(Sym(l*)) generated by
[*,&, and D; — D;.
Proposition 1.7. The algebra 7, .(&,, 1) is the quotient of T(1 @ [*) X C[&,]
by the relations:
o [x3,x;] =0
* [yny]] =0
o [y ] [—cs;—¢ Zk# Sik
 [9i,x0] = esye — esy fork # 1,1
The algebras 7, .(&,,h) and 7, .(S,,]) are related in the following way.

Letzy = y1 —¥2,20 = Y2 = V3, 2Zp—1 = Y1 —Ypand Z = y; + .-+ + y,. Let
W) = X] — Xy, Wy = Xy — X3y00e, Wy =X —X,and W = x; + --- + x,,. Note
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that [Z,x;] = t and [W,y;] = —t, it follows that [Z, w;] = [W,z;] = 0. Also
[Z, W] = n. Furthermore, [0, Z] = [0, W] = 0 for all 0 € &,.. So we have two
subalgebras, one generated by zy, ..., z,_;, Wy, ..., W,_; and &, and the other
generated by Z and W. The first algebra is isomorphic to 7(; .(&,, 1), and the
second algebra is isomorphic to C[g, d,], the subalgebra of End(C[q]) generated

by g and ;—q for some formal variable q. By the PBW theorem, it follows that

}(t,c(@n’ h) = “}(t,c(@n’ I) ®C C[q’ aq]
Another algebra to consider is the spherical subalgebra of 7, .(&,, §), de-
noted by B, .(&,, h).

Definition 1.8. Lete, € C[©, ] be the symmetrizer, e, = % 2o ce, 0 Lete_
be the antisymmetrizer, e_ = % ZUE@ sgn(o)o where sgn(o) is the sign of a
permutation. '

Note: €% =e, ande’ =e_.

Definition 1.9. The spherical subalgebra of 7, .(&,,, §) is
Bt,c(@n’ f)) = e+ﬂt,c(@n’ f))e+'
Let B, (&, 1) = e, 7, (&, e,.

Note that e, (D(Breg) X C[S,])e, = D(hye,)®n, ie. the &,-invariant sub-
space of D(B,). This means that B, (&,,§) C Z)(f)reg)@n. Since ©,, acts triv-
ially on C[q, d,], we have the decomposition

B (&, ) = B, (&, 1) Q¢ Clg, 9]

1.3. Divided power extensions. We could not find a definition of divided
powers in the existing literature which worked for our purposes, so we have
developed our own framework.

Let R be an integral domain of characteristic zero, with R* N Z = {+1}, and
let V be a free R-module. Note that we have a canonical embedding Endgz (V) <
Endggo(V ® Q).

Definition 1.10. For any submodule A C Endg(V), the maximal divided power
extension of A, denoted A??, is the submodule of Endggo(V ® Q) given by:

AP? = (A® @) N Endg(V) C Endgge(V ® Q)

Note that A?? is an R-module, and if A is an R-algebra, then A?” is an R-
algebra as well. Another insightful definition of A?” arises through the notion
of divisibility of an operator.

Definition 1.11. For some operator f € Endg(V), and integer n € Z, we
say that n divides f if f ® (1/n) € Endg(V). We write n| f.

The following definition is often easier to use than Definition 1.10.

1Unless stated otherwise, all tensor products are assumed to be taken over Z.
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Proposition 1.12. A?? ={f ® (1/n) : f € A,n € Z5,,n|f}

Proof. This follows from the fact that every a € A ® Q can be uniquely ex-
pressed as f ® (1/n), for some f € Aandn € Z. O

Now we can show how this notion of divided power extensions applies to
representation theory in characteristic p.

Suppose we had some faithful representation ¢ : A — Endg(V). The naive
reduction modulo p gives a representation

A®F, - Endggr (V@ Fp).

The center of A ® [, can become large in characteristic p. Since central oper-
ators may act trivially on V' ® [, this can become problematic. If we instead
take the divided power extension, we have a representation

AD.’P ® IFp - EndR®[Fp(V [1%9) I}:p)

To see why this representation is faithful, suppose the image of Q ® 1 was zero.
Then Q = p"L forsomen > 1and L € A?” suchthat L® 1 # 0in A" @ F,.
This means that Q ® 1 = 0 in A”?” ® F,, so the map is injective. In the cases
when R*NZ = {+1}, A?? ® IFp contains a nonzero scaled copy of each nonzero
operator in A. This can make the representation theory of A®” richer than that
of A in characteristic p.

When computing maximal divided power extensions of a ring, it often helps
to decompose the ring into smaller pieces for which the maximal divided power
extensions are already known.

Proposition 1.13. Supposewe have a family {A;};cr of R-submodules of Endg (V')
and suppose that for any a; € A;, d| Zie] a; in Endg (V) implies that d|q; for all

P
i € I. Then, in Endggq (V @ Q), we have (B, A;) = @, A7

Note: The above divisibility condition implies that the sum €, o A is direct.

Proof. Forany Q = ., D
Q q; .
=2y € @D, A So (B, A1) C B, AP”. Conversely, if Q =

a DP
Yier 5 € D, 4;" we have

a;, if d|Q then by assumption, d|a; for alli € I so

Dier G HjeI,j;éi d;
Hie[ d;

DP DPp ,
SoQ € (D, A)  and (P, A) D@D, A"”. This concludes the prooé

Proposition 1.14. Let V and W be free R modules. Suppose that A = @i aAi C
Endgy(V)andB = @j o7 Bj C Endr(W)satisfy the divisibility condition of Propo-

sition 1.13, and suppose that A;, Bj, A??,B?? are all rank one modules. Then in
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Endggo(V@ W Q Q),
(A ®R B)D.’P — Al).'P ®R BQ).’P.

Proof. We claim that for any a; € A;, b; € B}, whenever d| Z(i,j) crxy 9 ® b
then d|a;®b;. Let x; be the basis element for Al.D 7 andlety ; be the basis element
for BJZ.)?. Write a; ® b; = k;jx; ® y;. If d Z(i’j)ebd a; ® b;, by definition there
exists g;; such that Z(i,j) o kijxi®y; =d Z(i,j) e 4ij%i ® yj- This implies
Z(i j)(k,- j —dg;j)(x; ® y;) = 0. By linear independence, k;; = dg;; and so
dla; ® bj.

Next we claim that (4; ®g Bj)*” = A?” @ B??. To show A”” ®g sz_)? C

i o b

(A; @r B)P7?, let % ® k—f e Al.m) ®r BJZ.)? for some a; € A;, b; € Bj, and

i J

kj’di S Z>0. Then

b ak; ®b;d;
G g2 o BP0 (4 @y B

d; < k; dik;

Now to show that (4; ® Bj)w’ C Al.m) ®r Bjm), suppose d|a; ® b; = k;jx; ®
y;j for some d € Z;. For an operator f on some space Z, let Ny = {n :
n|f(z) for some z € Z}. Note that N, - N. y; € Nx@y,- We claim that ged(N,,) =
gcd(Nyj) = 1. Indeed, if d|N,, forsome d € Z, then éxi € Al.m) and so % ER,
a contradiction unless d = 1. The same argument shows that gcd(Nyj) = 1.
We claim that gcd(N xi®y,~) = 1. Indeed if d|N X®y;» then d|N x Ny, Pick some
¢t EN v Then d[¢N,,, but since ged(¢N,,) = ¢ it follows that d|£. Since ¢ was
arbitrary, d|Nyj, which implies that d = 1. Now since d|k;;x; ® y;, we have
dlk; iNx,@y;» SO by the previous argument, d|k;;. So
ai®bj k”xl®bj kl] P P
d = d =7xl®bJ€Al ®B] .
Now to combine the above claims, by Proposition 1.13 we have
DP
(A®gB)”” = @ Ai®rBj| = @ (A; ®g B

@i, H)elx] @i, )H)elxJ

However,
@ (A; ®g Bj)@? _ EB Aim ®xr Bj@? = AP? @, B??.
(i,j)elxJ (i,j)eIxJ
This completes the proof. O

1.4. Polynomial differential operators. To show a known example of di-
vided power extensions, we consider the integral Weyl algebra

W(2Z) = Z{x,y)/(yx —xy — 1)
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and its faithful polynomial representation in End(Z[x]) given by x — xX (i.e.
multiplication by x) and y — J, where 9, = ;—x. Let Z[x,0,] C End(Z[x]) be
the image of this representation. We call this the ring of integral polynomial
differential operators. Similarly define Q[x, 0, ].

The results of this section aren’t original. Nonetheless we decided to include
their proofs, adapted to fit within our framework of divided power extensions,
because they illustrate a simple example of the methods we use in the case of
the Cherednik algebra in Section 2.1.

Definition 1.15. Let (;{) € Q[¢] be the polynomial (;{) = t(t_l)l{w € Q[t],

and P, (t) = k!(;{) € Z|[t]. Let 2)’; be the Hasse derivative, whose action is given
k
on the basis by Dkx" = (Z)x"‘k = %x”_k and extending linearly.

Proposition 1.16 (Newton’s Interpolation Formula). Define the zeroth order
forward difference operator as A° f(n) = f(n), and define the higher order oper-
ators as A f(n) = A1 f(n + 1) — A¥=1f(n). Let f(t) be a polynomial. Then
F© = 300 (D4 FO)

Lemma 1.17. Let f be some integer-valued polynomial, and write
n
fmy =3 a))
k>0
for some integer coefficients ay. If d| f(n) foralln € Z, then d|ay forall k > 0.

Proof. Suppose f(n) = 0 mod d for all n. Let N = deg f, so a,, = 0 whenever
n > N. By Newton’s Interpolation formula, LA = F = 0 mod d where (L);; =

(%) is the (N + 1) x (N + 1) lower triangular Pascal matrix, A = (ctg, ..., ay),
j

and F = (f(0),..., f(N)). Note that det, = 1. Multiplying both sides by L7},
we get that o, = 0mod d forall0 < k < N. It follows that a;, = 0 mod d for all
k > 0. O

The above lemma implies the following classical result.

Proposition 1.18 (Newton). Let Int(Z[x]) = {f € Q[x] : f(Z) C Z}. Then
Int(Z[x]) is a free Z-module generated by the polynomials (i)

Proposition 1.19. Forany n > 0, let D[n] = Z[x] and for n < 0, let D[n] =
P_,(x)Z[x]. Consider the map ,, : D[n] — End(Z[x]) where f(x) € D[n]
is sent to the operator which acts on x' by sending it to f(t)x't". There is an
isomorphism of Z-modules, P : P, _, D[n] = Z[x,0,], where |p(, = b, for
alln € Z.

Proof. Consider the Z-grading on Z[x,d,] given by 0, » —1 and x — 1. Let
P[n] be the set of homogeneous elements of degree n. Since {x!9% }1k>0 is @ basis
for Z[x,d,] as a Z-module, we have an isomorphism Z[x,d,] = P, <z Plnl.
We claim that ¢, : D[n] — P[n] is an isomorphism. First, note that Im(,,) C
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P[n]. This is clear if n > 0. Indeed, let f(x) € D[n] = Z[x] be some polyno-
mial, say f(x) = Z?:o a;xt. Then

d
Pu(f(x)) = x" Y a;(xd,)" € P[n].
i=0

Similarly, if n < 0, let P_,(x)f(x) € D[n] = P_,(x)Z[x] be arbitrary, with
) = iy cxl. Then 9, (P, (x)f (X)) = 85" $o(f (x)) € Pln].

To show surjectivity, we consider the cases n > 0 and n < 0 separately. If
n > 0, this map is surjective, since ¢,(P,(t)) = x*"4%, and x'+"3. generate
P[n]. If n < 0, by the grading, every Q € P[n] can be expressed as Ld;" for
some L € P[0]. So ¥,(¢(x + n)P_,(x)) = Q where ¢(x) is the polynomial
representing the action of L. Since L € P[0] is arbitrary, it follows that Im(3,,) =
Y(P_,(x)Z[x]) = P[n]. So for any n € Z, the map ¢, : D[n] — P[n]isa
surjection, hence an isomorphism. We have the desired isomorphism % by the
definition of direct sum. O

Definition 1.20. Let R be an integral domain of characteristic zero, and sup-
pose A is a submodule of Fun(Z, R), the Z-module of set-theoretic functions
from Z to R. The ring of R-valued elements of A is

Intz(A) = {f/d : f € A,d|f.d € Z,}.

where d|f if f/d € Fun(Z, R) C Fun(Z,R® Q). Note that this agrees with our
earlier definition of Int(Z[x]). We write Int(A) if R = Z.

Proposition 1.21. We have an isomorphism of Z-modules,

Z[x,8,]%” = @ Int(D[n)).
nez
In particular, this implies that as a Z-module, Z[x,d,1P” is spanned by x* D', for
all k,1 > 0. Furthermore these are Z-linearly independent.

Proof. To apply Proposition 1.13, we must prove the divisibility condition. So
suppose d| ZneZ Q,, where deg Q,, = n. Then for all t > 0, we have

d (Z Qn)xf = >} fo,(Ox"*".

nez nez

Therefore d|fq, (¢) for all ¢ > 0, and so d|Q,. So by Proposition 1.13, we have
the equality @,_, P[n]*” = Z[x,3,]”. Note however that d|Q € P[n], if
and only if d|q(t) € DI[n] for all ¢, where q(¢) is the polynomial representing
the action of Q on x’. So we have an isomorphism 1,0,?? : Int(D[n]) - P[n]*?*
for each n, defined similarly to ¥,. Combining these, we get an isomorphism
PP? . 7[x,0,)P7 = D, Int(D[n]).

Next we claim that Z[x, 3, |77 is generated by xki)ﬁc forall k,l > Oasa Z-
module. It suffices to consider Int(D[n]), so first assume that n > 0. By Corol-
lary 1.18, Int(Z[t]) is generated by (;{) So the image of Int(D[n]) in Z[x, 3,.]7%
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is generated by x"t DK, since x"+tkDkx! = (;{)x””. If n < 0, by Lemma 1.17,
Int(D[n]) = Int(P_,(t)Z[t]) is generated by (kin) for k > 0. This is because
if d|P_,(1) ijo a;P;(t —n) = ijo a;(j - n)!(jin), then d|a;(j — n)! for all

j. This basis for Int(P_,(t)Z[t]) corresponds to xkl)ﬁ‘”, where k > 0. The
Z-linear independence follows from linear independence of (kin) inZ[t]. O

Corollary 1.22. The divided power extension Z[x, 0,177 is a free Z[x]-module,
freely spanned by DX for k > 0.

2. Maximal divided power extensions of 7(, .(&,, §)

To apply the notion of divided powers to 7(; .(&,, ), we must introduce an
integral version of this algebra. Before we do this, we use the tensor decom-
position given in Section 1.2 to reduce the size of the algebra. Let n = 2, and
consider 7(; .(©,, ).

This is a subalgebra of {x; — x,} ' Diff(C[x1, x,]) X C[&,] generated by

d 1

X1, X9, 819, D1 =t—— —¢
1> 2 O12» 1 axl Xl—xz

1
X (1 —sp2).

o}
1—51,), D, =t— +c¢
( 12)s Dy ax, X —x,

H; (©,,1) is the subalgebra of End(C[x]) generated by x, s and tai _x (1;5)
X X
where sx = —xs,s> = 1, and si = —ais. Here x = x; — x, and s =

s12- Note that 7, .(©,, ) = }(t,c(a@xz, DH® é[q, 94]- Recall that by definition,
H,.(S,,h) c End(C[h]) = End(C[I]) ® End(C[q]), where q is some formal
variable. First, note that J(; .(&,,1) C End(C[!]) and C[g,d,] C End(C[g]).
These two components decompose into rank one modules by the natural grad-
ing, and their divided power extensions similarly decompose by the results of
Section 1.4 and Section 2.1. Thus, in the cases when R* N Z = {+1}, Proposi-
tion 1.14 implies that to study divided power extensions of J(; .(&,, b), it suf-
fices to study divided power extensions of J{; .(&,,) and C|q, d,| separately.
The conditions of Proposition 1.14 are shown to be satisfied by the results of Sec-
tion 1.4 and Section 2. Since divided power extensions of C[q, d,] are known
(see Section 1.4), we only need to consider J; .(&,, [).

Using the canonical isomorphism #; .(©,,1) = H;.(&,,1) for any 1 €
C*, we can normalize t = 0 or t = 1. In this paper, we only consider the case
when t = 1.

Definition 2.1. For any domain of characteristic zero R and ¢ € R, let H; .(R)
be the subalgebra of Endg(R[x]) generated by e_,x and D = s _ Xe_. Note
X

0x
that e, = 1 — e_. In particular note that H; .(C) = 7, .(&,, ).
2.1. Freeness of H ll)cy (R). In this section, we prove Theorem 2.2.

Theorem 2.2. Let R be a PID of characteristic zero. Then forany ¢ € R, HP7(R)
is a free R-module.
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Proof. For now, let R be an arbitrary domain of characteristic zero. For any
k > 0, consider the polynomials D} (t) = Hi.:ol(Zt —i—2cp;) and D, (1) =

k— . s .
Hi:01(2t +1—1i—2cp;;;) where p; = 0ifiis even and 1 otherwise. Note that
Dke,x* = Df(n)x*"~* and D¥e_x*"*! = D (n)x*"*'7k. Now consider the
R-modules

_\R[21] n>0 _c1_ \R[2t +1] n>0
H[n] = DY, (HR[2t] n<0 and H~[n] = D-,(OR[2t+1] n<0’

Note: We are aware that R[2t + 1] = R[2t]; this distinction is purely to motivate
the connection between these sets and H; .(R).

We have a Z-grading on H; .(R), given by D - —1,x = lande_ ~ 0.
By the PBW theorem, there is an isomorphism H; .(R) — @nGZ P[n] where
P[n] is the module of homogeneous elements of H; .(R) of degree n. For all
Q € H;(R), we have Q = Qe, + Qe_ and H, .(R)e, N H; .(R)e_ = {0}, so it
follows that P[n] = P[n]e, @ P[nle_. We claim that 3} : H*[n] — P[nle,
and ¥, : H~[n] — P[n]e_ are isomorphisms, where 1 sends f(t) to the
operator which maps x* to e.f (k)x"*k. Note that this operator acts by zero
on odd powers of x in the e, case, and by zero on even powers of x in the e_
case. Im(yF) C P[n]e, and the surjectivity of these maps follows by a similar
argument to the proof of Proposition 1.19, and from the fact that Q € P[n]e,.
for n < 0 implies that Q = LD "e,. for some L € P[0]. Combining these maps
gives an isomorphism of R-modules:

¥ : @ (H*[nl @ H [n]) = H, (R).

nezZ

We can consider this direct sum as a subring of Endz(R[x]) given by the action
of Ht[n] @ H™[n] on x", defined by

(f+’f—)x2t — f+(t)x2”‘”, (f+,f_)x2t+1 — f‘(t)xz”‘””.

Note that by Proposition 1.13 and the argument used in Proposition 1.21, there
is an induced isomorphism:

927+ @D (Intg(H* [n]) @ Intg(H[n])) > HZ?(R).

nez

So to understand HIDC? (R), it suffices to understand Intz(H*[n]). By assum-
ption, R is a PID. Since Intz(H*[n]) is a submodule of a free module, R[¢], it is
free. By the isomorphism 7, it follows that HY”(R) is free as well. O
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Proposition 2.3. Let R be a PID, and fix some ¢ € R. Then there exist coefficients
ocl.ij . € Rand integers d;—'j € Zs, yielding operators

ky kel o+ +)i
D% Ylo X s, L) ,
T €, lfkl > 0,
AT = kyk,
ky,k ko—
o Hiiol(Li - 2i) .
2k, Cx Yk =0,

where Lt = xD and L™ = xD + 2¢ — 1. Then, the set {Aik,x"JflA(“)—L’k}n,kZO isa
- DP
basis for H Le (R).

Note: ociij  and dl.ij depend heavily on the choice of ¢ € R, and it is possible to
explicitly calculate them in some cases for a choice of ¢ € R. For our purposes,
we only need to show their existence.

Proof. To obtain this basis for H ff (R), we first construct a basis for
P ntr(E*[n]) @ Intg(H[n])).
nez

First suppose n > 0. In this case, H¥[n] = R[2t], and so the binomial coeffi-
cients {(,i)}kzo form a basis for Intg(H*[n]). Since for every k > 0,

t
Z'bm)'IntR(Ht[n]) ((k)) = anot,k’

it can be shown that {anik}n,kZO spans the set of non-negatively graded oper-
atorsin H 11) c? (R).
Now suppose n < 0. It follows that Intx(H*[n]) has a basis of the form

1 k-1 ; .
dt—Di‘rn(t) Yo ocl.’—j_n’k(Zt)l} . Since

—n,k k>0

k—1
1 ;
DP + + _ A
1’0 |IntR(Hi[n]) d* D_"(t) Z ai,—n,k(Zt)l - A—n,k’
—n,k i=0

it follows that {Af «Ink=0 Spans the set of negatively graded operators in H 12) c? (R),
completing the proof. O

2.2. Basis for HIDC? (R[c]). In this section, we will prove a similar result for

Hf)c? (R[c]). In this case, we can even construct a basis for H f)f (R[c]) as an
R[c]-module.
Theorem 2.4. For any integers k;, k, > 0, consider the operators
k=1 ;
Dk I1.2, (D =2 + my(ky)))

o A+ = e+,
ky.k 2mk+ks (my (ky) + ky)!




DIVIDED POWERS IN CHEREDNIK ALGEBRAS 1339

L. Do 125 (xeD + 2¢ — 1 = 2(i + mo(ky))
ks, 2motktke (my(ky) + ky)!
where mg(ky) = lk1+5Jfor 8 = 0, 1. Then the set {A— "HAE,{}n,kzo isan R[c]-
basis for Hff (R[cD).

-

Recall in the proof of Theorem 2.2, we proved that H 193) (R) is isomorphic to

the direct sum @, _, (Intg(H*[n]) @ Intz(H~[n])) for any domain R. To prove
Theorem 2.4, we make use of this fact by constructing a basis for Intz(H*[n]).

Proposition 2.5. The set of operators (pP%)1 ({An o n+1A§,k}n,k20) is a basis
for @, ., (Intgi)(H*[1n]) @ Intg((H™[n])) as an R[c]-module.

Proof. For any k > 0, consider the polynomials

my(k)—1 my (k)—1
Liy= JJ @-2i-1-20), Ly0)= ] @-2i+1-20).
i=0 i=0

Borrowing notation from the proof of Theorem 2.2, note that

D () = 2" Omy (o Dy (1) = 2" ®Oma(lNL (o),

(k)) (k))

Also note that the statement of the proposition is equivalent to the following
four statements:
(1) The set ]i } is an R|[c]-basis for Intgj.j(H*[n]) for n > 0.
} is an R[c]-basis for Intg.;(H*[n]) for n < 0.
k+m1( —n) k>0

(2) The set {
{ ;{ } is an R[c]-basis for Intg,(H~[n]) for n > 0.

(3) The set

(4) The set {L_n( is an R[c]-basis for Intg(H™[n]) for n < 0.

k+my(— n))}kZO

We will only prove (1) and (2), since (3) and (4) are proved similarly. For (1),
assume n > 0 and let f(2t) € R[2t]. By induction, we can find coefficients o €

k—1 .

Rlc] such that f(t) = ¥, o [T, (¢ = 20). Then f(2t) = ¥, akzkkl(f),

By Lemma 1.17, if d|f(2n) for all n then d|x;2¥k!. This means that f O _
akz k! + _ .

Zkzo d (k) Since H*[n] = R[2t] when n > 0, it follows that {(k)}kzo is a

basis for Intgi(H*[n]).
For (2), assume n < 0 and let m = m;(—n). Note that

m—1

D) =LF,@ [ J @ —20).

i=0
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Let f(2t) € R[2t] be arbitrary and suppose
m—1

d|DX, () f () = LT, (O f (1) H(Zf — 2i).
i=0
Since LY, (t) is a primitive polynomial, it follows that d|f(¢) HZ_Ol(Zt — 20).
Writing f(t) = ZPO a;j!(""™) we have
2 j

m—1
dif) [J@t—2i) =Y 2mm+ j)!aj(

)
i=0 >0 m+j

By Lemma 1.17,

DEOF@) L OfO T, @t —20)
d d
m+j . )

0 d m+ j

and the claim follows, since H*[n] = D*,(t)R[2t] when n < 0. O
The above proposition immediately implies Theorem 2.4.

2.3. Hilbert series for H ID Cj’ (R).

Definition 2.6. Let M be a module over a domain R and suppose we have a
filtration M = Uizo M;. Let gr(M) be the associated graded module of M with
respect to the filtration, i.e. gr(M) = M, @ @i>1(M,~/Ml~_1). Let gr, (M) be the
n-th graded component of gr(M). The Hilbert series of M is defined as

HSy(z) = )| dimg(gr, (M))z".
n>0

In the following proposition, we show that the Hilbert series of the rational
Cherednik algebra of type A; remains unchanged after the divided power ex-
tension construction.

Proposition 2.7. Let R be a PID. Then:

2
€y HSHLC(R)(Z) = 2y’

@) HSypraiep(®) = 755

2
(3) Foranyc €R, HSHny(R)(z) =

(a-zp’
Proof. (1) immediately follows from the PBW Theorem, since H; .(R) is gen-
erated by elements of the form x? D¥e, . This implies that

dimg(gr,(H; (R))) = 2(n + 1).
(2) follows from a similar argument, since by Theorem 2.4,
dimgy (gr,(Hy (R[c]))) = 2(n + 1).
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(3) is the same as (2), since Proposition 2.3 shows that the basis for H 193’ (R) has
the same degree as the basis for H? (R[c]). O

2.4. The Lie algebra 8I,.
Definition 2.8. A triple of operators E, H, F is said to be an 81,-triple if:

. [H,E] = 2E
« [H,F] = —2F
. [E,F]=H
Proposition 2.9. In H, .(R[c]) let H = (xD + 1—22c)e+’ E = —§x2e+, and

F = §D2e+. Then the triple of operators E,H,F is an 3L,-triple. It follows
that e, H, .(R[c])e,. is isomorphic to a quotient of U(8\,) by the central character

— 2
<C + uzelﬂ> where C is the Casimir operator C = EF + FE + HT

This map suggests a divided power structure on this quotient of U(3I,). An
immediate corollary to Theorem 2.2 states:

Corollary 2.10. Theset {A] ,X*"*>AY 3}, k5o is an R[c]-basis for the spherical

subalgebra e . H fg’ (R[c))e,.

Writing this basis in terms of the 81,-triple gives us a basis for a divided power

structure on U(81,). Let
(—2E)0Q2F) [T, (H — I i+ m1(2b))
2 € U(31,(Q)).
2m2b)+e(m, (2b) + ¢)!

Then the set { g ,, k, Zy41,0.knk>0 1S a basis for a divided power structure on a
quotient of U(3L,).

Note: This basis of divided powers is different from the basis given in [12].
Indeed the basis given there is symmetric, containing both divided powers of E
and F. Our divided power extension contains no divided powers of E (indeed

the denominator above does not depend on a at all), but it has more divided
powers of F.

1—

Z:a,b,c =

3. Abstract construction of H;”'(R)

In this section, we prove Theorem 3.7 which takes some setup to properly
state.

3.1. Grothendieck differential operators. Before we state the main theo-
rem, we recall a purely algebraic notion of differential operators due to Grothen-
dieck. The results of this section can be found in [8].

Definition 3.1 (Grothendieck Differential Operators). Let R C A be a pair of
commutative rings. For any a € A, let a be the “multiplication by a" operator
on A. We define the R-linear differential operators on A of order at most i,
denoted Diffg(A)! inductively in i.
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. lefR(A)O = HomA(A,A) = {a .ae A}

« Diffg(A)' = {f € Homg(A, A) : [f,a] € Diffg(A)'~1,Va € A}
Let Diffp(A) = UZO Diffz(A)' C Homg(A, A) be the algebra of differential op-
erators of A over R. When R is clear, we simply write Diff(A) to denote Diffz(A).

For the results in Section 3.2, it suffices to consider differential operators of
a polynomial algebra. The following results describe the structure of the ring
of differential operators completely.

Definition 3.2. For any A € N" let 84 be the Hasse derivative, i.e. the R-linear
operator on R[x, ..., x,,] given on the basis by

ety = () (Y
1 oM d*n

In rings where 4,! -+ 1,,! € RX, 3% = 2
g 1 n ’ All_,_ln!ax;ll axin

Proposition 3.3. Let A = R[xy,...,X,]. Then Diffy(A) = ®AeNn A%, where
multiplication is given by composition of operators.

Since we are dealing with differential operators defined on a punctured line,
we need to consider rings of differential operators over localized polynomial
rings as well.

Proposition 3.4. Let R C A be rings where A is finitely generated over R. Let
W C A be a multiplicative subset. Then W ' Diffg(A)" = Diffg(W1A).

Corollary 3.5. DiffR(R[xfl, LX) = D, cnn R[xI—’l, o, X102 In this latter
ring, multiplication is given by composition of operators.

3.2. Abstract construction. In thissection, we would like to naturally define
the ring H f)f (R[c]) as a space of differential operators preserving some sets of

the form x*|x|"R[x], for some k € Z and r € R. Here |x|" is fixed by the
action of &,, and ailxlr = rx|x|"~2. We will denote this ring as F(.(R), and
X

its definition should be purely algebraic, similar to the definition of Diffz(A).
First, we need a nice space of differential operators to work in.

Definition 3.6. For any domain of characteristic zero R, let D(R) be the ring
D(R) = Diffr(R[x*'] @ S(R))
where @(R) = Re, @ Re_ is the ring acting on R[x*!] the canonical way. Note
that D(R) = (Diffx(R[x*']) X R[&S,])""
Our main theorem of the section can then be stated:
Theorem 3.7. For a domain of characteristic zero R and ¢ € R, consider
F(R) ={Q € D(R) : Q fixes R[x] and x~!|x|'**R[x]}
Then, 3.(R) = HY?(R) if c & § +7Z
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To prove this theorem, it is useful to decompose H; .(R[c]) in the following
way:

Hy (R[c]) = e H; (R[c]e, De, H; (R[c])e_De_H, (R[c])e,De_H, (R[c])e_

Expressing each of these summands in a similar way to J.(R) helps with the
proof. Note that e, H}?(R)e, = (e.H, (R)e,)””, where e, can be either e,
ore_.

Definition 3.8. For a domain of characteristic zero R and ¢ € R, consider the
following sets:
« B.(R)={Q € e,D(R)e, : Q fixes R[x], Q fixes |x|T*R[x]}.
« B.(R)={Q € e_D([R)e_ : x~1Qx fixes R[x], xQx~! fixes |x|+2R[x]}.
¢ A.(R) ={Q € e_D(R)e, : Q fixes R[x], xQ fixes |x|'**R[x]}.
¢ A(R) ={Q € e, D(R)e_ : Qx fixes R[x], xQx~! fixes |x|'T*R[x]}.

Proposition 3.9. Ifc & §+Z then B.(R) = e+H12)f(R)e+, B.(R) = e_Hll)Cy(R)e_,
A(R) = e_Hll)Cj’(R)e+, and A.(R) = e+H12)c?(R)e_.

Proof. We will only prove the first equality, B.(R) = e, H}> (R)e,., the rest fol-
low similarly. First, we show that e+Hff (R)e, C B.(R). Let Q € e H (R)e,
be some operator. If we write Q = Zn ez Qn> where deg Q,, = n, it suffices to
check that Q,, € B.(R). So without loss of generality, assume Q is graded of
degree n. If n > 0, clearly Q € B.(R). If n < 0, then Q can be expressed as
Q =e,LD™"e, /d for some L of degree 0 and d € Z.

To check that Q fixes R[x] and |x|'*?°R[x], it suffices to check the action of
Q on monomials. To start, let’s consider the action of Q on x* for some k > 0.
If k is odd, Qx¥ = 0 € R[x]. If k is even, there are two cases. If k > —n, then
Qx* = AD?, (k)x**" /d € R[x] since k + n > 0 (Recall notation from the proof
of Theorem 2.2). If k < —n, note that D*, (k) = 0,50 Qx* = 0 € R[x]. A similar
thing happens for |x|1*%R[x], since D¥,(k + 1 +2¢) = 0 for even k < —n. This
shows that e+H11’)Cy (R)e, C B.(R).

Next, we show that B.(R) C e+H11?g) (R)e,. As before, we can assume that
Q is graded of degree n. Let f(t) be the polynomial representing the action
of Q,ie. Qx* = f(k)xk*". If n > 0, write f(t) = ijo ocjtj for some «; €
R ® Q. This tensor product with Q arises from the fact that e, D(R)e, =

(e, Diffg (R[x”—“l]e+)m>, hence operators might have coefficients in R® Q. Then
Q=e.x" ) a;(xD)e, € e,H"(R)e,.
Jj>0 ’
Now suppose n < 0. Notice that f(k) = f(k+1+2c) = 0forall even k satisfying
0<k<—-n,so H;:gz_l(t —2j)(t —2j — 1 — 2c¢) divides f(t). This is exactly
the action of the Dunkl operator D™"e_.. Also note that this depends on the fact
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thatc ¢ é + Z, otherwise, the linear factors could overlap. Let L(t) = ijo gt/
be the quotient of this division for some §; € R ® Q. Then
Q=e,D™" ) B;i(xD)e,,
Jj=0
completing the proof. O
Proposition 3.10. #.(R) = B.(R) ® B.(R) ® A.(R) & A.(R).

Proof. Let H = B.(R) ® B.(R) ® A.(R) & A.(R). Consider both H.(R) and
H as subrings of Endg(R[x]). First we show that H C H.(R). Let Q € H be a
graded operator, say Q = e, Qe, + e_Qe_ + e, Qe_ + e_Qe,. First we show
that Q fixes R[x]. By Proposition 3.9,

Q(R[x]) = e, Qe (R[x]) + e_Qe_(R[x]) + e, Qe_(R[x]) + e_Qe,(R[x])
= e, Qe (R[x]) + e_Qe_(xR[x]) + e, Qe_(xR[x]) + e_Qe,(R[x])
C R[x] + R[x] + R[x] + R[x] C R[x]
because x~'e_Qe_(xR[x]) C R[x] implies that e_Qe_(xR[x]) C R[x]. Let
y = x~!|x|**2¢. By Proposition 3.9, we have
Q(RI[x])
= e, Qe (YR[x]) + e_Qe_(yR[x]) + e,Qe_(yR[x]) + e_Qe (yR[x])
= e, Qe (xyR[x]) + e_Qe_(yR[x]) + e, Qe_(yR[x]) + e_Qe (xyR[x])
C YR[x] + yR[x] + yR[x] + yR[x] C yR[x].
So H ¢ H.(R). To show that #,(R) C H, suppose Q € H.(R) is some

graded operator. If degQ is even, then Q = e, Qe, + e_Qe_. Since Q(R[x]) C
R[x], QR[x]) = e,;Qe,(R[x]) + e_Qe_(R[x]) C R[x], and e,Qe,, e_Qe_
act non-trivially on only even and odd degrees of x respectively, it follows that
e, Qe (R[x]) C R[x] and x'e_Qe_x(R[x]) C R[x].

Similarly, we can deduce that

e, Qe (|x|""*R[x]) C |x|"**R[x]
and
e_Qe_(x7Yx|"t*R[x])  x~|x|'***R[x].

Soe,Qe, € B.(R)and e_Qe_ € B.(R). Similarly, in the case when degQ is

odd we can show that e, Qe_ € A.(R) and e_Qe, € A.(R). This shows that
H.(R) C H, completing the proof. O

To prove Theorem 3.7, note that by Proposition 1.13,

H?(R) =~ e,H (R, & e_Hff(R)e+ ® e+Hff(R)e_ @ e_Hff(R)eJr.
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Ifc & i + Z, by Proposition 3.9 and Proposition 3.10, we have

H(R) = B.(R) ® B.(R) ® A(R) & A(R)
~ eJrHll?g’(R)eJr (45 e_Hf,)Cj)(R)eJr (43 e+Hfg)(R)e_ (a3} e_Hf,)c?(R)eJr
=~ HP?(R).

,C

This concludes the proof.

3.3. The casec € ; + Z. Interestingly, the case c € % + Z appears through-

out the theory of Cherednik algebras. In the case of our construction, this ex-
ception appears because the polynomial representing the action of the Dunkl
operator has multiplicity two zeroes, when our construction can only encode
multiplicity one zeroes. A future direction would be to extend our construction
of #.(R) so that it works even when ¢ € % + Z. Pavel Etingof suggested that

the construction should preserve an infinite family of subsets of functions in x
involving |x| which converge to some set of functions involving |x| and log(x)
as c approaches a half-integer. This is useful by the following proposition:

Proposition 3.11. For f(t) € Z[t] and F € Z|x,9d,] the operator mapping x"
to f(n)x"*< for some d € Z,

d
F(x"log(x)) = d—{(n)x“d + f(n)x"*4log(x).
Here we let 0,.(log x) = i

So using log(x), we can encode information about the multiplicity-two roots
about the polynomial which represents the action of the operator. Since the
Dunkl operator has roots of at most multiplicity two, there is a construction
which should work in all cases.
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