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The rational Cherednik algebra of type A1
with divided powers

Daniil Kalinov and Lev Kruglyak

Abstract. Motivated by the recent developments of the theory ofCherednik
algebras in positive characteristic, we study rational Cherednik algebras with
divided powers. In our research we have started with the simplest case, the
rational Cherednik algebra of type A1. We investigate its maximal divided
power extensions over R[c] and R for arbitrary principal ideal domains R of
characteristic zero. In these cases, we prove that the maximal divided power
extensions are free modules over the base rings, and construct an explicit ba-
sis in the case of R[c]. In addition, we provide an abstract construction of the
rational Cherednik algebra of type A1 over an arbitrary ring, and prove that
this generalization expands the rational Cherednik algebra to include all of
the divided powers.
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1. Introduction
In this paper we study the rational Cherednik algebra of typeAn−1, whichwe

denote byℋt,c(Sn, h). Cherednik algebras, also known as double a�ne Hecke
algebras (DAHA), are a large family of algebras introduced by Cherednik in [4]
to prove Macdonald’s conjectures concerning orthogonal polynomials for root
systems. Since then Cherednik algebras have been discovered to be useful in
many di�erent contexts, most notably in the study of quantumCalogero-Moser
systems (see [9]). Cherednik algebras have also been applied to topology, har-
monic analysis, Verlinde algebras, Kac-Moody algebras and more. For a thor-
ough exposition of theory of DAHA in general, see [5]. Another good overview
of the theory of rational Cherednik algebras is given in [10].
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The representation theory of Cherednik algebras over �elds of characteristic
zero has beenwell studied (see [11], [10]), butmore recently a theory of Chered-
nik algebras in positive characteristic started to develop. Cherednik algebras in
positive characteristic were investigated in [1] and [2]. In [13], the case of rank
one algebras was discussed. Later in [6], [7], and [3] the Hilbert polynomials of
some irreducible �nite dimensional representations were calculated.

The current paper is a continuation of this research. Our main goal was to
develop a theory of Cherednik algebras with divided powers in positive charac-
teristic, so we have started with the simplest example, the rational Cherednik
algebra of typeA1. To de�ne the maximal divided power extension even in this
case turned out to be an interesting problem. For more information on alge-
bras with divided powers see [12] and [14]. The main reason for the study of
this construction is the fact that naive reduction of the Cherednik algebra to
positive characteristic makes the algebra “too small", because a lot of operators
become central and act by zero on important representations. To make rep-
resentation theory richer one can work with the algebra extended by divided
powers.

1.1. Main results. In Section 1, we de�ne the rational Cherednik algebra of
typeA, introduce our notion of divided power extensions, and show an example
of this notion applied to an algebra of di�erential operators. In Section 2, we
prove Theorem 2.2 and Theorem 2.4 which show the freeness of the maximal
divided power extension of the rational Cherednik algebra of type A1 over R
and R[c], constructing a basis in the latter case. In Section 3, we construct the
maximal divided power extension in an abstract way over an arbitrary ring, and
prove equivalence in most cases.

1.2. The rational Cherednik algebra of type A. In this section we will de-
�ne the rational Cherednik algebra of typeAn−1, which we denoteℋt,c(Sn, h).
In general we will work with the rational Cherednik algebra over an arbitrary
ring, but here we introduce the standard notion over the �eld of complex num-
bers. Let Sn be the symmetric group on n elements and consider its permu-
tation representation on h = ℂn and its dual h∗. For any 1 ≤ i ≠ j ≤ n,
let sij ∈ Sn denote the re�ection switching i and j. For each re�ection sij, let
Pij ⊂ h be the hyperplane of �xed points of sij, i.e. Pij = {(�1, … , �n) ∶ �i = �j}.
Let hreg = h ⧵ ⋃

i<j Pij be the set of regular points of h, i.e. the set of points
which are not �xed by any re�ection. LetD(hreg) be the algebra of di�erential
operators on the set hreg. We have a natural action ofSn on hreg and hence on
D(hreg). Note thatD(hreg) is isomorphic to the localization {xi−xj}−1i≠jDi�(ℂ[h])
where x1, … , xn are the standard generators of ℂ[h]. The following results and
de�nitions are taken from [10].
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De�nition 1.1. For any 1 ≤ i ≤ n and t, c ∈ ℂ, the Dunkl operator is de�ned
as

Di = t ))xi
− c

∑

j≠i

1
xi − xj

(1 − sij) ∈ D(hreg) ⋊ ℂ[Sn].

Proposition 1.2. We have the following properties for Dunkl operators:
∙ For � ∈ Sn, we have �Di�−1 = D�(i)
∙ [Di, Dj] = 0
∙ [Di, xj] = csij
∙ [Di, xi] = t − c∑j≠i sij

We can now de�ne the rational Cherednik algebra of type A.

De�nition 1.3. For any t, c ∈ ℂwith t ≠ 0, letℋt,c(Sn, h) be theℂ-subalgebra
of D(hreg) ⋊ ℂ[Sn] generated by h∗, Sn and Di for i = 1, … , n. This is the
rational Cherednik algebra of type An−1 associated to t, c.

Proposition 1.4. For any t, c ∈ ℂ with t ≠ 0, the algebraℋt,c(Sn, h) is isomor-
phic to the quotient of the algebraℂ⟨x1, … , xn, y1, … , yn⟩⋊ℂ[Sn] by the relations

[xi, xj] = 0, [yi, yj] = 0, [yi, xj] = csij, [yi, xi] = t −
∑

j≠i
csij.

Theorem 1.5 (PBW Theorem). Let Sym(V) be the symmetric algebra of V. Let
x1, … , xn be the standard basis for h∗ and let y1, … , yn be the corresponding basis
of h. Then the map

Sym(h) ⊗ℂ ℂ[Sn] ⊗ℂ Sym(h∗) → ℋt,c(Sn, h),
which sends yi ⊗ g ⊗ xi ↦ Digxi , is an isomorphism of ℂ-vector spaces.

There is another useful algebra to consider when studying divided power
extensions of ℋt,c(Sn, h). Consider the permutation representation of Sn on
h and its dual h∗, with bases y1, … , yn and x1, … , xn respectively. Consider the
subrepresentation l = Spanℂ{ŷi = yi − y1 ∶ 1 < i ≤ n} and its dual l∗ =
h∗∕⟨x1 + x2 +⋯+ xn⟩. Let T(l ⊕ l∗) be the tensor algebra of l ⊕ l∗.

De�nition 1.6. ℋt,c(Sn, l) is the ℂ-subalgebra of End(Sym(l∗)) generated by
l∗,Sn and Di − D1.

Proposition 1.7. The algebraℋt,c(Sn, l) is the quotient of T(l ⊕ l∗) ⋊ ℂ[Sn]
by the relations:

∙ [xi, xj] = 0
∙ [ŷi, ŷj] = 0
∙ [ŷi, xi] = t − cs1i − c∑k≠i sik
∙ [ŷi, xk] = csik − cs1k for k ≠ i, 1

The algebras ℋt,c(Sn, h) and ℋt,c(Sn, l) are related in the following way.
Let z1 = y1 − y2, z2 = y2 − y3, … zn−1 = y1 − yn and Z = y1 + ⋯ + yn. Let
w1 = x1 − x2, w2 = x2 − x3, … , wn−1 = x1 − xn andW = x1 +⋯ + xn. Note
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that [Z, xi] = t and [W, yi] = −t, it follows that [Z, wi] = [W, zi] = 0. Also
[Z,W] = n. Furthermore, [�, Z] = [�,W] = 0 for all � ∈ Sn. So we have two
subalgebras, one generated by z1, … , zn−1, w1, … , wn−1 and Sn and the other
generated by Z andW. The �rst algebra is isomorphic toℋt,c(Sn, l), and the
second algebra is isomorphic toℂ[q, )q], the subalgebra of End(ℂ[q]) generated
by q and )

)q
for some formal variable q. By the PBW theorem, it follows that

ℋt,c(Sn, h) ≅ ℋt,c(Sn, l) ⊗ℂ ℂ[q, )q].
Another algebra to consider is the spherical subalgebra of ℋt,c(Sn, h), de-

noted by ℬt,c(Sn, h).

De�nition 1.8. Let e+ ∈ ℂ[Sn] be the symmetrizer, e+ =
1
n!

∑
�∈Sn

�. Let e−
be the antisymmetrizer, e− = 1

n!
∑

�∈Sn
sgn(�)� where sgn(�) is the sign of a

permutation.

Note: e2+ = e+ and e2− = e−.
De�nition 1.9. The spherical subalgebra ofℋt,c(Sn, h) is

ℬt,c(Sn, h) = e+ℋt,c(Sn, h)e+.
Let ℬt,c(Sn, l) = e+ℋt,c(Sn, l)e+.

Note that e+(D(hreg) ⋊ ℂ[Sn])e+ = D(hreg)Sn , i.e. the Sn-invariant sub-
space of D(hreg). This means that ℬt,c(Sn, h) ⊂ D(hreg)Sn . SinceSn acts triv-
ially on ℂ[q, )q], we have the decomposition

ℬt,c(Sn, h) ≅ ℬt,c(Sn, l) ⊗ℂ ℂ[q, )q].
1.3. Divided power extensions. We could not �nd a de�nition of divided
powers in the existing literature which worked for our purposes, so we have
developed our own framework.

Let R be an integral domain of characteristic zero, with R× ∩ ℤ = {±1}, and
letV be a freeR-module. Note that we have a canonical embedding EndR(V) ↪
EndR⊗ℚ(V ⊗ ℚ)1.
De�nition1.10. For any submoduleA ⊂ EndR(V), themaximal divided power
extension of A, denoted ADP, is the submodule of EndR⊗ℚ(V ⊗ ℚ) given by:

ADP = (A ⊗ℚ) ∩ EndR(V) ⊂ EndR⊗ℚ(V ⊗ ℚ)
Note that ADP is an R-module, and if A is an R-algebra, then ADP is an R-

algebra as well. Another insightful de�nition ofADP arises through the notion
of divisibility of an operator.

De�nition 1.11. For some operator f ∈ EndR(V), and integer n ∈ ℤ≥1, we
say that n divides f if f ⊗ (1∕n) ∈ EndR(V). We write n|f.

The following de�nition is often easier to use than De�nition 1.10.

1Unless stated otherwise, all tensor products are assumed to be taken over ℤ.



1332 DANIIL KALINOV AND LEV KRUGLYAK

Proposition 1.12. ADP = {f ⊗ (1∕n) ∶ f ∈ A, n ∈ ℤ≥1, n|f}.

Proof. This follows from the fact that every a ∈ A ⊗ ℚ can be uniquely ex-
pressed as f ⊗ (1∕n), for some f ∈ A and n ∈ ℤ. �

Now we can show how this notion of divided power extensions applies to
representation theory in characteristic p.

Suppose we had some faithful representation  ∶ A → EndR(V). The naive
reduction modulo p gives a representation

A⊗ Fp → EndR⊗Fp(V ⊗ Fp).

The center of A⊗ Fp can become large in characteristic p. Since central oper-
ators may act trivially on V ⊗ Fp, this can become problematic. If we instead
take the divided power extension, we have a representation

ADP ⊗ Fp → EndR⊗Fp(V ⊗ Fp).

To see why this representation is faithful, suppose the image of Q⊗1was zero.
Then Q = pnL for some n ≥ 1 and L ∈ ADP such that L ⊗ 1 ≠ 0 in ADP ⊗ Fp.
This means that Q ⊗ 1 = 0 in ADP ⊗ Fp, so the map is injective. In the cases
when R×∩ℤ = {±1},ADP⊗Fp contains a nonzero scaled copy of each nonzero
operator inA. This canmake the representation theory ofADP richer than that
of A in characteristic p.

When computing maximal divided power extensions of a ring, it often helps
to decompose the ring into smaller pieces for which themaximal divided power
extensions are already known.

Proposition 1.13. Supposewe have a family {Ai}i∈I ofR-submodules ofEndR(V)
and suppose that for any ai ∈ Ai , d|

∑
i∈I ai in EndR (V) implies that d|ai for all

i ∈ I. Then, in EndR⊗ℚ (V ⊗ ℚ), we have
(⨁

i∈I Ai
)DP = ⨁

i∈I A
DP
i .

Note: The above divisibility condition implies that the sum
⨁

i∈I Ai is direct.

Proof. For any Q = ∑
i∈I ai, if d|Q then by assumption, d|ai for all i ∈ I so

Q
d
= ∑

i∈I
ai
d
∈ ⨁

i∈I A
DP
i . So

(⨁
i∈I Ai

)DP ⊂ ⨁
i∈I A

DP
i . Conversely, if Q =

∑
i∈I

ai
di
∈ ⨁

i∈I A
DP
i we have

Q =
∑

i∈I ai
∏

j∈I,j≠i di∏
i∈I di

.

So Q ∈
(⨁

i∈I Ai
)DP

and
(⨁

i∈I Ai
)DP ⊃ ⨁

i∈I A
DP
i . This concludes the proof.

�

Proposition 1.14. LetV andW be freeRmodules. Suppose thatA = ⨁
i∈I Ai ⊂

EndR(V)andB =
⨁

j∈J Bj ⊂ EndR(W) satisfy the divisibility condition of Propo-
sition 1.13, and suppose thatAi, Bj, ADP

i , BDPj are all rank one modules. Then in
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EndR⊗ℚ(V ⊗W ⊗ℚ),

(A ⊗R B)DP = ADP ⊗R BDP.

Proof. We claim that for any ai ∈ Ai, bj ∈ Bj, whenever d|
∑

(i,j)∈I×J ai ⊗ bj
thend|ai⊗bj. Letxi be the basis element forADP

i and let yj be the basis element
for BDPj . Write ai ⊗ bj = kijxi ⊗ yi. If d|

∑
(i,j)∈I×J ai ⊗ bj, by de�nition there

exists qij such that
∑

(i,j)∈I×J kijxi ⊗ yj = d∑
(i,j)∈I×J qijxi ⊗ yj. This implies∑

(i,j)(kij − dqij)(xi ⊗ yi) = 0. By linear independence, kij = dqij and so
d|ai ⊗ bj.

Next we claim that (Ai ⊗R Bj)DP = ADP
i ⊗R BDPj . To show ADP

i ⊗R BDPj ⊂
(Ai ⊗R Bj)DP, let

ai
di
⊗ bj

kj
∈ ADP

i ⊗R BDPj for some ai ∈ Ai, bj ∈ Bj, and
kj, di ∈ ℤ>0. Then

ai
di
⊗
bj
kj

=
aikj ⊗ bjdi

dikj
∈ (Ai ⊗R Bj)DP.

Now to show that (Ai ⊗R Bj)DP ⊂ ADP
i ⊗R BDPj , suppose d|ai ⊗ bj = kijxi ⊗

yj for some d ∈ ℤ≥1. For an operator f on some space Z, let Nf = {n ∶
n|f(z) for some z ∈ Z}. Note thatNxi ⋅Nyj ⊂ Nxi⊗yj . We claim that gcd(Nxi ) =
gcd(Nyj ) = 1. Indeed, if d|Nxi for some d ∈ ℤ>0 then

1
d
xi ∈ ADP

i and so 1
d
∈ R,

a contradiction unless d = 1. The same argument shows that gcd(Nyj ) = 1.
We claim that gcd(Nxi⊗yj ) = 1. Indeed if d|Nxi⊗yj , then d|NxiNyj . Pick some
l ∈ Nyj . Then d|lNxi , but since gcd(lNxi ) = l it follows that d|l. Since lwas
arbitrary, d|Nyj , which implies that d = 1. Now since d|kijxi ⊗ yj, we have
d|kijNxi⊗yj , so by the previous argument, d|kij. So

ai ⊗ bj
d =

kijxi ⊗ bj
d =

kij
d xi ⊗ bj ∈ ADP

i ⊗ BDPj .

Now to combine the above claims, by Proposition 1.13 we have

(A ⊗R B)DP =
⎛
⎜
⎝

⨁

(i,j)∈I×J
Ai ⊗R Bj

⎞
⎟
⎠

DP

=
⨁

(i,j)∈I×J
(Ai ⊗R Bj)DP.

However,
⨁

(i,j)∈I×J
(Ai ⊗R Bj)DP =

⨁

(i,j)∈I×J
ADP
i ⊗R BDPj = ADP ⊗R BDP.

This completes the proof. �

1.4. Polynomial di�erential operators. To show a known example of di-
vided power extensions, we consider the integral Weyl algebra

W(ℤ) = ℤ⟨x, y⟩∕(yx − xy − 1)
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and its faithful polynomial representation in End(ℤ[x]) given by x ↦ x× (i.e.
multiplication by x) and y ↦ )x where )x =

)
)x
. Let ℤ[x, )x] ⊂ End(ℤ[x]) be

the image of this representation. We call this the ring of integral polynomial
di�erential operators. Similarly de�ne ℚ[x, )x].

The results of this section aren’t original. Nonetheless we decided to include
their proofs, adapted to �t within our framework of divided power extensions,
because they illustrate a simple example of the methods we use in the case of
the Cherednik algebra in Section 2.1.

De�nition 1.15. Let
(t
k

)
∈ ℚ[t] be the polynomial

(t
k

)
= t(t−1)⋯(t−k+1)

k!
∈ ℚ[t],

and Pk(t) = k!
(t
k

)
∈ ℤ[t]. LetDk

x be the Hasse derivative, whose action is given

on the basis byDk
xxn =

(n
k

)
xn−k = )kx

k!
xn−k and extending linearly.

Proposition 1.16 (Newton’s Interpolation Formula). De�ne the zeroth order
forward di�erence operator as ∆0f(n) = f(n), and de�ne the higher order oper-
ators as ∆kf(n) = ∆k−1f(n + 1) − ∆k−1f(n). Let f(t) be a polynomial. Then
f(t) = ∑

k≥0
(t
k

)
∆kf(0).

Lemma 1.17. Let f be some integer-valued polynomial, and write

f(n) =
∑

k≥0
�k

(n
k
)

for some integer coe�cients �k. If d|f(n) for all n ∈ ℤ≥0, then d|�k for all k ≥ 0.
Proof. Suppose f(n) ≡ 0mod d for all n. Let N = deg f, so �n = 0 whenever
n > N. By Newton’s Interpolation formula, LA = F ≡ 0mod d where (L)ij =(i
j

)
is the (N + 1) × (N + 1) lower triangular Pascal matrix, A = (�0, … , �N),

and F = (f(0), … , f(N)). Note that det L = 1. Multiplying both sides by L−1,
we get that �k ≡ 0mod d for all 0 ≤ k ≤ N. It follows that �k ≡ 0mod d for all
k ≥ 0. �

The above lemma implies the following classical result.

Proposition 1.18 (Newton). Let Int(ℤ[x]) = {f ∈ ℚ[x] ∶ f(ℤ) ⊂ ℤ}. Then
Int(ℤ[x]) is a free ℤ-module generated by the polynomials

(x
k

)
.

Proposition 1.19. For any n ≥ 0, let D[n] = ℤ[x] and for n < 0, let D[n] =
P−n(x)ℤ[x]. Consider the map  n ∶ D[n] → End(ℤ[x]) where f(x) ∈ D[n]
is sent to the operator which acts on xt by sending it to f(t)xt+n. There is an
isomorphism of ℤ-modules,  ∶ ⨁

n∈ℤ D[n] → ℤ[x, )x], where  |D[n] =  n for
all n ∈ ℤ.
Proof. Consider the ℤ-grading on ℤ[x, )x] given by )x ↦ −1 and x ↦ 1. Let
P[n] be the set of homogeneous elements of degree n. Since {xl)kx}l,k≥0 is a basis
for ℤ[x, )x] as a ℤ-module, we have an isomorphism ℤ[x, )x] ≅

⨁
n∈ℤ P[n].

We claim that  n ∶ D[n] → P[n] is an isomorphism. First, note that Im( n) ⊂
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P[n]. This is clear if n ≥ 0. Indeed, let f(x) ∈ D[n] = ℤ[x] be some polyno-
mial, say f(x) = ∑d

i=0 �ix
i. Then

 n(f(x)) = xn
d∑

i=0
�i(x)x)i ∈ P[n].

Similarly, if n < 0, let P−n(x)f(x) ∈ D[n] = P−n(x)ℤ[x] be arbitrary, with
f(x) = ∑d

i=0 �ix
i. Then  n(P−n(x)f(x)) = )−nx  0(f(x)) ∈ P[n].

To show surjectivity, we consider the cases n ≥ 0 and n < 0 separately. If
n ≥ 0, this map is surjective, since  n(Pl(t)) = xl+n)lx, and xl+n)lx generate
P[n]. If n < 0, by the grading, every Q ∈ P[n] can be expressed as L)−nx for
some L ∈ P[0]. So  n(l(x + n)P−n(x)) = Q where l(x) is the polynomial
representing the action of L. Since L ∈ P[0] is arbitrary, it follows that Im( n) =
 n(P−n(x)ℤ[x]) = P[n]. So for any n ∈ ℤ, the map  n ∶ D[n] → P[n] is a
surjection, hence an isomorphism. We have the desired isomorphism  by the
de�nition of direct sum. �

De�nition 1.20. Let R be an integral domain of characteristic zero, and sup-
pose A is a submodule of Fun(ℤ, R), the ℤ-module of set-theoretic functions
from ℤ to R. The ring of R-valued elements of A is

IntR(A) = {f∕d ∶ f ∈ A, d|f, d ∈ ℤ≥1}.
where d|f if f∕d ∈ Fun(ℤ, R) ⊂ Fun(ℤ, R⊗ℚ). Note that this agrees with our
earlier de�nition of Int(ℤ[x]). We write Int(A) if R = ℤ.
Proposition 1.21. We have an isomorphism of ℤ-modules,

ℤ[x, )x]DP ≅
⨁

n∈ℤ
Int(D[n]).

In particular, this implies that as aℤ-module,ℤ[x, )x]DP is spanned by xkDl
x for

all k, l ≥ 0. Furthermore these are ℤ-linearly independent.
Proof. To apply Proposition 1.13, we must prove the divisibility condition. So
suppose d|∑n∈ℤ Qn where degQn = n. Then for all t ≥ 0, we have

d| (
∑

n∈ℤ
Qn)xt =

∑

n∈ℤ
fQn(t)x

t+n.

Therefore d|fQn(t) for all t ≥ 0, and so d|Qn. So by Proposition 1.13, we have
the equality

⨁
n∈ℤ P[n]

DP = ℤ[x, )x]DP. Note however that d|Q ∈ P[n], if
and only if d|q(t) ∈ D[n] for all t, where q(t) is the polynomial representing
the action of Q on xt. So we have an isomorphism  DPn ∶ Int(D[n]) → P[n]DP
for each n, de�ned similarly to  n. Combining these, we get an isomorphism
 DP ∶ ℤ[x, )x]DP ≅

⨁
n∈ℤ Int(D[n]).

Next we claim that ℤ[x, )x]DP is generated by xkDl
x for all k, l ≥ 0 as a ℤ-

module. It su�ces to consider Int(D[n]), so �rst assume that n ≥ 0. By Corol-
lary 1.18, Int(ℤ[t]) is generated by

(t
k

)
. So the image of Int(D[n]) inℤ[x, )x]DP
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is generated by xn+kDk
x, since xn+kDk

xxt =
(t
k

)
xt+n. If n < 0, by Lemma 1.17,

Int(D[n]) = Int(P−n(t)ℤ[t]) is generated by
( t
k−n

)
for k ≥ 0. This is because

if d|P−n(t)
∑

j≥0 �jPj(t − n) = ∑
j≥0 �j(j − n)!

( t
j−n

)
, then d|�j(j − n)! for all

j. This basis for Int(P−n(t)ℤ[t]) corresponds to xkDk−n
x , where k ≥ 0. The

ℤ-linear independence follows from linear independence of
( t
k−n

)
in ℤ[t]. �

Corollary 1.22. The divided power extension ℤ[x, )x]DP is a free ℤ[x]-module,
freely spanned byDk

x for k ≥ 0.

2. Maximal divided power extensions ofℋt,c(S2, h)
To apply the notion of divided powers toℋt,c(S2, h), we must introduce an

integral version of this algebra. Before we do this, we use the tensor decom-
position given in Section 1.2 to reduce the size of the algebra. Let n = 2, and
considerℋt,c(S2, h).

This is a subalgebra of {x1 − x2}−1Di�(ℂ[x1, x2]) ⋊ ℂ[S2] generated by

x1, x2, s12, D1 = t )
)x1

− c 1
x1 − x2

(1 − s12), D2 = t )
)x2

+ c 1
x1 − x2

(1 − s12).

ℋt,c(S2, l) is the subalgebra of End(ℂ[x]) generated by x, s and t )
)x
− 2c

x
(1−s)
2

where sx = −xs, s2 = 1, and s )
)x

= − )
)x
s. Here x = x1 − x2 and s =

s12. Note that ℋt,c(S2, h) ≅ ℋt,c(S2, l) ⊗ ℂ[q, )q]. Recall that by de�nition,
ℋt,c(S2, h) ⊂ End(ℂ[h]) = End(ℂ[l]) ⊗ End(ℂ[q]), where q is some formal
variable. First, note that ℋt,c(S2, l) ⊂ End(ℂ[l]) and ℂ[q, )q] ⊂ End(ℂ[q]).
These two components decompose into rank one modules by the natural grad-
ing, and their divided power extensions similarly decompose by the results of
Section 1.4 and Section 2.1. Thus, in the cases when R× ∩ ℤ = {±1}, Proposi-
tion 1.14 implies that to study divided power extensions ofℋt,c(S2, h), it suf-
�ces to study divided power extensions of ℋt,c(S2, l) and ℂ[q, )q] separately.
The conditions of Proposition 1.14 are shown to be satis�ed by the results of Sec-
tion 1.4 and Section 2. Since divided power extensions of ℂ[q, )q] are known
(see Section 1.4), we only need to considerℋt,c(S2, l).

Using the canonical isomorphism ℋt,c(S2, l) → ℋ�t,�c(S2, l) for any � ∈
ℂ×, we can normalize t = 0 or t = 1. In this paper, we only consider the case
when t = 1.

De�nition 2.1. For any domain of characteristic zero R and c ∈ R, let H1,c(R)
be the subalgebra of EndR(R[x]) generated by e−, x and D = )

)x
− 2c

x
e−. Note

that e+ = 1 − e−. In particular note thatH1,c(ℂ) = ℋ1,c(S2, l).

2.1. Freeness ofHDP
1,c (R). In this section, we prove Theorem 2.2.

Theorem 2.2. Let R be a PID of characteristic zero. Then for any c ∈ R,HDP
1,c (R)

is a free R-module.
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Proof. For now, let R be an arbitrary domain of characteristic zero. For any
k ≥ 0, consider the polynomials D+

k (t) =
∏k−1

i=0 (2t − i − 2cpi) and D−
k (t) =∏k−1

i=0 (2t + 1 − i − 2cpi+1) where pi = 0 if i is even and 1 otherwise. Note that
Dke+x2n = D+

k (n)x
2n−k and Dke−x2n+1 = D−

k (n)x
2n+1−k. Now consider the

R-modules

H+[n] = {R[2t] n ≥ 0
D+
−n(t)R[2t] n < 0

andH−[n] = {R[2t + 1] n ≥ 0
D−
−n(t)R[2t + 1] n < 0

.

Note: We are aware that R[2t +1] = R[2t]; this distinction is purely to motivate
the connection between these sets andH1,c(R).

We have a ℤ-grading on H1,c(R), given by D ↦ −1, x ↦ 1 and e− ↦ 0.
By the PBW theorem, there is an isomorphism H1,c(R) →

⨁
n∈ℤ P[n] where

P[n] is the module of homogeneous elements of H1,c(R) of degree n. For all
Q ∈ H1,c(R), we have Q = Qe+ + Qe− and H1,c(R)e+ ∩ H1,c(R)e− = {0}, so it
follows that P[n] = P[n]e+ ⊕ P[n]e−. We claim that  +n ∶ H+[n] → P[n]e+
and  −n ∶ H−[n] → P[n]e− are isomorphisms, where  ±n sends f(t) to the
operator which maps xk to e±f(k)xn+k. Note that this operator acts by zero
on odd powers of x in the e+ case, and by zero on even powers of x in the e−
case. Im( ±n ) ⊂ P[n]e± and the surjectivity of these maps follows by a similar
argument to the proof of Proposition 1.19, and from the fact that Q ∈ P[n]e±
for n < 0 implies that Q = LD−ne± for some L ∈ P[0]. Combining these maps
gives an isomorphism of R-modules:

 ∶
⨁

n∈ℤ

(
H+[n] ⊕ H−[n]

) ∼
,→ H1,c(R).

We can consider this direct sum as a subring of EndR(R[x]) given by the action
ofH+[n] ⊕ H−[n] on xn, de�ned by

(f+, f−)x2t = f+(t)x2t+n, (f+, f−)x2t+1 = f−(t)x2t+1+n.

Note that by Proposition 1.13 and the argument used in Proposition 1.21, there
is an induced isomorphism:

 DP ∶
⨁

n∈ℤ

(
IntR(H+[n]) ⊕ IntR(H−[n])

) ∼
,→ HDP

1,c (R) .

So to understand HDP
1,c (R), it su�ces to understand IntR(H±[n]). By assum-

ption, R is a PID. Since IntR(H±[n]) is a submodule of a free module, R[t], it is
free. By the isomorphism  DP, it follows thatHDP

1,c (R) is free as well. �
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Proposition 2.3. Let R be a PID, and �x some c ∈ R. Then there exist coe�cients
�±i,j,k ∈ R and integers d±i,j ∈ ℤ≥1 yielding operators

∆±k1,k2 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Dk1 ∑k2−1
i=0 �±i,k1,k2(L

±)i

d±k1,k2
e± if k1 > 0,

∏k2−1
i=0 (L

± − 2i)
2k2k2!

e± if k1 = 0,

where L+ = xD and L− = xD + 2c − 1. Then, the set {∆±n,k, x
n+1∆±0,k}n,k≥0 is a

basis forHDP
1,c (R).

Note: �±i,j,k and d
±
i,j depend heavily on the choice of c ∈ R, and it is possible to

explicitly calculate them in some cases for a choice of c ∈ R. For our purposes,
we only need to show their existence.

Proof. To obtain this basis forHDP
1,c (R), we �rst construct a basis for⨁

n∈ℤ
(IntR(H+[n]) ⊕ IntR(H−[n])).

First suppose n ≥ 0. In this case, H±[n] = R[2t], and so the binomial coe�-
cients {

(t
k

)
}k≥0 form a basis for IntR(H±[n]). Since for every k ≥ 0,

 DP||||IntR(H±[n]) (
(t
k
)
) = xn∆±0,k,

it can be shown that {xn∆±0,k}n,k≥0 spans the set of non-negatively graded oper-
ators inHDP

1,c (R).
Now suppose n < 0. It follows that IntR(H±[n]) has a basis of the form

{ 1
d±−n,k

D±
−n(t)

∑k−1
i=0 �

±
i,−n,k(2t)

i}
k≥0

. Since

 DP||||IntR(H±[n])

⎛
⎜
⎝

1
d±−n,k

D±
−n(t)

k−1∑

i=0
�±i,−n,k(2t)

i
⎞
⎟
⎠
= ∆±−n,k,

it follows that {∆±n,k}n,k≥0 spans the set of negatively graded operators inH
DP
1,c (R),

completing the proof. �

2.2. Basis for HDP
1,c (R[c]). In this section, we will prove a similar result for

HDP
1,c (R[c]). In this case, we can even construct a basis for HDP

1,c (R[c]) as an
R[c]-module.

Theorem 2.4. For any integers k1, k2 ≥ 0, consider the operators

∙ ∆+k1,k2 =
Dk1 ∏k2−1

i=0 (xD − 2(i + m1(k1)))
2m1(k1)+k2(m1(k1) + k2)!

e+,
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∙ ∆−k1,k2 =
Dk1 ∏k2−1

i=0 (xD + 2c − 1 − 2(i + m0(k1)))
2m0(k1)+k2(m0(k1) + k2)!

e−,

wherem�(k1) =
⌊k1+�

2

⌋
for � = 0, 1. Then the set {∆±n,k, x

n+1∆±0,k}n,k≥0 is an R[c]-
basis forHDP

1,c (R[c]).

Recall in the proof of Theorem 2.2, we proved that HDP
1,c (R) is isomorphic to

the direct sum
⨁

n∈ℤ
(
IntR(H+[n]) ⊕ IntR(H−[n])

)
for any domainR. To prove

Theorem 2.4, we make use of this fact by constructing a basis for IntR(H±[n]).

Proposition 2.5. The set of operators ( DP)−1
(
{∆±n,k, x

n+1∆±0,k}n,k≥0
)
is a basis

for
⨁

n∈ℤ
(
IntR[c](H+[n]) ⊕ IntR[c](H−[n])

)
as an R[c]-module.

Proof. For any k ≥ 0, consider the polynomials

L+k (t) =
m0(k)−1∏

i=0
(2t − 2i − 1 − 2c), L−k (t) =

m1(k)−1∏

i=0
(2t − 2i + 1 − 2c).

Borrowing notation from the proof of Theorem 2.2, note that

D+
k (t) = 2m1(k)m1(k)!L+k (t)

( t
m1(k)

)
, D−

k (t) = 2m0(k)m0(k)!L−k (t)
( t
m0(k)

)
.

Also note that the statement of the proposition is equivalent to the following
four statements:

(1) The set
{(t
k

)}
k≥0

is an R[c]-basis for IntR[c](H+[n]) for n ≥ 0.

(2) The set {L+−n
( t
k+m1(−n)

)
}
k≥0

is an R[c]-basis for IntR[c](H+[n]) for n < 0.

(3) The set
{(t
k

)}
k≥0

is an R[c]-basis for IntR[c](H−[n]) for n ≥ 0.

(4) The set {L−−n
( t
k+m0(−n)

)
}
k≥0

is an R[c]-basis for IntR[c](H−[n]) for n < 0.

We will only prove (1) and (2), since (3) and (4) are proved similarly. For (1),
assume n ≥ 0 and let f(2t) ∈ R[2t]. By induction, we can �nd coe�cients �k ∈
R[c] such that f(t) = ∑

k≥0 �k
∏k−1

i=0 (t − 2i). Then f(2t) = ∑
k≥0 �k2

kk!
(t
k

)
.

By Lemma 1.17, if d|f(2n) for all n then d|�k2kk!. This means that f(t)
d

=
∑

k≥0
�k2kk!
d

(t
k

)
. Since H+[n] = R[2t] when n ≥ 0, it follows that

{(t
k

)}
k≥0

is a

basis for IntR[c](H+[n]).
For (2), assume n < 0 and letm = m1(−n). Note that

D+
−n(t) = L+−n(t)

m−1∏

i=0
(2t − 2i).
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Let f(2t) ∈ R[2t] be arbitrary and suppose

d|D+
−n(t)f(t) = L+−n(t)f(t)

m−1∏

i=0
(2t − 2i).

Since L+−n(t) is a primitive polynomial, it follows that d|f(t)∏m−1
i=0 (2t − 2i).

Writing f(t) = ∑
j≥0 �jj!

(t−m
j

)
we have

d|f(t)
m−1∏

i=0
(2t − 2i) =

∑

j≥0
2m+j(m + j)!�j

( t
m + j

)
.

By Lemma 1.17,

D+
−n(t)f(t)

d =
L+−n(t)f(t)

∏m−1
i=0 (2t − 2i)
d

=
∑

j≥0

2m+j(m + j)!�j
d L+−n(t)

( t
m + j

)
.

and the claim follows, sinceH+[n] = D+
−n(t)R[2t] when n < 0. �

The above proposition immediately implies Theorem 2.4.

2.3. Hilbert series forHDP
1,c (R).

De�nition 2.6. Let M be a module over a domain R and suppose we have a
�ltrationM = ⋃

i≥0Mi. Let gr(M) be the associated graded module ofM with
respect to the �ltration, i.e. gr(M) = M0 ⊕

⨁
i≥1(Mi∕Mi−1). Let grn(M) be the

n-th graded component of gr(M). The Hilbert series ofM is de�ned as

HSM(z) =
∑

n≥0
dimR(grn(M))zn.

In the following proposition, we show that the Hilbert series of the rational
Cherednik algebra of type A1 remains unchanged after the divided power ex-
tension construction.

Proposition 2.7. Let R be a PID. Then:
(1) HSH1,c(R)(z) =

2
(1−z)2

.

(2) HSHDP
1,c (R[c])

(z) = 2
(1−z)2

.

(3) For any c ∈ R,HSHDP
1,c (R)

(z) = 2
(1−z)2

.

Proof. (1) immediately follows from the PBW Theorem, since H1,c(R) is gen-
erated by elements of the form xlDke±. This implies that

dimR(grn(H1,c(R))) = 2(n + 1).
(2) follows from a similar argument, since by Theorem 2.4,

dimR[c](grn(H1,c(R[c]))) = 2(n + 1).
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(3) is the same as (2), since Proposition 2.3 shows that the basis forHDP
1,c (R) has

the same degree as the basis forHDP
1,c (R[c]). �

2.4. The Lie algebra sl2.
De�nition 2.8. A triple of operators E,H, F is said to be an sl2-triple if:

∙ [H, E] = 2E
∙ [H, F] = −2F
∙ [E, F] = H

Proposition 2.9. In H1,c(R[c]) let H = (xD + 1−2c
2
)e+, E = − 1

2
x2e+, and

F = 1
2
D2e+. Then the triple of operators E,H, F is an sl2-triple. It follows

that e+H1,c(R[c])e+ is isomorphic to a quotient ofU(sl2) by the central character⟨
C + (1−2c)(3+2c)

8

⟩
, where C is the Casimir operator C = EF + FE + H2

2
.

This map suggests a divided power structure on this quotient of U(sl2). An
immediate corollary to Theorem 2.2 states:

Corollary 2.10. The set {∆+2n,k, x
2n+2∆+0,k}n,k≥0 is an R[c]-basis for the spherical

subalgebra e+HDP
1,c (R[c])e+.

Writing this basis in terms of the sl2-triple gives us a basis for a divided power
structure on U(sl2). Let

Σa,b,c =
(−2E)a(2F)b ∏c−1

i=0

(
H − 1−2c

2
− 2(i + m1(2b)

)

2m1(2b)+c(m1(2b) + c)!
∈ U(sl2(ℚ)).

Then the set { Σ0,n,k, Σn+1,0,k}n,k≥0 is a basis for a divided power structure on a
quotient of U(sl2).

Note: This basis of divided powers is di�erent from the basis given in [12].
Indeed the basis given there is symmetric, containing both divided powers of E
and F. Our divided power extension contains no divided powers of E (indeed
the denominator above does not depend on a at all), but it has more divided
powers of F.

3. Abstract construction ofHDP
1,c (R)

In this section, we prove Theorem 3.7 which takes some setup to properly
state.

3.1. Grothendieck di�erential operators. Before we state the main theo-
rem,we recall a purely algebraic notion of di�erential operators due toGrothen-
dieck. The results of this section can be found in [8].

De�nition 3.1 (Grothendieck Di�erential Operators). Let R ⊂ A be a pair of
commutative rings. For any a ∈ A, let a be the “multiplication by a" operator
on A. We de�ne the R-linear di�erential operators on A of order at most i,
denoted Di�R(A)i inductively in i.
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∙ Di�R(A)0 = HomA(A,A) = {a ∶ a ∈ A}
∙ Di�R(A)i = {f ∈ HomR(A,A) ∶ [f, a] ∈ Di�R(A)i−1, ∀a ∈ A}

Let Di�R(A) =
⋃∞

i=0Di�R(A)
i ⊂ HomR(A,A) be the algebra of di�erential op-

erators ofA overR. WhenR is clear, we simplywrite Di�(A) to denoteDi�R(A).
For the results in Section 3.2, it su�ces to consider di�erential operators of

a polynomial algebra. The following results describe the structure of the ring
of di�erential operators completely.

De�nition 3.2. For any � ∈ ℕn let )� be the Hasse derivative, i.e. the R-linear
operator on R[x1, … , xn] given on the basis by

)�(x�11 ⋯x�nn ) =
(�1
�1

)
⋯

(�n
�n

)
x�1−�11 ⋯x�n−�nn .

In rings where �1!⋯�n! ∈ R×, )� = 1
�1!⋯�n!

)�1

)x�11
⋯ )�n

)x�nn
.

Proposition 3.3. Let A = R[x1, … , xn]. Then Di�R(A) =
⨁

�∈ℕn A)
�, where

multiplication is given by composition of operators.

Since we are dealing with di�erential operators de�ned on a punctured line,
we need to consider rings of di�erential operators over localized polynomial
rings as well.

Proposition 3.4. Let R ⊂ A be rings where A is �nitely generated over R. Let
W ⊂ A be a multiplicative subset. ThenW−1Di�R(A)i ≅ Di�R(W−1A)i .

Corollary 3.5. Di�R(R[x±11 , … , x±1n ]) = ⨁
�∈ℕn R[x

±1
1 , … , x±1n ])�. In this latter

ring, multiplication is given by composition of operators.

3.2. Abstract construction. In this section, wewould like to naturally de�ne
the ring HDP

1,c (R[c]) as a space of di�erential operators preserving some sets of
the form xk|x|rR[x], for some k ∈ ℤ and r ∈ R. Here |x|r is �xed by the
action of S2, and

)
)x

|x|r = rx|x|r−2. We will denote this ring as ℋc(R), and
its de�nition should be purely algebraic, similar to the de�nition of Di�R(A).
First, we need a nice space of di�erential operators to work in.

De�nition 3.6. For any domain of characteristic zero R, letD(R) be the ring
D(R) = Di�R(R[x±1] ⊗R S(R))

whereS(R) = Re+⊕Re− is the ring acting on R[x±1] the canonical way. Note
thatD(R) =

(
Di�R(R[x±1]) ⋊ R[S2]

)DP
.

Our main theorem of the section can then be stated:

Theorem 3.7. For a domain of characteristic zero R and c ∈ R, consider
ℋc(R) = {Q ∈ D(R) ∶ Q �xes R[x] and x−1|x|1+2cR[x]}

Then,ℋc(R) ≅ HDP
1,c (R) if c ∉

1
2
+ ℤ.
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To prove this theorem, it is useful to decompose H1,c(R[c]) in the following
way:

H1,c(R[c]) ≅ e+H1,c(R[c])e+⊕e+H1,c(R[c])e−⊕e−H1,c(R[c])e+⊕e−H1,c(R[c])e−
Expressing each of these summands in a similar way toℋc(R) helps with the
proof. Note that e±HDP

1,c (R)e± = (e±H1,c(R)e±)DP, where e± can be either e+
or e−.

De�nition 3.8. For a domain of characteristic zero R and c ∈ R, consider the
following sets:

∙ ℬc(R) = {Q ∈ e+D(R)e+ ∶ Q �xes R[x], Q �xes |x|1+2cR[x]}.
∙ ℬc(R) = {Q ∈ e−D(R)e− ∶ x−1Qx �xes R[x], xQx−1 �xes |x|1+2cR[x]}.
∙ Ac(R) = {Q ∈ e−D(R)e+ ∶ Q �xes R[x], xQ �xes |x|1+2cR[x]}.
∙ Ac(R) = {Q ∈ e+D(R)e− ∶ Qx �xes R[x], xQx−1 �xes |x|1+2cR[x]}.

Proposition 3.9. If c ∉ 1
2
+ℤ thenℬc(R) = e+HDP

1,c (R)e+,ℬc(R) = e−HDP
1,c (R)e−,

Ac(R) = e−HDP
1,c (R)e+, andAc(R) = e+HDP

1,c (R)e−.

Proof. Wewill only prove the �rst equality,ℬc(R) = e+HDP
1,c (R)e+, the rest fol-

low similarly. First, we show that e+HDP
1,c (R)e+ ⊂ ℬc(R). LetQ ∈ e+HDP

1,c (R)e+
be some operator. If we write Q = ∑

n∈ℤ Qn, where degQn = n, it su�ces to
check that Qn ∈ ℬc(R). So without loss of generality, assume Q is graded of
degree n. If n ≥ 0, clearly Q ∈ ℬc(R). If n < 0, then Q can be expressed as
Q = e+LD−ne+∕d for some L of degree 0 and d ∈ ℤ.

To check that Q �xes R[x] and |x|1+2cR[x], it su�ces to check the action of
Q on monomials. To start, let’s consider the action of Q on xk for some k ≥ 0.
If k is odd, Qxk = 0 ∈ R[x]. If k is even, there are two cases. If k ≥ −n, then
Qxk = �D+

−n(k)xk+n∕d ∈ R[x] since k + n ≥ 0 (Recall notation from the proof
of Theorem 2.2). If k < −n, note thatD+

−n(k) = 0, soQxk = 0 ∈ R[x]. A similar
thing happens for |x|1+2cR[x], since D+

−n(k +1+2c) = 0 for even k < −n. This
shows that e+HDP

1,c (R)e+ ⊂ ℬc(R).
Next, we show that ℬc(R) ⊂ e+HDP

1,c (R)e+. As before, we can assume that
Q is graded of degree n. Let f(t) be the polynomial representing the action
of Q, i.e. Qxk = f(k)xk+n. If n ≥ 0, write f(t) = ∑

j≥0 �jt
j for some �j ∈

R ⊗ ℚ. This tensor product with ℚ arises from the fact that e+D(R)e+ =
(
e+Di�R(R[x±1]e+

)DP
, hence operatorsmight have coe�cients in R⊗ℚ. Then

Q = e+xn
∑

j≥0
�j(xD)je+ ∈ e+HDP

1,c (R)e+.

Now supposen < 0. Notice thatf(k) = f(k+1+2c) = 0 for all even k satisfying
0 ≤ k < −n, so ∏−n∕2−1

j=0 (t − 2j)(t − 2j − 1 − 2c) divides f(t). This is exactly
the action of the Dunkl operatorD−ne+. Also note that this depends on the fact
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that c ∉ 1
2
+ℤ, otherwise, the linear factors could overlap. Let L(t) = ∑

j≥0 �jt
j

be the quotient of this division for some �j ∈ R ⊗ℚ. Then

Q = e+D−n ∑

j≥0
�j(xD)je+,

completing the proof. �

Proposition 3.10. ℋc(R) ≅ ℬc(R) ⊕ ℬc(R) ⊕ Ac(R) ⊕ Ac(R).

Proof. Let H = ℬc(R) ⊕ ℬc(R) ⊕ Ac(R) ⊕ Ac(R). Consider bothℋc(R) and
H as subrings of EndR(R[x]). First we show that H ⊂ ℋc(R). Let Q ∈ H be a
graded operator, say Q = e+Qe+ + e−Qe− + e+Qe− + e−Qe+. First we show
that Q �xes R[x]. By Proposition 3.9,

Q(R[x]) = e+Qe+(R[x]) + e−Qe−(R[x]) + e+Qe−(R[x]) + e−Qe+(R[x])
= e+Qe+(R[x]) + e−Qe−(xR[x]) + e+Qe−(xR[x]) + e−Qe+(R[x])
⊂ R[x] + R[x] + R[x] + R[x] ⊂ R[x]

because x−1e−Qe−(xR[x]) ⊂ R[x] implies that e−Qe−(xR[x]) ⊂ R[x]. Let
y = x−1|x|1+2c. By Proposition 3.9, we have

Q(yR[x])
= e+Qe+(yR[x]) + e−Qe−(yR[x]) + e+Qe−(yR[x]) + e−Qe+(yR[x])
= e+Qe+(xyR[x]) + e−Qe−(yR[x]) + e+Qe−(yR[x]) + e−Qe+(xyR[x])
⊂ yR[x] + yR[x] + yR[x] + yR[x] ⊂ yR[x].

So H ⊂ ℋc(R). To show that ℋc(R) ⊂ H, suppose Q ∈ ℋc(R) is some
graded operator. If degQ is even, then Q = e+Qe+ + e−Qe−. Since Q(R[x]) ⊂
R[x], Q(R[x]) = e+Qe+(R[x]) + e−Qe−(R[x]) ⊂ R[x], and e+Qe+, e−Qe−
act non-trivially on only even and odd degrees of x respectively, it follows that
e+Qe+(R[x]) ⊂ R[x] and x−1e−Qe−x(R[x]) ⊂ R[x].

Similarly, we can deduce that

e+Qe+(|x|1+2cR[x]) ⊂ |x|1+2cR[x]

and
e−Qe−(x−1|x|1+2cR[x]) ⊂ x−1|x|1+2cR[x].

So e+Qe+ ∈ ℬc(R) and e−Qe− ∈ ℬc(R). Similarly, in the case when degQ is
odd we can show that e+Qe− ∈ Ac(R) and e−Qe+ ∈ Ac(R). This shows that
ℋc(R) ⊂ H, completing the proof. �

To prove Theorem 3.7, note that by Proposition 1.13,

HDP
1,c (R) ≅ e+HDP

1,c (R)e+ ⊕ e−HDP
1,c (R)e+ ⊕ e+HDP

1,c (R)e− ⊕ e−HDP
1,c (R)e+.
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If c ∉ 1
2
+ ℤ, by Proposition 3.9 and Proposition 3.10, we have

ℋc(R) ≅ ℬc(R) ⊕ ℬc(R) ⊕ Ac(R) ⊕ Ac(R)
≅ e+HDP

1,c (R)e+ ⊕ e−HDP
1,c (R)e+ ⊕ e+HDP

1,c (R)e− ⊕ e−HDP
1,c (R)e+

≅ HDP
1,c (R).

This concludes the proof.

3.3. The case c ∈ 1
2
+ ℤ. Interestingly, the case c ∈ 1

2
+ ℤ appears through-

out the theory of Cherednik algebras. In the case of our construction, this ex-
ception appears because the polynomial representing the action of the Dunkl
operator has multiplicity two zeroes, when our construction can only encode
multiplicity one zeroes. A future direction would be to extend our construction
ofℋc(R) so that it works even when c ∈ 1

2
+ ℤ. Pavel Etingof suggested that

the construction should preserve an in�nite family of subsets of functions in x
involving |x| which converge to some set of functions involving |x| and log(x)
as c approaches a half-integer. This is useful by the following proposition:

Proposition 3.11. For f(t) ∈ ℤ[t] and F ∈ ℤ[x, )x] the operator mapping xn
to f(n)xn+d for some d ∈ ℤ,

F(xn log(x)) = df
dt (n)x

n+d + f(n)xn+d log(x).

Here we let )x(log x) =
1
x
.

So using log(x), we can encode information about the multiplicity-two roots
about the polynomial which represents the action of the operator. Since the
Dunkl operator has roots of at most multiplicity two, there is a construction
which should work in all cases.
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