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ABSTRACT. We provide an atomic decomposition of the product Hardy spaces
HP(X) which were recently developed by Han, Li, and Ward in the setting
of product spaces of homogeneous type X = X, X X,. Here each factor
(X;,d;, 1), fori = 1, 2,is aspace of homogeneous type in the sense of Coifman
and Weiss. These Hardy spaces make use of the orthogonal wavelet bases of
Auscher and Hytonen and their underlying reference dyadic grids. However,

no additional assumptions on the quasi-metric or on the doubling measure
for each factor space are made. To carry out this program, we introduce prod-

uct (p, g)-atoms on X and product atomic Hardy spaces H.?(X). As conse-

quences of the atomic decomposition of H?(X), we show that for all g > 1

the product atomic Hardy spaces coincide with the product Hardy spaces,

and we show that the product Hardy spaces are independent of the particu-

lar choices of both the wavelet bases and the reference dyadic grids. Likewise,

the product Carleson measure spaces CMOP(X), the bounded mean oscilla-

tion space BMO(X), and the vanishing mean oscillation space VMO(X), as

defined by Han, Li, and Ward, are also independent of the particular choices

of both wavelets and reference dyadic grids.
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1. Introduction

The product Hardy spaces HP(X) were recently developed in [HLW] in the
setting of product spaces of homogeneous type X = X; X X,, where each factor
(X;,d;, 1), i = 1, 2, is a space of homogeneous type in the sense of Coifman
and Weiss. In this paper we provide an atomic decomposition of these product
Hardy spaces HP(X).

Spaces of homogeneous type were introduced by Coifman and Weiss in the
early 1970s [CW1]. We say that (X, d, u) is a space of homogeneous type in the
sense of Coifman and Weiss if X is a set, d is a quasi-metric on X, and u is
a nonzero Borel-regular measure on X satisfying the doubling condition. A
quasi-metric d on a set X is a functiond : X X X — [0, o0) satisfying (i)
d(x,y) =d(y,x) > 0forall x, y € X; (ii) d(x,y) = 0 if and only if x = y; and
(iii) the quasi-triangle inequality: there is a constant A, € [1, c0) such that,

d(x,y) < Agld(x,2z) + d(z,y)] forallx,y,z€X. (1.1)

The quasi-metric ball is defined by B(x,r) :={y € X : d(x,y) <r}forx € X
and r > 0. Note that the quasi-metric, in contrast to a metric, may not be
Holder regular and quasi-metric balls may not be open'. We say that a nonzero
measure u satisfies the doubling condition if there is a constant C,, > 1 such
thatforall x € X and r > 0,

0 < u(B(x,2r)) < C, u(B(x,r)) < oo. (1.2)

We say a measure u is Borel regular if for each measurable set A there is a Borel
set B such that B C A and u(B) = u(A). This Borel regularity ensures that the
Lebesgue Differentiation Theorem holds on (X, d, 4) and that step functions
are dense in L2(X, u) [AIM, AuH2].

We point out that the doubling condition (1.2) implies that there exist pos-
itive constants C and w (known as an upper dimension of X) such that for all
xeX,A>1landr >0,

u(B(x,Ar)) < CA°u(B(x,)). (1.3)

We can express C and w in condition (1.3) in terms of the doubling constant C,,
of the measure. In fact we can and will choose C = C;, > 1 and w = log, C,,.

Throughout this paper we assume that u(X) = o. Given a space of homoge-
neous type (X, d, u), the quasi-triangle constant A, the doubling constant C,,
and an upper dimension w are referred to as the geometric constants of the space
X.

In the classical theory, the Hardy spaces H” can be defined via maximal
functions, via approximations of the identity and Littlewood-Paley theory, via

1Any quasi-metric defines a topology, for which the balls B(x, r) form a base. However when
A, > 1 the balls need not be open. The measure u is assumed to be defined on a g-algebra that
contains all balls B(x, ) and all Borel sets induced by this topology.
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square functions, or via atomic decompositions, and all these definitions coin-
cide. When moving to more exotic settings one can start with any of the equiv-
alent definitions and then hope to show that they all define the same space.
In the one-parameter setting of spaces of homogeneous type this program was
carried out, but additional conditions were required on the quasi-metric or on
the measure. The first author was involved in many of these developments. For
more details see Section 2.

A natural question arises: can one develop the theory of the spaces H? and
BMO on spaces of homogeneous type in the sense of Coifman and Weiss, with
only the original quasi-metric d and a Borel-regular doubling measure u?

This question was posed, and answered in the affirmative, in [HLW], in both
the one-parameter and product settings. The key idea used in [HLW] was to
employ the remarkable orthonormal wavelet basis constructed by Auscher and
Hytonen for spaces of homogeneous type [AuH1] to define appropriate product
square functions and Hardy spaces. Note that it is in the construction of the
wavelets that the Borel regularity of the measure is required [AuH2]. In the
current paper we provide an atomic decomposition in the product setting and,
as a consequence of our main result, we show that the HP(X) spaces defined
via a wavelet basis in [HLW] are independent not only of the chosen wavelet
basis, but also of the choice of underlying reference dyadic grids.

In the one-parameter setting the Hardy space HP(X) was built in [HLW]
using the Hytonen-Auscher wavelets (themselves built upon a fixed reference
dyadic grid). Using the Plancherel-Polya inequalities proved in [HLW] (see
also [Han2]), one can observe that the spaces HP(X) are well defined, meaning
they are independent of the choice of wavelet basis (built upon the same ref-
erence dyadic grid). Later, in [HHL1], the atomic and molecular characteriza-
tions of the one-parameter Hardy space were studied; it was shown that HP(X)
is equivalent to H ,ft(X ), the Coifman-Weiss atomic Hardy space, and therefore
the definition of HP(X) is independent of the choice of the wavelets and of the
underlying reference dyadic grid. See also the work in [FY] for characteriz-
ing the atomic Hardy space via wavelet bases. More recently, in [HeHLLYY],
the authors provided a complete real-variable theory of one-parameter Hardy
spaces on spaces of homogeneous type, especially for proving the radial max-
imal characterization of H ft(X ), which answered completely a question asked
by Coifman and Weiss [CW2, p.642].

We now turn to the product case. As in the one-parameter case, the product
Plancherel-Polya inequalities proved in [HLW] would imply that H?(X) is in-
dependent of the choice of wavelet basis (built upon fixed reference dyadic grids
on each component of the product X of spaces of homogenenous type). In this
paper, instead we introduce the product (p, g)-atoms for 0 < p < 1 < g and
corresponding atomic product Hardy spaces H:?(X), whose definition is inde-
pendent of any wavelet bases and also of the reference dyadic grids. As a direct
application, we deduce that the product Hardy spaces HP(X) are independent
of the choices of wavelets and of underlying reference dyadic grids. This result
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is consistent with the product theory on the Euclidean setting R” x R™, and
parallel to the one-parameter theory on spaces of homogenenous type (X, d, u)
as presented in [HHL1].

Important features in the one-parameter case, treated in [HHL1], are that
HP(X) N L?(X) is dense in HP(X) and functions in HP(X) N L?(X) have a nice
atomic decomposition which converges in both L?(X) and HP(X). These fea-
tures allow a linear operator bounded on L*(X) to pass through the sum in an
atomic decomposition, hence reducing the proof of the boundedness of the op-
erator to verifying uniform boundedness on atoms. See the discussion in [HHL1,
p.3431-3432] regarding applications of these features to prove T(1) theorems.
Similar density features hold in the product case, as shown in [HLLin]; to be
more precise, HP(X) N L4(X) is dense in HP(X) for all g > 1. In this paper, we
will show in addition that for all ¢ > 1 and all p with 0 < p < 1, HP(X) N L4(X)
is a subset of LP(X), with the LP-(semi)norm controlled by the HP-(semi)norm.
These facts will be an important cornerstone in proving the atomic decomposi-
tion for HP(X).

The product Carleson measure space CMO? (X) was introduced in [HLW]. It
was shown in the same paper that CMO® (X) is the dual of HP(X), that the space
of bounded mean oscillation BMO(X) coincides with CMO'(X) and hence is
the dual of H'(X), and that the vanishing mean oscillation space VMO(X) is the
predual of H'(X). As a consequence of our result for the product Hardy spaces,
we see that the spaces CMO?(X), BMO(X), and VMO(X) are also independent
not only of the chosen wavelet basis, but also of the chosen reference dyadic
grids. Note that in the one-parameter case it was shown in [HHL1, Proposition
4.3] that CMOP®(X) coincides with the Campanato space 6’1 ,(X), which is the

dual of the Coifman-Weiss atomic Hardy space H (X, and is a space defined
independently of any wavelets and their reference dyadlc grids.

WhenX = X; X--- XX n the spaces HP(X) constructed in [HLW] are defined
for all p > max{ o_)H? 1 i=1,2--,n}. Heren; € (0,1) is the exponent of

Holder regularity of the Auscher-Hytonen wavelets, defined on the spaces of
homogeneous type (X;, d;, i;), that are used in the construction of HP(X), and
w; > 0is an upper dimension of X;, fori =1, ..., n.

Our main result is the following.

Main Theorem. Let X = X, xX,, wherefori = 1, 2, (X;, d;, u;) are spaces of ho-
mogeneous type in the sense of Coifman and Weiss as described above, with quasi-
metrics d; and Borel-regular doubling measures p;. Let w; be an upper dimension
for X;, and let n; be the exponent of regularity of the Auscher-Hytonen Wavelets

used in the construction of the Hardy space HP(X). Suppose that max{ :
l 771

i=1,2}<p<1<q<ooandf € LIX). Then f € H(X) if and only if f
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has an atomic decomposition:

f= 2 4a; (1.4)

j==s0

where the a; are (p, q)-atoms, Z;’;_m |4;|P < oo, and the series converges in
L9(X). Moreover, the series also converges in HP(X) and

||f||Hp(z>~inf{(§ 1P)7 : f = i Aajl,

J=—OO J=—Oo

where the infimum is taken over all decompositions as in (1.4). The implicit con-
stants are independent of the L1(X)-norm and the HP(X)-(semi)norm of f. They
depend only on the geometric constants of the spaces X; fori =1, 2.

For simplicity we work in the case of two factors: X = X; X X,. However,
we expect our results and proofs to go through for arbitrarily many factors; in
particular one would need a n-parameter version of Journé’s Lemma on spaces
of homogeneous type, which would generalise both Pipher’s n-parameter Eu-
clidean version [P] and Han, Li and Lin’s two-parameter version on spaces of
homogeneous type [HLLin].

Remark 1.1. Using an approximation argument and the fact that LI(X)nHP (X)
is dense in HP(X) for all g > 1, we will deduce that the atomic decomposition
and norm characterization hold for all distributions in HP(X), not just those in
LI(X). That is the content of Corollary A.

We deduce three corollaries from the Main Theorem. First, the atomic prod-
uct spaces H ft’q we define coincide, for all ¢ > 1, with the product Hardy spaces
HP defined in [HLW].

@i

Corollary A. Forall g with 1 < g < co and p with max { ri=1,2l<p<

@;+7;
1, we have

HY(X) = HP(X).

Thus, we can define HY (X) to be H>(X) for any g > 1.
Second, as a consequence, we deduce that the product Hardy spaces are in-

dependent both of wavelets and of reference dyadic grids.
Corollary B. Let X and p with p > max{w—; : i = 1,2} be as in the Main
Wi +);

Theorem. Then the Hardy spaces HP(X) as defined in [HLW] are independent of
the particular choices of the Auscher-Hytonen wavelets and of the reference dyadic
grids used in their construction.

Third, the Carleson measure spaces and the spaces of bounded mean oscil-
lation and of vanishing mean oscillation are also independent of both wavelets
and reference dyadic grids.
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@i

Corollary C. Let X and max{ : i = 1,2} < p < 1beasin the Main

@;+7);
Theorem. Then the Carleson measure spaces CMO*(X), the space of bounded
mean oscillation BMO(X), and the space of vanishing mean oscillation VMO(X),
as defined in [HLW], are independent of the particular choices of the Auscher-
Hytonen wavelets and of the reference dyadic grids used in their construction.

In the special case when p = 1 and g = 2, the (p, g)-atoms defined in this
paper, and the corresponding atomic decomposition found for H?(X) N LI(X),
were used in establishing dyadic structure theorems for H'(X) and BMO(X)
[KLPW, Definition 5.3 and Theorem 5.4]. To achieve this goal, correspond-
ing dyadic atomic Hardy spaces were introduced in [KLPW, Definition 6.3 and
Theorem 6.5].

We would like to mention that Fu and Yang [FY] present a characterization
of the Coifman and Weiss atomic Hardy space H ;t(X ) in the one-parameter
case, using the Auscher-Hytonen wavelets, under the assumptions that (X, d, u)
is a metric measure space of homogeneous type, diam(X) = oo, and X is a
non-atomic space, meaning that u({x}) = 0 for all x € X. They prove that
the Auscher-Hytonen wavelets form an unconditional basis in H'(X) and from
there they deduce that a function being in H ;t(X ) is equivalent to the uncondi-
tional convergence in L' (X) of the function’s wavelet expansion, and equivalent
to the boundedness on L'(X) of each of three different discrete square func-
tions, one of them coinciding with that in the definition of H'(X) presented in
[HLW]. All these one-parameter Hardy spaces H'(X) coincide when the con-
ditions assumed in [FY] are met. Fu and Yang did not address the case p < 1,
nor the product case, which are the focus of this article.

The paper is organized as follows. In Section 2 we place our work in his-
torical context, describing some of the progress made to date, from the orig-
inal work of Coifman and Weiss until the present setting, mostly in the one-
parameter case.

In Section 3 we recall the basic ingredients involved in the definition of prod-
uct Hardy and BMO spaces, on spaces of homogeneous type in the sense of Coif-
man and Weiss with only the original quasi-metric and a Borel-regular doubling
measure u, as introduced in [HLW]. These preliminaries include the Hytonen-
Kairema systems of dyadic cubes [HyK], the Auscher-Hyténen orthonormal
basis and reference dyadic grids [AuH1, AuH2], and the test functions and dis-
tributions in both the one-parameter and product settings [HLW].

In Section 4 we recall the definitions in [HLW] of product Hardy spaces
HP(X); their duals and the Carleson measure spaces CMOP(X); the space of
bounded mean oscillation BMO(X); and the space of vanishing mean oscilla-
tion VMO(X), which turns out to be the predual of H'(X). These definitions
are based on product square functions, themselves defined using the Auscher-
Hytonen wavelets and the reference dyadic grids used in their construction
in [HLW]. We prove a key new lemma in Section 4 that allows us to decom-
pose the Auscher-Hytonen wavelets into compactly supported building blocks
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rescaled as needed and with appropriate size, smoothness, and cancellation
properties, following the approach in Nagel and Stein [NS]. In turn this lemma
allows us to show that, within the allowed range of p dictated by the geomet-
ric constants and the Hélder-continuity parameters of the wavelets, functions
in HP(X) N LI(X) for 1 < q < oo are LP-integrable, with LP-(semi)norm con-
trolled by their HP-(semi)norm.

In Section 5 we introduce the product (p, g)-atoms and atomic product Hardy
spaces HYY(X) for 1 < g < oo and for p in the same range for which the product
Hardy spaces HP(X) are defined. We restate the Main Theorem, and use it to
prove Corollaries A, B, and C, thus establishing that the atomic product Hardy
spaces H ft’q(f ) coincide with the product Hardy spaces HP(X) for all ¢ > 1,
and that the spaces CMOP(X), BMO(X), and VMO(X) are independent of the
choices of wavelet bases and of reference dyadic grids on X; and X, used in
their construction. Finally we prove the Main Theorem, yielding an atomic
decomposition for HP(X) n LI(X) in terms of (p, q)-atoms for each g with 1 <
q < oo, with convergence in both H? and L9 and showing that (p, g)-atoms
are uniformly in H?(X). Key in this decomposition is the use of a Journé-type
covering lemma in the product setting, which was proved in [HLLin].

Throughout the paper the following notation is used. First, A < B means
there is a constant C > 0 depending only on the geometric constants (quasi-
triangle constants of the quasi-metrics, doubling constants of the measures, and
upper dimensions of X; for i = 1, 2) such that A < CB. Second, A ~ B means
that A < B and B < A. Third, the value of a constant C > 0 may change
from line to line within a string of inequalities. If the constant C depends on
some other parameter(s), for example on g > 1 and § > 0, then we may denote
it by Cys. Likewise, the notation <, 5 indicates that the implied constant in
the inequality depends also on the parameters g and §. We denote by y4 the
characteristic function ofaset A C X, thatis, y4(x) = lifx € Aand y4(x) =0
otherwise.

2. Context and significance

In this section we discuss the developments in the theory of one-parameter
Hardy spaces that led to the results presented in this paper. This is by no means
a comprehensive historical survey, rather a series of snapshots that will give
some perspective to our work. For a more complete survey see [HHL2].

We recall the atomic Hardy space H. ft(X ) on a space of homogeneous type,
following [CW2]. Given (X, d, u), a space of homogeneous type in the sense of
Coifman and Weiss, as presented in the Introduction, the atomic Hardy space
H ft(X )is defined to be a certain subcollection of the bounded linear functionals

on the Campanato space C.(X) with o = E 1,0 < p < 1. Namely, Hft(X )is
p
defined to be those bounded linear functionals on C,(X) that admit an atomic
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decomposition
=44, 2.1)
j=1

where the functions a; are (p, 2)-atoms, E;‘;l |4;]P < oo, and the series in (2.1)

converges in the dual space of C,(X). The quasi-norm of f in H :t(X ) is defined
by

) 1
1l 2= inf (3 14,12)7)
=1

where the infimum is taken over all such atomic representations of f.
Here a function a(x) is said to be a (p, 2)-atom if the following conditions
hold:

(i) (Support condition) the support of a(x) is contained in a ball B(x,,r)

for some x, € X and r > 0;
1 1

(i) (Size condition) ||al|r2(x) < u(B(xo, ,,))E_;; and
(iii) (Cancellation condition) f; a(x)du(x) = 0.
Recall that the Campanato space C,(X), a > 0, consists of those functions f
for which

u(B)

where B is any quasi-metric ball, fp := % Jp f(x) du(x), and the constant
u

C > 0is independent of the ball B. Let ||f]|¢_(x) be the infimum of all C for
which (2.2) holds. On R” the Campanato spaces C,(R") coincide with the a-
Lipschitz class when 0 < a < 1 and with BMO when o = 0, thanks to the
John-Nirenberg inequality.

The Coifman-Weiss definition of the atomic Hardy space H ft(X ) does not
require any regularity on the quasi-metric d, and requires only the doubling
property on the Borel-regular measure u. Moreover, for each atomic decompo-

sition Z;’;l Aja; where the functions a; are (p, 2)-atoms with 2;11 |4;]P < oo,

{L f If(X)—fBIZd/«t(x)} < CluB), 2.2)
B

the series automatically converges in the dual space of C,(X) with o = E—
p

Indeed, if a is a (p, 2)-atom and g € C,(X) with a = % — 1, then, applying first

the support and cancellation conditions on the atom a and second Holder’s in-
equality together with the size condition on the atom a, we obtain

| [ agrduo| = | [ atoleeo - gl ducr)
B B
< alla( f [8(x) - g5 dpu(x))?
B
< liglle.ons
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where B = B(x,, 7).
Therefore, if 2;1 A ia; is an atomic decomposition, g € C,(X), and o =

1_ 1, then
p

[+ [+ [+ 1
(X 2ja5.8)| < 2 Wl llglle.co < { 2 14517} ligle, co
j=1 j=1 j=1

which implies that the atomic decomposition Z;; Aja; converges in the dual
space of C,(X).

In fact, in [CW2, Theorem A, p.592], Coifman and Weiss define (p, g)-atoms,
replacing 2 by g > 1 in the definition above, and define corresponding atomic
Hardy spaces H ft’q (X). They show that for each fixed p < 1, the spaces H ft’q X)
for g > 1 all coincide. We will show in Section 5 that the analogue of this result
holds for appropriately defined product (p, g)-atoms and product atomic spaces
H ft’q(f ) in the bi-parameter case X = X; X X,.

The atomic Hardy spaces have many applications. For example, if an opera-
tor T is bounded on L?(X) and from H, ft(X ) to LP(X) for some p < 1, then T is
bounded on L4(X) for 1 < q < 2. See [CW2] for this and for more applications.

We would like to point out that Coifman and Weiss introduced the atomic
Hardy spaces H €ft(X ) on spaces of homogeneous type (X, d, u) where the quasi-
metric balls were required to be open; see [CW2] for more details. To establish
the maximal function characterization of the atomic Hardy space of Coifman
and Weiss, some additional geometrical considerations on the quasi-metric d
and the measure u were imposed. For this purpose, Macias and Segovia [MS1]
proved the following fundamental results. The first pertains to quasi-metric
spaces; the second to spaces of homogeneous type.

First, suppose that (X, d) is a space endowed with a quasi-metric d that may
have no regularity. Then there exists a quasi-metric d’ that is topologically
equivalent to d such that d(x,y) ~ d’(x,y) for all x,y € X and there exist
constants 6 € (0,1) and C > 0 so that d’ has the following regularity:

|d’(x, ) = d'(x", )| < Cd'Cx, ') [d'(x, p) + d'(x', )] ° (2:3)

for all x, x’, y € X. Moreover, if the quasi-metric balls are defined by this new
quasi-metric d’, that is, B'(x,r) :={y € X : d'(x,y) < r}for r > 0, then these
balls are open in the topology induced by d’. See [MS1, Theorem 2, p.259].
Second, suppose that (X, d, ) is a space of homogeneous type in the sense of
Coifman and Weiss, with the property that the balls are open subsets. Then the
function d” : X x X — R defined by

d"(x,y) :=inf {u(B) : x,y € B,B is a d-ball}

if x # y,and d”(x,y) = 0if x = y, is a quasi-metric topologically equivalent
to d. Furthermore, the measure u satisfies the following property for all d”-
balls B”(x,r), where x € X and r > 0:

u(B"(x,r)) ~r. (2.4)
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See [MS1, Theorem 3, p.259]. Spaces satisfying property (2.4) are called 1-
Abhlfors regular quasi-metric spaces®. Note that property (2.4) is much stronger
than the doubling condition.

Starting with a quasi-metric d for which the balls are not necessarily open, we
can obtain d’, and we can then pass to its topologically equivalent quasi-metric
d’(x,y) := inf{u(B’) : x,y € B',B’ isad’-ball} to obtain a quasi-metric
satisfying (2.3) and with the measure u satisfying (2.4).

Macias and Segovia obtained a grand maximal function characterization for
the atomic Hardy spaces HP(X) on spaces of homogeneous type (X, d, u) that
satisfy the regularity condition (2.3) on the quasi-metric d, and property (2.4)
on the measure u, with 1/(1 + 0) < p < 1, where 0 is the regularity exponent
of the quasi-metric [MS2, Theorem (5.9), p.306].

For an authoritative modern account of Hardy spaces on n-Ahlfors regular
quasi-metric spaces, see the book by Alvarado and Mitrea [AIM]. Given a quasi-
metric d, the authors work with an equivalence class of quasi-metrics that in-
cludes d and the Macias-Segovia quasi-metric. In contrast, the approach in
the present paper is to keep the original quasi-metric d untouched but to allow
for a certain randomness in the cubes that enter into the construction of the
wavelets.

To develop the Littlewood-Paley characterization of Hardy spaces on normal
spaces of homogeneous type (X, d, u) of order 6, in other words, spaces satisfy-
ing the regularity condition (2.3) on the quasi-metric d and property (2.4) on
the measure y, a suitable approximation to the identity was required. The con-
struction of such an approximation to the identity is due to Coifman [DaJS],
and this construction leads to a corresponding Calderén-type reproducing for-
mula and Littlewood-Paley theory [DeH, p.3-4]. A further discretization of this
Calderon reproducing formula is needed, and it was achieved, using the dyadic
cubes of Christ [Chr], by the first author and Sawyer. See [Han1, Han2, HaS] for
more details. In the present paper, a further discretization will also be needed;
we will instead use the dyadic cubes of Hytonen and Kairema [HyK] on which
the wavelets of Auscher and Hyténen [AuH1, AuH2] are based.

To carry out the Littlewood-Paley characterization of the atomic Hardy space
on a normal space (X, d, u) of order 6, the following test function spaces were
introduced in [HaS].

Definition 2.1 (Test functions [HaS]). Let (X, d, u) be a normal space of homo-
geneous type of order 6. Fix x, € X, r > 0, 8 € (0,0] where 6 is the regularity
exponent of d, and y > 0. A function f defined on X is said to be a test function
of type (xy, 1, B,y) centered at x, € X if f satisfies the following three conditions:

(i) (Size condition) For all x € X,

r’

(r+d(x,x0) "

lfol<C

’A quasi-metric Borel measure space (X, d, ) is n-Ahlfors regular if u(B(x,r)) ~ r.
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(ii) (Holder regularity condition) Forall x,y € X withd(x,y) < (2A0)_1(r+
d(x, xo)),

B
60— f)] < o(—2eY) r

r+ d(x, xo) (r + d(x,xo))Hy

(iii) (Cancellation condition)

f f(x)du(x) = 0.
X

and

Denote by M(x,, 7, 8,y) the set of all test functions of type (xo,7,3,y). The
norm of f in M(x,,r, 8, y) is defined by

I Nlavexr,gy) += Inf{C >0 : (i) and (ii) hold}.

For each fixed x,, let M(B,y) := M(x,1,,y). It is easy to check that for
each fixed x;, € X and r > 0, we have M(x,r, 8,7) = M(B,y) with equivalent
norms. Furthermore, it is also easy to see that M (S, y) is a Banach space with
respect to the norm on M(, y).

We remark that the above test function space M (3, y) on (X, d, u) offers the
same service as the Schwartz test function space S, = {f € § : [ f(x)x¥dx =
0, || > 0} does on R", and as the Campanato space €,(X) does on a space X
of homogenenous type in the sense of Coifman and Weiss.

In [NS], Nagel and Stein developed the product LP-theory (1 < p < )
in the setting of Carnot-Carathéodory spaces formed by vector fields satisfy-
ing Hormander’s m-finite rank condition, where m > 2 is a positive integer.
The Carnot-Carathéodory spaces studied in [NS] are spaces of homogeneous
type with a regular quasi-metric d and a measure u satisfying the conditions
u(B(x,sr)) ~ s™*2u(B(x,r)) for s > 1 and u(B(x,sr)) ~ s*u(B(x,r)) fors < 1.
These conditions on the measure are weaker than property (2.4) but are still
stronger than the original doubling condition (1.2).

Motivated by the work of Nagel and Stein, Hardy spaces via Littlewood-Paley
theory were developed by the first author, Miiller and Yang [HMY2, HMY1] on
spaces of homogeneous type with a regular quasi-metric and a measure satis-
fying some additional conditions. To be precise, let (X, d, 1) be a space of ho-
mogeneous type where the quasi-metric d satisfies the Holder regularity prop-
erty (2.3), and the measure u satisfies the doubling condition (1.2) and the re-
verse doubling condition; that is, there are constants x € (0,w] and ¢ € (0,1]
such that

cA*u(B(x,r)) < u(B(x,4r)) (2.5)
for all x € X, r with

0<r< sup d(x,y)/2,
x,yeX

and A with

1 <A< sup d(x,y)/2r.
x,yeX
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The first author, Miiller, and Yang observed in [HMY2, HMY1] that Coifman’s
construction of an approximation to the identity still works on spaces of homo-
geneous type (X, d, u) with these properties.

They also showed how to define the corresponding test functions of type
(x9,7,B,7). Their definition is very similar to Definition 2.1 above, except that
one power of (r + d(x,x,)) in the denominator is replaced by (u(B(x,r)) +

u(B(x,d(x,xy)))). Also, their definition is identical to the definition of test
functions needed in our setting, Definition 3.5, except that in their case § €
[0,6] where 6 is the regularity exponent of the metric, while in our case § €
[0, n] where 7 is the Holder exponent of the wavelets.

Applying Coifman’s approximation to the identity and a proof similar to the
one in [Hanl, Han2, HaS], the first author, Miiller, and Yang proved that a
discrete Calderdn reproducing formula still holds on (X, d, u) when the quasi-
metric d satisfies the regularity condition (2.3) and the measure u satisfies the
doubling condition (1.2) and the reverse doubling condition (2.5). As a conse-
quence, the Hardy spaces defined via the Littlewood-Paley theory were estab-
lished for such spaces of homogeneous type and, moreover, these Hardy spaces
have atomic decompositions. See [HMY2] for more details.

However, there are settings for which the reverse doubling condition is not
available. One specific example of such a space of homogeneous type appears
in the Bessel setting treated by Muckenhoupt and Stein [MuS]. They studied
the Bessel operator

A/:L:—————, /‘16(_%,00), xe(()’oo)’

with the underlying space (X,d, ) = ((0, %), | - |, x** dx). The corresponding
Hardy space was studied in [BDT] and the weak factorization was obtained in
[DLWY]. We note that the measure x>* dx is doubling when 1 € (—%, 00),

however when 1 € (—é, 0) the measure does not satisfy a reverse doubling

condition. We also note that we cannot change the metric twice as in [MS1], for
if we did we would be changing the whole setting, including the Bessel operator
in question.

In [HLW], the first, second and fourth authors developed a theory of Hardy
spaces HP and BMO on spaces of homogeneous type in the sense of Coifman
and Weiss, with only the original quasi-metric d and a (Borel-regular) dou-
bling measure y, in both the one-parameter and product settings. A crucial
idea in [HLW] was to use a square-function characterization where the square
function was built using the Auscher-Hytonen orthonormal wavelet basis on
spaces of homogeneous type [AuH1, AuH2]. In the current paper we provide
an atomic decomposition for HP(X) n LI(X) for each g with 1 < g < oo, for
X = X, x X, with X; a space of homogenenous type in the sense of Coifman
and Weiss for i = 1, 2. This atomic decomposition is completely independent
of any wavelet bases and reference dyadic grids on X; for i = 1, 2 used to define
HP(X). As a consequence of the main result of this paper, the HP(X) spaces
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defined in [HLW] via a particular Auscher-Hytonen wavelet basis are indepen-
dent not only of the chosen wavelet bases, but also of the choice of reference
dyadic grids.

3. Preliminaries

In this section, we will recall first Hytonen and Kairema’s systems of dyadic
cubes [HyK], second Auscher and Hytonen’s orthonormal basis [AuH1] paying
close attention to their underlying reference dyadic grids, and third the sets of
test functions and distributions developed in [HLW] in both one-parameter and
the product settings. We recall that the Auscher and Hytonen wavelets in both
one-parameter and product settings are suitable test functions. These are all
necessary ingredients in the definition of product Hardy spaces introduced in
[HLW] that we present in Section 4.

3.1. Systems of dyadic cubes. We now describe the Hyténen and Kairema
[HyK] families of dyadic “cubes” built on geometrically doubling quasi-metric
spaces. A quasi-metric space (X, d) is geometrically doubling if there exists a
natural number N such that any quasi-metric ball B(x, r) can be covered with
no more than N balls of half the radius. Coifman and Weiss [CW1] showed
that spaces of homogeneous type (X, d, 1) are geometrically doubling quasi-
metric spaces. The Hytonen-Kairema construction builds on seminal work of
Guy David [Da], Christ [Chr], and Sawyer and Wheeden [SW].

Theorem 3.1 ([HyK], Theorem 2.2). Given a geometrically doubling quasi-metric
space (X, d), let Ay > 0 denote the quasi-triangle constant for the metric d. Given
constants ¢, and Cy with 0 < ¢, < Cy < o0, and constant § € (0, 1) satisfying

12A2Co6 < cq. (3.1)

Given a set of points {z’;}aeyfk, where <7, is a countable set of indices for each k €
Z, with the properties that

d(zg,z’g) > ¢k (a # B), ;2191{1 d(x,z’;) <Cys* forallx eX, (3.2)
ge7s

(called a (cy, Cy)-maximal set of §-separated points), we can construct families

~ —k
of sets QK C Qk C Q. (called open, half-open and closed dyadic cubes), such
that:

- —k
Q§ and Q,, are the interior and closure of Qg, respectively; (3.3)

(Nested family) if ¢ > k, then either Qg cQkorQkn Qg =@ (3.4)

(Disjoint union) X = U Q’o‘( forallk € Z,; (3.5)
aEszk
(Inner and outer balls) B(zX, c;8%) € QX C B(z%, C,6%), (3.6)

where ¢c; 1= (3A0) " ¢y and C; 1= 24,Cy;
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ift >k and Qf; C Qk, then B(zf;, C,8%) C B(zk, C,6%). (3.7)

~ —&
The open and closed cubes QX and Q,, depend only on the points zf; for¢ > k.
The half-open cubes QX depend on zg for ¢ > min(k, ko), where k, € Z is a

preassigned number entering the construction.

We denote by Z the family of dyadic cubes {QX Ykez,, asin Theorem 3.1. We
will refer to & as a Hytdnen-Kairema dyadic system or grid on X. We will refer
to any cube Q’g“ € 2 that is contained in Q’o‘[ € Z as a child of Q’o‘[. Note that

every cube has at least one child and no more than M children, where M is a
uniform bound determined by the geometric doubling condition.

The existence of countable sets of separated points as in (3.2) is ensured by
the geometric doubling property of the quasi-metric space (X, d). For a given
Hytonen-Kairema dyadic system of cubes, we will call ¢, and C the separation
constants of the system, ¢; and C, the dilation constants of the system, and § the
base side length of the cube. Collectively these will be called structural constants
of the dyadic system or of the dyadic grid. Note that in (3.6), as it should be, the
dilation constants ¢; and C;, determining the radii of the inner and outer balls
for each cube, satisfy 0 < ¢; < Cj, since by hypothesis the separation constants
satisfy 0 < ¢y < Cy, but a priori C; is not necessarily greater than one. We will
sometimes denote by Bé and Bg the inner and outer balls of a dyadic cube Q.

Given a cube Q’;, we denote the quantity 6% by ¢ (Qlo‘c), by analogy with the
sidelength of a Euclidean cube. We define the dilate 1QX of a dyadic cube to be
the A-dilate of its outer ball. That is, for 1 > 0,

AQK := B(zk,1C,8%).

By construction, the cubes are unions of quasi-metric balls, hence in the set-
ting of a space of homogeneous type, the cubes are measurable. In the presence
of a doubling measure u (doubling with respect to balls) the measure u is “dou-
bling” with respect to Hyténen-Kairema cubes. More precisely,

] ]

ke < (1) (B8 < 24(2) @ 68

€1 €1
where the first inequality is a consequence of the doubling property (1.3), and
the second holds simply because the inner ball of a cube sits inside the cube.
Also note that by construction, specifically properties (3.6) and (3.1), the ra-
tio C;/c; = 6A(3)(C0/co) < 671/2, where § € (0,1) is the base side length
of the cubes. Potentially the base side length parameter § can be arbitrarily
small, therefore making the upper bound in (3.8) arbitrarily large. Also, the ra-
tio C; /c; may be under control, but that does not imply the outer dilation con-
stant cannot be arbitrarily large, since a priori we could allow the inner dilation
constant to also be arbitrarily large. These facts can be problematic, therefore
we single out the dyadic systems that do not suffer from these problems, and

we call them regular families of dyadic systems or grids.
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Definition 3.2 (Regular families of dyadic systems). Given a geometric dou-
bling quasi-metric space (X, d). A family {2°},c of Hyténen-Kairema dyadic
systems on X is regular if the outer dilation constants {Cf }pes and the ratio of

the outer and inner dilation constants {Cf / c’l’ }pes Of the systems in the fam-
ily are uniformly bounded by constants depending only on the quasi-triangle
constant A, of the quasi-metric d.

In the proof of the main theorem in Section 5.4 we will have atomic decom-
positions in the setting of a product of spaces of homogenenous type, X; X X,,
with atoms a associated to dyadic grids D} belonging to regular families on
(X;,d;, ;) for i = 1,2. Often we will estimate the measure of dilates of cubes
Q; € /" as in inequality (3.8), and will simply say “by doubling”

#i(AQ) S A% 1 (Qy). (3.9)

The < will only depend on the geometric constants of the spaces X; fori = 1, 2,
but not on the structural constants of the dyadic grids, because Dia belong to
a regular family of dyadic systems. Elsewhere in the proof of the main theo-
rem the outer dilation constants Ci will come into the estimates, and we will
need them also to be uniformly bounded by a constant depending only on the
geometric constants of X; fori =1, 2.

3.2. Orthonormal basis, reproducing formula, and cut-off functions.
Auscher and Hytonen [AuH1] constructed a remarkable orthonormal basis
of L2(X), where (X, d, w) is a space of homogeneous type. To state their result,
we first recall the reference dyadic points xX as follows.
Let & be a fixed small positive parameter (§ < 10_3A5 10" where A, is the

quasi-triangle constant of the quasi-metric d). For k = 0, let 270 := {xf,’(}ocegi0

be a maximal set of 1-separated points in X. Inductively, fork € Z,,let 2% :=
(X e, 2 2% and 277 1= {x;* e, € 2D be maximal §*- and
§~*-separated collections in .2¥~1 and .2"~*=1, respectively. The families .2
have the separation properties required in Theorem 3.1 for the construction of
cubes, with separation constants ¢y = 1, Cy = 2A,, base side length the given
§ € (0,1), and with the additional property that 2% C 2%+ for k € Z. We
denote the corresponding cubes by Q’;, and the dyadic system 2" . We will call
9% the reference dyadic system or grid underlying the wavelets.

A randomization .2 ¥(w) of the families 2%, as discussed in [HyK, HyM],
has the separation properties for each random parameter w (in a certain space Q
equipped with a probability measure P, ) needed to construct the dyadic cubes
Q’O‘((co) according to Theorem 3.1. However, in [AuH1, Theorem 2.11]) they

modify the construction so that the randomized dyadic cubes QX(w) have uni-
form (in the random parameter w € Q) dilation constants (in fact ¢; (w) = %Ag >
and C;(w) = 6Ag > 1 for all w € Q), and an additional “small boundary layer

property” on average with respect to the probability measure introduced by the
randomization [AuH1, Equation (2.3)]. It is in measuring the smallness of the
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boundary layer that a small parameter 7 > 0 appears, dependent only on the
geometric constants of the space X. This parameter 7 is the Holder regular-
ity of the wavelets defined in Theorem 3.3. In this randomized construction,
the reference dyadic point x* may also be viewed as the center of the random
cubes Q’; (w) for all w belonging to the parameter space Q. For the details of this
beautiful construction see [AuH1, Section 2].

Now denote #* := 27%+1\ 2%, and relabel the points xX that belong to #*
as yX, where a € o.,;\ and k € Z. To each such point yX, Auscher and
Hytonen associate a function 1,b§ that is almost supported near y§ at scale &¥
(these functions are not compactly supported, but have exponential decay).
Also note that to each Hytonen-Kairema cube QX there corresponds the point

xX and to each of the children of QX there correspond other points x’g“, one

of which coincides by construction with xX. Thus the number of indices c in
1\ corresponding to QX is exactly N(QK) — 1, where N(QK) denotes the
number of children of QX. This is the right number of wavelets we will need
per cube if our intuition is guided by tensor product wavelets in R", or Haar
functions on spaces of homogeneous type based on Hytonen-Kairema cubes,
as constructed for example in [KLPW]. Later on we will write « € %% mean-
ing o € 1\ .

We now state the theorem describing precisely the wavelets of Auscher and
Hytonen.

Theorem 3.3 ([AuH1], Theorem 7.1). Let (X,d, u) be a space of homogeneous
type with quasi-triangle constant A,, with reference dyadic system of cubes 2V =
{Qlé}kez,ae 7k that has base side length § € (0,1) and small boundary layer pa-
rametern € (0,1]. Let

a 1= (1+2log, Ay)". (3.10)

There exist an orthonormal basis {)X};c Zacd\% O L%(X) and finite constants
C > 0andv > Osuch that forallk € Z and a € ., \ < each function ng
satisfies the following conditions:
() 9k is centered at yk € #¥;
(ii) ¢§ has exponential decay determined by parameters a and v, namely for
all x € X,

d(yk, x)\a
[pk(x)| < ¢ exp ( — v( (}:;‘k x)) ); (3.11)
u(BE, 8))

(iii) ¥ has (local) Holder regularity with Holder exponent 1, namely for all
X,y € X such that d(x, y) < &%,

[pE(x) — Pk <

C AV p (- V(d<y§, x)

a; (3.12)
u(BOE69) . 5 )
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(iv) 1,b§ has vanishing mean, namely
f PE() du(x) = 0. (3.13)
X

In Theorem 3.3, the constants C, v, 7, and § are independent of k, ¢, and y§ .
They depend only on the geometric constants of the space X: quasi-triangle
inequality, doubling constant, and upper dimension. The constant § € (0, 1),
determining the side length of the reference dyadic cubes, is a fixed small pa-
rameter, more precisely, § < 1072A;™°.

In what follows, we refer to the functions X as Auscher-Hytnen wavelets or
simply wavelets. The wavelet expansion, convergent in the sense of L2(X), is
given by

FG =2 25 (L 9hkx). (3.14)

keZ acwk

Here(f,g) := fy f(x)g(x)du(x) denotes the L?-pairing. The Auscher-Hytonen
wavelets {z,bg}kez,ae% form an unconditional basis of LI(X) for all g with 1 <
q < oo; see [AuH1, Corollary 10.4]. Therefore, the reproducing formula (3.14)
also holds for f € L9(X). Note that for the reproducing formula (3.14) to hold,
it suffices that the measure u is Borel regular; see addendum [AuH2]. Also note
that it is possible to build different wavelets based on the same reference dyadic
points [AuH1].

In the Auscher-Hytonen construction of wavelets, the reference dyadic grids
2% form a regular family of dyadic systems according to Definition 3.2, be-
cause the outer dilation constants and the ratio of the outer and inner dilation
constants are respectively, C; = 6A3 >1land C,/c; = 36A8, for all the systems
in the family.

For a general space of homogeneous type, the Holder exponent  of the wave-
lets is bounded above by a constant 7, (0 < 7 < 7,) that only depends on the
geometric parameters of the geometrically doubling space (X, d) [AuH1]. The
constant 7, is usually much smaller than one, even in the case of metric spaces.
In [HyT], Hytonen and Tapiola presented a different construction of the metric
wavelets that allows one to obtain Holder-regularity for any exponent 7 < 1,
strictly below but arbitrarily close to one.

The wavelets’ regularity parameter 7 enters into the definition of the Hardy
spaces HP(X) on spaces of homogeneous type (X, d, i). In particular, 7 together
with an upper dimension w of the doubling measure ¢ determines the range of
p for which the Hardy space is defined, namely w/(n + w) < p < 1. The larger
7 is, the smaller p can be chosen. A similar phenomenon occurs for the Hardy
spaces on product spaces of homogeneous type, as pointed out in [HLW], see
also Section 4. This is parallel to the theory on R" where the theory of HP-
spaces with just the cancellation property is limited ton/(n + 1) < p <1, and
to access smaller values of p, the test functions must have larger number of
vanishing moments, unavailable in general spaces of homogeneous type.
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The construction of wavelets hinges on the construction of certain “splines”
on X defined using the probability measure P, on the space Q. For every
(k,a) € Zx%* Auscher and Hytonen [AuH1, Equation (3.1)] define the spline
function s’; : X - [0,1] by

sk(x) 1= P,(x € 51;(@)).

The spline functions s§ are bumps supported on a ball centered at xéj and ra-
dius roughly 5%, and they satisfy some interpolation, reproducing, and Holder-
continuity properties, described precisely in [AuH1, Theorem 3.1].

The splines in turn were used in [HLW] to construct smooth cut-off func-
tions.

Lemma 3.4 ([HLW], Lemma 3.8). For each fixed x, € X and R, € (0, ), there
exists a smooth cut-off function h(x) such that 0 < h(x) <1,

h(x) =1 when x € B(x,,Ry/4), h(x) =0 when x € B(x,, AZRo)",
and there exists a positive constant C, independent of x,, Ry, x, and y (dependent

only on geometric constants of the space X) such that

dx,
Ih(x) - hy)| < <;;0y Y.

Note that the cut-off functions satisfy a global Holder regularity condition
with the same exponent 7 as the wavelets in Theorem 3.3. We will use these
smooth cut-off functions on X in the proof of the key decomposition Lemma 4.8
for the wavelets.

3.3. Test function spaces and distributions. We now recall the definition
of the test functions and distributions on (X, d, u) that will enter into the defini-
tion of the Hardy spaces on product of spaces of homogeneous type. In partic-
ular, we observe that the normalized Auscher-Hytonen wavelets are test func-
tions.

Let V,(x) := u(B(x,r)) forx € X,r > 0and V(x,y) := u(B(x,d(x,y))) for
x,y €X.

Definition 3.5 (Test functions [HLW], Definition 3.1). Fix x, € X, r > 0,
B € (0,n] where n < 1 is the Holder regularity exponent from Theorem 3.3,
and y > 0. A u-measurable function f defined on X is said to be a test function
of type (xy, 1, B,7) centered at x, € X if f satisfies the following three conditions.
(i) (Size condition) For all x € X there is a constant C > 0 such that
1 r 4
Feol =€ V,(xo) + V(x, xp) (r + d(x, xo)) '

(ii) (Local Holder regularity condition) For all x, y € X with d(x,y) <
(24)~(r + d(x, xy)) there is a constant C > 0 such that

d(x,y) \# 1 A ’
If0) = f)l < C(,, n d(x,xo)) V,(x0) + V(x, Xg) (r + d(x,xO)) '
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(iii) (Cancellation condition)

f f(x)du(x) = 0.
X

These test functions generalize the test functions in Definition 2.1, which
applies to the case when u(B’(x,r)) ~ r and the quasi-metric d’ has the Holder
regularity (2.3) with exponent 6. Notice that in this case (V,(x,) + V(x, xy)) ~

(r + d'(x, x,)), and both definitions coincide. One can also compare to corre-
sponding definitions in [HMY2, HMY1] in the case when the quasi-metric d
satisfies the Holder regularity (2.3) with exponent 6 and the measure satisfies
the doubling condition (1.2) and the reverse doubling condition (2.5). In these
cases the only difference is that § is in (0, 0] instead of being in (0, n]; otherwise
the definitions are identical.

Let G(x,,r, 8,7) denote the set of all test functions of type (x,, ¥, 5,7). The
norm on G(x,, ¥, 8,7) is defined by

1 llaceorgy) i=inf{C >0 : (i) and (ii) hold}.

Now fix x, € X. Let G(8,y) := G(xy,1,8,y). It is easy to check that
G(xy,71,8,7) = G(B,y) with equivalent norms for each fixed x; € X and r > 0.
Furthermore, it is also easy to see that if 0 < § < 7 then G(#,y) C G(B,y) and
G(n,7) is a Banach space with respect to the norm on G(7, y).

For0 < 8 <1, let G,(B,7) be the completion of the space G(7, ) in the norm

of G(B,7). For f € G,(B,7), we define ||f||c°; G = [|flloegy)- The spaces
(B,

G,(8,y) are nested; if 0 < 8 < 8’ and 0 < y <y then G, (8',7") C G,(B. 7).
The distribution space (G, (B, 7))’ is the set of all bounded linear functionals

on G,(B,y). We denote by (f, h) the natural pairing of elements h € G,(8,7)

and f € (G,(8.7)).

The normalized Auscher-Hytonen wavelets are test functions in G(#, y) for
any y > 0. Later on we will take advantage of this fact, inherited from the
exponential decay of the wavelets, and choose y to be large enough.

The reproducing formula holds in the space of test functions and distribu-

tions with parameters 8’,y” € (0, 7). More precisely, the following propositions
hold.

Proposition 3.6 ((HLW], Theorem 3.3). Suppose {ng}kez,aeg;/k is an orthonor-
mal basis as in Theorem 3.3, with Holder regularity of order . Then the normal-
ized wavelet gbf,‘c(x)/ ,u(B(yg, 8k)) belongs to the set G(yg, 5%, 1,7) of test func-
tions of type (¥, 8%, 1,) centered at yk € X foreach k € Z, « € Y*, andy > 0.
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Proposition 3.7 ((HLW], Theorem 3.4). Suppose that f € G,(8,y) with B,y €

(0,7). Then the reproducing formula (3.14) holdsin G (8, y") foreach 8’ € (0, )
andy’ € (0,y).

As a consequence, the reproducing formula also holds for distributions.
Corollary 3.8 ([HLW], Corollary 3.5). The reproducing formula (3.14) holds in
(G,(B',7)), when B',y" € (0,7).

3.4. Product setting. Consider the product setting X = X; X X,, where each
(X;,d;, 1), i =1, 2,1s a space of homogeneous type as defined in Section 1. For
i=1,2,let Ag) be the constant in the quasi-triangle inequality (1.1), let C,, be
the doubling constant as in inequality (1.2), and let w; be an upper dimension
of X; as in inequality (1.3). By Theorem 3.3, on each space of homogeneous
type (X;,d;, u;) fori = 1,2, there is a wavelet basis {Z,bgi}kiez’aieg/ki , with Holder
regularity exponent »; € (0, 1] as in inequality (3.12), and reference dyadic grid
2" with dilation constants ¢, C! and their ratio C} /c} depending uniformly
on Ag).

The spaces of product test functions and distributions on the product space
X are defined as follows.

Definition 3.9 (Product test functions and distributions [HLW], Section 3). Let
X = X, xX, where (X;, d;, ;) is a space of homogenenous type for each i = 1, 2.
Suppose X, = (xg,¥,) € X and r; > 0, take §8; so that 0 < f; < #;, and take
yi > 0,fori = 1, 2. Denote ¥ = (ry,7,), E = (B1,B2), and ¥ = (y1,72)- A
function f(x,y) defined on X is said to be a test function of type (%, 7, B, 7) if
the following conditions hold. First, for each fixed y € X, f(x,y), as a func-
tion of the variable x, is a test function in G(x,,r;,81,¥;) on X;. Second, for
each fixed x € X;, f(x,y), as a function of the variable y, is a test function
in G(yy,72, B2, ¥72) on X,. Third, the following mixed conditions are satisfied,
where V., (Vo) 1= ua(Bx,(Vo,r2)), and V5 (yo, y) 1= #2(BX2()’0, d>(¥,¥0))):
(i) (Size condition in y variable) For all y € X,,

1FCWI <c : ()"
PG AL = Var,00) + Voo, ¥) \ra + da(y, yo) ’

i1) (Holder regularity condition in y variable) For all y,y" € X, wit
(i) (Hold gularity condition i iable) 11 ! ith

d,(3,¥") < (ry + dy (9, 70)) /248,

we have
d,(,Y) \F
1FC) = FCotpnpry < (222 )

ry +dy(y,¥0)

x 1 ( 7'2 )72
Var,00) + Voo, ¥) \ra + da(3, yo) .
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(iii) (Size and regularity conditions in x variable) Properties (i) and (ii) also
hold interchanging the roles of x and y.
When f is a test function of type (%, 7, 8,7), we write f € G(X,,7,8,7). The
expression || f ”G(J?of, By = inf{C : (i), (ii) and (iii) hold} defines a norm on
G(an ?: ﬁa )’7)' . o~ _

We denote by G(8,¥) the class G(Xo, 1, 8, ¥) for any fixed X, € X and where
1=(1,1). Then G(%,,7,53,7) = G(B,7), with equivalent norms, for all %, € X
andr; > 0, ry > 0. Furthermore, G(3,7) is a Banach space with respect to the
norm on G(83,7).

For 5; € (0,m;]and y; > 0, fori = 1, 2, let Gﬁ(,g,f/) be the completion of

the space G(7,7) in G(B,7) in the norm of G(B, 7). For fe 5,7(5 ¥), we define

71 5o = Wl

The distribution space (Gﬁ(E , )7)), consists of all bounded linear functionals

on Gﬁ(ﬁ ¥). We denote by (f, h) the natural pairing of elements h € G,;(E ¥)
o ~ !/
and f € (G4(B.7)) -

Given Auscher-Hytonen wavelets {zp’;ﬁ $kez,c,es With Holder regularity #;
on each space of homogeneous type (X;,d;, ;) for i = 1, 2, the correspond-

ing normalized tensor product wavelets JQ (x; )$§§ (x,) belong to Gﬁ(E ,7)when
B; € (0,p;] and y; > Ofori = 1,2. See [HLW, p.124]. The L?*-normalized

wavelets are given by Jﬁi (x;) := 1,02 (x;)/ \/ i (Bx, (ygi, 5?)) fori=1,2.

We are aware the tilde notation is being used to denote the product space and
ordered pairs, now also to denote the L?-normalized wavelets, and later on to
denote enlargement of open domains in the product space and L!-normalized
functions. We expect the reader not to get too confused with the multiple pur-
poses of this notation. We will write periodic reminders when a new tilde ap-
pears.

The following reproducing formula holds on the product space X = X; X X,.

Theorem 3.10 ((HLW], Theorem 3.11). Fori = 1, 2, let {$§ } czaent be
Auscher-Hytonen wavelets with Holder regularity n; > 0 with reference dyadic
grids QiW on the space of homogeneous type (X;, d;, 1;), and fix constants 3;, y; €
(0,7;) . Then the following hold:

(a) The reproducing formula

fonx) =2 Y > D (e )P n)  (315)

ki€Z qjew'’ kyeZ ayew'ta

holds in (0},7(37,77’) foreach B! € (0,8;) and y! € (0,7;), fori =1, 2.
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(b) The reproducing formula (3.15) also holds in (Gﬁ(g, Y)Y, the space of dis-
tributions.

Furthermore, when f € LI(X)with q > 1, the series (3.15) converges uncon-
ditionally in the LI(X)-norm. This is a consequence of the Auscher-Hytonen
wavelets being an unconditional basis on L4(X;) for i = 1, 2; see [AuH1, Corol-
lary 10.4].

4. Product Hardy spaces, duals, predual, key auxiliary result and
theorem

In this section we first recall the Hardy spaces HP(X), their duals the Car-
leson measure spaces CMOP (X), and the spaces of bounded and vanishing mean
oscillation, BMO(X) and VMO(X), respectively the dual and predual of H(X).
All these spaces, in the setting of product spaces of homogeneous type, were
introduced in [HLW] in terms of a square function defined via the Auscher-
Hytonen wavelet bases and their reference dyadic grids. We prove a key lemma
that shows each of the Auscher-Hytonen wavelets can themselves be further
decomposed into compactly supported building blocks with appropriate size,
smoothness, and cancellation conditions inherited from the wavelets. Finally,
we use the key lemma to prove a key auxiliary theorem stating that for 1 < g <
coand 0 < p < 1theset HP(X)NLI(X)is a subset of LP(X) with LP-(semi)norm
controlled by the HP-(semi)norm. The key auxiliary results proved in this sec-
tion will be needed in the proof of the Main Theorem in Section 5.

4.1. Biparameter Hardy spaces, CMOP?, BMO, and VMO. We focus on the
bi-parameter setting X = X; X X,, where each factor (X;, d;, ;) is a space of
homogeneous type as defined in Section 1, with the constant w; being an upper
dimension of X; fori =1, 2.

The family {1,02 Yk.ez.cewts is an Auscher-Hytonen orthonormal wavelet ba-
sis on X; with reference dyadic grid @iW, exponential decay constants a; and v;,
and order of regularity »; € (0,1) fori = 1, 2, as in Theorem 3.3. All the dyadic
rectangles in this section are of the form R = Q(Iz X QIOZ where QIOZ € QiW for
i=1,2.

We denote by G and (G)’ for short the product test function spaces Gﬁ(,g’ )

and spaces of distributions (Gﬁ(E’ 7! )) , respectively, where ,Bl.’ , ylf € (0,n;) for
i = 1,2. Note that we fixsome 3, y; in (0, 7;) and work with those test functions
and the distributions in the dual space. At the end of the day it does not mat-
ter which ﬁi’ , ylf were chosen, as long as they belong to the interval (0, 7;). The

product Wavel‘ets l,bf;l,bfé € G_and therefore if f € (G)' the notat.ion.( f, 1p§i 22)
means the action of the functional f on the product wavelet, which is an appro-
priate test function. We have used the prime ’ on the parameters ,Bi’ and ylf in

the definition of G and (G)" with a dash (), so as not to confuse them with the
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parameters 3; and y; for which the wavelets 1/)2 belong to G(;, 7;), namely all
Bi € (0,m;) and y; > 0 for i = 1, 2. In the proofs below, we will want to choose

the wavelets’ parameter y; as large as necessary. The space of distributions (G)’
appears in the definitions of the product H?, CMO®, BMO, and VMO-spaces
presented in this section as well as in the definition of atomic H ,ft’q-spaces in
Section 5.

In [HLW], the Hardy spaces HP(X) for X = X; X X, are defined as follows
for py < p <1, where we let p, := max{w;/(w; +1;) : i =1,2}.

Definition 4.1 (([HLW], Definition 5.1). Suppose p, < p < 1. The Hardy
space HP(X) is defined to be the collection of distributions in (G) whose square
function is in LP(X),

HP(X) :={f € (G) : S(f) € LP(X)}.

Here the product Littlewood-Paley square function S(f) of f related to the given
orthonormal basis {‘ng}kel,ae@k and reference dyadic grids @iW onX;fori=1,2,
is defined by

NGEESEES DD I DY

k1€Z ale{’7/k1 kZEZ azeng

1
(FAE) T ()T G| ]
17 QO(1 Qo(2
4.1)
with Qs’l € 2 and ka,- (x;) := X (xi)/,ti(ngji)_l/2 fori = 1,2. For f €
HP(X), define the HP-(semi)norm?
W lleezy 2= ISUHIIze)-

Definition (4.1) corresponds to [HLYY, Definition 4.7, equation (4.10)], where
the product square function is called S instead of S.
In [HLW] the Carleson measure spaces CMOP(X) are defined as follows.

Definition 4.2 ([HLWl, Definition 5.2). Suppose py < p < 1. The Carleson
measure space CMOP (X) is defined by

CMOP(X) :={f € (G) : Cx(f) < oo}.
Here the quantity C,(f) is defined by

}1/2, (4.2)

1 ki, k
C’p(f) ‘= Sup{—z_l Z I<fs z»bozi ai)lz
o u(Q)r  R=QixQ2ca

where Q runs over all open sets in X with finite measure, and it is understood,
here and in the sequel, that the indices k; € Z and «; € yki fori = 1, 2. The

3For p < 1, the semi-norm II - llzp e xx,) Satisfies all the axioms of a norm except the triangle

inequality, instead it satisfies || f + g”fw()?) < ||f||gp® + ||g||gp®.
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space BMO of functions of bounded mean oscillation is defined by
BMO(X) := CMO'(X).

One of the main results in [HLW] establishes the duality between the Hardy
spaces and the Carleson measure spaces.

Theorem 4.3 ((HLW], Theorem 5.3). Suppose p, < p < 1. Then (HP(X)) =
~ ~ ! ~
CMO”(X). In particular, when p = 1 we have (H'(X)) = BMO(X).

The vanishing mean oscillation space VMO(X) was introduced in [HLW],
and it was shown in the same paper to be the predual of H'(X). For the conve-
nience of the reader we record the definition and the duality theorem.

Definition 4.4 ([HLW], Definition 5.9). The space VMO(X) of functions of van-
ishing mean oscillation is the subspace of BMO(X) whose elements satisfy the
following three properties:

(a) }1/2

ki k
|<f:l)ba1 a§>|2 =0;

1
lim sup {— Z
6—0* Q
u(@)<s L 1(Q) r=tixg2ca

/2
G Jim osp o 9w} = osand

N—=00 djam(Q)>N R=0"1%0"2cq
oy ay

© lm  osp [ 3 Kfgllp

. =0.
N— ¢ Q
® Q: Qc (B(xl,xz,N)) ,Ll( ) R=Q§i XQZZ cQ

}1/2

Here the suprema run over all open sets Q in X with finite measure, and either
with small measure in (a), with large diameter in (b), or living far away from
an arbitrary fixed point (x;,x,) € X in (c), where B(x;,x,,N) := B(x;,N) X
B(XZ, N)
Theorem 4.5 ((HLW], Theorem 5.10). The Hardy space H'(X) is the dual of the
~ ~. ! ~
space of vanishing mean oscillation VMO(X). Namely, (VMO(X )) = H'(X).
Note that the definitions for the HP, CMOP, BMO, and VMO spaces all use
given Auscher-Hytonen wavelets and their underlying reference grids in X; for
i = 1,2. Whether these definitions are independent of the chosen wavelets

and reference grids is an important question, answered in the affirmative in
the current paper.

4.2. Key decomposition lemma and H? N L? C L? theorem. We point out

that G, and thus H P(X) N LI(X) for g > 1, are dense in HP(X) with respect to

the HP(X )—(semi)norr}}; see [IELW, p.40-41]. We now show that functions in

the dense subset H?(X) N L9(X) also lie in LP(X), in other words for g > 1,
HP(X) N LY(X) c LP(X),

with LP-(semi)norm controlled by the HP-(semi)norm. As an aside recall that
the LP-(semi)norm is not a norm when 0 < p < 1, satisfying instead of the
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triangle inequality the following inequality: || f + g||f o S I ||I’j ot ||g||‘L) e

Our key auxiliary theorem in this section is the following.
Theorem 4.6. Given spaces of homogeneous type (X, d;, u;) with an upper di-
mension w;, with reference dyadic grids Ql.W, and associated Auscher-Hytonen
wavelet bases {gb’;i Yez.aeyss With Holder regularity n; € (0,1), fori = 1, 2.

Suppose p, := max{——,—21 < p < 1, and take g > 1. If a function

~ o " w4, _
f € HP(X) n LY(X), then f € LP(X) and there exists a constant C,, > 0, inde-
pendent of the LY-norm of f, such that
Ifllze®) < Cpllflle)-

As a consequence of Theorem 4.6, we have the following result.
Corollary 4.7. Let ¢ > 1. Then H'(X) n L9(X) is a subset of L1(X).

To prove Theorem 4.6, we first establish an auxiliary result, Lemma 4.8, on
the decomposition of the orthonormal basis functions 3¥ into building blocks
with compact support and other convenient properties. These building blocks
will inherit from the wavelets, appropriately scaled, size and smoothness con-
ditions as well as cancellation.

We follow the approach of Nagel and Stein (see [NS, Section 3.5]).

Lemma 4.8. Let (X,d, 1) be a space of homogeneous type with A, the quasi-
triangle constant of the quasi-metric d, and w an upper dimension of the Borel

regular doubling measure u. Fix parameters y > w and C>1 Suppose that X
is a basis function (a wavelet) as in Theorem 3.3, with exponential decay exponents
v>0anda = (1+2log, Ag)~! and with Holder-regularity exponent 1. Then

there exist functions 90},;’,5,“ for each integer ¢ > 0 such that for all x € X and for
eachk € Z, a € %, we have the following decomposition for the L*-normalized

wavelets PX = pk(x)/1/ u(BGE, 6%)) :
P = 2O 79lE (0. (43)
£=0

Here each qog 1o Satisfies the following properties.

. c —
(i) (Compact support) supp gog,k,a C B(yk,2A%C2¢ &%)
(ii) (Boundedness) There is a constant C,, > 0 such that for all x € X

|9} LGOI < C(C20)* [u(B(yE, €27 6%)).
(iii) (Local Holder regularity) There is a constant C,, > 0 such that for all
x,y € X with d(x, y) < 8§,

P} L0 — @l I < €,y (C208%)7 (C2)%d(x, y)" [ w(B(yE, C2¢ 5Y)).



1198 YONGSHENG HAN, JI LI, M. CRISTINA PEREYRA AND LESLEY A. WARD
. . y
(iv) (Cancellation) [ ¢ f,k,a(x) du(x) =0.

Here C,, is a positive constant independent of y§, 8%, and ¢. However C, will de-
pend on the fixed y > 0 and the geometric constants of the space X. The equality
(4.3) holds pointwise, as well as in L4(X) for g € (1, o).

Lemma 4.8 allows for two parameters, a decay parameter y > w and a di-
lation parameter C > 1. Later on we will pick y large enough so that some
geometric series converge and we will need C to match dilation parameters for
the (p, g)-atoms which are independent of the wavelets, and based on possibly
separate dyadic grids. When C=1we simply write qo;,k’a.

In the local Holder regularity condition (iii) in Lemma 4.8, the range of va-
lidity, d(x,y) < 8k, is inherited from the wavelets local regularity condition as
in Theorem 3.3(iii). In the proof of Lemma 4.8 we will see that a type of Holder
regularity like the one test functions have, see Definition 3.5(ii), with range
of validity d(x,y) < (240)7"(8* + d(x,yX)) provided x € B(yg,A(z) C2f8%)\
Bk, C2t-15k /4), will also hold because the wavelets are test functions by The-
orem 3.6. We will need this estimate in the proof of the Main Theorem in Sec-
tion 5.

What is gained in this decomposition is the compact support of the building
blocks, as opposed to the exponential decay of the wavelets being decomposed.
What is lost is the orthonormality of the wavelets, however the building blocks
will have an appropriate “almost-orthogonality” property that will be needed
in the proof of Theorem 4.6. This almost-orthogonality of the building blocks
is captured in Lemma 4.9 stated on page 1208 and proved after the proof of
Theorem 4.6 on page 1210.

Proof of Lemma 4.8. Fixy > w,k € Z,and a € %,. Let

AS(x) 1= ho(x)PE(x) and (4.4)
AS(x) 1= (Re(x) = hy_1 () PE(x) for € > 1. (4.5)

The cut-off functions h, € C”(X) are given by Lemma 3.4 based on x,, = yX and

with parameter R, = C2¢8 for each ¢ > 0. They have the following properties
for £ > 0: first 0 < h,(x) < 1; second

he(x) = 1 when x € B(yk, C2¢6%/4), h,(x) = 0 when x € B(yX, A2 C2¢6%)¢;
(4.6)
and third, there exists a constant C > 0 independent of yX and ¢, depending
only on the geometric constants of the space X, such that for all x,y € X the
following global Holder regularity holds:

d 5
he(0) = he )] < C(E(; 2"

(4.7)
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By definition, the function A, is supported on B(y~, Ag C8%) and the function

Ag for ¢ > 1 is supported on B(yk, A2 C2¢5%) \ B(yk,C2¢716%/4). By a tele-
scoping sum argument we see that

L - —
Z Ag(x) = hy(x) 1,b§(x) and is identical to 1,b§(x) on B(y’;, C2Lsk /4).
£=0
It follows that $§(x) = 250 Ag(x) pointwise. Moreover, for all x € X and
everyy > 0, -

€2 _ (@2

AC(x)| < < A .
Al " u(BOE.89) T (B, T2t 8%))

(4.8)

The second inequality follows from the doubling property of the measure. The
firstinequality can be seen since _I,Df,‘c(x) has the exponential decay property (3.11),

|he(x)—he_1(x)| € [0,1], and AS is supported on the annulus B(y%, A2 2080\

B(yk,C2¢~18% /4). Note that for v, a > 0 the function e~*2"z" defined for z > 0
is a bounded function for each y > 0, with an upper bound depending on y > 0.

Following the argument in [NS, p.550-551], define a, := [ Ag(x) du(x).
Using (4.8) it is clear that a, = O((C2¢)®77). Define s, := Yo<j<¢ @ Note
that by the Lebesgue domination theorem,

Diap= f PE(x) du(x) = 0,
X

¢20
therefore we have s, = — 3%, a i which gives s, = O((C29)*77).
We now define the function AS : X — R by
A(x) 1= AG() = ap () +5¢(E0(0) = Ep 1 (X))
= A0 + 501 §e(x) = 5¢ Epa ().

Here for each ¢ > 0 the function &, is the L!-normalization of the function h,
supported on B(y¥, A2 C2¢5%) given by

£ 1= e [ he@au)] 49)
X

Finally we define the functions go?’ia in the decomposition of the wavelets

¢/ () 1= (@2 VRE(x). (4.10)



1200 YONGSHENG HAN, JI LI, M. CRISTINA PEREYRA AND LESLEY A. WARD

Note that KE does not depend on y, although it depends on the fixed k and a.
It is easy to verify that the decomposition (4.3) holds. Namely

S @2 7elS ()= KS(x)

>0 £>0
= DA = X e () + 3 e (60 (x) = Epia ()
£>0 £>0 £>0
= Pk(x),
where the last equality follows from the facts that Jﬁ(x) =D, 30 Ag(x) and

Y0 eEe = 2ipug Se(€e(X) = €¢41(X)), using summation by parts and noting
that_ag =S¢ — Sf—_l-

Now we verify that go;’ia satisfies properties (i), (ii), (iii), and (iv).

In fact, from the definition of qo;’i o itiseasy to see that properties (i) and (iv)
hold. We now turn to property (ii). From the size estimate (4.8) we have that

(C20)»~r
u(B(yE, C2f 8%))

foreach y > 0, where w is an upper dimension of the measure . Next, it follows
from the definition of the function &, that

1§0(0)] S

IAE(X)I Sy (4.11)

1
u(B(yk, C2f %))

because 0 < hy(x) < 1 and

u(B(yk, C2t-18% /4)) < f he(z) du(z) < u(B(K, A2C2¢5%)).
X

Furthermore, using the doubling property of ¢, we conclude that
f he(2) du(z) ~ u(B(OK, C2f 8)). (4.12)
X

Consequently, recalling that a, = O((C2¢)®*7) and s, = O((C2?)*77), we con-
clude that property (ii) holds.

Similarly, from the Hoélder regularity (3.12) of d)’; and estimate (4.7) of the
cut-off functions h,, together with the definition of the function &,, we obtain
that property (iii) holds. More precisely, we need to verify that there is a con-
stant C, > 0 depending only on the geometric constants of X and on y, such
that for all x,y € X with d(x,y) < 8k, and for all ¢, a, and k the following
inequality holds:

= . C, (C2¢8%)™ (C2f)”
EARE AN ¢ )] B A )_ (©2) d(x, y)".
" - u(B(yk, C2¢5%))
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Without loss of generality we can assume that d(x, y) > 0, in other words x # y.
Using definition (4.10) of the atoms go? o and the triangle inequality we get that
C .C = c C
P/ D) —gls I < €27 (1AS@) — ASO) + Iseoy | 1Ee(x) — £ )]
+ Isel [§041(x) = §f+1(Y)|)-

Since s, = o((Ezf)—V), it suffices to show that there is a constant C,, > 0 such
that for all x,y € X with d(x,y) < 5k the following two inequalities hold:

C, (C2¢8K)™ (C2¢)®
u(B(yk, C2¢5%))
C, (C2¢8y™

u(B(yE, C2f8%))

€207 1AS(x) — AS ) dCx,y)y,  (4.13)

[Ec(x) = &) d(x, y). (4.14)

We first estimate (4.14). Using definition (4.9) of &,, estimate (4.12), and the
fact that h, satisfies estimate (4.7) for all x, y € X, we obtain

he() —heO)] _ _ (C2784)
u(BOE C28%)) ~ u(BOE,C2¢8))

This is more than what we wanted to show, since x and y are not required to be
§*-close to each other, and the similarity constants are independent of y.

We now estimate (4.13). We argue in the case when ¢ > 0 and note that when
¢ = 0 a similar calculation, somewhat simpler, yields the desired estimate. By

definition (4.5) of AE when ¢ > 0, we conclude that

IAC(x) = ASO) < TReOPE) — he )BED)
+ |he1 ()PEC) = he L DPED)I.
For all ¢ > 0 we estimate using the triangle inequality
Ihe O BEC) = heMPED < el [BEG) — PEO)I
+ [9E e | e (%) = Re ).

Using the exponential decay and Holder regularity estimates (3.11) and (3.12)
for the wavelet 3X, together with the fact that ||| Le=x) < 1 and the Holder
regularity estimate (4.7) of h,, we conclude that, when d(x, y) < 8%,

1§e(x) = &I S d(x, y)".

|he () PE(X) — he D) PED)] S

dpk )
exp [ - v(*50 )][d<xy>v x|
u(B(k, 5%)) §kn (C2¢ 8k
§7k1(C20)* (1 +(C26)™)

S = d(x, )’
r ,u(B(yg,CZf’ék)) (x,y) [

sk ]F
8k + d(yk, x)
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for all ' > 0. We have used the doubling property (1.3) in the last inequal-
ity. When x is in the support of AC, namely in the annulus B(y%, Ag C2f8%)\
B(yk,C2¢-18% /4), then d(x, y¥) 7% ~ C2¢. We conclude that for all T > 0
— = = C2f 8Ky (C2¢)» — —
C2y I - ACl s I iy @ty (@2 +1)
H(B(yg, C2¢6))

1 r
* [1 +d(yk, x) 5—k]
(C2¢8%) (C2f)®

— d(x,y)? (C2¢yr+n-T,
u(B(y§, C2¢8))

Picking I = y + 1 we get estimate (4.13) at least when x is in the support of AE
and d(x,y) < §%. Clearly when both x and y are not in the support of AC then

Ac(x) Ac(y) 0. The only remaining case is when y is in the support of Ag
and x is not. The calculations above are symmetric in x and y; interchanging
their roles we conclude that when d(x, y) < 6 then

(C2¢ 8k (C2t)
u(B(YK, C2f5%))

This proves estimate (4 13) and shows that condition (111) in the lemma holds.
By Proposition 3.6, 1,ba is a test function of type (yX, %, 7,7 + n). Using the
test-function properties instead of the local Holder regularity of the wavelets as

C2Y1AS(x) = AS)| 5,

d(x, y)".

we just did, one can verify in a similar manner that when x € supp(Ag) and
d(x,y) < (249)~1(8% + d(x, y)) then

(C2t 8Ky
u(B(yE, %)) + u(B(x,d(x, y%)))

Finally we can verify that the convergence in equality (4.3) is not just point-
wise, but also in L1(X) for g € (1, o0). Indeed, let

N —
PN () =/ B, 69) Y (C20) Tl (x).
=0

Then, using the already proven boundedness and support properties (i) and (ii)

d(x,y)". (4.15)

C2YIAS(x) - AS)| 5,

of qo;’flia in Lemma 4.8, we readily see that

k, o gl C
198 = b o) </ w(BOE89) D0 (€27 IIe) lrao)

t=N+1
1 o]
S ©“7u(BOE,6) Y, 27 u(BOE, Catsty) 7
t=N+1
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1 1 oo
S @)= T u(BOE,6%))> ¢ Y 2+,
t=N+1

Since y > w, as N — oo, the series on the right-hand-side converges to zero. In
the last inequality we simply observed that

- _1/ ! _1/ !
u(BOX, T2 89) T < u(BOK, 8%y 1

since the power is negative. O

q

We now present the proof of the key auxiliary theorem.

Proof of Theorem 4.6. Suppose that f € HP(X) N LI(X) and let u denote the
product measure u; X u,. Then, by the reproducing formula (3.15), Lemma 4.8

with Ei =1fori = 1,2, and Fubini for summations, we have

fanx) =Y 3 3 (feke el v

kleZ o(le?ykl kZEZ o(ze{/ykz

=. Z 2—f1}’1 2_€2y2f€1’€2(x1,x2), (4.16)
t1,6,>0

where f, ., is defined by
ki k
ffl,fz(xl’ xz) = Z Z <f’ z»bozi ot§> LS| §027k1’a1 (xl) L%} ¢;22,k2,a2(x2)-

k,eZ k,eZ

medh a,epke

(4.17)
Vi . i1 . / k; ) .
€i.k;,o = @;i,ki’ai and K .= #i(B(y“i’akl)) fori =
1,2 (we are abusing notation, to be more precise we should write Kz instead
of simply x;). The parameter y; is an arbitrary constant larger than the upper
dimension of X;, thatis y; > w;, fori = 1,2, and to be determined later. All
these series converge unconditionally in the LI(X)-norm when g > 1, allowing
us to reorder the series at will.

Now for j € Z, we let Q; be a level set for S(f), more precisely

Here we are denoting ¢

Q] = {(xl,xZ) (S X"’ . S(f)(xl,xZ) > 2]} (4.18)

Notice that Q;,; C Q; for all j € Z and that by the well-known layer-cake®
formula for the LP-(semi)norm of S(f) it holds that

IS ) ~p 2 2P H(Q). (419)
j€ez
Also, by Tchebichev’s inequality, when f € LP(X; X X,),

wQ,) < 270 f SO Cer, x) 1P ey, x2). (4.20)
Q;

4Assume F € LP(X, u); then IF I o = oo PP ulx € X |[F()] > A} dA.
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If f = 0in L9(X) then S(f) = 0 in LI(X) and the theorem is trivially true.
Assume f # 0in L9(X), notice that this implies that S(f) # 0in LI(X; X X,),
and it ensures that there is j, € Z such that u(Q;) > 0 for all j < j,.

Recall that the reference dyadic grids underlying the wavelets on X; are de-
noted D} for i = 1,2. Given dyadic cubes ij 2 fori=1,2,1etR = RQ’;;
kl k2

denote the dyadic rectangle in X; X X, they determine, thatis, R;’}} := Qﬁi X
Qaz. Let

. 1 1
Bj = {R dyadic rectangle : (RN Q;) > E’M(R)’ MRNQj) < Ey(R)}.
(4.21)
In particular, since S(f) # 0 in L(X), each dyadic rectangle RI;Z belongs
to exactly one set B;. We can reorder the quadruple sum in (4.17) over

(ky, ky, 0y, 000) € Z2 x W x ke

by first adding over j € Z and second adding over those (ky, k,, &y, ;) such

that Rgilo{fz € B, obtaining
ky
ffl,fz(xls x2) = Z Z <f’ z;boc >K1 §0t, JKy,00 (xl) L) ¢;22,k2,a2(x2)' (4~22)
JEZ glka €8,
ap,ap

Next, we will show below that for each j € Z,

K p
| Z <f’¢oc > 1§0f’ k.0 zqDf’z ka0t LP(X)
Rirk2 €B;
ap,ap
g 4
S (€1 + 52602) (i )2 ity )sz,u(ﬂ ). (4.23)

Together with the special reproducing formula (4.16) and estimate (4.19), in-
equality (4.23) yields the conclusion of Theorem 4.6. More precisely, since
0<p<l,

2
I gy S 2027 P2 PN f e 1
£1,6,>0

Z Z_flylpz_fzyzp Z || Z<f z’bal 0‘2 1§0€1 k1,01 2@62 ky, oc2||Lp()?)

f ;0,20 JEZ pkika B;

a1, “2

_P P i .
Z 2_61y1p2_€272p(€1w1 + fzwz)l q2€1w1(1+q, )2£2w2(1+q,) Z 2Jpl,((QJ)
71,6220 jez

SISOIL, g = 1711

Where we have chosen y; > w;(1/p + 1/q") for i = 1,2, to ensure convergence
of the relevant series over ¢, and ¢,. Note that since 1/p > 1, this constraint
implies that y; > w; for i = 1,2, a constraint needed in Lemma 4.8.
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Thus, it su~fﬁces to verify the claim (4.23). To this end, we define the €;-
enlargement Q; 1= Qj" of the open set Q; by

Q {( )E€X 1 M(xq,)(x1,X,) - (Ci )wl(c% )wz}
i =) (X1, X)) €EX L Xa ) X1,X) > €y = ——F5—|— — .
J SV 2C,,Cp, N Ch Cc?

(4.24)
Here ¢, C] are the dilation constants of the grids @iW and M is the strong max-
imal function

M,g(x1,x3) := 1g(y1, y)l du(yy, y2),

1
sup —————— f
B XBy3(x1,X;) :ul(Bl):uZ(Bz) B,XB,
defined for functions g € Llloc(f ), and where B; are balls in X; fori =1, 2.

The constant ¢, in (4.24) is determined by the doubling constants of the
measures u;, the upper dimensions w;, and the ratio of the dilation constants
¢ = (Ag))_S /6 and C! = 6(Ag))4 involved in the radius of the inner and
outer balls sandwiching the reference dyadic cubes for the wavelets, as in prop-
erty (3.6), for i = 1,2. More precisely, ¢, is a constant depending only on the
geometric constants of X; fori =1, 2,

1)y9\? 2)y0\@2) 1

€ = (ZCM C,, (36(A)°) " (36(AP)°) 2) : (4.25)

Furthermore ¢, € (0, 1) and is chosen so thatif R € B; thenR C Q j- More pre-
cisely, if R € B; then by definition u(RNQ;)/u(R) > 1/2. The dyadic rectangle
R = Q; XQ, and, for i = 1, 2, each dyadic cube Q; € .@iW contains Blf , its inner
ball, and is contained in Blf' , its outer ball, that is Blf cCQ; C Bl.” . Moreover,

i\ Wi
wi(B) < C l(%) ui(B)) by the doubling property (1.3) of the measure y; for
i=1,2. Hence1
1o pRNQ) u((B! xB)n Q)
2 wWR) T (B ua(BY)

< CC (C_i)col( )wzlL{((BYXB;/)ﬂQj)
T TR A2 1 (BY) pa(BY)

2
Cl

We conclude that B! x B} C Q j and therefore R = Q; X Q, C Q ;-
By definition every open set Q is contained in its e-enlargement

Q1= {(x1, %) € Xy X X, : My(x)(x1,%,) > €} (4.26)

for € € (0,1), thatis Q c Q°. In particular Q; C ﬁj and hence u(Q;) < ,u(ﬁj)
for all j > 0. More interestingly, by weak-L? properties of the strong maximal
function we get

2

X, llr2c, xx
1Ay LG xX5) = e% u(2)). (4.27)

M(ﬁj) < C(
0

€o
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We also define the (¢, ¢,)-enlargement ﬁjf]’fz of ﬁj. Recall that 26iQ; :=

B(yéz , ZfiCi ski), where Ci is the dilation constant determining the radius of the
outer ball of the dyadic cube Q; € l)l.W foreachi =1,2. Let

Qjpe, o= U 201Q, x 262Q,. (4.28)
R=Q;xQ,CQ;

It is clear from this definition that Q j C Q e, forall €4,¢, > 0. Note that

Qj¢,.¢, is a subset of {(x1,x,) € X1 X X5 © M(xg)(x1, %) 2 2~ tie—taw)
Indeed, for every (x, x,) € Q j¢,,¢, there must be a dyadic rectangle R = Q X
Q, € ﬁj such that (x;, x,) € 2¢1Q; x 2¢2Q,. Also for 271Q; x 2£2Q, we get
H@n@1QAx2%Q))  p(@n@xQ) 1

u(261Qy X 202Q,) T 20@1t 0@ (Qg X Q,) 2ttt

Hence M;(xx; )(x1,x;) > 20117029 We conclude that
J

1(Qj e 0,) S (€10 + €30,)20191202%2(Q)), (4.29)

by an argument similar to [CF, p.191, line 17], denoting X = (x;, X,) and using
the Llog, L to weak L! estimate for the strong maximal function applied to

f= Xa, namely

L/ (f) | log(l + @> du(®).  (4.30)

UE® €X 1 My(HE > 4} S f :

X
The Llog, L to weak L' estimate (4.30) for the strong maximal function can
be deduced for the strong dyadic maximal function (defined as M, but instead
of product of balls we consider products of dyadic cubes in X; and X,) from
the weak (1, 1) estimates on each individual dyadic maximal function on X; for
i =1,2,see[Fa, Theorem 1] and also [Fe2]. By [KLPW, Theorem 3.1(ii)] we can
control pointwise the strong maximal function M, (with respect to balls) by a
finite sum of strong dyadic maximal functions (with respect to adjacent systems
of dyadic cubes [KLPW, Section 2.4], the equivalent to the 1/3 trick in R for
spaces of homogeneous type). Hence we obtain the desired estimate (4.30).
For each set B; of dyadic rectangles, we define the function f 5, X - Rto
be
Fo,00.0) 1= 3 (F e P P () Y2 (xy), (4.31)

k1.k
R12

al,aZEBj

and hence by definition of the square function

N

s = (X [T g G, (432)

k1.k
R12

“1’“2631'

where 1,32 = z,bloz /x; denotes the normalized wavelets fori = 1, 2.
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Note that by construction, the function ¢’ ¢ k.o Dascompact support on

ki i . i
B(yg, 2(AV)? 2164

which is contained in B(yfcj, 2ficlk) fori = 1,2. Thelast statement holds since
in the Auscher-Hyt6nen construction the dilation constant C| determining the
radius of the outer balls is C! = 6(Ag))4 > 2(A(()i))2 for each i = 1,2 [AuH1,
Theorem 2.11]. As explained on page 1205, if RIOZIOZ € B, theri RQZ e Q i
and thus the support of ¢! £k (x7) ¢Z,k2,a2(x2) is contained in Q; ¢ ¢,.

Therefore, by Holder’s 1nequality with exponents s = q/p > 1land s’ =
q/(q - p)

p
Z <f Zp >‘K1§0€ k.0 2§0€2 ky,a Lo(X) (433)
Ralféeﬂ
~ 1-2 p
S#(Qj,fl,fz) q Z <f libal cx2> lqog Ko Zqofzkzaz Lq(X)
Rtk cp

a1,a2 J

To estimate the L9-norm of the sum in the right-hand-side of (4.33) we use a
duality argument. Hence, for all g € L¢ (X) with ||g| (%) < 1, we estimate the
inner product

(X F¥apmel 0o e 8)

k1 ko

R, 2€EB;
— 2.2 Tk 7
- ’ Z K1K2<f’ lpa ><¢€1 ki, alqofz ky, az,g>‘
Ril2eB;
k k
< 2 mQDBQDUS TP (D) ke k)
R e3,

Tk

< f " kZ: |<f"¢)oc '(gogl ki, alqogz ks, a2:g>|)(R§}kD%2(f)d#(f)
1:K2

X1XX2 aj aZEB

In the last inequality X = (x;, x,) € X; X X, and we used that

k k
Qe (@) = f Kt (0) ().
X1XX2 1,92
We continue estimating, first applying the Cauchy-Schwarz inequality on the
sum, second applying Holder’s inequality, with exponents g > 1 and ¢, to the
integral, and third using the notation introduced in (4.31) and (4.32):

K > Y KIPY o 2Pk g>'

kl ko
Ray'a, €Bj
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S(f( (7. 343"

X1XX, Ral «, €B;j

- (m)qdum)l

!

X( f <k1k2 '<¢€1k1a1¢€2k2a2’g>’ XRklkz(i)> dM(ﬂ)

XIXXZ ay 0(26 J

1
q

Sq 20912021 (f 5l paczy- (4.34)

The last inequality is deduced from the fact that ||g|| ¢ z) < 1 and the follow-
ing Littlewood-Paley estimate, whose proof will be provided after finishing the
proof of Theorem 4.6.

Lemma 4.9. There is a constant C > 0 (depending on the geometric constants
and on q > 1) such that for all functions g € LY (X) and all positive integers ¢,
and ¢,

1
[ ’<¢51 ki, Oflqofz kast’ g>| XRkl kZ]Z

apay
kq.ka
Rey oy €Bj

L4 (X)
Sq 201202 g |1y %)- (4.35)
The dual estimate (4.34) implies that
ky ks 71 V2
‘ Z <f’ ¢a1 z/)“z>K1§051,k1,a17{2§052,k2,a2

k1.k
1 ZEBj

ar,a
Sq 2t’1w1 252602 ||S(fB})||Lq(XV)

:2t’1w12€2w2< f {klkz ‘(fl,b

XXX, ay, orze J

5q251w12f2w2<f{ > |(f,{5§1~§§>

kl k2 B
XXX, oq €

Li(X)
R

) Zes (J’O}%du(JT))

(4.36)

q 1
2)32 o
X ‘MS(XRn(ﬁj\Qj+l))(5C)' } dM(g))‘J.

In the last inequality we have used the definitions (4.21), of the set B, and (4.24),
of the enlargement set Q j via the strong maximal function, to deduce that

XR(X1,X2) S ‘MS(XRn(ﬁj\QjH))(xl’x2)’2-
More precisely, recall that if R = Q; X Q, belongs to B; then it is a subset of
Q;. Hence RN (Q; \ Qjy1) = R\ Qj14, and since R € B; it is also true that
URNQj4) < %,u(R). Therefore u(R \ Q;4;) > %,u(R). As before, denote by B/
and Blf’ the inner and outer balls of the dyadic cubes Q; for i = 1, 2. Recall that
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B Cc Q; C B, therefore R\ Q;,; C B} XB/. Using the doubling property (1.3)
we get for R € B;

1
u(BY x BY)

MR\ Qjy1)
u(BY x Bl)
1 s®) 1 HBIXB) 1 (B (B

2u(B] xBY) ~ 2uB/xB)) 2 (B)) 1(B))

f )(Rn(ﬁj\QHl)(zla 2y) du(zy, z,)
B!/xBY) '

el o c? e
Z ! [_11] 1[—12] ’ = €p-
2C'Mlclvlz Cl Cl
Therefore, for all R € B; and for all X = (x;,X,) € R, we get
Ms(XRn(ﬁj\QjH))(f) >¢€p > 0.

2
Hence we obtain yp(%) = x(%) $ |MS()(Rn(§j\Qj+l))(5‘c)| , as claimed. Note
that the similarity constant is ¢ 2, which only depends on the geometric con-
stants of X; for i = 1, 2, by definition (4.25).
Recall the Fefferman-Stein vector-valued strong maximal function estimate
n [FS]: given g,r > 1, there is a constant C; > 0 such that for appropriate
sequences of functions {f }x>1

(4.37)

LaX) — LX)’

(D R IAT Y T

We use estimate (4.37) with r = 2 and g > 1, to conclude that

1

4 -
2 q
K@\, ®) du)

155 llisce) % f (T 7|

- _pkika

1,92

1

([ (T R ) wo)

~ _pkika _p
O\ R=Ry; a0, E3B;

1

= f 1S(5 ), 21 (@) (4.38)
Q\Qjn

The function f 5, Was defined in (4.31), and its square function S(f Bj) in (4.32).
Note that pointwise S(f 3j) < S(f). Moreover when (x;, x,) & Q;,; by defini-
tion S(f)(x;, x,) < 2/1. Therefore,

IS(f3)llra) Sq 2@, (4.39)
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All together we conclude that

' Z <f ‘(,b >K1¢f k ,a zgofz kz [0}

k1 ko
R €B;j

<g 20091209220 u(Q; )q (4.40)

La (X)

Finally, first using estimates (4.33) and (4.40), and second using estimate (4.29),
we get the LP-estimate claimed in (4.23):

ky 71 V2
Z <f ‘(»b ¢a2 >K1¢f1,k1,alkz¢f2,k2,a2

k1 ko
R €B;j

p

LP(X)

_ 1-2 . ~ P
Sq H(Qje,r,) zflwlpzf2wzpzfpu(n )4

f t
< (Crooy + ) 02070 209070 (G ) atienp gfa0ap )b ()

-E t’lcul(1+ ) €2w2(1+ )sz ueQ,).
Here the last estimate follows from ,u(Q i) S u(Q;) by (4.27). Note that all
constants depend only on the geometric constants of X; for i = 1, 2, sometimes
via the parameter ¢, defined in (4.25). This estimate finishes the proof of the
claim (4.23), and hence Theorem 4.6 is proved. O

Sq (Cro + fza)z)

Proof of Lemma 4.9. Estimate (4.35) can be established using an argument
similar to the one made when proving the second inequality in the product
Plancherel-Pélya inequalities from [HLW, Theorem 4.9, equation (4.13)]. More
specifically, there are sufficiently large integers N; > 0 for i = 1,2, and a con-
stant C; > 0 (depending only on the geometric constants of X; for i = 1,2 and

g > 1) such that for all g € L7 (X) the following inequality holds:
1

2
<¢€ kl ay gofz k2 az’ g>| XRkl kz}
kiky, oy ek, a,ewe

a1,z

L9'(X)
(COPNE)]
< Cq251w1 zfzwz Z Z ll’lf |Dk1 Dk2 (g)(zl, ZZ)|2
kyky aye 27k14N1 Zleooq
et 4 er2+N2

’ , (4.41)
LX)

X XQ§1+N1 )(kawz}

where DI(;) is the integral operator in X; with kernel
k
DRy = D g (v (),
grezt
and similarly for D(Z) The statement in [HLW, Theorem 4.9] refers to Plancherel-

Pélya inequalities w1th the wavelets z,ba instead of the functions ¢’ 6, o O1 the
left-hand-side of equation (4.41). However, carefully tracing the proof of [HLW,
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Equation (4.13)], one realizes that all that is required are the size, smoothness,
and cancellation conditions of the functions cp? . o (Provedin Lemma 4.8) and

of the kernels Dg)(x, y)fori = 1,2 (proved in [HLW, Lemma 3.6]). The key ob-
servations are first, for every (y1,y,) € X

(1) (2)
<q0€1’k1’a1g0€2 kz,az ( Y1,° ’y2)>~

1

(1) (z)
- <g0f1 ky,aq’ ( y1)> <g0f a0 k2 ("y2)>X2

Second, the following almost-orthogonahty estimate is valid for i = 1, 2: for all

kik
integers k; and k; let 8] := 5mm{ }, where §; is the base side length for the
reference dyadic cubes in X;. Then for each positive integer N;, each y > 0,

) k' +N; . k' +N; k! +N;
each pointz € QO{’,+ C X; and each center point xa‘,+ € rol,+
Y St 5|k —K!In
4
@, e DY N S - T
Vai'(xoci) + Vé;(x ) + V( a ) OC, )
s’
L
X o ) . (4.42)

ki i
6 +di(xg,x )

Here Vri (xi) = ,ui(BXi (xi, ri)), V(xl', yl) = Ui (BX1 (xl', di(xi, yl')), and the similar-
ity constants depend only on the geometric constants of X; for i = 1,2. This
estimate is the analogue of estimate [HLW, Equation (4.4)] with the functions
@ instead of the wavelets on the left-hand side of the inner product. It is in
proving estimate (4.42) that the size, smoothness, and cancellation properties
of the functions go?i,ki’ai are needed. Also needed are the corresponding proper-

ties for the kernels of the operators Dl(ci,) established in [HLW, Lemma 3.6]. The

right-hand side of (4.41) is pointwise ‘bounded by the same expression where
the infimum in the sum is replaced by the supremum. Another application of
Plancherel-Polya as stated in [HLW, equation (4.12)] shows that for all positive
integers N; and N, there is a constant C; > 0 (depending only on geometric
constants and g > 1) such that

1

2
1> 3 sw pUDP@E ) g mxgae |

ky+N
kiky ape 271N z, €Qa; 1
OCZGL%kZ-"NZ EQ

LX)
k2 +N;

< ClIS@ILe %)- (4.43)

Here S(g) is the product Littlewood-Paley square function of g as in Defini-
tion 4.1. This time there are wavelets on both sides of (4.43) exactly as in [HLW,
equation (4.12)].
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From (4.41) and the product Plancherel-Pélya inequality (4.43) we see that
the left-hand side of (4.35) is bounded by the L9 -norm of S(g). From Theorem
4.8 in [HLW], since we are in the case ¢’ > 1, we obtain that

1S@ e &) < Collgllre -

Putting all the pieces together we get estimate (4.35), with a constant C > 0 that
depends only on the geometric constants of X; fori = 1,2 and on q > 1. This
finishes the proof of Lemma 4.9. O

5. Atomic product Hardy spaces

We now provide an atomic decomposition for HP(X). More precisely, we will
find an atomic decomposition for each function f € LI(X) n HP(X) with 1 <
q < oo and p, < p < 1, where the decomposition converges both in the LI(X)-
norm and in the HP(X)-(semi)norm. Recall that p, := max{w;/(w; +7;) :
i = 1,2}. To achieve this decomposition we will need a Journé-type covering
lemma and a suitable definition of product (p, g)-atoms on X = X; x X, valid
for (X, d;, ;) spaces of homogeneous type in the sense of Coifman and Weiss
fori = 1,2. We will also define atomic product Hardy spaces H :t’q()? ), and as
a consequence of the main theorem we will show these spaces coincide with
HP(X) forall g > 1.

The definition of the product Hardy spaces HP(X) uses Auscher-Hytdnen
wavelet bases on each space of homogeneous type X;, with Holder regularity
n; € (0, 1], and corresponding reference dyadic grids .@iW ,fori = 1,2, provided
p > po. In this section we will show that functions in HP(X) n LI(X) can be
decomposed into product (p, g)-atoms based on the wavelets’ reference dyadic
grids 9?’ for i = 1,2. Product (p, gq)-atoms do not require wavelets in their
definition, but there is an underlying dyadic grid associated to each atom. We
will show that product (p, g)-atoms, based on regular families of dyadic grids,
are in HP(X) with uniform bounds on their HP-(semi)norm dependent only on
the geometric constants of the spaces X; for i = 1, 2. These observations allow
us to deduce that the product H?, CMO®, BMO, and VMO spaces, defined a
priori using Auscher-Hytonen wavelets, are independent of the wavelets and
the reference dyadic grids chosen (and indeed of the reference dyadic points
{xk1 chosen), yielding Corollary B and Corollary C stated in the introduction.

We would like to point out that the convergence in both the L%(X)-norm
and HP(X)-(semi)norm is crucial for proving the boundedness of Calderdn-
Zygmund operators from HP(X) to LP(X) as described in [HLLin].

5.1. Journé-type covering lemma. In the product theory the Journé-type
covering lemmas play a fundamental role. The Journé covering lemma was
established by Journé [J] on R X R, and by Pipher [P] on R™ X --- X R". Re-
cently, following the same ideas and techniques as in [P], a Journé-type cov-
ering lemma was developed for X = X; X X, by the first two authors and Lin
[HLLin] for certain spaces of homogeneous type.
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In this section, for i = 1, 2, (X}, d;, 4;) denotes a space of homogeneous type
in the sense of Coifman and Weiss with w; an upper dimension, Ag) the quasi-
triangle constant, C,, the doubling constant, and with an underlying dyadic
grid 2; whose structural constants are c;, C{, ¢}, Cl, and &;, as in Theorem 3.1.

Let Q C X be an open set of finite measure and for i = 1, 2, let m;(Q) de-
note the family of dyadic rectangles R = Q; X Q, in Q which are maximal in
the ith “direction”, here Q; € %,. Also denote by m(Q) the set of all maximal
dyadic rectangles contained in Q. Note that neither m(Q) nor m,(Q) nor m,(Q)
are disjoint collections of rectangles; this is one of the main difficulties when
dealing with the product and multi-parameter settings.

Given a dyadic rectangle R = Q; X Q, € m;(Q), let @2 = @2(Q1) be the
largest dyadic cube in &, containing Q, such that

#((Q1 x 62) naQ)> %#(Ql x Q,), (5.1)

where 1t = yy X i, is the measure on X. Similarly, given a dyadic rectangle R =
Qq X Q, € my(Q), let @1 = él(Qz) be the largest dyadic cube in Z; containing
Q; such that

P 1 A~
u((Q1 X Q) N Q) > E#(Ql X Q3).
We now state the Journé-type covering lemma on X; X X,.

Lemma 5.1 ([HLLin], Lemma 2.2). Fori = 1, 2, let (X;, d;, ;) be spaces of ho-
mogeneous type in the sense of Coifman and Weiss as described in the Introduc-
tion, with quasi-metrics d; and Borel-regular doubling measures yu;, each space
with an underlying dyadic grid 9;. Let Q be an open subset in X with finite
measure. Let w : [0,00) — [0, 00) be any fixed increasing function such that
Z;io jw(Cy277) < oo, where C,, is any given positive constant. Then there exists
a positive constant C (dependent on the fixed increasing function w, the geometric
constants of the spaces X;, and the structural constants of the underlying dyadic
grids via the ratios of the dilation constants C: 1/ ci, fori=1,2)such that

£(0y)
R)w < Cu(©) (5.2)
2 <f(Qz))

R=Q;xQ,€m;(Q)

and

S uww(755) < cuo (53

R=0Q;XQ,€m,(Q) 4 1

In applications, we may take w(t) = t° for any § > 0 and the underlying
dyadic grids may be reference dyadic grids for the wavelets, or may belong to a
regular family of dyadic grids that contains them. In these cases the constant
C = Cs depends only on § and the geometric constants of the spaces X; for
i=1,2.

In [HLLin] the setting is the product of two spaces of homogeneous type with
a regularity condition on the metrics and a reverse doubling condition on the
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measures. However the proof of the Journé-type lemma uses only the doubling
property of the measures, and goes through in the present setting. In the same
paper the authors introduced (p, g)-atoms in their setting, similar to those we
define in this paper. Our (p, q)-atoms will have additional enlargement param-
eters (€,,€,) € Zi that were not present in [HLLin].

5.2. Product (p, q)-atoms and atomic Hardy spaces. First we define prod-
uct (p, q)-atoms for all p € (0,1] and g > 1. Second we define product atomic
Hardy spaces, HY(X), for all ¢ > 1 and for all p with py < p < 1, where
Do = max{w;/(w; +1;) 1 i=1,2}

Definition 5.2 (Product (p, g)-atoms). Supposethat0 < p < land1 < g <
. Fori = 1,2, let (X;,d;, 4;) be spaces of homogeneous type in the sense of
Coifman and Weiss, with upper dimension w;. A function a(x;, x,) defined on
X is a product (p, q)-atom if it satisfies the following conditions.

(1) (Support condition on open set) There are an open set Q of. X with finite
measure and integers ¢1,¢, > 0, such that suppa C Q ,,, where
ﬁfl,fz isthe (¢, ¢,)-enlargement of Q, the €o-enlargement of Q, defined
respectively in (4.28) and in (4.26), with ¢, as defined in (4.25).

(2) (Size condition) There is a constant C, > 0 such that

~\1/9-1/p
llallzacx,xx,) < Cq (€1 + €o@,)2001 0222 4(Q))) .

(3) (Further decomposition into rectangle atoms with cancellation) There
are underlying dyadic grids @f on X; for i = 1,2, such that the func-
tion a can be decomposed into rectangle (p, q)-atoms ag associated to a
dyadic rectangle R = Q; XQ,, with Q; € 2/ and satisfying the following
conditions. _

(i) (Support condition) Let C; = 2(Ag))2 > 0fori = 1,2. For all
rectangle atoms ag, we have that

supp ag C C12°1Q; X C52°2Q, C Qy 4.
(ii) (Cancellation condition on each variable)

f ag(xy, %) dp(x;) = 0 forae. x; € X; and (i, j) € {(1,2),(2, 1)}
X

(iii-a) (Decomposition and size condition for 2 < g < o) If g > 2 then

a= Z ag

Rem(Q)
and there is a constant Cq>0 such that

1/q ~\1/9-1/p
Z ||aR||gq(g)] < Cq ((fla)l + 52w2)2€1w1+t’2wz#(g)) X

Rem(Q)
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(iii-b) (Decomposition and size condition for 1 < q < 2) If g € (1, 2) then

a= Z ar + Z ag,

Rem,(Q) Rem,(Q)

and for all § > 0, there exists a constant Cg s > 0 such that we
have, for each (i, j) € {(1,2), (2, 1)},

1

£(Qi)\¢ 7 _ 1
[ Z Aj ) ||C1R||Zq(§)]q <Cys (€101 + Eowy)201 14222 y(Q)) e P,
rRem(@) €(Q))

The constants €, Cy, Cy s depend only on the geometric constants of X; for
i = 1,2 and as indicated on g and 8. The families of rectangles m(Q), m;(Q) for
i = 1,2 were defined on page 1213. We will call the integers ¢; > 0 enlargement
parameters of the atom.

We remark that, when X = R"XR"™, (p, 2)-atoms with conditions (i), (ii) and
(iii-a) (with g = 2, and ¢; = ¢, = 0) were introduced by R. Fefferman [Fel].
When (X;, d;, ;) are spaces of homogeneous type with the quasi-metric d; sat-
isfying the regularity condition (2.3) and the doubling measure y; satisfying a
reverse doubling condition (1.2), fori = 1, 2, the (p, g)-atoms with¢; = ¢, =0
were defined in [HLLin, Definition 2.3]. In [KLPW, Definition 5.3] the product
(1, 2)-atoms as in Definition 5.2 were used when ¢, = ¢, = 0.

Note that there are no wavelets and no regularity parameters #; involved in
the definition of the (p, g)-atoms. In item (3) of Definition 5.2 any pair of under-
lying dyadic grids is acceptable, as long as properties (i)-(iii) are met. However
we will be interested in the situation when the underlying dyadic grids 2;" be-
long to a regular family of dyadic grids on X; that contains all possible reference
dyadic grids _@iW for all possible wavelets on X; fori = 1, 2.

The open set Q is a placeholder and the maximal rectangles in item (3) do
refer to Q. The positive constants C; = Z(Aél))2 fori = 1,2 initem (3)(i) are the
same for all (p, g)-atoms. However the enlargement parameters, ¢; fori = 1,2,
initem (1) may change from (p, g)-atom to (p, g)-atom. We will see, in the proof
of the atomic decomposition for H?(X), that the (p, q)-atoms will be indexed
by a parameter j € Z and by the enlargement parameters ¢; > 0 fori = 1, 2.

We can now define atomic product Hardy spaces H: 4(X).

Definition 5.3 (Atomic product Hardy spaces). Fori = 1, 2, let (X;,d;, 4;) be
spaces of homogeneous type in the sense of Coifman and Weiss as described in
the Introduction, with quasi-metrics d; and Borel-regular doubling measures y;.
Let w; be an upper dimension for X;, and let #; be the exponent of regularity of
a family of Auscher-Hytonen wavelets on X;. Let p, : = max{w;/(w; +1;) : i =
1, 2}. Suppose that py < p <land1 < g < co. Then

[e o)

HEIR) :={f € @) : f= 3 Aaj D 141 < oo,

j=—o0 Jj=—o
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where for each j € Z, the function a; is a (p, g)-atom with underlying dyadic

grids @fj for i = 1,2, belonging to a regular family of dyadic grids on X; that
contains the reference dyadic grids of all possible Auscher-Hytonen wavelets

o
on X;. Furthermore, the convergence of the series is in (G)’. We define a semi-
norm on H ft’q (X) as follows

o) 1

1flpace) s=int {( 3 Wy1P)7 : = > Ay,

j:—oo jI—OO

where the infimum is taken over all possible atomic decompositions of f.

Recall that (G)’ is short for the spaces of distributions (G7(8’,7")) , where
we have fixed §8/,y! € (0,7;) and 7); is the regularity exponent of the Auscher-
Hytonen wavelets on X; for i = 1, 2. In the one parameter theory, in the cor-
responding definition of atomic Hardy space H ft(X ), it is required that f €
(€ (X ))' the dual of the Campanato space, see [HHL1, discussion surround-

ingp Lemma 2.6 on p.3448].

The underlying dyadic grids can change from atom to atom. The underlying
dyadic grids &/ for i = 1,2, for a given atom a, can be any dyadic grids belong-
ing to aregular family of dyadic grids on X; that contains all the reference dyadic
grids associated to all possible wavelets on X; fori = 1, 2. In particular they may
not coincide with the reference dyadic grids @iW associated to the wavelet basis
on X; for i = 1,2, used in the definition of the product Hardy space HP(X).
This ensures that by definition, the product atomic Hardy spaces H:?(X) are
independent of the reference dyadic grids and wavelets used in the definition
of HP(X). We may as well restrict the regular family of dyadic grids on each X;
in the definition of atomic Hardy spaces to be the collection of reference dyadic
grids for all possible wavelets on X; fori = 1, 2.

We will show in Section 5.3 that Hft’q()? ) is the same space for all g > 1,

hence we can safely write HY (X). Moreover we will show that H (X) = HP(X).
In [HHL1] they work with (p, 2)-atoms only, and therefore their H ft()? ) is by
definition what we denote H ft’z()? ). Note that if f € HY9(X) n LI(X) the con-
vergence of the atomic series also holds in LI(X) and that H ft’q()? )N LX) is
dense in HY?(X) in the atom (semi)norm.

5.3. Main theorem on atomic decomposition, and corollaries. The main
result in this section, Theorem 5.4, is to show that L4(X)NHP(X) has an atomic
decomposition. This theorem was cited and used in [KLPW, Theorem 5.4], in
the case p = 1 and q = 2, to establish dyadic structure theorems for H'(X) and
BMO(X).

Theorem 5.4 was stated in the introduction and called Main Theorem. For
the convenience of the reader we restate the theorem here.
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Theorem 5.4 (Main Theorem). Fori =1, 2, let (X;,d;, ;) be spaces of homoge-
neous type in the sense of Coifman and Weiss as described in the Introduction, with
quasi-metrics d; and Borel-regular doubling measures y;. Let w; be an upper di-
mension for X;, letn; be the exponent of regularity of the Auscher-Hytonen wavelets
used in the construction of the Hardy space HP(X), let p, := maxicw;/(w; +1;) :
i=1,2} and let .@iW be the reference dyadic grids for the wavelets in X;. Suppose
thatpy < p < 1,1 < q < oo, and f € LI(X). Then f € HP(X) ifand only if f
has an atomic decomposition, that is,

o0
Jj=—00
Here, first the functions a; are (p, q)-atoms with respect to an underlying dyadic
grid @iaj belonging to a regular family of dyadic grids on X; that contains all pos-
sible reference grids for wavelets on X; fori = 1, 2, second Z;‘;_m |4;|P < o0, and
third the series converges in L1(X). Moreover, the series also converges in HP(X)
and

||f||Hp(z)~inf{(§ 1P)" 2 f = i ),

j=— j=—0

where the infimum is taken over all decompositions as in (5.4) and the implicit
constants are independent of the L4(X) and HP (X)-(semi)norms of f, and depend
only on the geometric constants of X; fori =1, 2.

We repeat, the underlying dyadic grid ;" needed for each atom may or not
coincide with the reference dyadic grid @iW associated to the underlying Auscher-
Hytonen wavelets on X; for i = 1, 2, used in the definition of H P(X).

As corollaries of the Main Theorem 5.4 we conclude first that H ft’q(f ) coin-
cides with HP(X) for all ¢ > 1, and second that the Hardy spaces HP(X) defined
via specific Auscher-Hytonen wavelet bases based on specific reference dyadic
grids on X; for i = 1,2, are indeed independent of the choices of both wavelet
bases and reference dyadic grids.

Corollary 5.5 (Corollary A in the Introduction). Forall1 < q < oo and py <
p < 1then

P _ 4
H,~(X) = HP(X).
Proof. By Theorem 5.4 for each g > 1,
HY(X) N LI(X) = LYX) n HP(X),
the closure of the right-hand-side in the HP-(semi)norm is HP(X), and the clo-
sure of the left-hand-side in the atom (semi)norm is H ft’q (X). Both (semi)norms

are equivalent by Theorem 5.4, therefore we conclude that HP(X) = HY9(X).
This is precisely what we wanted to prove. O
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For any p with p, < p < 1 we now define Hft(f ), the atomic product HP-
space, by
HY(X) := HYA(X), (5.5)
for any given g > 1. The atomic product HP-space is well-defined by Corol-
lary 5.5.

Corollary 5.6 (Corollary B in the Introduction). Let p > p,. Then the Hardy
spaces HP(X) as defined in [HLW] are independent of the particular choices of
the Auscher-Hytonen wavelets and of the reference dyadic grids used in their con-
struction.

Proof. Given p > p,, define HP(X) as in [HLW], using a particular choice
of reference dyadic grids, _@iw fori = 1,2, and a particular choice of basis of
Auscher-Hytonen wavelets defined on those grids. For p > 1 we already know
that HP(X) = LP(X); see [HLW]. For p, < p < 1, choose ¢ > 1. By the Main
Theorem, the set HP(X)NL4(X) coincides with the set of functions in LY(X) that
have atomic decompositions in terms of (p, g)-atoms. Each (p, g)-atom a in a
decomposition, has underlying dyadic grids ;" for i = 1,2, possibly different
from .@iW, but belonging to a regular families of dyadic grids on X; that contain
all possible reference dyadic grids on X;. The atomic decompositions are a priori
unrelated to the Auscher-Hytonen wavelets and their reference dyadic grids.
Further, H?(X) N L4(X) is dense in HP(X) in the HP-(semi)norm. Note that the
closure is independent of the choice of square function (which depends on the
choice of wavelets and hence of reference dyadic grids) in the HP-(semi)norm,
because we can instead use the equivalent atom (semi)norm. Thus HP(X) is
independent of the particular choice of reference dyadic grids and the particular
choice of basis of Auscher-Hytonen wavelets defined on these grids, as required.

O

As a further corollary of these results and the duality theorems, Theorem 4.3
and Theorem 4.5, we conclude that the Carleson measure spaces cCMO? (X ), the
space of bounded mean oscillation BMO(X), and the space of vanishing mean
oscillation VMO(X) are all independent of the chosen wavelets and reference
dyadic grids.

Corollary 5.7 (Corollary C in the Introduction). Let py < p < 1. Then the Car-
leson measure spaces CMOP (X), the space of bounded mean oscillation BMO(X),
and the space of vanishing mean oscillation VMO(X), as defined in [HLW], are
independent of the particular choices of the Auscher-Hytdnen wavelets and of the
reference dyadic grids used in their construction.

Proof. By Theorem 4.3, if p, < p < 1 then CMO?(X) is the dual of HP(X). By
Corollary 5.6, the Hardy space HP(X) is independent of the particular choice
of reference dyadic grids and the particular choice of basis of Auscher-Hytonen
wavelets defined on these grids, therefore so will be its dual CMO?(X). Also
by Definition 4.2 we know that BMO(X) = CMO'(X), and by Theorem 4.5 we
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know that (VMO(X )), = H'(X), hence since H'(X) is independent of chosen
reference dyadic grids and wavelets so will be BMO(X) and VMO(X). a

5.4. Proofof the main theorem. In the proofof the Main Theorem 5.4, given
a function f € HP(X) n L9(X) we will show it can be decomposed into (p, q)-
atoms based upon the reference dyadic grids, @iW fori = 1, 2, corresponding to
the underlying wavelets. For the converse, it will suffice to verify that a given
(p, @)-atom a, based on possibly different dyadic grids ;" belonging to a reg-
ular family of dyadic grids that contains all possible reference dyadic grids for
wavelets on X; for i = 1,2, must belong to H? (X) with uniform control on its
HP-(semi)norm. We will have to carefully balance the geometry on both sets of
dyadic grids with the size, support, and cancellation properties of the functions

go?lf‘ ., for i = 1,2 (building blocks for the wavelet gbzi found in Lemma 4.3)
and the rectangular (p, g)-atoms ag; for example, when estimating the inner

product (qo;’ilal(-), ag(s, X2))r2(x,) for uy-a.e. x, € X,, as we do on page 1230.

To achieve this balance we will choose E,- = C;2% where C; = 2(Ag))2 and ¢;
for i = 1,2 are the enlargement parameters appearing in the definition of the
(p, @)-atom.

Proof of Theorem 5.4. (=) Following the proof of Theorem 4.6, for any func-
tion f € HP(X)NL4(X), we have by (4.16) and (4.22), tha_t for some sufficiently

large y; > 0 (in fact for y; > «;(1/p + 1/q")), letting C; = 1, and denoting
il i :
¢;i’ki’0{i = go;,»,k,-,ai’ fOI' L= 1’ 2’

f(x1,x) = Z 2_€m_fzysz’1,f2(x1’xz)

£1,62>0

— — ki 1k 14 %
= Z 2 fin=tar: Z Z <f’¢ai ai)Kl gogll,kl,al(xl)KZ qofz,kz,az(XZ)'

t1,6,20 JEZ ghrka

a1,a ij

Here the series converges unconditionally in the Li(X)-norm. As before, the

constants x; := /K (B(yf{i, §ki)) for i = 1,2, the dyadic rectangle Rzilgfz =

102 X QIOZ with Qﬁ’l € @iW fori = 1,2, and the set B; was defined by (4.21). We

now set

fax) = 30 rimTng, o dll (x,x,),  (5.6)
t1,6,>0 jeZ

Y1572

Jit1:ts

dyadic grids .@iW for i = 1,2 associated to the wavelets (as shown below), pro-

vided y; and y, are sufficiently large, and are defined by

1 ki, k
Y172 - 1,,K2 71 V2
aj,flyfz(xl’ x2) - Fl Z (f’ z)bocl o(2> LS| @gl,kl’al (xl) L) qofz,kz,az(XZ)’

J€1C2 kiky
Rawzeﬂj

where the functions a will be (p, q)-atoms with respect to the reference
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and the coefficients 1, », », are defined differently according to whether g < 2
or not.
First, when 2 < g < oo, define the coefficient 1; » ., as follows:
1 1
Ajgye, 1= 2000rt0 1S 3)lzacz) (101 + Crwy)2C191+ 222 (Q)) 9.
(5.7)

Second, when 1 < g < 2, define the coefficient 4; ¢, , as follows:
1 1
Aj’fl,fz « = ptiw+trw; ||S(f131)||L2(}?) ((51% + €2w2)2€1a)1+€zw2#(Qj))p 2
(5.8)
Here f 5, Was defined in (4.31), and hence

stap=( X [(r9a)

k1 ko
Reyay €Bj

1

X okik )2

1,52 ’
Ral,az

where Jgi = gbfé /x; denotes the normalized wavelets for i = 1,2. The open

set O j¢1.¢, 18 the (€1, €,)-enlargement of Q ; defined in (4.28), the open set Q j
is the ey-enlargement of Q; defined in (4.24), and the level set Q; is defined
in (4.18). The constant ¢, > 0 was defined in (4.25) and is purely dependent on
the geometric constants of the spaces X; fori =1, 2.

Notice that when 1 < g < oo estimate (4.36) provides

[ 2arettaed)|S(f )]

<
j,f’l,ﬁ’z”LQ(X) ~q /‘ljfl , (5.9)

LX)
where the similarity depends only on the geometric constants of X; fori = 1,2
andon g > 1.

When 2 < g < oo, using (5.7), the definition of the coefficient 1;, ,, pro-
vides the following L?-estimate for the atom:

| 71 V2

¢ = W
iecelag Sa (101 + Crw)2f11 222 0(Q)) - v (5.10)

In particular when g = 2 we obtain the following L-estimate for the atom:
2

~ 1-2
||a”t"? S (6 + Cawp)201214 222 (Q)) P (5.11)

Jt1 fz”LZ(X)
Y1Y2
Jj,t1,62
reference dyadic grids QiW for i = 1,2 associated to the underlying wavelets,
with the open set Q; playing the role of Q in Definition 5.2, and with enlarge-
ment parameters ¢,,¢, > 0.

First we check that ay}hf satisfies condition (1) of Definition 5.2. Recall that
1>

cp? 1. o (Xi) is supported on the ball B(yif, 2(A(i))2 2¢i5k) ¢ X, for eachi = 1, 2.
Hence, if R € B, then the support of ol o ko (x1) (pz,kz,az(%) is contained in

We now verify that the functions a are (p, q)-atoms with respect to the

the open set Q ity = Q )¢, .¢,» as explained on page 1205. Note that since
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f € Li(X)for1 < q < oo, then Q; and ﬁj,fl’fz have finite measure. More
precisely, by estimates (4.29) and (4.27) and by Tchebichev’s inequality (4.20),

H(Qjg,0,) S (€101 + €2)201 14222 1(Q))

< (€1w1 + €2w2)2f1w1+f2w22 J‘IHS(f)HLq(X)
(51501 + €2w2)2f1w1+52w22 ]q”f”Lq(X)
Thus condition (1) of Definition 5.2 holds.

Second we verify that a’';/’?, satisfies condition (2) of Definition 5.2. For

J.e1.65
2 < g < oo thisis estlmate (5.10). For1 < g < 2, since a”lﬁ,yzf

in Q; j.¢,,¢,» applying Holder’s inequality with exponent s = 2/q > 1, and using
(4.29) and the L?-estimate (5.11), yields

is supported

1 1
iy a’ O ¢ 2
la; el < llaje’y g M e, e,)?

1

1 1 1
(6100 + 52w2)2f1w1+€zwzﬂ(§j))z P ((C107 + 52“2)2€1w1+€2wzﬂ(§j))q 2

A

1 1
((51501 + 52w2)2€1w1+€2wzﬂ(ﬁj))q P,

A

Y1:V2
J, 1,6,
}’1]/2
Jj,t1,€2

To see this, we can further decornpose a

As a consequence, we get that a satisfies condition (2) of Definition 5.2.

Third, it remains to check that a’ satisfies condition (3) of Definition 5.2.

"72into rectangular atoms a’'”? _
Jt1,t2 Jt1,€2.R

defined for each X = (xy, x,) by

1
}’ Y . E: Y
1€ 25 (-’f) .= 1 <f ‘lib >K1 @5 Ky, (xl)KZ @522 k, az(x2)’
J 2R JflszRklkz B, o
s

a1 “2

7(R)=R

where R = Q, x Q, with Q, € QiW, a dyadic cube associated to the wavelets on
X;fori=1,2. Heret : B; — m(Q;) denotes a function that assigns to each

R € B; arectangle 7(R) = R € m(Q ), so that R C R. This will be important
when verifying condition (3)(iii-a) in Definition 5.2. Likewise when verifying
condition (3)(iii-b) in Definition 5.2 we will assign each R € 3B; to only one
R € m(Q)) Umy(Q;) withR C R.

We can verify that supp a}_'l’y2 =C 2(A(1))2 201Q, 2(A(2))2 2¢2Q,, by defini-

tion of the rectangle atoms and the support conditions of the functions ¢’ f Kot

for i = 1,2. We deduce that f, 71;'26 _(x1, %) dpi(x;) = O for a.e. x; € X; by
Jt1, 2a

the cancellation conditions of the functions ¢’ ¢ ko fOT (i,j) € {(1,2),(2,1)},

and the facts that the integrand aylijzf = € LI(X) for ¢ > 1 and has com-

J:t1,t2,
pact support. These show that the support and cancellation conditions (3)(i)



1222 YONGSHENG HAN, JI LI, M. CRISTINA PEREYRA AND LESLEY A. WARD

and (3)(ii) of Definition 5.2 hold, with support constants C; = 2(Ag))2, as re-
quired, and enlargement constants ¢; > 0, fori = 1, 2.

We now show that ay1 72{/, satisfies the decomposition and size conditions in

(3)(iii-a) when 2 < g < oo and (3)(iii-b) when 1 < g < 2, of Definition 5.2.

Y172 Y1572
For 2 < g < oo, first observe that ais’e ZRem(Q) et this is true

because each R € B; is assigned to exactly one R € m(Q), namely to R =

7(R). Second, we have by definition of the rectangular atom and the triangle
inequality

” 71 ”L «(X) = sup K h & g>’
Jt f R :||g||Lq,®31 JtrtaR
Tk
< 1 | 2 ’ | |
= Sup 1AJ 1,6, <f ‘(’b 2> <q0f1 ks algofz ka0’ g>
8- ”g”Lq (X)_ R—R];} oé B]’
7(R)=R

Therefore, first raising to the g power, and second using the Cauchy-Schwarz in-
equality on the sum together with Lemma 4.9 as we did when estimating (4.34),
we conclude that

” 71 V2 q
j.61,62,R LX)
q 7k 2 !
Sq  SWP A, DI (Ao L o (/A g>”
g llgll,q @)= R:R{;}:a;EB;a
(R)=R
g
(Erwy+€5w)q 374 ~k; Ty 2 2
$,2 5| (T 2 @ du®.
R=Ry"2€B,, v
7(R)=R

We now add this estimate over all R € m(Q ;), note that the power /2 > 1 can
be pulled out of the sum (namely Zk lay|9/? < (Zk |a,)9/2), and remember
that each R € B, is assigned to exactly one R e m(Q ;) that contains it, and get

Y1Y2 (Crw1+€,m,5)q 774
2 e allae Sa 20O, ISl
Rem(Qj)

~ 1-2
Sq ((€1; + €0y) 2€1w1+€2w2#(9j)) r, (5.12)

where in the last inequality we used the definition (5.7) of 1; » ¢.. This proves
condition (3)(iii-a) of Definition 5.2.

For 1 < g < 2, applying Hélder’s inequality and the Journé-type covering
lemma, we will show that condition (3)(iii-b) of Definition 5.2 holds. First we
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observe that in this case the decomposition

a}.’l,}’z — Z a}’l Y2 4+ Z a7/1,}’2 _
Jtuty J,€1,€2,R Jt1.€2.R

Rem,(Q;) Remz(Q )

holds. Here the second sum is over m;(Q i) 1= my(Q;) \ my(Q;) to avoid du-
plicates. The decomposition is true because this time we assign each R € B,

to exactly one R € m;(Q i) U my(Q;), namely R = 7(R) where the function
T @ Bj - m(Q)) Umy(Q;). Second, let us show that given § > 0 there is a
constant Cg 5 > 0 such that

f(Qz)) 7 -
Z (—A | 1,72 || q5 ((51cu1 + fzwz)z 101+ 2“’2#(9 ))
N TGR

A similar argument will take care of the sum over Re m;,(Q;), and hence over
Re m(Q j)- First, using Holder’s inequality with exponent s = 2/q > 1, the
support property of the rectangular atoms, and the doubling condition of the
measures (as in (3.9)), we get that

| 7’1 V2

—q
t 4 By
f f R”Lq(X) ~ || ] flifz,R”LZ(X)(z 11+ 2@2#(R)) 2

Second, substituting this estimate and using Ho6lder’s inequality in the sum
with exponents s = 2/q and s’ = 2/(2 — q), we get

€(Q2)\° Ry
—=) ||la’"" || \
T?emzliﬂj)(f(Qz)) Ji£1.62.RTLIX)

£(Q)\? 5
S Z ( < ) ” }’1 V2 (2€1w1+t’2w2,u(R)) 2
Rem () ¢(Q,) Jjt1.62.R LZ(X)
< (2€1w1+€2w2 Z ( (QZ))Z q (R)>%q( Z | 7’1 Y2 || )g
~ _ £(0,) _ j.1.65,R LX)
Rem;(Q)) 2 Rem,(Q;)

9_4

1-4 ~ 1
<us (26’1w1+€2w2M(Qj)) 2((510)1+€2w2)2f1°"1+f2w2u(§2j))2 p

~ 1-42
Sqs ((Crw) + 202020 2220(Q)) v

. . . s .
We used the Journé-type covering lemma with 6’ = 22— > 0, and estimate

q
(5.12) (Eor g = 2), in the third inequality. In the last inequality we used the fact
that u(Q;) ~ u(Q;). Altogether we obtain the desired atomic decomposition
for f.

Finally by computations similar to those in the proof of Theorem 4.6 we con-
clude that when f € HP(X) n LY(X) then inf Zjez |4;1P < C ||f||Hp( , where

the infimum is taken over all decompositions of the form f = ZJ ez /1 iaj, the
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functions a; are (p, g)-atoms, and Z] ez 14jlP < oo. More precisely, it suf-
fices to show that for the decomposition we just proved, namely f(x;,x,) =

—C1¥1—C2¥2 7 . Y172 : : : .
ZjEZ;t’l,fzzO 2—tin—t; z,lj,fl’fzajfl’fz(xl,xz), the following inequality holds:

Z |2—t’171 5272/1] 1, fz q ”S(f)”LP(X) (5.13)
JEZ;¢1,6,>0

When 1 < g < 2, according to definition (5.8) we get, using that the square
function is bounded on L?*(X), that

—t1y,—¢ _ ¢ — ¢ —
g% |2-tn—tan,, o |P = ;Z IS5 I2, g, 27177022007
J J
fl,fZZO 61,5220

~ 1-£
X (€11 + €204 02224(Q ) 2

Z Ilf5. ||L2(X)#(Q ) Z 2t1p(@1=¥1)¢2p(w2—Y2)
jez t1,6,20

tre1(1=0) ytr0,(1-2

P) l_g
X 2 (1w + Chwy) 2

. . 1 1 .
The series over ¢1, ¢, converges if we choose y; > @;(= + E) fori =1, 2. There-
p

fore,

_ _ . ~ E ~ 1_£ . —~
Dol o 1P S YT 2PTu(Q\ Q) () T2 S D) 2P u(Q)).
jez jez jez

t1,6,>0

In the first inequality we have used the following estimate for the L?-norm of

[
I ING
s g = 2 [ Yaive)

Rlk2 €B;

a1.a2

ky,k =
M(Rai,cxzz N (Qj\Qj+l))

RM2ep, M (Qlocci )#2(QIOZ)
=2||S(f5)II? <2IS(NI

<2

k)]

2J (O ;
LZ(Q \Q L2(Q \Q 2 #(QJ \ Qj+1)~

In the above calculation we used Plancherel in the first line, and we used the
fact that when R € B; then 2u(R n (Q;\Q;41)) > u(R) in the second line
(as shown on page 1208). In the third line, the last inequality holds because if
(X1, %) & Qj4q then |S(f)(x1,x,)| < 27+

Finally, recalling that ,u(ﬁ ) S u(Q;), and using (4.19) we conclude that

Z |2~ C17— fz}’z/l £ €2|P < Z ZPJ/,((Q ) S ||S(f)||

. LX)’
JE€Z;¢,,6,>0 Jjez
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Therefore inequality (5.13) holds when 1 < g < 2 whenever the parameters
y; satisfy the constraint y; > cui(l + %) fori = 1,2. Notice that in this range
p

¢ >2and (= + %) > (+ + =), therefore the constraint needed in the proof of
p p

Theorem 4.6 on page 1204 is satisfied.
When q > 2, according to definition (5.7), by a similar argument to that in the
proof of Theorem 4.6, specifically using (4.39) and provided thaty; > col-(l + l,)
P q
fori = 1,2, we get that

Z |2—5171—5272/1j,£1962 |P = Z ||S(fBj)||iq(§)2flp(w1—71)25217(502—72)
JjeZ JjEZ
f1,€220 fl,fzzo

~ (1-2
X ((£1 +€2w2)2€1w1+€2w2#(§2])) 1

. o~ B g2
<q Z 2P pu(Qj) e u(Q;) 9
j€z

1€1¢f)1(1—§) €, (1—

p p
X Z zflp(wl—h)zfzp(wz—}’z)z 2 a)(flwl + fzwz)l_E

f1,€220
jez

We conclude that (5.13) holds when g > 2 whenever the parameters y; satisfy
the constraint y; > col-(l + i/) fori = 1, 2. Notice that this is the same constraint
needed in the proof of Theorem 4.6 on page 1204. All the constants appearing
in the inequalities < and similarities ~ depend on the geometric constants of
the spaces X; for i = 1,2, and possibly on the parameters g > 1or > 0 as
indicated.

(<) Given an atomic decomposition f = Zj <z Aja; for afunction f € L1 X)n
HY(X), with 2 ez 14jIP < co. By definition each product (p, g)-atom a; has
underlying dyadic grids .@iaj on X; fori = 1,2 belonging to regular families of
dyadic grids on X; that contain all the reference dyadic grids for wavelets on X;.

The series is assumed to converge in LI(X), hence it suffices to verify that there
is a constant C > 0 such that for all such (p, g)-atoms a

IS(@llzez) < C. (5.14)

The constant C > 0 will depend only on the geometric constants of the spaces
X;fori =1,2and on p and g, but not on the enlargement parameters ¢,,¢, > 0
of Definition 5.2 of the (p, g)-atom. The constant will depend on the structural
constants of the atom’s underlying dyadic grids, 2)? fori = 1,2, via the outer

balls dilation constants Ci and the ratio of the outer and inner balls dilation

constants Ci / ci. These quantities will appear when using the doubling prop-
erty for dilates of cubes as in (3.8). Both quantities are uniformly bounded by
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a constant depending only on the quasi-triangle constants of the quasi-metric
d;, since the grids D} are assumed to belong to a regular family of dyadic grids
on X; fori = 1, 2. See Definition 3.2 and inequality (3.9).

Once we prove estimate (5.14) for the atoms, if f € L9(X) has an atomic
decomposition f = Zi A;a;, where the series converges in both L7-norm and
HP-(semi)norm, then by subadditivity of the square function, and since p < 1,
together with (5.14), we conclude that

1 1y = ISCOI, ) < Z A1PIIS(@IIF, ) < CP 2 1AilP < oo,

ez

1
which immediately proves the norm estimate || f]|;p(zy S inf{( Y] [4;[P) /p}.
ieZ

To this end, fix a (p, q)-atom a with suppa C Q,, where Q, is an appropri-
ate enlargement of the open set Q in Definition 5.2, more precisely Q,, = Q;"l ¢,
for some enlargement parameters ¢;,¢, > 0. Recall that u(Q) ~ ,u(ﬁeo) <
,u(Qi?1 ) S (G + €ywy)20191+ 0222 (%), where the last inequality holds
by (4.29). Assume the (p, g)-atom has a decomposition a = ), em(Q) IR when
q > 2, and a decomposition a = ZReml(m ag + ZREm;(Q) agwhenl < g < 2.
We will work in detail the first case when q > 2. A similar argument will take
care of the second case, 1 < g < 2; we only need to start with dyadic rectangles
R in m(Q) or in m,(Q). _

Let Q be the c-enlargement of Q and let Q be the e-enlargement of Q, as
defined in (4.26) for ¢ = 1/2, that is,

= {(x1, %) €X 1 My(x)(x1, %) > 1/2},
= {(x,x)eX: M (xg)(x1,x2) > 1/2}.

QU D

It will be useful to keep in mind that Q ¢ Q € Q and that u(Q) ~ u(Q) ~ u(Q)
by (4.27).

Moreover, recall that m;(Q) denotes the family of dyadic rectangles R C Q,
R = Q; X Q,, with Q; € %/, which are maximal in the ith “direction”, i = 1, 2.
We define mi(ﬁ) similarly. Also recall that m(Q) is the set of all maximal dyadic
rectangles contained in Q. Then for any R = Q; XQ, € m(Q), set R:= 61 XQ,.
By definition of Q, in page 1213, one has that Q; C 01, u RN Q) > u(R)/2, and
that Q; € 27 is maximal with respect to these properties, hence R € m(Q).
Similarly, set R := 0, x O, € m,(Q), since Q, € Q,, u(Rn Q) > u(R)/2, and
0, e 25 is maximal with respect to these properties.

The set Q isa placeholder rectangles R refer back to Q, rectangles R to Q, and
rectangles R to Q. However we want to relate to the support of the (p, g)-atom a

for the estimates, hence we will consider the (¢, ¢,)-enlargement of these sets.
Specifically echoing the * notation we are using for the support Q,, of a, we write
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= (ﬁ)flyfz and ?L 1= (6)19% ,- We will also consider appropriate (¢4, €,)-

enlargements of the rectangles, specifically R, := 2010, x 2f2Q, and R, =
201Q, x22Q,.

Decompose ||S(a)||”. .. into pieces that are near or far from Q, (the support

Lr(X)

of a):
IS (a)IIL,,(X)—A+B,
where
A = f L IS@Ga )P du(x,x)  (near )
Urem(a)100CR
B = f _ 1S(@)(x1, x)1P du(xy, x,)  (far from Q).
(URem(Q)l()OEﬁ )

Here CR, := Clzfl(/jl X C22£2(/2\2. The constants C; = 2(Ag))2, fori = 1,2,
are the dilation constants appearing in the support of the rectangular atoms
property (3)(i) of Definition 5.2, and the parameters ¢;, for i = 1, 2, are the en-
largement parameters in the support of the ( (p, q)-atom in property (1) of Defi-
nition 5.2. To ease notatlon we will denote C =C; 25 fori = 1, 2. This ensures
that C;Q; X C,Q, C CR*, and supp(a) C URem(Q)CR

Applying Holder’s inequality with exponent s = q/p > 1, the desired esti-
mate A < 1 for the integral A follows from the L?-boundedness of S and the
Li-norm estimate of the atom a as in (2) of Definition 5.2. More precisely,

—~ 1-2 2

A 5 llallyy 5, (#(Urem(@100CR,)) ¢ Sq((€1001 + €r)2011 222 (Q) ) ¢
—_ —_ ~ 1_£
X (€101 + €20,)(100C,)*1 (100C,)* (@) ¢

<o (@) (@) 77 g4 1

In the second inequality, similar to (4.29), we again used the L log +Lto weak
L' estimate of the strong maximal function to estimate the upper bound of

21(V; Rem(mlooﬁﬁ*). In the last inequality we used the fact that u(Q) ~ u(Q).

Using the decomposition of the atom a as in (3)(ii-a) of Definition 5.2, the
sublinearity of the product square function S, and that p < 1, the integral B can
be estimated as follows:

B < [S(ag)(x1, X)|P du(xy, x5).

Rem(Q) v[looEf?*)c

We split the integral over (100CR, )¢ into two parts, one over (10051 @1 )xX,
and the other over X; X (100C,0,)¢. Denote the sum over R € m(Q) of the first
integrals by B, and of the second integrals by B,, respectively, so that B < B; +
B,. It suffices to estimate B, since the estimate for B, is similar by symmetry.
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To estimate the sum B;, we further split each integral into two pieces, one

over (100C;Q;)°x100C,Q, and the other over (100C; Q,)*x(100C,Q,)°. Denote
the sum over R € m(Q) of the first integrals by B;; and of the second integrals
B, respectively, so that B; = By; + Bis.

Estimate for B;. Applying Fubini for the integrals, then Holder’s inequality
on the second variable with exponent s = q/p > 1, using the doubling property
of u,, and writing X = (x;, x,), we estimate

By = 1S(ag)(X)IP du(X)

Rem(Q) ’/(;0061 Q1)ex(100C,Q,)

— 1-2 5
S % @@ [ | [ st dute|” due)
X1 #100C1Q; - VX,

Rem(Q)

We estimate the inner integral on the right-hand side using an L9-vector-valued
one-parameter square function estimate with respect to the variable x, for y;-
a.e. x;, where we consider x; a fixed parameter. More precisely, let F : X, —
ng(g)(Xz, W) =: ng(Xz) where S is a countable set, meaning that for each

X, € X5, F(xy) = {Fr(x)les € ¢X(S) where ||F(-)|lz,s) € LUX,). Fur-
thermore we let ||F||L32(X2) = H||F(-)||fz(§)||Lq(X2). Then, using the notation

)FQki = X / /,ti(QI;"i) (denoting an L!-normalization instead of denoting an L2-
normalization) and where QIOZ € @iW, we define

S =Y )

kZGZ aze?]kl

5 1
~ 2
XQ’O‘(; (x2)) .

k
’@az, Frax,)

t2(S)

Here (gbfé,F)Lz(Xz) denotes the sequence {(l,sz,Fk)Lz(Xz)}keg. For all ¢ > 1 the
following vector-valued inequality holds: ||SZ(F )“Lq %) < Cq”F HLq ) We
2 £2 2

recall that {gbfé Yk,ez,w is an orthogonal wavelet basis in X, satisfying suitable
size, smoothness, and cancellation conditions. Hence by following the proof
of the L9-boundedness of the Littlewood-Paley square function as in [HLW] for
q > 1, we obtain the L9-boundedness of the vector-valued Littlewood-Paley
operator S,. For the Euclidean version, we refer to [Gra, Section 5.1.2].

With these preliminaries in mind, we can now estimate for y;-a.e. x; € X;
the LI(X,)-norm of S(ag)(xy, -), more precisely,

|S(ar)(x1, X2)| duy(x,)
X,

q
ki 1k 2 _ ~ 5
o R DI TR ANCH ANCS) e
X, k,€Z k€eZ “ “2
aZE?!/kZ ale?]/kl
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[(2 k,ez kez

q
[ 2 ( Z szgi ’ F<x1)>L2(X2) |2)?Q2 (xl))fQ’:é (XZ)] ’ dIuZ(XZ)
wmete aewh

A PED)

Xy k€Z ayerke

= [ s dte < ¢ [ Eel, i,
X, X2

2

q
. B g
(Yees F(x1)>L2(X2) XQ% (xz)] *duy(x,)

2(S)

X5,X
Here FOV(x,) = {F,*" '}, ez, e, Where

X2,X1

F 1= (ag(-, x2) l,bk1> 2 (~ K (x ))1/2
ki * R\ X2)s Yo, 7102(X4) )(QD& 1

and S = {(k;,a;) : k; € Z, a; € Y~} is a countable set.
Altogether we now estimate the term Bj; as follows:

Z ((Ez)wzﬂz(Qz))l_a

Rem(Q)

Bll

A

p

q .
x [P0 gy drtaeo) | s (1)
— A ¢2(S)
X1 €100C;Q; - VX,

Z ((Ez)wzﬂz(Qz))I_; f

Rem(Q)

x1£100C;Q,

[T 21 [ honaom dumof Zg o] duate)| dune

Applying the decomposition (4.3) in Lemma 4.8 to gbff&, we get thatfory > w;
(where y is to be determined later) and for C; = C; 21 playing the role of C,

a) =\ 1Bz, 84)) 2 CH TR ().
=0

Substituting and noting that /,L(B(ygi, §k1y) Xgu (x1) = X (x1), We continue
estimating: ] 1

s X (@) [ [[[ 2

ReEmM(Q) _ k, ez
x,£100C;0, X2 "

S C 2 a 2
fCH (e 2 q
|€Z=:0(2 € y<¢€’k11’051’aR("xz»LZ(Xl)’ Xolt (xl)] d:“z(xz)] dpy (x1).
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First apply the Cauchy-Schwarz inequality to the sum over ¢ > 0 after factor-
ing out the constant (C;)~” and considering the decaying exponential factor as
a weight so that ), £50 277 < o is a harmless finite constant. Second, inter-
change sums over ¢ and over (k;,a;) € S, applying Holder’s inequality with
exponent s = q/2 > 1 (we are in the case ¢ > 2 and when q = 2 this step is

unnecessary. When 1 < g < 2 the power q/2 < 1 and it will travel into the
[22]
sum over ¢, the only difference being that the exponential factor will be 2 2

instead of 27¢7) to the sum over ¢ and considering the decaying exponential
factor as a weight as before. Third, interchange the sum over ¢ and the inte-
gral over X, using the fact that p/q < 1 and the exponent can travel inside the
sum over ¢. Finally, interchange the sum over ¢ with the outer integral over

(10051(/2\1)C and then with the sum over R € m(Q). We find that

_ _ 1-2 _trp
By 5 (C))77P Z ((C*2p12(Qy)) @ 22 a
Rem(Q) _
x1§510001Q1

2

2 q
}/C 2 q
[/[ = ‘(Cpfkll,al,aR(-,X2)>L2(Xl)‘ )(Q’%(xl)] d,uz(xz)] d,u1(x1)

2

0(165’}"1
_ X p P
< @)Y Y (@) f [ f
=0 Rem(Q)
xleﬂooclol X2
I (AT CE S W PAe d#z(xz)] e
kez
e

27
(Inthecase 1 < g < 2 the only difference in the estimate is that instead of 2 ¢

_bre
one gets the exponential 2 2 , where g has been replaced by 2 in the exponent’s

denominator.)

The support of ay is C,0Q; x C,Q,. Note that if y; € C;Q, then d;(y,,z;) <
C%El ¢(Q;), where z; is the center of Q; and C% is the dilation constant for
the outer balls in the fixed dyadic grid 2" on X;. Recall that R = Q; X Q,. If
C151 £(Q;) < 5k1 thend,(y1,2;) < Slfl and using the smoothness property (iii)

in Lemma 4.8 of goy Cl K the cancellation condition (3)(ii) in the first variable of

ag in Definition 5. 2 together with the geometric considerations and Holder’s
inequality, we conclude that when both x; and yléi are in QIOZ,

C
(P O arCx)) |
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.C C
< [C [Pl 00 =9l a0
1¥1

. (C1£(Q))" (C 2851y ™m(C 2t )

ki = k
i (Bx, 0%, C1218%))

£(Q )M (28 )y m(C 20y _ 41
< . —— ,1 (€D 1(Q1)) @ llar(, x)lILacx,)-
#1(BX1(x1aC12f511))

[ faxtonx] i)
ClQl

Here the doubling condition on the measure allows us to compare nearby balls
By, (x1,2°8,1))

with the same radius; specifically,
P Y By, (el 2¢511))

~ 1, since we are assuming

k .k
that x; and y,, are in Q"‘i .

Assume now that C%Clt’ Q) > 5’1{1. Recall that to get the desired estimate
for the inner product it suffices to obtain the estimate for the inner product with

differences of the functions (2551)7AS1 instead of differences of the functions
y’El

Pt Jer, “

that y, € C;Q; N supp(Agl). This means

. The other piece can be estimated as above. Therefore we can assume

_35 ok k = ok
2073C,8" < dy(y,vy) < (A)20C1 67

and d;(y;,z;) < C%Elf (Qq). We also know that x; € (100(2Aél))5161)c, hence
dy(z1, %) = 1002A)CIC,£(Q)) = 1002AN)CIC,£(Q,) and x; € QY there-
fore
k k =
di(z1.y5") ~ di (1. ¥5) > 1002A5)CIC,£(Qy).

From the proof of Lemma 4.8, we can use a test-function-like smoothness prop-
erty for the function Agl encoded in (4.15) and valid when y; € supp(Agl) and

d(y;,z;) < (2A(()1))_1(611{ '+ d(y, yf&)), which both hold by the assumptions
made in this case, namely:

(Elzfalfl ) d (Y, z)™
u(BOL,8) + u(BY1, d1,y5))

Furthermore since nearby balls with same radius have comparable measure by
the doubling property, u(B(y,, d(y1, yf& ) ~ ,u(B(yf&, C,2¢ 5’1{ 1)); we get that in
our case

= [ c
QICY N ) = A (2] S

= Kiy—
(C,2080)™

| cic,e))".  (5.15)
M(B(yéz’clzfé‘]fl))( 1-1 1)

QTS () - AS D)
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Inequality (5.15) together with the geometric considerations and Holder’s
inequality, and given that both x; and yi& are in Ql;i, yield

_ (512£)7‘A§1 ) - Agl(zl)”aR(yl’ x2)| dui(y1)
C1Qinsupp(A; )
t

£(Qm(2f8 )™

~ ki, = k
lul(BXl(yociiclzféll))

€(QM (2L 8y

~ —_ kl
Ml(BXI(X1,C12€51 )

Note that in the first < the constant (C%)’71 < C% has been absorbed since it is
bounded above by a constant depending only on the geometric constants of the
space X;.

Therefore we conclude that in all cases, when both x; and yf; are in Ql;i ,

[ |aR(Y1,X2)‘ duy(y1)
€10,

((CO* Q) @ llag(, x)llzacx,)-

7.C
(P ey 220D |

QM@0 8)(C20™ o
s ———1 ——— (C)"m(QD) * llarCxD)llpacxy-
#1(BX1(x1a C12€511))

Notice that in the above calculation ¢(Q,) refers to the underlying dyadic
grid 2" for the atom, possibly different than the reference dyadic grid @1W for
the wavelets on X;. Also note that the inequalities < and the similarities ~
introduce constants depending only on the geometric constants of the space of

homogeneous type, in this case X;.
Now recall that supp(qo;’il1 o) € Bx, (yﬁi, Z(AE)D)2 20C,68 Ifl ), so the inner prod-

uct we just estimated will be nonzero only when

(€1 Q1) N By, (v, 20412 2C 84 # 0,

where ysi is the center of the cube Qf& S .@F/ that contains x; & 100C;0;.
Therefore, when estimating By, in the sum over k; and «; the only scales that
intervene are those integers ¢ > 0 such that 2651511(1 ~ dy(x;, z1), where z; is
the center of Q, (it helps to draw a picture to understand the geometry). With
this in mind, applying the above estimate on the inner product we conclude
that

typ

By s @)Y 20 Y (C)m@) ¢

Rem(Q)

=0
£@QM218)y™M(C20)™ 11
X Co™m@Qp)

C.0. X —
X1 €100C;Q, 22fC1511(1Nd1(x1,Zl)
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2

q »
X llarCoxl| X o] duaGen)|” o

. . k . . .
There is exactly one dyadic cube Q,, € .@1W in generation k; containing x;, so
the double sum over ky, a; reduces to a single sum over k;. Furthermore, note

that when 2551511{1 ~ dy(xy,2,) then

1 (Bx, (x1, 2651511{1)) ~ 1 (Bx, (x1,d1(x1,21))) S (51)&’1#1(3)(1(351, 2€5lf1))-

Therefore

— Ot — 1-2
By 3 (Cl)_ypzz q Z ((C2)*2ux(Qy)) q”aR“iq(X) f
t= _
0 Rem(Q) 110080,
k = p
QMRS ™MERICH™ 1-1 272
> : (@ (@) | denn)
ky: :ul(BXl(xladl(xlazl)))
20C188 ~dy (x1,21)
< 6 —Yp S 2_% E @3 1_§ p szlp
~ ( 1) Z Z (( 2) MZ(QZ)) ||aR||Lq(X1XX2)
£=0 Rem(Q)
P
~ o p—§ ¢ skiy=2n, | *
x ((CD™ Q) > (fghym
_ kq:
X1 €100C;Qq 2f615k1~14d1(x1,21)
£(QMP(C)™P
(%)),
251 (BX1 (X1, dy(x1, Z1)))
T, 2
Notice that the sum over k; is a geometric sum comparable to (d (Cl )) "
X1,Z
Therefore o
_ O _trp _ 1-2 p
By S (C1)(w1_y)p22 1 Z ((C2)*212(Qy)) q||aR||Lq(X1xX2)
£=0 Rem(Q)
_ p-2 dy(x1,2,)MPE(Q,)MP(C,)1P
(@) [ GRS COE e,
X1 €100C;Q, ﬂl(BXI(x1ad1(x1,Z1)))

The integral over (10051 @1 )¢ can be further decomposed into integrals over dis-
jointannuliD;;\D;. Here D; := 2j100C1(§1, sothatforall j > 0, (100C1(§1)C =
Uj»0(Djy1 \ Dj). For x; € D; \ D;_; we have that (C"MPdy(x1,2,)™MP ~
27JmP ¢(Q,)™™P. Note that nearby balls with the same radius have compara-
ble mass by the doubling property of the measure. In particular,

M1 (BX1 (z1,dy (x4, Zl))) ~ M (BX1 (x1,d1(x1,21)),
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and certainly @1 C D; C Bx,(z1,d,(x1,21)) C Dj;,. All together, we obtain the
following estimate

f dy(x1,21) MPE(Q P (C P
x€(100C,0y¢ iy (Bx, (x1, dy (x1, Zl)))p
< £(Q)MPE(Q;) P (“I(DJ'H)
- m QP 5\ D))
where the sum over j is comparable to 1 by the doubling condition of u,. Note

that y > w, hence (C;)@ P < 1, that p — 1 < 0 hence (C;)*?~V < 1, and
recall that (C;)® ~ 2¢i®i for i = 1, 2. Substituting we obtain

duy(xq)

2—1771P)’

By § X2 0 Y (00 ou®) i lagllf, g Q7P 2P
£=0 Rem(Q)
= p—1 A~ ~ 1
X((C1) 1:“1(Q1)) €(Q)™™P [uy(Q1)P
S Y @) gl o [e@0/e@] "

Rem(Q)
A~ -1 had —@ w1
X [#1(Q1)/M1(Q1)]p 22 Q Hep,
¢=0

For the geometric sum to converge we need to choose y > q w; when q > 2, and
when 1 < g < 2 we choose y > 2w,. With this choice and using the doubling
property (1.3) once more since p — 1 < 0, we estimate for 2 < g < oo,

-2 (Q)
all?, - M(R)l sw(————), (5.16)
Rem(Q)“ RHLq(X) (f(Q1))

By < 2(51601*'62502)(1—5) Z

where w(x) = x* with « = pn; + (p — 1)w; > 0. This is where we explicitly
used the choice of p > p, where p, = max (@;/(w; +1;) : i =1,2}. It was also
used in the definition of H?(X) in [HLW].

To be more precise on how the doubling condition was used in (5.16), let Z;
be the center of @1 and z; the center of Q. Recall that Q; C @1, then

@ < H1 (BX1 (Z1, C%f(éﬂ))
Mm@ M1 (Bxl (Z15 C}£(Q1)))
#1(BX1(21,AE)1)(d1(21,Z1) + Cif(é\l))))
M1 (BX1 (21, CV(QQ))
i (Bx, (21,2457} ¢(Q1)
M (BX1 (21, C%f(Qﬂ))

IA
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240C @)\ (O
Ceazan ) = Gy

We continue estimating B;;. Applying Holder’s inequality to the right-hand
q

side of (5.16), with exponent s = q/p > 1, setting @ = wq», using property
(iii-a) in the definition of (p, q)-atoms, and applying the Journé-type covering
lemma gives

P p
(Cr0+E20,)(1-L2) q —_/t(Qq) =
By 5 2T Y el [ X s® (=)
Rem(Q) Rem(Q) £(Qq)
¢ ¢ 2
5 ( 101+ 2602)(1 ((6)1601 + €2w2)2€1‘°1+€2“’2y(9))‘1 IL{(Q)l . 1

The last inequality holds because ,u(Q) (Q)

Forl < g < 2, settingw = w2, W = we? and 0 = wP and applying the
same estimate as above, we obtain

(Era1+6,0,)(1-2) p 1-2 - €(Qq)
B, S 2 a llagll”, - M(R) ¢ w(——
! m§m M) ((@Q
(€10, +6,0,)(1-2) 2(Qy) 2(Qy)
< 2 a llag|l? ()
m%m @ Q(o) Q@o)

Applying Holder’s inequality with exponent s = q/p > 1, and then using prop-
erty (iii-b), with 6 = q/(2p) > 0, from the atoms and the Journé-type covering
lemma implies

p
(1@ +€50)(1-2) £(Q1)\\«
O i (D T (AC
Rem(Q) Q1)

p

N

(% MMw@f%D q

Rem(Q) ( 1)
14
< (€1w1+€2w2)(1 ((flwl+€2w2)2f’10)1+€2“’2,u(9))q #(Q)l ¢ S L

p_
The last inequality holds because 2 _1<0s0(tyw; +trm,)9 ! < 1. The con-

q
stants involved in the similarities depend only on p and g, the geometric con-

stants of the spaces directly (quasi-triangle constants A(()l>, doubling constants,
and upper dimensions w; for i = 1,2) or indirectly via the absolute constants
C; appearing in the definition of the (p, g)-atoms, or the constants appearing in
the Journé Lemma, or the dilation constants of the underlying dyadic grids or
their ratios, themselves depending only on the geometric constants.
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Estimate for B;,. Using the cancellation condition of the atoms ap, and de-

noting y =

By /]
Rem(Q)

(y1,,) and X = (xy, x,), we write By, as

| f Yo 1) = Yai(@)]
XQL‘(I (xl) XQkZ (x2)

/v‘1(Q ),uz(Q )

/\

1

1=—00 ky=—00
X1 €100C; Q; X,#100C,Q,

X [Pl (v2) — Pe(22)] ax(7) du() dy(sa

Here the constants El and ic\z satisfy 5’1{1 SR (@1) and 5’2(2 ~ t(Q,), respectively.

Applying the smoothness properties of zpf; (x;,¥7) and gbf& (x5, y,) yields that
B, satisfies the same estimate as B;; does, as in (5.16). This concludes the

proof of Theorem 5.4. U
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