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Minimal left ideals of βS
with isolated points

Neil Hindman and Dona Strauss

Abstract. The smallest ideal K(βS) of the Stone-Čech compactifi-
cation of a discrete semigroup S is the union of pairwise isomorphic
and homeomorphic minimal left ideals. We provide characterizations of
semigroups S that have the property that the minimal left ideals of βS
have isolated points, provide details about the structure of K(βS) for
such semgiroups, and in some instances provide explicit descriptions of
K(βS).
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1. Introduction

Our subject is the algebraic and topological structure of the smallest ideal
K(βS) of the Stone-Čech compactification of a discrete semigroup S.

We take the points of βS to be the ultrafilters on S, identifying a point
x ∈ S with the principal ultrafilter e(x) = {A ⊆ S : x ∈ A}. We let
S∗ = βS \ S, the set of nonprincipal ultrafilters on S. Given A ⊆ S,
A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open sets (as
well as a basis for the closed sets) in βS. With this topology βS is a compact
Hausdorff space with the property that if X is any compact Hausdorff space

and f : S → X, there is a continuous function f̃ : βS → X which extends
f .

The operation · on S extends uniquely to an operation on βS so that
(βS, ·) is a right topological semigroup with S contained in its topological
center. That is for each p ∈ βS, the function ρp : βS → βS defined by
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ρp(q) = q · p is continuous and for each x ∈ S, the function λx : βS → βS
defined by λx(q) = x·q is continuous. Given points p and q in βS and A ⊆ S,
A ∈ p·q if and only if {s ∈ S : s−1A ∈ q} ∈ p where s−1A = {t ∈ S : st ∈ A}.
The product is also characterized in terms of limits by

p · q = lim
s→p

lim
t→q

st,

where s and t denote members of S. In many cases, the p-limit notation is
useful. Given p ∈ βS, a compact Hausdorff space X, a set D ∈ p, a function
f : D → X, and y ∈ X, p-lim

s∈D
f(s) = y if and only if, for every neighborhood

U of y, {s ∈ D : f(s) ∈ U} ∈ p. We observe that p-lim
s∈D

f(s) = y if and only

if lim
s→p

f(s) = y where s denotes a member of D. This is equivalent to the

statement that f̃(p) = y where f̃ : c`βS(D) → X denotes the continuous
extension of f . If A ∈ p and for each s ∈ A, Bs ∈ q, then

p · q = p-lim
s∈A

q- lim
t∈Bs

st.

See [5, Part I] for an elementary introduction to the algebra and topology
of βS.

Any compact Hausdorff right topological semigroup T has idempotents
and contains a smallest two sided ideal K(T ). If A ⊆ T , then E(A) is the
set of idempotents in A. Minimal left ideals are compact, and therefore
have idempotents. So T satisfies the hypothesis of the Structure Theorem
for semigroups. The Structure Theorem is due to A. Suschkewitsch [11] for
finite semigroups and to D. Rees [10] in the general case.

Theorem 1.1 (The Structure Theorem). Let (T, ·) be a semigroup and
assume that T has a minimal left ideal which has an idempotent. Then T
has a smallest two sided ideal K(T ). Let R be a minimal right ideal of T ,
let L be a minimal left ideal of T , let X = E(L), let Y = E(R), and let
G = RL. Then G = R ∩ L and G is a maximal subgroup of K(T ). Define
an operation · on X ×G× Y by

(x, g, y) · (x′, g′, y′) = (x, gyx′g′, y′) .

Then the function ϕ : X ×G× Y → K(T ) defined by ϕ(x, g, y) = xgy is an
isomorphism. Further

(1) The minimal right ideals of T partition K(T ) and the minimal left
ideals of T partition K(T ).

(2) The maximal groups in K(T ) partition K(T ).
(3) All minimal right ideals of T are isomorphic and all minimal left

ideals of T are isomorphic.
(4) All maximal groups in K(T ) are isomorphic.

Proof. [5, Theorem 1.64]. �



LEFT IDEALS WITH ISOLATED POINTS 419

In this context, it is worth noting that since (βS, ·) is a right topological
semigroup, then by [5, Theorem 2.11(c)] all minimal left ideals of βS are
homeomorphic.

A subset A of a semigroup S is piecewise syndetic if and only if A ∩
K(βS) 6= ∅. Given p ∈ βS, we have by [5, Corollary 4.41] that p ∈ c`K(βS)
if and only if every member of p is piecewise syndetic.

Minimal left ideals in βS have been extensively studied. For example it
is known [5] that (βN,+) contains 2c minimal left ideals and each minimal
left ideal contains 2c maximal group, each of which contains a copy of the
free group on 2c generators. (Here c is the cardinality of R.) More recently,
Yevhen Zelenyuk [13] has shown that if G is a countable discrete group,
then βG has a minimal left ideal which is also maximal. We observe that
the minimal left ideals of βS play a significant role in topological dynamics,
because they provide the universal minimal dynamical systems for S [1,
Proposition 3.7].

Minimal left ideals of βS may or may not have isolated points. In [3,
Lemma 3.8(1)] it was shown that relatively weak cancellation assumptions
on S guarantee that minimal left ideals do not have isolated points. But in
[2, Propositions 3.9 and 3.10], Will Brian provided examples of countable
and weakly cancellative semigroups whose minimal left ideals are finite, and
so have isolated points. We are concerned in this paper with semigroups S
with the property that the minimal left ideals of βS do have isolated points.
We shall show in Theorem 2.5 that this property is equivalent to a property
of the dynamical system (X, 〈Ts〉s∈S), where X denotes a compact Hausdorff
space.

In Section 2 we will derive some results about the structure of K(βS) that
hold if the minimal left ideals of βS have isolated points as well as several
characterizations of such semigroups.

In Section 3 we address the situation in which βS has finitely many mini-
mal right ideals. In that case minimal left ideals are finite and so must have
isolated points. This has additional implications for the structure of K(βS)
which we investigate. An amusing consequence is that if S is commuta-
tive, then βS either has a unique minimal right ideal or else has at least
2c minimal right ideals, while in general βS may have any finite number of
minimal right ideals. The Structure Theorem asserts that ϕ is an algebraic
isomorphism. It is natural to ask whether it can also be a homeomorphism.
We show in Theorem 3.2 that ϕ is a homeomorphism in the case in which
βS has finitely many minimal right ideals.

In Section 4 we derive several properties of rectangular semigroups, and
construct a class of examples similar to rectangular semigroups. We remark
that rectangular semigroups occur widely in the study of βS. For exam-
ple, the smallest ideal of any compact right topological semigroup has the
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rectangular semigroup X×Y as a factor by the fundamental Structure The-
orem (Theorem 1.1). Y. Zelenyuk [12] showed that the smallest ideal of βN
contains copies of any finite rectangular semigroup.

If S is any member of this class, it has the property that its minimal left
ideals all have isolated points, but not for either of the two obvious reasons,
namely that the smallest ideal meets S or the minimal left ideals are finite.

2. General results about minimal left ideals with isolated
points

Lemma 2.1. Let (S, ·) be an infinite semigroup, and assume that there is a
minimal left ideal L of βS which has an isolated point q.

(1) For every idempotent e ∈ L, there exists Q ∈ q such that Q ∩ L =
Qe = {q}.

(2) Every point of the group qβS ∩ L is isolated in L.

Proof. (1) Pick P ∈ q such that P ∩ L = {q}. Let e be an idempotent in
L. Then e is a right identity for L so qe = q. Let

Q = P ∩ {s ∈ S : s−1P ∈ e}.

If p ∈ Q∩L, then pe = p so p ∈ Qe. If s ∈ Q, then P ∈ se so Qe ⊆ P ∩L =
{q} so Qe ⊆ {q}. Therefore q ∈ Q ∩ L ⊆ Qe ⊆ {q}.

(2) This is [7, Theorem 3.2(3)]. �

Theorem 2.2. Let (S, ·) be an infinite semigroup and assume that βS has
a minimal left ideal L with a point q which is isolated in L. Let R = qβS,
let G = R∩L, and let Y = E(R). Then G is a finite group, R is a compact
topological semigroup, Y is a compact right zero topological semigroup, and
the function f : G× Y → R defined by f(g, p) = gp is an isomorphism and
a homeomorphism.

Proof. It was proved in [7, Theorem 3.2] that R is compact and G is finite.
Let e be the identity of G and note that R = eβS. Each element of Y is a
left identity for R so Y is a right zero semigroup. To see that Y is compact,
let 〈pι〉ι∈I be a net in Y which converges to a point q ∈ βS. Since R is
compact, q ∈ R. Then

qe = (lim
ι∈I

pι) · e = lim
ι∈I

(pιe) = lim
ι∈I

e = e

so qq = qeq = eq = q and thus q ∈ Y .
We claim now that for each g ∈ G, the restriction of λg to R is continuous.

So let g ∈ G be given and let h be the inverse of g in G. By Lemma 2.1(2),
e is isolated in L so pick P ∈ e such that P ∩L = {e}. Pick A ∈ g such that
ρh[A ] ⊆ P . Pick t ∈ A. Then th ∈ P ∩ L so th = e and therefore te = g.
Thus for every x ∈ R, gx = tex = tx so λg and λt agree on R.

The fact that f is an isomorphism onto R is a consequence of the proof
of [5, Theorem 1.64], but the direct proof is short and simple, so we present
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it here. To see that f is a homomorphism, let (g, p), (h, q) ∈ G× Y . Then

f(g, p) · f(h, q) = gphq = ghq = f(gh, pq) .

To see that f is injective, let (g, p), (h, q) ∈ G×Y and assume that f(g, p) =
f(h, q). Then h−1gp = q so p and q are idempotents in the same minimal
left ideal (as well as the same minimal right ideal) so p = q. Also

g = ge = gpe = hqe = he = h .

To see that f [G× Y ] = R, let x ∈ R. Then for some p ∈ Y , x ∈ R ∩ βSp =
pβSp. Then

xe = pxe = epxe so xe ∈ eβSe = G .

And f(xe, p) = xep = xp = x.
Now we claim that f is a homeomorphism. Since G × Y is compact, it

suffices to show that f is continuous. So let (g, p) ∈ G× Y and let A ∈ gp.
Since λg is continuous on R, pick B ∈ p such that λg[B ∩ R ] ⊆ A. Then

{g}×(B∩Y ) is a neighborhood of (g, p) in G×Y and f [{g}×(B∩Y )] ⊆ A.
Finally, we claim that G×Y is a topological semigroup (so that R and Y

are topological semigroups). That is, we claim that the operation on G× Y
is jointly continuous. So let (g, p), (h, q) ∈ G× Y and let {gh}× (A∩ Y ) be
a basic neighborhood of (g, p) · (h, q) = (gh, q) in G× Y . Then

({g} × Y ) · ({h} × (A ∩ Y ) ⊆ {gh} × (A ∩ Y ).

�

One of the equivalences in the following theorem involves the notion of a
dynamical system.

Definition 2.3. A dynamical system is a pair (X, 〈Ts〉s∈S) where X is a
nonempty compact Hausdorff space, S is a discrete semigroup, for each
s ∈ S, Ts is a continuous function from X to itself, and for each s, t ∈ S,
Ts ◦ Tt = Tst.

Another of the equivalences involves the notion of a QC-set .

Definition 2.4. Let (S, ·) be a discrete semigroup. A subset Q of S is a
�QC-set if and only if there exist w and z in βS such that s · w = z for all
s ∈ Q. If Q is a QC-set, then RQ = {w ∈ βS : sw = tw for every s, t ∈ Q}.

One of the reasons that QC-sets are interesting is that they are related
to algebraic products of tensor products – a subject investigated in [9].

Theorem 2.5. Let (S, ·) be an infinite semigroup. Statements (a) through
(g) are equivalent and imply statement (h).

(a) There is a minimal left ideal L of βS which has a point that is isolated
in L.

(b) Each minimal left ideal of βS has an isolated point.
(c) There is a piecewise syndetic QC-set in S.
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(d) Every minimal left ideal L of βS has a dense set of points that are
isolated in L.

(e) Every minimal left ideal L of βS has an idempotent which is isolated
in L.

(f) For s ∈ S, let Bs = {t ∈ S : st = t}. There is a piecewise syndetic
set D ⊆ S such that {Bs : s ∈ D} has the finite intersection property.

(g) For any dynamical system (X, 〈Ts〉s∈S) with S as the acting semi-
group, there exist x ∈ X and a minimal right ideal R of βS such
that for every p ∈ E(R), {s ∈ S : Ts(x) = x} ∈ p.

(h) There exist a minimal left ideal L of βS and a minimal right ideal
R of βS such that R∩L is a finite group, R is a compact topological
semigroup, E(R) is a compact right zero semigroup, and the function
f : (R ∩ L)× E(R) → R defined by f(g, p) = gp is an isomorphism
and a homeomorphism.

Proof. Since all minimal left ideals of βS are homeomorphic we have that
(a) and (b) are equivalent.

(a) ⇒ (c). Pick a left ideal L of βS and a point q ∈ L which is isolated
in L. Pick an idempotent e ∈ L. By Lemma 2.1(1), pick Q ∈ q such that
Qe = {q}. Since Q ∈ q, Q is piecewise syndetic. Since se = q for every
s ∈ Q, Q is a QC-set.

(c) ⇒ (d). Let Q be a piecewise syndetic QC-set in S. We can choose a
minimal left ideal L of βS for which Q∩L 6= ∅. Since Q is a QC-set, RQ 6= ∅
so RQ is a right ideal of βS. Therefore there is an idempotent e ∈ L ∩RQ.

Now e is a right identity for L so Q ∩ L ⊆ Qe. Since e ∈ RQ, se = te for

every s, t ∈ Q. So |Qe| = 1, and hence |Qe| = 1, because Qe = c`βS(Qe). It

follows that Q∩L = {q} for some element q ∈ L, which is an isolated point
of L.

Choose any s ∈ Q and any t ∈ S. We claim that tse is an isolated point
of L. To see this, observe that see = se = q. Pick A ∈ e such that sAe ⊆ Q.
Then for every a ∈ A, sae ∈ Q ∩ L = {q}. So tsae = tq for every a ∈ A.
Since tsA∩L ⊆ tsAe, it follows that tsA∩L is a singleton subset of L, and
hence that tse is an isolated point of L. Now Sse is dense in L, because
βSse = L, and so the set of isolated points of L is dense in L.

Using the fact already noted that all minimal left ideals of βS are home-
omorphic we have that each minimal left ideal of βS has a dense set of
isolated points.

It is trivial that (d) implies (a) and (e) implies (a). That (b) implies (e)
follows from Lemma 2.1(2).

The equivalence of (b) and (f) is [7, Theorem 3.7(2)] and the equivalence
of (b) and (g) is [7, Theorem 3.13]. That (a) implies (h) is a consequence of
Theorem 2.2. �

Question 2.6. Does statement (h) of Theorem 2.5 imply the other state-
memts?
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We remark that one may have K(βS) and K(βT ) isomorphic but not
homeomorphic. To see this, let x ∨ y = max{x, y} and let ∗ be the right
zero operation on N. Then K(βN,∨) = N∗ and K(βN, ∗) = βN, while both
are algebraically the right zero semigroup on 2c elements.

Recall that a semigroup S is weakly right cancellative if and only if for all
a and b in S, {s ∈ S : sa = b} is finite.

Theorem 2.7. Let (S, ·) be an infinite semigroup which is left cancellative.
Assume that there is a minimal left ideal L of βS that has an isolated point.
Then S is not weakly right cancellative.

Proof. Suppose that S is weakly right cancellative. Pick by Theorem 2.5 a
minimal left ideal L of βS that has an idempotent e which is isolated in L.
By [5, Theorem 4.36] S∗ is an ideal of βS so L ⊆ S∗.

By Lemma 2.1(1), pick Q ∈ e such that Qe = {e}. Let E = {s ∈ S : se =
e}. Then Q ⊆ E so E ∈ e. Let A = {t ∈ S : t has finite order}. We claim
that E ⊆ A so that A ∈ e. To this end, let s ∈ E. By [5, Theorem 3.35],
B = {t ∈ S : st = t} ∈ e so pick t ∈ B ∩ E. Let C = {v ∈ S : vt = t}. Then
s ∈ C so C is a subsemigroup of S, and since S is weakly right cancellative,
C is finite. Thus s ∈ C ⊆ A as claimed.

Note that since S is left cancellative, any idempotent in S is a left identity
for S. We now claim that every s ∈ E is a left identity for S. To see this,
let s ∈ E and as above pick t ∈ E such that st = t. Then t ∈ A so
{tn : n ∈ N} is a finite semigroup and thus there is some n ∈ N such
that tn is an idempotent. Now let x ∈ S be given. Then x = tnx so
sx = stnx = tnx = x. We thus have that E is a right zero semigroup, which
is infinite since e ∈ S∗. This contradicts the assumption that S is weakly
right cancellative. �

We now consider the implications of S having a QC-set of positive den-
sity. (Here density means Følner density . See [4, Sections 1 and 4] for an
introduction to Følner density.)

We shall say that a Borel measure defined on βS is left invariant if µ(B) =
µ(s−1B) for every Borel subset B of βS and every s ∈ S. In the case
in which S is left cancellative and µ is a left invariant measure on βS,
µ(sB) = µ(s−1sB) = µ(B) for every s ∈ S and every Borel subset B of
βS. We shall use the well-known fact that, if S is a semigroup which is left
cancellative and left amenable, then a subset A of S has positive density if
and only if there is a left invariant probability measure µ on βS such that
µ(A) > 0. (For a proof of the sufficiency of that statement, which is the
only part that we will use here, see [4, Theorems 4.7 and 4.16].)

Theorem 2.8. Let S be a semigroup which is left cancellative and left
amenable. Assume that S contains a QC-set Q of positive density. Then
the minimal left ideals of βS are finite, and so the conclusions of Theorem
2.2 hold.
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Proof. L will denote the set of left invariant probability measures on βS.
We note that, for every right ideal R of S and every µ ∈ L, µ(R ) = 1,
because, for every s ∈ R, s−1R = S and so µ(R ) = µ(s−1R ) = µ(βS) = 1.

We now show that the support of every measure in L is contained in RQ.
We can choose an element w ∈ βS such that sw = tw for every s, t ∈ Q.
By [5, Lemma 8.5], for every s, t ∈ Q, Vs,t = {v ∈ S : sv = tv} ∈ w. Since

Vs,t is nonempty, it is a closed right ideal in βS and so µ(Vs,t ) = 1 for every
µ ∈ L. It follows from the fact that µ is regular, that

µ(RQ) = µ
(⋂

s,t∈Q Vs,t

)
= 1,

because each open neighborhood of
⋂
s,t∈Q Vs,t contains the intersection of

a finite number of the sets of the form Vs,t with s, t ∈ Q. So the support of
every measure in L is contained in RQ.

There exists µ ∈ L such that µ(Q) > 0. Let M denote the support of µ
and let q ∈ Q ∩M . Observe that M is a left ideal in βS. For every s ∈ Q,
sS is a right ideal in S and so M ⊆ sS = sβS. Thus q = su for some
u ∈ M . Since u ∈ RQ, su = tu for every t ∈ Q. It follows that qu = q,
since Q ∈ q. Now {u ∈ M : qu = q} is a subsemigroup of M . It is closed,
because u ∈ RQ and so qu = q = su if and only if tu = q for every t ∈ Q. It
follows that there is an idempotent e ∈ M for which qe = q. Since e ∈ RQ,

|Qe| = 1 and so |Qe| = 1 and therefore Qe = {q}.
Now we show that βS has a finite left ideal, from which it follows that

all minimal left ideals are finite. For this we define a measure ν ∈ L which
is in the support of q. We define a probability measure ν on βS by putting
ν(B) = ρ−1e [B] for every Borel subset B of βS. For every t ∈ S and every
Borel subset B of βS, t−1ρ−1e [B] = ρ−1e [t−1B]. Thus ν(t−1B) = ν(B) and
so ν ∈ L. Let L = βSe. Observe that e is a right identity for L. Since
ρ−1e [L] = βS, ν[L] = 1 and thus L is contained in the support of ν. If U is
any open neighborhood of q, then ρ−1e [U ] is also an open neighborhood of q
because q = qe ∈ U . Since q is in the support of µ, µ(ρ−1e [U ]) > 0 and so
ν(U) > 0. Thus q is in the support of ν.

Now L ∩ Q ⊆ Qe = {q}. So {q} is an isolated point of L. It follows
that, for every t ∈ S, ν({q}) = ν({tq}) > 0. So Sq is finite and therefore
βSq = Sq is finite. Since βS contains a finite left ideal, its minimal left
ideals are finite. �

3. Finitely many minimal right ideals

Lemma 3.1. Let (S, ·) be an infinite semigroup and assume that βS has
finitely many minimal right ideals. Then the minimal left ideals of βS are
finite and for each q ∈ K(βS), the restriction of λq to K(βS) is continuous.

Proof. By [5, Theorem 6.39] the minimal left ideals of βS are finite. Let q ∈
K(βS) be given and let L be the minimal left ideal with q ∈ L. Enumerate
the minimal right ideals of βS as R1, R2, . . . , Rn and for i ∈ {1, 2, . . . , n}, let
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ei be the identity of L ∩Ri. Since q is isolated in L, pick by Lemma 2.1(1)
Qi ∈ q for each i ∈ {1, 2, . . . , n} such that Qiei = {q}. Pick s ∈

⋂n
i=1Qi.

We show that λq and λs agree on K(βS). To see this, let x ∈ K(βS) be
given and pick i ∈ {1, 2, . . . , n} such that x ∈ Ri. Then qx = seix = sx. �

In the following theorem G × Y has the product topology and the co-
ordinatewise operation, and X × G × Y has the product topology and the
operation defined by (x, h, y) · (x′, h′, y′) = (x, hyx′h′, y′). This theorem ex-
tends Theorem 1.1. Notice in particular the simpler characterization of the
map ϕ : X ×G× Y → K(βS).

Theorem 3.2. Let (S, ·) be an infinite semigroup and assume that βS has
finitely many minimal right ideals. Let L be a minimal left ideal of βS, let
R be a minimal right ideal of βS, let

X = E(L), let G = R ∩ L, and let Y = E(R) .

Then

(1) X is a finite left zero semigroup;
(2) G is a finite group;
(3) R is a compact topological semigroup;
(4) Y is a compact right zero topological semigroup;
(5) K(βS) is a compact topological semigroup;
(6) the function f : G × Y → R defined by f(h, y) = hy is an isomor-

phism and a homeomorphism; and
(7) the function ϕ : X ×G× Y → K(βS) defined by ϕ(x, h, y) = xhy is

an isomorphism and a homeomorphism.

Proof. By Lemma 3.1, L is finite so all points of L are isolated in L. Pick
q ∈ R∩L. Then R = qβS so Theorem 2.2 applies. It only remains to verify
conclusions (1), (5), and (7). Since L is finite and X 6= ∅, conclusion (1)
holds.

(5) Since there are finitely many minimal right ideals, and each minimal
right ideal is compact, we have that K(βS) is compact and each minimal
right ideal is open in K(βS). To see that K(βS) is a topological semigroup,
let x, y ∈ K(βS) and let U be an open neighborhood of xy in K(βS). Pick
minimal right ideals R1 and R2 such that x ∈ R1 and y ∈ R2. (We are not
assuming that R1 6= R2.) Since xy ∈ R1 and R1 is open in K(βS), we may
assume that U ⊆ R1.

We have chosen a minimal left ideal L of βS. Let e1 and e2 be the
identities of R1 ∩L and R2 ∩L respectively. By Lemma 3.1, the restrictions
of λe1 and λe2 toK(βS) are continuous. Let ψ1 be the restriction of λe1 to R2

and let ψ2 be the restriction of λe2 to R1. Then ψ1[R2] = R1, ψ2[R1] = R2,
ψ1 ◦ ψ2 is the identity on R1, and ψ2 ◦ ψ1 is the identity on R2. Thus ψ1 is
a homeomorphism from R2 onto R1 and ψ2 is a homeomorphism from R1

onto R2.
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We have that e2U is a neighborhood of e2xy contained in R2. Since R2 is
a topological semigroup, we have open neighborhoods V of e2x and W of y
in R2 with VW ⊆ e2U . Then e1V is an open neighborhood of x in R1 and
e1VW ⊆ U . Since R1 and R2 are open in K(βS), e1V and W are open in
K(βS).

(7) The fact that ϕ is an isomorphism ontoK(βS) is part of the proof of [5,
Theorem 1.64]. Since K(βS) is compact, to see that ϕ is a homeomorphism,
it suffices to show that ϕ is continuous. So let (x, h, y) ∈ X × G × Y and
let U be a neighborhood of ϕ(x, h, y) in K(βS). Since λxh is continuous on
K(βS), pick B ∈ y such that λxh[B ∩K(βS) ] ⊆ U . Let

V = {x} × {h} × (B ∩ Y ).

Then V is a neighborhood of (x, h, y) and ϕ[V ] ⊆ U . �

For any semigroup S, if L is a minimal left ideal of βS, R is a minimal right
ideal of βS, X = E(L), G = R ∩ L, and Y = E(R), then by the Structure
Theorem (Theorem 1.1) the function ϕ of Theorem 3.2 is an isomorphism. If
X is not closed in βS (as is the case in βN by [5, Theorem 6.15.2]), then ϕ is
not a homeomorphism. Indeed, if e is the identity of G, then X×{e}×{e} is
closed in X×G×Y , but ϕ[X×{e}×{e}] = X which is not closed in K(βS).
(If X were closed in K(βS), it would be closed in L which is compact.)

Theorem 3.3. Let (S, ·) be an infinite commutative semigroup. The func-
tion ϕ of Theorem 3.2 is a homeomorphism if and only if βS has a unique
minimal right ideal.

Proof. Let X, G, and Y be as in the statement of Theorem 3.2 and let e
be the identity of G. If βS has a unique minimal right ideal, then Theorem
3.2(7) applies. (This part does not use the assumption that S is commuta-
tive.)

Now assume that ϕ : X × G × Y → K(βS) is a homeomorphism. Now
{e} ×G× {e} is closed in X ×G× Y so G = ϕ[{e} ×G× {e}] is closed in
K(βS). Now L = βSe = c`βS(Se) = c`K(βS)(Se) = c`K(βS)(eSe), since S is
commutative. And c`K(βS)(eSe) ⊆ eβSe = G so L ⊆ G = L ∩ R and thus
L ⊆ R. If βS had another minimal right ideal, it would miss L. �

Note that if the number of minimal right ideals of βS is finite, then the
minimal left ideals are finite, while by [5, Theorem 6.39] if the minimal left
ideals of βS are infinite, the number of minimal right ideals is at least 2c.

Corollary 3.4. Let S be an infinite commutative semigroup. Then βS
either has a unique minimal right ideal or βS has at least 2c minimal right
ideals.

Proof. Assume that βS has more than one minimal right ideal. By The-
orem 3.3 the function ϕ of Theorem 3.2 is not a homeomorphism so by
Theorem 3.2, βS has infinitely many minimal right ideals. Since they each
have nonempty intersection with a given minimal left ideal, the minimal left
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ideals of βS are infinite, so by [5, Theorem 6.39], there must be at least 2c

minimal right ideals. �

We see next that it is possible for βS to have any finite number of minimal
right ideals.

Definition 3.5. Let A and B be nonempty sets. Then R(A,B) is A × B
with the rectangular semigroup operation defined by (a, b) · (c, d) = (a, d).

Theorem 3.6. Let n ∈ N, let |A| = n, let B be an infinite set, and let
S = R(A,B). Let π̃1 : βS → A be the continuous extension of the projection
function. For a ∈ A, let Ra = {p ∈ βS : π̃1(p) = a}. The minimal right
ideals of βS are the sets Ra for a ∈ A.

Proof. By [7, Theorem 2.2] each Ra is a minimal right ideal of βS. Let
R be a minimal right ideal of βS and pick p ∈ R. Let a = π̃1(p). Then
R = pβS and so by [7, Theorem 2.1(3)], R ⊆ Ra. �

Theorem 3.7. Let (S, ·) be an infinite semigroup such that βS has a min-
imal left ideal L with an isolated point. If S is either left cancellative or
commutative, then βS has a unique minimal right ideal.

Proof. Suppose that βS has distinct minimal right ideals R and R′, let
e be the identity of R ∩ L, and let e′ be the identity of R′ ∩ L. Pick an
isolated point q of L. By Lemma 2.1(1) pick Q and Q′ in q such that
Q∩L = Qe = {q} and Q′∩L = Q′e′ = {q}. Pick s ∈ Q∩Q′. Then se = se′.
If S is left cancellative, then by [5, Lemma 8.1], e = e′. If S is commutative,
then by [5, Theorem 4.23], es = e′s so R = R′. �

4. Rectangular semigroups and a variation

In this section we present examples of semigroups S with the property
that βS has minimal left ideals with isolated points. The structure of K(βS)
in these examples involves the tensor product of ultrafilters.

Definition 4.1. Let A and B be nonempty discrete sets, let p ∈ βA, and
let q ∈ βB. The tensor product p ⊗ q is the ultrafilter on A × B such that
for every C ⊆ A×B,

C ∈ p⊗ q if and only if {x ∈ A : {y ∈ B : (x, y) ∈ C} ∈ q} ∈ p .
The tensor product can be characterized as p ⊗ q = lim

s→p
lim
t→q

(s, t), where

(s, t) denotes an element of A×B.
We observe that, for every q ∈ βB, the map p 7→ p ⊗ q is a continuous

map from βA to β(A × B), and, for every s ∈ A, the map q 7→ s ⊗ q is a
continuous map from βB to β(A×B).

Lemma 4.2. Let A and B be nonempty discrete sets, let p ∈ βA, and let
q ∈ βB. Let π̃1 : β(A×B)→ βA and π̃2 : β(A×B)→ βB be the continuous
extensions of the projection functions.
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(1) π̃1(p⊗ q) = p and π̃2(p⊗ q) = q.
(2) If C ∈ p and D ∈ q, then C ×D ∈ p⊗ q.
(3) If r ∈ β(A × B) and either π̃1(r) ∈ A or π̃2(r) ∈ B, then r =

π̃1(r)⊗ π̃2(r).

Proof. The verification of each of these assertions is a routine application
of the definition of ⊗. �

In the following theorem we extend the results of [7, Theorem 2.1] about
rectangular semigroups.

Theorem 4.3. Let A and B be nonempty discrete sets and let S = R(A,B).
Let π̃1 : βS → βA be the continuous extension of π1 : S → A and let π̃2 :
βS → βB be the continuous extension of π2 : S → B. For x ∈ βA and for
y ∈ βB, let Rx = {p ∈ βS : π̃1(p) = x} and let Ly = {p ∈ βS : π̃2(p) = y}.

(1) If p, q ∈ βS, then π̃1(pq) = π̃1(p) and π̃2(pq) = π̃2(p).
(2) If p, q ∈ βS, then pq = π̃1(p)⊗ π̃2(q).
(3) If x ∈ βA and y ∈ βB, then Rx is a right ideal of βS and Ly is a

left ideal of βS.
(4) If p, q, r ∈ βS, then pqr = pr.
(5) Let p ∈ βS. The following statements are equivalent.

(a) p ∈ K(βS).
(b) p ∈ (βS)(βS).
(c) p = π̃1(p)⊗ π̃2(p).
(d) p ∈ βA⊗ βB.
(e) p is an idempotent.

(6) If x ∈ βA and y ∈ βB, then Rx ∩ Ly ∩K(βS) = {x⊗ y}.
(7) If x ∈ βA and y ∈ βB, then Rx contains a unique minimal right

ideal and Ly contains a unique minimal left ideal.
(8) Let y ∈ βB and let L be the unique minimal left ideal contained in

Ly. Then {p ∈ L : p is isolated in L} = A⊗ y.
(9) If x ∈ βA and y ∈ βB, then the minimal right ideal contained in Rx

is x⊗ βB and the minimal left ideal contained in Ly is βA⊗ y. So
the minimal right ideals of βS are the sets of the form x ⊗ βB for
x ∈ βA and the minimal left ideals of βS are the sets of the form
βA⊗ y for y ∈ βB.

(10) If A and B are infinite, then K(βS) is not a Borel subset of βS. If
either A or B is finite, then K(βS) is compact.

(11) Define φ : K(βS)→ R(βA, βB) by φ(p) =
(
π̃1(p), π̃2(p)

)
. Then φ is

a continuous isomorphism. Also φ is a homeomorphism if and only
if either A or B is finite.

Proof. Statements (1), (3), and (4) follow from statements (3), (4), and (1)
of [7, Theorem 2.1] respectively.

(2) Since pq and π̃1(p) ⊗ π̃2(q) are ultrafilters, it suffices to show that
pq ⊆ π̃1(p) ⊗ π̃2(q) so let C ∈ pq and let D = {(a, b) ∈ S : (a, b)−1C ∈ q}.
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Then D ∈ p so π1[D] ∈ π̃1(p). We claim that π1[D] ⊆ {a ∈ A : {d ∈ B :
(a, d) ∈ C} ∈ π̃2(q)}. So let a ∈ π1[D] and pick b such that (a, b) ∈ D. Then
(a, b)−1C ∈ q so π2[(a, b)

−1C] ∈ π̃2(q) and π2[(a, b)
−1C] ⊆ {d ∈ B : (a, d) ∈

C}.
(5) (a)⇒ (b). p is a member of some minimal right ideal R of βS and if

e is an idempotent in R, then p = eP .
(b) ⇒ (c). Pick q, r ∈ βS such that p = qr. By (2), qr = π̃1(q) ⊗ π̃2(r).

By (1) π̃1(p) = π̃1(q) and π̃2(p) = π̃2(r).
It is trivial that (c) implies (d).
(d) ⇒ (e). Pick x ∈ βA and y ∈ βB such that p = x ⊗ y. By (2)

pp = (x⊗ y) · (x⊗ y) = π̃1(x⊗ y)⊗ π̃2(x⊗ y) = x⊗ y = p.
(e)⇒ (a). Pick q ∈ K(βS). By (4) p = pp = pqp ∈ K(βS).
(6) Rx contains a minimal right ideal and Ly contains a minimal left ideal

so Rx∩Ly∩K(βS) 6= ∅. Let p ∈ Rx∩Ly∩K(βS). By (5) p = π̃1(p)⊗π̃2(p) =
x⊗ y.

(7) Suppose L1 and L2 are distinct minimal left ideals contained in Ly.
Then Rx∩L1∩K(βS) 6= ∅ and Rx∩L2∩K(βS) 6= ∅ while |Rx∩Ly∩K(βS)| =
1, a contradiction. Similarly Rx does not contain two distinct minimal right
ideals.

(8) Let p be an isolated point of L and pick C ⊆ S such that C∩L = {p}.
Let x = π̃1(p). Then p = x ⊗ y by (5). Let D = {a ∈ A : {b ∈ B : (a, b) ∈
C} ∈ y}. If D = {a}, then (recalling that we identify points of A with the
principal ultrafilters generated by those points) we have p = a ⊗ y. If we
had distinct a1 and a2 in D, we would have a1 ⊗ y and a2 ⊗ y in C ∩ L.

For the other inclusion, let a ∈ A. Then π̃1
−1[{a}] ∩ L = Ra ∩ L 6= ∅ and

Ra ∩ L ⊆ Ra ∩ Ly ∩K(βS) = {a⊗ y} by (6) so π̃1
−1[{a}] ∩ L = {a⊗ y}.

(9) We establish the conclusion for Ly, the proof for Rx being essentially
the same. (Or look ahead to the proof of Theorem 4.4(12).) So let L be the
minimal left ideal contained in Ly and let p ∈ L. By (5) p = π̃1(p) ⊗ y ∈
βA⊗ y.

Now let u ∈ βA. Then u ⊗ y ∈ K(βS) by (5) so u ⊗ y ∈ L′ for some
minimal left ideal L′. But then π̃2[L

′ ] = {y} so L′ ⊆ Ly so L′ = L.
(10) By (5) K(βS) = βA⊗ βB. Assume first that either A or B is finite.

Then by Lemma 4.2(3), βA⊗ βB = β(A×B).
Now assume that A and B are infinite and pick countably infinite subsets

A0 of A and B0 of B. It is an immediate consequence of [8, Theorem 2.4]
that βA0 ⊗ βB0 is not a Borel subset of β(A0 ×B0). It is routine to verify
from the definition of ⊗ that (βA⊗ βB)∩ β(A0 ×B0) = βA0 ⊗ βB0. Thus,
since β(A0 × B0) is a clopen subset of β(A × B), if βA ⊗ βB were a Borel
subset of βS = β(A×B), one would have that βA0⊗ βB0 is a Borel subset
of β(A0 ×B0).

(11) Given p ∈ K(βS) we have π̃1(p) ∈ βA and π̃2(p) ∈ βB so φ :
K(βS) → R(βA, βB). By (3), φ[K(βS)] = R(βA, βB). Let p, q ∈ K(βS).
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Then
φ(pq) =

(
π̃1(pq), π̃2(pq)

)
=
(
π̃1(p), π̃2(q)

)
=
(
π̃1(p), π̃2(p)

)
·
(
π̃1(q), π̃2(q)

)
= φ(p) · φ(q) .

By (6) we have that φ is injective.
To see that φ is continuous, let p ∈ K(βS) and let W be a neighborhood

of φ(p) in βA × βB. Pick C ⊆ A and D ⊆ B such that
(
π̃1(p), π̃2(p)

)
∈

C × D ⊆ W . Pick E ∈ p such that π̃1[E ] ⊆ C and π̃2[E ] ⊆ D. Then
E ∩K(βS) is a neighborhood of p in K(βS) and φ[E ∩K(βS)] ⊆W .

If A and B are infinite, then since βA × βB is compact, the fact that φ
is not a homeomorphism follows from (10).

If either A or B is finite, then K(βS) is compact and φ is a continuous
bijection, so φ is a homeomorphism. �

In the semigroups of Theorem 4.3, the minimal left ideals have isolated
points because at least some of them have points that are isolated in βS.
As we have seen, one often concludes that minimal left ideals have isolated
points because they are finite. In the semigroups of the following theorem
we have that K(βS) ∩ S = ∅ unless B has a largest member and, if A is
infinite, then the minimal left ideals have as many elements as βA.

Recall that a semilattice (B,∨) is a set partially ordered by a reflexive,
transitive, and antisymmetric relation with the property that any two x, y ∈
B have a least upper bound x ∨ y.

If κ is a regular infinite cardinal and B = κ, then the set U in the following
theorem is the set of κ-uniform ultrafilters on B. If κ is singular, then U
properly contains the set of κ-uniform ultrafilters on B.

Theorem 4.4. Let A be a nonempty set and let (B,∨) be a nonempty
semilattice. Let S = A × B and for (a, b), (c, d) ∈ S, define (a, b) · (c, d) =
(a, b∨d). Let π̃1 : βS → βA and π̃2 : βS → βB be the continuous extensions
of the projection functions. Let U = {q ∈ βB : (∀s ∈ B)({t ∈ B : s ≤ t} ∈
q)} and let V = π̃2

−1[U ]. For x ∈ βA and for y ∈ U , let Rx = {p ∈ βS :
π̃1(p) = x} and let Ly = {p ∈ βS : π̃2(p) = y}.

(1) U 6= ∅. If B does not have a maximum element, |U | ≥ 2c.
(2) If p, q ∈ βS, then π̃1(pq) = π̃1(p).
(3) If p ∈ βS and q ∈ V , then π̃2(pq) = π̃2(q).
(4) V is an ideal of βS and so K(βS) ⊆ V . If B does not have a

maximum element, K(βS) ∩ S = ∅.
(5) If p ∈ βS and q ∈ V , then pq = π̃1(p)⊗ π̃2(q).
(6) If x ∈ βA and y ∈ U , then Rx is a left ideal of βS and Ly is a left

ideal of βS.
(7) If p, q ∈ βS and r ∈ V , then pqr = pr.
(8) Let p ∈ βS. The following statements are equivalent.

(a) p ∈ K(βS).
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(b) p ∈ (βS) · V .
(c) p ∈ V and p = π̃1(p)⊗ π̃2(p).
(d) p ∈ βA⊗ U .
(e) p ∈ V and p is an idempotent.

(9) If x ∈ βA and y ∈ U , then Rx ∩ Ly ∩K(βS) = {x⊗ y}.
(10) If x ∈ βA and y ∈ U , then Rx contains a unique minimal right ideal

and Ly contains a unique minimal left ideal.
(11) Let y ∈ U and let L be the unique minimal left ideal contained in

Ly. Then {p ∈ L : p is isolated in L} = A⊗ y.
(12) If x ∈ βA and y ∈ U , then the minimal right ideal contained in Rx

is x⊗U and the minimal left ideal contained in Ly is βA⊗y. So the
minimal right ideals of βS are the sets of the form x⊗U for x ∈ βA
and the minimal left ideals of βS are the sets of the form βA⊗ y for
y ∈ U .

(13) K(βS) is compact if and only if A is finite or B has a maximum
element.

(14) Define φ : K(βS) → R(βA,U) by φ(p) =
(
π̃1(p), π̃2(p)

)
. Then φ is

a continuous isomorphism. And φ is a homeomorphism if and only
if either A is finite or B has a maximum element.

Proof. (1) For s ∈ B, let Cs = {t ∈ B : s ≤ t}. It is obvious that U is
nonempty. If B does not have a maximum element, then, for every finite
nonempty subset F of B,

⋂
s∈F Cs is infinite. So by [5, Theorem 3.62],

|U | ≥ 2c.
(2) π̃1(pq) = π̃1(p-lim

s∈S
q-lim
t∈S

st) = p-lim
s∈S

q-lim
t∈S

π1(st) = p-lim
s∈S

q-lim
t∈S

π1(s) =

p-lim
s∈S

π1(s) = π̃1(p) .

(3) For b ∈ B, let Cb = {(c, d) ∈ S : d ≥ b} and note that Cb ∈ q. Note
also that if (a, b) ∈ S and (c, d) ∈ Cb, then π2

(
(a, b)(c, d)

)
= π2(c, d). Then

π̃2(pq) = π̃2
(
p- lim

(a,b)∈S
q- lim

(c,d)∈Cb
(a, b)(c, d)

)
= p- lim

(a,b)∈S
q- lim

(c,d)∈Cb
π2(c, d)

= p- lim
(a,b)∈S

π̃2
(
q- lim

(c,d)∈Cb
(c, d)

)
= p- lim

(a,b)∈S
π̃2(q)

= π̃2(q) .

(4) By (3) V is a left ideal of βS. To see that V is a right ideal, let p ∈ V ,
let q ∈ βS, let s ∈ B, and let C = {t ∈ B : t ≥ s}. We need to show that
C ∈ π̃2(pq). Suppose instead that B \ C ∈ π̃2(pq). Pick D ∈ pq such that

π̃2[D ] ⊆ B \ C. Let E = {x ∈ S : x−1D ∈ q}. Then E ∈ p and π2
−1[C] ∈ p

so pick (a, b) ∈ π2
−1[C] such that (a, b)−1D ∈ q. Pick (c, d) ∈ (a, b)−1D.

Then (a, b∨d) ∈ D so b∨d ∈ B \C. But b ∈ C so b∨d ∈ C, a contradiction.
If B does not have a maximum element, U ⊆ B∗ and so V ∩ S = ∅.
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(5) If p ∈ βS and q ∈ V , then

pq = lim
(a,b)→p

lim
(c,d)→q

(a, b)(c, d) = lim
(a,b)→p

lim
(c,d)→q

(a, b ∨ d) ,

where a, c denote elements of A and b, d denote elements of B. Since c∨d = d
if c ≤ d, pq = lim

a→π̃1(p)
lim

d→π̃2(q)
(a, d) = π̃1(p)⊗ π̃2(q).

(6) This is an immediate consequence of statements (2) and (3).
(7) For b ∈ B, let Cb = {(c, d) ∈ S : d > b} and note that Cb ∈ r. Now

pqr = p- lim
(a,b)∈S

q- lim
(c,d)∈S

r- lim
(u,v)∈Cb∨d

(a, b)(c, d)(u, v)

= p- lim
(a,b)∈S

q- lim
(c,d)∈S

r- lim
(u,v)∈Cb∨d

(a, b ∨ d)(u, v)

= p- lim
(a,b)∈S

q- lim
(c,d)∈S

r- lim
(u,v)∈Cb∨d

(a, v)

= p- lim
(a,b)∈S

r- lim
(u,v)∈Cb

(a, v) = pr .

(8) (a) ⇒ (b). By (4) p ∈ V . Also p is a member of some minimal right
ideal R of βS and if e is an idempotent in R, then p = ep.

(b) ⇒ (c). Pick q ∈ βS and r ∈ V such that p = qr. By (5), qr =
π̃1(q)⊗ π̃2(r). By (2) and (3) π̃1(p) = π̃1(q) and π̃2(p) = π̃2(r).

It is trivial that (c) implies (d).
(d)⇒ (e). Pick x ∈ βA and y ∈ U such that p = x⊗ y. Then π̃2(p) = y

so p ∈ V . By (5) pp = (x⊗ y) · (x⊗ y) = π̃1(x⊗ y)⊗ π̃2(x⊗ y) = x⊗ y = p.
(e)⇒ (a). Pick q ∈ K(βS). By (7) p = pp = pqp ∈ K(βS).
(9) Rx contains a minimal right ideal and Ly contains a minimal left ideal

so Rx∩Ly∩K(βS) 6= ∅. Let p ∈ Rx∩Ly∩K(βS). By (8) p = π̃1(p)⊗π̃2(p) =
x⊗ y.

(10) Suppose R1 and R2 are distinct minimal right ideals contained in Rx.
Then R1∩Ly∩K(βS) 6= ∅ and R2∩Ly∩K(βS) 6= ∅ while |Rx∩Ly∩K(βS)| =
1, a contradiction. Similarly Ly does not contain two distinct minimal left
ideals.

(11) Let p be an isolated point of L and pick C ⊆ S such that C∩L = {p}.
Let x = π̃1(p). Then p = x ⊗ y by (8). Let D = {a ∈ A : {b ∈ B : (a, b) ∈
C} ∈ y}. If D = {a}, then we have p = a⊗ y. If we had distinct a1 and a2
in D, we would have a1 ⊗ y and a2 ⊗ y in C ∩ L.

For the other inclusion, let a ∈ A. Then π̃1
−1[{a}] ∩ L = Ra ∩ L 6= ∅ and

Ra ∩ L ⊆ Ra ∩ Ly ∩K(βS) = {a⊗ y} by (9) so π̃1
−1[{a}] ∩ L = {a⊗ y}.

(12) In the proof of Theorem 4.3 we established the conclusion for Ly.
Here we establish the conclusion for Rx. So let R be the minimal right ideal
contained in Rx. First let p ∈ R. By (8) p = x⊗ π̃2(p) ∈ x⊗ U since p ∈ V
by (4).

Now let v ∈ U . Then x ⊗ v ∈ K(βS) by (8) so x ⊗ v ∈ R′ for some
minimal right ideal R′. But then π̃1[R

′] = {x} so R′ ⊆ Rx so R′ = R.
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(13) Assume first that A is finite. Then by (8), K(βS) = A⊗U . Since U
is a compact subset of βS, a⊗ U is compact for every a ∈ A and so K(βS)
is compact.

If B has a maximum element u, then U = {u} and K(βS) = βA ⊗ u,
which is compact.

Now suppose that A is infinite and that B does not have a maximum ele-
ment. Assume that K(βS) is compact. Let 〈an〉∞n=1 be an injective sequence
in A and pick a (strongly) discrete sequence 〈yn〉∞n=1 in U and a sequence
〈Yn〉∞n=1 of pairwise disjoint subsets of B such that Yn ∈ yn for each n ∈ N.
Then 〈an⊗ yn〉∞n=1 is a sequence in K(βS). Pick a cluster point p⊗ q of this
sequence.

Note first that {an : n ∈ N} ∈ p since otherwise (A \ {an : n ∈ N})×B
would be a neighborhood of p ⊗ q which no an ⊗ yn is a meber of. Next
note that for each n ∈ N, B \ Yn ∈ q since otherwise A× Yn would be a
neighborhood of p ⊗ q containing only one member of the given sequence.
Let E =

⋃∞
n=1

(
{an} × (B \ Yn)

)
. Then E ∈ p ⊗ q so pick n such that

E ∈ an ⊗ yn. This is a contradiction.
(14) By (8) φ[K(βS)] = R(βA,U). If p, q ∈ K(βS) and φ(p) = φ(q),

then by (8), p = π̃1(p) ⊗ π̃2(p) = π̃1(q) ⊗ π̃2(q) = q. To see that φ is
a homomorphism, let p, q ∈ K(βS). Thenn φ(p, q) =

(
π̃1(pq), π̃2(pq)

)
=(

π̃1(p), π̃2(q)
)

=
(
π̃1(p), π̃2(p)

)
·
(
π̃1(q), π̃2(q)

)
= φ(p)φ(q).

To see that φ is continuous, let p ∈ K(βS) and let W be a neighborhood
of φ(p) in βA × U . Pick C ⊆ A and D ⊆ B such that

(
π̃1(p), π̃2(p)

)
∈

C × (D ∩U) ⊆W . Pick E ∈ p such that π̃1[E ] ⊆ C and π̃2[E ] ⊆ D. Then
E ∩K(βS) is a neighborhood of p in K(βS) and φ[E ∩K(βS)] ⊆W .

If A is infinite and B does not have a largest member, then K(βS) is not
compact while R(βA,U) is compact so φ is not a homeomorphism. If A
is finite or B has a maximum element, then K(βS) is compact and φ is a
continuous bijection, so φ is a homeomorphism. �

We are mainly interested in the case in which B does not have a maxi-
mum element, because the study of the semigroup βS defined in Theorem
4.4 was motivated by the fact that, in this case, the minimal left ideals of
βS are infinite, do not meet S, and have isolated points. However, since
∨-semigroups with maximum elements are abundant, it is worth remark-
ing on the case in which B does have a maximum element u. In this case,
U = {u}, K(βS) = βA ⊗ u = (βS)u (which is compact), every minimal
right ideal of βS is a singleton and the unique minimal left ideal of βS is
(βS)u.

It is also worth remarking on the case which A is a singleton. In this
case, we can identify S with B, since S is isomorphic to B. So, if B is an
arbitrary ∨-semilattice, K(βB) is compact and is topologically isomorphic
to the compact right zero subsemigroup U of βS, the minimal right ideals
of βB are singletons and U is the unique minimal left ideal of βB.
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A consideration of tensor products highlights a significant effect of can-
cellation. It was shown in [9] that, if T is countable and cancellative and
S = T × T , then no element of T ∗ ⊗ T ∗ can be an idempotent in βS, a
member of the smallest ideal of βS or a member of S∗S∗. Whereas if S is
the semigroup of Theorem 4.4, an element of V is an idempotent if and only
if it is a tensor product and every member of K(βS) is a tensor product.

We can strengthen Theorem 4.4(13) in certain cases, by proving that
K(βS) is not Borel. This includes the case in which A and B are countably
infinite and B does not have a maximum element, as well as the case in which
κ is an infinite cardinal, |A| = κ and B = κ. We shall need the folllowing
lemma, which was previously proved for a countable discrete space S in [6,
Lemma 3.1]. The proof given there extends to arbitrary infinite discrete
spaces.

Lemma 4.5. Let S denote an infinite discrete space of cardinality κ. Every
Borel subset of βS is the union of a family of compact subsets of βS of
cardinality at most 2κ.

Proof. We remind the reader that a family F of subsets of a topological
space X contains all the Borel subsets of the space if it contains all the
open sets and all the closed sets, and is closed under countable unions and
countable intersections. To see this, let A0 = {U ⊆ X : U is open in
X} ∪ {U ⊆ X : U is closed in X}. For σ < ω1, if Aσ has been defined,
let Aσ+1 = {

⋃
U : U is a nonempty countable subset of Aσ} ∪ {

⋂
U : U

is a nonempty countable subset of Aσ}. If σ is a nonzero limit ordinal, let
Aσ =

⋃
τ<σAτ . Then each Aσ ⊆ F and, since each Aσ is closed under

complementation,
⋃
σ<ω1

Aσ is the set of Borel subsets of X.
Let F denote the family of subsets of βS which are the union of 2κ or fewer

compact subsets of βS. Then F contains the open subsets of βS, because
βN has a basis of 2κ clopen sets, and F obviously contains the closed subsets
of βS. It is also obvious that F is closed under countable unions. To see
that F is closed under countable intersections let 〈An〉∞n=1 be a sequence in
F and for each n ∈ N, pick a set Dn of at most 2κ compact subsets of βS
such that An =

⋃
Dn. Then

⋂∞
n=1An =

⋃
{
⋂∞
n=1 F (n) : F ∈×∞n=1Dn} and

|×∞n=1Dn| ≤ (2κ)ω = 2κ. �

Theorem 4.6. Let A,B,U and S be defined as in Theorem 4.4. Assume
that A and B are infinite sets of cardinality κ and that, for every b ∈ B,
|{c ∈ B : c > b}| = κ. Then K(βS) is not a Borel subset of βS.

Proof. We note that |βA| = |βU | = 22
κ

by [5, Theorems 3.58 and 3.62].
Let 〈pi〉i<22κ and 〈qi〉i<22κ be enumerations of βA and U respectively as

injective 22
κ
-sequences. We claim that, for any compact subset C of K(βS),

{i < 22
κ

: pi ⊗ qi ∈ C} is finite. Since {pi ⊗ qi : i < 22
κ} ⊆ K(βS), it will

follow that K(βS) cannot be covered by 2κ compact subsets. So let C be a
compact subset of K(βS).
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Assume that D = {i < 22
κ

: pi ⊗ qi ∈ C} is infinite. Pick a countably
infinite subset F of D such that {pi : i ∈ F} is strongly discrete. Pick an
infinite subset E of F such that {qi : i ∈ E} is strongly discrete. We can
choose pairwise disjoint families of subsets {Pi : i ∈ E} and {Qi : i ∈ E}
of A and B respectively, such that Pi ∈ pi and Qi ∈ qi for every i ∈ E.
By [5, Theorem 3.59], |c`βS({pi ⊗ qi : i ∈ E})| ≥ 2c, and so there exists
x ∈ c`βS({pi ⊗ qi : i ∈ E}) \ {pi ⊗ qi : i ∈ E}. Since x ∈ K(βS), x = p ⊗ q
for some p ∈ βA and some q ∈ U . Then p = π̃1(x) ∈ π̃1[c`βS({pi ⊗ qi :
i ∈ E})] = c`βAπ̃1[{pi ⊗ qi : i ∈ E}] = c`βA[{pi : i ∈ E} and q = π̃2(x) ∈
c`U [{qi : i ∈ E}].

Let P =
⋃
i∈E Pi and let Q =

⋃
i∈E Qi. Define f : P → E by s ∈ Pf(s)

and let X =
⋃
s∈P

(
{s} × (Q \Qf(s))

)
. Then X ∈ x because P ∈ p and, for

each s ∈ P , Q \ Qf(s) ∈ q. However, X is not a member of qi ⊗ pi for any
i ∈ E, contradicting the assumption that x ∈ c`βS({pi ⊗ qi : i ∈ E}). �
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ory and applications. Second revised and extended edition. De Gruyter Textbook.
Walter de Gruyter & Co., Berlin 2012. xviii+591 pp. ISBN: 978-3-11-025623-9.
MR2893605, Zbl 1241.22001, doi: 10.1515/9783110258356. 418, 419, 420, 423, 424,
426, 427, 431, 434, 435

[6] Hindman, Neil; Strauss, Dona. Topological properties of some algebraically de-
fined subsets of βN. Topology Appl. 220 (2017), 43–49. MR3619279, Zbl 1365.54022,
doi: 10.1016/j.topol.2017.02.001. 434

[7] Hindman, Neil; Strauss, Dona. Some new results about the smallest ideal of βS.
New York J. Math. 25 (2019), 897–913. MR4012572, Zbl 1430.54029. 420, 422, 427,
428

[8] Hindman, Neil; Strauss, Dona. Some properties of Cartesian products and Stone-
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