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The v1-periodic region in the cohomology
of the C-motivic Steenrod algebra

Ang Li

Abstract. We establish a v1-periodicity theorem in Ext over the C-
motivic Steenrod algebra. The element h1 of Ext, which detects the ho-
motopy class η in the motivic Adams spectral sequence, is non-nilpotent
and therefore generates h1-towers. Our result is that, apart from these
h1-towers, v1-periodicity operators give isomorphisms in a range near
the top of the Adams chart. This result generalizes well-known classical
behavior.
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1. Introduction

1.1. Background and Motivation. One of the primary tools for com-
puting stable homotopy groups of spheres is the Adams spectral sequence.
The E2-page of the Adams spectral sequence is given by Ext∗,∗Acl(F2,F2) =

H∗,∗(Acl), which we denote by Extcl, where Acl is the classical Steenrod
algebra. For Extcl, Adams [Ada1] showed that there is a vanishing line of
slope 1

2 and intercept 3
2 , and J. P. May showed there is a periodicity line of

slope 1
5 and intercept 12

5 , where the periodicity operation is defined by the

Massey product Pr(−) := 〈hr+1, h
2r
0 ,−〉. This result has not been published

by May, but can be found in the thesis of Krause:
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Theorem 1.1. [Kra, Theorem 5.14] For r ≥ 2, the Massey product opera-

tion Pr(−) := 〈hr+1, h
2r
0 ,−〉 is uniquely defined on Exts,fcl = Hs,f (Acl) when

s > 0 and f > 1
2s+3−2r, where s is the stem, and f is the Adams filtration.

Furthermore, for f > 1
5s+ 12

5 , the operation

Pr : Hs,f (Acl)
∼=−→ Hs+2r+1,f+2r(Acl)

is an isomorphism.

The purpose of this article is to discuss an analog of the theorem above
in the C-motivic context. Motivic homotopy theory, also known as A1-
homotopy theory, is a way to apply the techniques of algebraic topology,
specifically homotopy, to algebraic varieties and, more generally, to schemes.
The theory was formulated by Morel and Voevodsky [MV].

In this paper we analyze the case where the base field F is the complex
numbers C. Let M2 denote the bigraded motivic cohomology ring of Spec
C, with F2 = Z/2-coefficients. Voevodsky [Voe] proved that M2

∼= F2[τ ].
Let A be the mod 2 motivic Steenrod algebra over C. The motivic Adams
spectral sequence is a trigraded spectral sequence with

E∗,∗,∗2 = Ext∗,∗,∗A (M2,M2),

where the third grading is the motivic weight. (See Dugger and Isaksen
[DI]). The C-motivic E2-page, which we denote by Ext, has a vanishing line
computed by Guillou and Isaksen [GI1]. Quigley has a partial result that
Exts,f,w has a periodicity line of slope 1

3 under the condition s ≤ w in the
case r = 2 [Qui, Corollary 5.4].

The multiplication by 2 map S0,0 2−→ S0,0 is detected by h0, and the Hopf

map S1,1 η−→ S0,0 is detected by h1 in Ext. These elements have degrees
(0, 1, 0) and (1, 1, 1) respectively. By an infinite h1-tower we will mean a
non-zero sequence of elements of the form hk1x in Ext with k ≥ 0, where x is
not h1 divisible. We will write h1-towers for infinite h1-towers, and refer to x
as the base of the h1-tower hk1x (k ≥ 0). A short discussion on the h1-towers
can be found in subsection 1.2. Since all h1-towers are τ -torsion, one might
guess that the motivic Ext groups differ from the classical Extcl groups by
only infinite h1-towers. This is not true, but we may expect the h1-torsion
part of Ext to obtain a pattern similar to Extcl. Our result pertains solely
to this h1-torsion region.

Remark 1.2. Let A∗ denote the dual Steenrod algebra. For Ext, we can
work over A∗ instead of A. i.e.

E∗,∗,∗2
∼= Ext∗,∗,∗A∗ (M2,M2)∗.

Here we view M2 as the homology of the motivic sphere instead of the co-
homology; this is an A∗-comodule.

The goal of this paper is the following theorem:
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Theorem 1.3. For r ≥ 2 the Massey product operation

Pr(−) := 〈hr+1, h
2r

0 ,−〉

is uniquely defined on Exts,f,w = Hs,f,w(A) when s > 0 and f > 1
2s+3−2r.

Furthermore, for f > 1
5s+ 12

5 , the restriction of Pr to the h1-torsion

Pr : [Hs,f,w(A)]h1−torsion → [Hs+2r+1,f+2r,w+2r(A)]h1−torsion

is an isomorphism.

We first reduce the problem to establishing the vanishing region of certain
Ext groups. Then we make an explicit computation for these Ext groups over
the dual Steenrod subalgebra A(1)∗ to get a starting vanishing region. We
transport this vanishing region using the Cartan-Eilenberg spectral sequence
along normal extensions of Hopf algebras and obtain the vanishing region of
these groups over A(2)∗, which is the same as the vanishing region of these
Ext groups over A∗.

There are close connections between the classical Adams spectral sequence
and the motivic Adams spectral sequence. For instance, by inverting τ in
Ext, we obtain Extcl. There are also abundant connections between the C-
motivic Ext groups, the R-motivic Ext groups and the C2-equivariant Ext
groups. The ρ-Bockstein spectral sequence [Hil] takes the C-motivic Ext
groups as input and computes the R-motivic Ext groups. The C2-equivariant
Ext groups can then be obtained [GHIR] by calculating R-motivic Ext
groups for a negative cone. Our periodicity results ought to be relevant
for future computations in R-motivic and C2-equivariant homotopy theory.

1.2. Further Considerations. We study the h1-torsion part of Ext; the
h1-periodic part has been entirely computed in [GI2].

Theorem 1.4. [GI2, Theorem 1.1] The h1-inverted algebra ExtA[h−1
1 ] is a

polynomial algebra over F2[h±1
1 ] on generators v4

1 and vn for n ≥ 2, where:

(1) v4
1 is in the 8-stem and has Adams filtration 4 and weight 4.

(2) vn is in the (2n+1 − 2)-stem and has Adams filtration 1 and weight
2n − 1.

It is straightforward that Pr acts injectively on the h1-inverted Ext; that
is, Pr sends an h1-tower hk1x (k ≥ 0) to another h1-tower hl1y (l ≥ 0). But
the base x might not be sent to the base y. As for surjectivity, there are
h1-towers not in the image of Pr, such as the h1-tower on c0; those are not
multiples of v4

1 in the h1-inverted Ext. Partial results about the bases of
those h1-towers can be found in [Tha]. We expect that the determination
of the bases of the h1-towers will lead to a complete understanding of the
region in which the v1-periodicity operator acts as an isomorphism on Ext.

Analogously to the Massey product P2(−) := 〈h3, h
4
0,−〉, there is another

Massey product g(−) := 〈h4, h
4
1,−〉. This Massey product g(−) is related to

another periodicity operator called w1 in motivic Ext, which does not exist
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classically. For many values of x, P2(x) is detected by Px, where P = h4
20

has degree (8, 4, 4) in the May spectral sequence. Similarly, for many values
of x, g(x) will be detected by h4

21 · x, where h4
21 has degree (20, 4, 12) in the

May spectral sequence. The obstruction to studying w1-periodicity is that g
has a relatively low slope. Thus the method in this paper is not applicable.
In addition, our method relies on a computation involving ExtA(1)∗ , but g
restricts to zero in that group. Thus a strategy for studying g-periodicity
would need to begin with ExtA(2)∗ , which is much more complicated [Isa].

1.3. Organization. We follow the approach of [Kra] primarily. In Section
2, we briefly introduce the stable (co)module category, in which we can
consider the h0 or h1-torsion part of Ext by taking sequential colimits. In
Section 3, we establish the existence of a homological self-map θ and use
this to show that Pr(−) is uniquely defined. In Section 4, we explicitly
show where θ is an isomorphism over A(1)∗, and obtain a region where it
is an isomorphism over A∗ by moving along the Cartan-Eilenberg spectral
sequence. In Section 5, we combine the results of the previous two sections
together to get the motivic periodicity theorem 1.3.

1.4. Acknowledgements. The author would like to thank Bertrand Guil-
lou for useful instructions and helpful discussions. The author also benefited
from discussions with J.D. Quigley, Eva Belmont, and Prasit Bhattacharya
and appreciates their assistance. The author thanks the referee for providing
detailed comments that helped to improve the exposition of the article.

2. Working environment: the stable (co)module category
Stab(Γ)

In order to restrict to working with only the h1-torsion (also h0-torsion)
part, first we would like to choose a suitable working environment: a cate-
gory with some nice properties that will serve our purposes. Usually Ext is
defined in the derived category of A∗-comodules, which we denote D(A∗).
However, the coefficient ring M2 is not compact in D(A∗), which means that
M2 does not interact well with colimits. The stable comodule category will
better serve our purposes. That is a category C such that:

(1) If M is a A∗-comodule that is free of finite rank over M2 and N is a
A∗-comodule, then HomC (M,N) ∼= ExtA∗(M,N).

(2) If M is a A∗-comodule that is free of finite rank over M2, then M
is compact in C . That is to say, for any sequential colimit in C of
A∗-comodules

colim
i
Ni := colim(N0

f0−→ N1 → · · · → Ni
fi−→ · · · ),

we have colim
i

ExtA∗(M,Ni) ∼= HomC (M, colim
i
Ni)
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The correct choice of C is called Stab(A∗). The category can be con-
structed in various ways (see [Bel, Sec. 2.1] for details), and has several
useful properties for our case. The following proposition summarizes some
of the discussion in [BHV, Sec. 4]:

Proposition 2.1. The category Stab(A∗) satisfies conditions (1) and (2)
above.

Namely, for a Hopf algebra Γ and comodule M that is free of finite rank,
we have a diagram

D(Γ)

HomD(Γ)(iM,−) ++

ComodΓ
ioo j //

ExtΓ(M,−)

��

Stab(Γ)

HomStab(Γ)(jM,−)rrgrAb

where i is the canonical functor and j is well-defined only for comodules
that are free of finite rank over M2. This diagram commutes. Because the
stable comodule category cooperates nicely with taking colimits in the sense
that the condition (2) holds, we can compute the colimit of a sequence of
ExtΓ(M,N).

Here we introduce notation that will be used in future sections.

Notation 2.2. For a motivic spectrum M such that H∗(M) is free of finite
rank over M2, let M also denote the embedded image of the homology of
the spectrum M in the stable comodule category (i.e., M = j(H∗(M))).
We use [M,N ]Γ∗,∗,∗ to denote HomStab(Γ)(M,N), where M , N ∈ Stab(Γ).
For example, if M = S, then H∗(S) = M2, which we also denote by S.

Thus Exts,f,wA∗ (M2,M2) = [S, S]A∗s,f,w. When Γ is the motivic dual Steenrod

algebra, we omit the superscript Γ. This notation is consistent with [Kra].
We use the grading (s, f, w), where s is the stem, f is the Adams filtration

and w is the motivic weight. Notice that t = s + f is the internal degree.

Given a self-map θ: Σs0,f0,w0M
θ−→ M in Stab(A∗), we have a cofiber se-

quence Σs0,f0,w0M
θ−→ M → M/θ in Stab(A∗). The associated long exact

sequence will be indexed as follows:

· · · → [M,N ]s+s0+1,f+f0−1,w+w0 → [M/θ,N ]s,f,w → [M,N ]s,f,w → [M,N ]s+s0,f+f0,w+w0 → · · ·
Sometimes we omit indices when there is no risk of confusion.

3. Self-maps and Massey products

In this section, we show that the cofiber S/hk0 admits a self-map and
identify it with the Massey product in Theorem 1.3. Self-maps are maps
of suspensions of an object to itself. For a dualizable object Y , self maps
ΣnY → Y can also be described as elements of π∗(Y ⊗DY ), with DY the
⊗-dual of Y . In this paper we mainly deal with homological self-maps in
Stab(A∗).
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When considering the vanishing region and the periodicity region, we
only work with the h0-torsion part. (Of course, this is not much of a loss: as
classically, the only h0-local elements are in the 0-stem.) We next investigate
the h1-torsion part inside the h0-torsion. For this purpose, we introduce the
following notion.

Definition 3.1. Let F0 be the fiber of S → S[h−1
0 ], where S[h−1

0 ] :=

colim(S
h0−→ S

h0−→ · · · ) in Stab(A∗). Similarly, let F01 be the fiber of
F0 → F0[h−1

1 ] with F0[h−1
1 ] defined as an analogous colimit.

The group [S, F01] contains the subset of [S, S] consisting of elements that
are both h0- and h1-torsion, as well as the negative parts of those h0 and
h1-towers in F0[h−1

1 ]. The regions we are considering are unaffected. We
display the corresponding Ext groups in Figure 1 and 2.

s5 10

f

Figure 1. [S, F0]A
∨
∗,∗,∗

s5 10

f

Figure 2. [S, F01]A
∨
∗,∗,∗

The periodicity operator P corresponds to multiplying by the element h4
20

of the May spectral sequence, meaning that for many values of x, h4
20x ∈

〈h3, h
4
0, x〉. However, h4

20 does not survive to Ext. As a result, multiplying
by P is not a map from [S, S] to [S, S]. Luckily, [GI1, Figure 2] shows that
P survives in [S/h0, S]. Similarly, we have the following proposition:

Proposition 3.2 ([Ada2]). The element h2r
20 survives the May spectral se-

quence to [S/hk0, S] for k ≤ 2r, and thus gives a corresponding element P 2r−2

in [S/hk0, S/h
k
0], i.e. a self-map of S/hk0.

If N is an A∗-comodule in Stab(A∗), then [S/hk0, S/h
k
0] acts on [S/hk0, N ].

The corresponding element P (or some power of P ) inside [S/hk0, S/h
k
0] in-

duces a map from [S/hk0, N ] to itself. We would like to show that for any

k ≤ 2r and r ≥ 2, multiplying by P 2r−2
on [S/hk0, S] coincides with the

Massey product Pr(−) := 〈hr+1, h
2r
0 ,−〉 in a certain region. In other words,

we must show that there is zero indeterminacy.
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The Massey product is defined on the kernel of h2r
0 on [S, S], which we

will denote ker(h2r
0 ). It lands in the cokernel of multiplication by hr+1:

Pr(−) : ker(h2r

0 )→ [S, S]/hr+1.

Remark 3.3. Originally one would like to consider the following square
and see that it commutes in a certain region

[S/hk0, S]
−·P 2r−2

//

��

[S/hk0, S]

��
ker(h2r

0 )
Pr(−)

// [S, S]/hr+1.

The vertical maps are induced by S → S/hk0. However, since we lost the
advantage of a vanishing region of f > 1

2s + 3
2 that we need in the clas-

sical setting, the region where the vertical maps are isomorphisms is not
satisfactory. We solve this problem by restricting attention to the h0 and
h1-torsion.

To better fit our purposes, consider the Massey product defined on [S, F01]

Pr(−) : kerF01(h2r

0 )→ [S, F01]/hr+1.

This gives the following squares, over which we have more control:

[S/hk0, F01]
−·P 2r−2

//

��

[S/hk0, F01]

��
kerF01(h2r

0 )
Pr(−)

//

��

[S, F01]/hr+1

��
kerS(h2r

0 )
Pr(−)

// [S, S]/hr+1

(1)

The canonical map F01 → S induces a map [S, F01] → [S, S] given by
inclusion on the h0- and h1-torsion elements and which sends negative towers
to zero. The bottom square commutes for s > 0 and f > 0 modulo potential
indeterminacy. We would like to show that the indeterminacy vanishes under
some conditions.

Let C(η) denote the cofiber of the first Hopf map

S1,1 η−→ S0,0.

Writing Cη for the cohomology H∗,∗(C(η)), we have the following result:

Theorem 3.4. [GI1, Theorem 1.1] The group Exts,f,wA (M2, Cη) vanishes

when s > 0 and f > 1
2s+ 3

2 .
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Theorem 3.4 gives us that [S,Cη]s,f,w vanishes when s > 0 and f > 1
2s+ 3

2 .

In other words, there are only h1-towers when s > 0 and f > 1
2s + 3

2 in
[S, S]s,f,w. Moreover, we have the following fact:

Proposition 3.5 (Corollary of [GI2, Theorem 1.1]). For r ≥ 1, hr+1 does
not support an h1-tower.

Therefore the indeterminacy (hr+1[S, S])s,f,w must vanish when f > 1
2s+

3− 2r, under the following two conditions: that hr+1 has s = 2r+1 − 1, and
that there are only h1-towers in [S, S]s,f,w when s > 0 and f > 1

2s+ 3
2 , which

are hr+1-torsion groups.

Remark 3.6. It is easy to see that the indeterminacy (hr+1[S, F01])s,f,w
also vanishes when f > 1

2s+ 3− 2r.

The first row of the top square in (1) is multiplication by some power of
the element P . We next determine when the vertical maps are isomorphisms.

Lemma 3.7 (Motivic version of [Kra, Lemma 5.2]). Let M,N ∈ Stab(A∗).
Assume that [M,N ] vanishes when f > as+ bw+ c for some a, b, c ∈ R, let
θ : Σs0,f0,w0M →M be a map with f0 > as0 + bw0, and let M/θ denote the

cofiber of Σs0,f0,w0M
θ−→M . Then

[M/θ,N ]→ [M,N ]

is an isomorphism above a vanishing plane parallel with the one in [M,N ]
but with f -intercept given by c− (f0 − as0 − bw0).

Proof. The result follows from the long exact sequence associated to the

cofiber sequence Σs0,f0,w0M
θ−→M →M/θ:

· · · → [M,N ]s+s0+1,f+f0−1,w+w0 → [M/θ,N ]s,f,w → [M,N ]s,f,w → [M,N ]s+s0,f+f0,w+w0 → · · ·

�

Remark 3.8. This approach could also apply to a vanishing region above
several planes or even a surface. The vanishing condition of Lemma 3.7
could be rephrased as the following:

Assume that [M,N ]∗,∗,∗ vanishes when f > ϕ(s, w) where ϕ : R2 → R is

a smooth function. Then the gradient v(−,−) = (∂ϕ∂s (−), ∂ϕ∂w (−)) is a vector

field. Let d = max
(s0,w0)

|v(s0, w0)|, and assume both f0

s0
and f0

w0
are greater than

d. The remaining proof would follow similarly, with the f -intercept given
by max{c− (f0 − ds0), c− (f0 − dw0)}.

We have this as a corollary:

Corollary 3.9 (Motivic version of [Kra, Lemma 5.9]). Let k ≥ 1. For f >
1
2s+

3
2−k, the natural map [S/hk0, F01]s,f,w → [S, F01]s,f,w is an isomorphism.
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Proof. To determine this, we need to confirm that [S, F01]s,f,w admits a

vanishing region of f > 1
2s + 3

2 . The fiber sequence F01 → F0 ↪→ F0[h−1
1 ]

gives us an exact sequence:

· · · → [S, F01]s,f,w → [S, F0]s,f,w
h−1

1
↪−−→ [S, F0[h−1

1 ]]s,f,w → [S,Σ1,−1,0F01]s,f,w → · · ·
Since [S, F0] differs from [S, S] only in the 0-stem, there are only h1-towers
when f > 1

2s + 3
2 . And by Theorem 3.4 again, [S,Cη]s,f,w vanishes when

s > 0 and f > 1
2s + 3

2 . In other words, above the plane f = 1
2s + 3

2 ,
multiplying by h1, which detects η, is an isomorphism from [S, F0]s,f,w to
[S, F0]s+1,f+1,w+1.

As a result, inverting h1 would be an isomorphism from [S, F0]s,f,w to

[S, F0[h−1
1 ]]s,f,w when f > 1

2s + 3
2 . Therefore, [S, F01]s,f,w vanishes when

f > 1
2s+ 3

2 . Applying Lemma 3.7 gives the corollary. �

The results in 3.2 and 3.6 locate the region where both squares commute,
thus obtaining the first part of Theorem 1.3.

Theorem 3.10 (Motivic version of [Kra, Proposition 5.12]). For k ≤ 2r

and r ≥ 2, the cofiber S/hk0 admits a self-map P 2r−2
of degree (2r+1, 2r, 2r).

Thus, for any N ∈ Stab(A∗), composition with P 2r−2
defines a self-map on

[S/hk0, N ].
When f > 1

2s + 3 − k, in the case N = F01, the induced map coincides

with the Massey product Pr(−) := 〈hr+1, h
2r
0 ,−〉 with zero indeterminacy.

4. Colimits and the Cartan-Eilenberg spectral sequence

We will obtain a vanishing region for [S/(h0, P ), F01]∗,∗,∗ in this section.
Consider the colimit

F0/h
∞
1 := colim

i
(Σ−1,−1,−1F0/h1

h1−→ · · · h1−→ Σ−i,−i,−iF0/h
i
1
h1−→ · · · )

in Stab(A∗). As we show in the following result, it differs from F01 by a
suspension in the region we are considering.

Proposition 4.1. When f > 1
2s+ 3

2 ,

[S,Σ−1,1,0F0/h
∞
1 ]s,f,w ∼= [S, F01]s,f,w

Proof. To see this, note that the colimit F0/h
∞
1 is a union of all the h1-

torsion in F0, while the fiber F01 detects the h1-torsion together with those
negative h1-towers. �

Note that F0 coincides with

Σ−1,1,0S/h∞0 := Σ−1,1,0colim
i

(Σ0,1,0S/h0
h0−→ · · · h0−→ Σ0,i,0S/hi0

h0−→ · · · ),

if we ignore the negative h0-tower. That is, we have [S,Σ−1,1,0S/h∞0 ]s,f,w ∼=
[S, F0]s,f,w when f > 0.
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Remark 4.2. We have shown that the map

[S/hk0, F0/h
∞
1 ]s,f,w → [S, F0/h

∞
1 ]s,f,w

is an isomorphism when f > 1
2s + 3 − k. We consider this colimit because

it is better for computational purposes (the fiber F01 is harder to deal with
than the colimit F0/h

∞
1 ).

Let θ be a self-map of S/hk0, and consider the cofiber sequence S/hk0
θ−→

S/hk0 → S/(hk0, θ). The vanishing region for [S/(hk0, θ), F0/h
∞
1 ]∗,∗,∗ is the

region where

[S/hk0, F0/h
∞
1 ]s,f,w

θ−→ [S/hk0, F0/h
∞
1 ]s+s0,f+f0,w+w0

is an isomorphism. The goal of this section is to obtain a vanishing region
for [S/(hk0, θ), F0/h

∞
1 ]∗,∗,∗ in the case k = 1 and θ = P .

The dual Steenrod algebra is too large to work with, so we would like to
start with a smaller one, namely A(1)∗ ∼= M2[τ0, τ1, ξ1]/(τ2

0 = τξ1, τ
2
1 , ξ

2
1).

Then for A∗-comodules M and N (thus also A(1)∗-comodules), we can re-

cover [M,N ]A∗ from [M,N ]A(1)∗ via infinitely many Cartan-Eilenberg spec-
tral sequences along normal extensions of Hopf algebras, as we will explain
later.

Let N = F0/h
∞
1 . We will compute [S/h0, F0/h

∞
1 ]A(1)∗ as an intermediate

step before reaching our goal of [S/(h0, P ), F0/h
∞
1 ]A(1)∗ . As a starting point,

we can compute [S/h0, F0] over A(1)∗, via the cofiber sequence S
h0−→ S →

S/h0.

s

f

Figure 3. [S/h0, F0]A(1)∗

This is periodic,where the periodicity shifts degree by (8, 4, 4). Since

[S/h0, F0/h
∞
1 ]A(1)∗ is a colimit, it is essential to know the maps over which
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we are taking the colimit. First let us take a look at the maps induced by
multiplying by h1 (we abbreviate Σ−i,−i,−i to Σ−i in this diagram):

h1 // [S/h0,Σ
−1F0] //

h1◦Σ−1

��

[S/h0,Σ
−1F0/h1] //

��

Σ2,0,1[S/h0,Σ
−1F0]

id
��

h1 //

h2
1 // [S/h0,Σ

−2F0]

h1◦Σ−1

��

// [S/h0,Σ
−2F0/h

2
1]

��

// Σ3,1,2[S/h0,Σ
−2F0]

��

h2
1 //

(2)

All rows are exact. From this we yield a more illuminating diagram:

0 // coker(h1) //

h1◦Σ−1

��

[S/h0,Σ
−1F0/h1] //

��

ker(h1)

i
��

// 0

0 // coker(h2
1)

h1◦Σ−1

��

// [S/h0,Σ
−2F0/h

2
1]

��

// ker(h2
1)

��

// 0

The maps i on the right column are canonical inclusions, and passing to
colimits gives

colim
k

(coker(hk1))→ [S/h0, F0/h
∞
1 ]→ colim

k
(ker(hk1)).

Working over the dual subalgebraA(1)∗ we calculate [S/h0,Σ
−1,1,0F0/h

∞
1 ]
A(1)∗
∗,∗,∗

directly. Furthermore we have:

Proposition 4.3. For any k ∈ Z, k ≥ 1, the maps [S/h0,Σ
−kF0/h

k
1]A(1)∗ →

[S/h0,Σ
−k−1F0/h

k+1
1 ]A(1)∗ are injective.

The result of the calculation is shown in Figure 4. The shift in the figure
appears as result of Proposition 4.1.

This is periodic, with a periodicity degree shift of (8, 4, 4), just as with

[S/h0, F0]A(1)∗ . Note that [S/h0,Σ
−1,1,0F0/h

∞
1 ]
A(1)∗
∗,∗,∗ differs from the clas-

sical [S/h0, S]
Acl(1)∗
∗,∗ with two extra negative h1-towers associated to each

”lighting flash”. The element in degree (−1, 0,−1) in the first pattern is
generated by τ with a shift.

Recall the self-map P on S/h0 acts injectively as can be seen in Figure 4.
Combining this with the long exact sequence:

· · · // [S/(h0, P ), F0/h
∞
1 ]
A(1)∗
s,f,w

// [S/h0, F0/h
∞
1 ]
A(1)∗
s,f,w

P //

P // [S/h0, F0/h
∞
1 ]
A(1)∗
s+8,f+4,w+4

// [S/(h0, P ), F0/h
∞
1 ]
A(1)∗
s−1,f+1,w

// · · ·
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s

f

Figure 4. [S/h0,Σ
−1,1,0F0/h

∞
1 ]
A(1)∗
∗,∗,∗

gives [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]
A(1)∗
∗,∗,∗ as in Figure 5.

Remark 4.4. Analogously to Proposition 4.3, for any k ∈ Z, k ≥ 1, the
following maps are also injective:

[S/(h0, P ),Σ−kF0/h
k
1]A(1)∗ → [S/(h0, P ),Σ−k−1F0/h

k+1
1 ]A(1)∗ .

s

f

Figure 5. [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]
A(1)∗
∗,∗,∗

Next we will use the Cartan-Eilenberg spectral sequence to bootstrap our
result from A(1)∗-homology to A∗-homology. A brief introduction to the
Cartan-Eilenberg spectral sequence (see [CE, Ch.XV] for details) is relevant
at this point. Given an extension of Hopf algebras over M2

E → Γ→ C
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(so in particular E ∼= Γ�CM2), the Cartan-Eilenberg spectral sequence
computes CotorΓ(M,N) for a Γ-comodule M and an E-comodule N . The
spectral sequence arises from the double complex (Γ-resolution of M)�Γ(E-
resolution of N), and we have CotorΓ(M,N) ∼= ExtΓ(M,N) when M and
N are τ -free.

The Cartan-Eilenberg spectral sequence has the form

Es,t,∗,∗1 = Cotort,∗C (M, Ē⊗s ⊗N)⇒ Cotors+t,∗Γ (M,N).

If E has trivial C-coaction, then we have Es,t,∗,∗1
∼= Cotort,∗C (M,N) ⊗ Ē⊗s.

Taking the cohomology we obtain the E2-page:

Es,t,∗,∗2 = Cotors,∗E (M2, Cotor
t,∗
C (M,N)) ∼= Exts,∗E (M2,M2)⊗ Extt,∗C (M,N).

The Cartan-Eilenberg spectral sequence converges when the input is a
bounded-below A∗-comodule. We will obtain a vanishing region for each
finite stage [S/(h0, P ),Σ−kF0/h

k
1]A∗ and then deduce the vanishing region

for [S/(h0, P ), F0/h
∞
1 ]A∗ by passing to the colimit.

[S/(h0, P ),Σ−1F0/h1]A(1)∗ //

��

[S/(h0, P ),Σ−2F0/h
2
1]A(1)∗ //

CESS
��

· · · // [S/(h0, P ), F0/h
∞
1 ]A(1)∗

[S/(h0, P ),Σ−1F0/h1]A∗ // [S/(h0, P ),Σ−2F0/h
2
1]A∗ // · · · // [S/(h0, P ), F0/h

∞
1 ]A∗

We first calculate [S/(h0, P ), F0/h
∞
1 ]A(2)∗ , where

A(2)∗ = M2[τ0, τ1, τ2, ξ1, ξ2]/(τ2
0 = τξ1, τ

2
1 = τξ2, τ

2
2 , ξ

4
1 , ξ

2
2).

To do this, we will use a sequence of normal maps of Hopf algebras:

A(2)∗ → A(2)∗/ξ
2
1 → A(2)∗/(ξ

2
1 , ξ2)→ A(2)∗/(ξ

2
1 , ξ2, τ2) = A(1)∗.

First we consider the Cartan-Eilenberg spectral sequence corresponding
to the extension

E(τ2)→ A(2)∗/(ξ
2
1 , ξ2)→ A(1)∗.

The element τ2, which has degree (6, 1, 3), corresponds to h30 in the May
spectral sequence. The A(1)∗-coaction on E(τ2) is trivial for degree reasons.
So we start with the E1 = E2-page, and deduce a vanishing region on

[S/(h0, P ), F0/h
∞
1 ]A(2)∗/(ξ2

1 ,ξ2).

[S/(h0, P ),Σ−1F0/h1]A(1)∗ ⊗M2[h30] //

��

· · · // [S/(h0, P ), F0/h
∞
1 ]A(1)∗ ⊗M2[h30]

[S/(h0, P ),Σ−1F0/h1]A(2)∗/(ξ2
1 ,ξ2) // · · · // [S/(h0, P ), F0/h

∞
1 ]A(2)∗/(ξ2

1 ,ξ2)

For the normal extension E(β) → Γ → C of Hopf algebras we state a
motivic version of [Kra, Lemma 4.10], which gives a relationship between
the vanishing region for [M,N ]Γ and the vanishing condition of [M,N ]C

together with the two ”slopes” associated to β. Note that if β has degree
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(s0, f0, w0), then f0

s0
and f0

w0
are the slopes of the projections of (s0, f0, w0)

onto the plane w = 0 and the plane s = 0.

Theorem 4.5. Let E(α) → Γ
q−→ C be a normal extension of Hopf alge-

bras and M ,N ∈ Stab(Γ). Suppose β is an element in [S, S]E of degree
(s0, f0, w0) with s0, f0, w0 all positive. Its image in [S, S]Γ (which we also
call β) acts on [M,N ]Γ. Suppose for some a, b, c,m, c0 ∈ R with a, b > 0

and m ≥ f0

s0
> 0, the group [q∗(M), q∗(N)]C vanishes when f > as+ bw + c

and also vanishes when f > ms+ c0. Then

(1) if f0 ≤ as0 + bw0, or β acts nilpotently on [M,N ]Γ, then [M,N ]Γ

has a parallel vanishing region. In other words, it vanishes when
f > as + bw + c′ for some constant c′ and also vanishes when f >
ms+ c0.

(2) otherwise, [M,N ]Γ vanishes when f > mbw0−f0(m−a)
bw0−s0(m−a) s+

bf0−mbs0
bw0−s0(m−a)w+

c′ and vanishes when f > ms+ c0.

Remark 4.6. The additional vanishing plane f > ms + c0 generalizes the
bounded below condition. In the classical setting, we have that [M,N ]Γ

vanishes when s < c0, but due to the negative h1-towers we do not have a
vertical vanishing plane. So we adjust the ”∞-slope” plane to be f = ms+c0

to fulfill our purpose. This bound does not affect the periodicity region we
study here, so we omit it henceforth.

Proof of Theorem 4.5. If β has f0 ≤ as0+bw0, then β multiples of classes
in [M,N ]C will lie under the existing vanishing planes.

If f0 > as0 + bw0, then every infinite β tower will contain classes lying
outside of the rigion f > as + bw + c. If β acts nilpotently, there exists
an integer k such that βkx is zero for all x ∈ [M,N ]Γ. Then there is a
maximum length for all β-towers, and so we can still get a parallel vanishing
plane f > as+ bw + c′ on [M,N ]Γ by adjusting the f -intercept.

Now we turn to case (2). If f0 > as0+bw0 and β acts non-nilpotently, then
there must exist an element x ∈ [M,N ]Γ for which the classes βkx are not
zero on the E∞ page of the Cartan-Eilenberg spectral sequence for every k.
Thus no matter how we move up the existing vanishing plane f > as+bw+c,
some β multiples of x will lie above the plane. Instead, we will find a new
vanishing plane f > a′s+b′w+c′ for a′, b′, c′ ∈ R. The new vanishing region
f > a′s + b′w + c′ must satisfy the condition f0 ≤ a′s0 + b′w0 + c′. This
plane is spanned by the direction of β and the intersecting line of the two

existing vanishing planes. Hence we can solve to obtain a′ = mbw0−f0(m−a)
bw0−s0(m−a)

and b′ = bf0−mbs0
bw0−s0(m−a) . �

Remark 4.7. In the relevant cases, the starting vanishing regions will have
b = 0. In this case, the 3-dimensional conditions in Theorem 4.5 simplify to
the following 2-dimensional conditions.
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Suppose for some a, c,m, c0 ∈ R with a > 0 and m ≥ f0

s0
> 0, the

group [q∗(M), q∗(N)]C vanishes when f > as + c and also vanishes when
f > ms+ c0. Then:

(1) if f0 ≤ as0, or β acts nilpotently on [M,N ]Γ, then [M,N ]Γ has a
parallel vanishing region. That is to say, it vanishes when f > as+c′

for some constant c′, and also vanishes when f > ms+ c0,
(2) if otherwise, then [M,N ]Γ vanishes when f > f0

s0
s + c′ for some

constant c′, and vanishes when f > ms+ c0.

Remark 4.8. Similarly, we could generalize to the statement that the group
[q∗(M), q∗(N)]C vanishes when f > ϕ(s, w) where ϕ : R2 → R is a smooth

function. Then the gradient v(−,−) = (∂ϕ∂s (−), ∂ϕ∂w (−)) is a vector field.

Now we would like to consider g = Min
(s0,w0)

|v(s0, w0)| and compare g with f0

s0

and f0

w0
. The conditions can be rewritten as follows:

(1) if f0

s0
≤ g or f0

w0
≤ g, or β acts nilpotently, then [M,N ]Γ has the same

vanishing region translated vertically.
(2) if both f0

s0
and f0

w0
> g, and β acts non-nilpotently, then we must

modify the vanishing region of [M,N ]Γ. However, it takes some
work to write down a precise modification, so we omit it here.

Remark 4.9. From the cofiber sequence S
hk0−→ S → S/hk0 we can take tensor

duals to derive the fiber sequence D(S/hk0) → S → S. Since D(S/hk0) '
Σ−1,1−k,0S/hk0, we have

[S/hk0, S]s,f,w = [S,D(S/hk0)]s,f,w = [S, S/hk0]s+1,f+k−1,w.

Because S/hk0 is compact in Stab(A∗), smashing with some N ∈ Stab(A∗),
we get

[S/hk0, N ]s,f,w ∼= [S,D(S/hk0) ∧N ]s,f,w ∼= [S, S/hk0 ∧N ]s+1,f+k−1,w.

As a result β ∈ [S, S]Γ acts on [M,N ]Γ for compact M ∈ Stab(A∗), since β
acts on [S,DM ∧N ]Γ.

The group [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]
A(1)∗
∗,∗,∗ has a single ”lighting flash” pat-

tern along with two negative h1-towers (see Figure 5), so the vanishing re-
gion to start off with is f > c (We obtain the same vanishing region of

[S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]
A(1)∗
∗,∗,∗ for each k, since the maps we are tak-

ing colimit over are injections by Remark 4.4.) In our case, [M,N ]Γ =

[S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]
A(1)∗
∗,∗,∗ , and we will apply Theorem 4.5 in the fol-

lowing three cases: (i) β is τ2 of degree (6, 1, 3); (ii) β is ξ2 of degree (5, 1, 3);
(iii) β is ξ2

1 of degree (3, 1, 2).
Recall that we are working with the Cartan-Eilenberg spectral sequence

[S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]A(1)∗ ⊗M2[h30]⇒ [S/(h0, P ),Σ−1,1,0(Σ−kF0/h

k
1)]A(2)∗/(ξ2

1 ,ξ2)
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There cannot be any differentials for degree reasons. By Theorem 4.5 the
element h30 will bring us a vanishing region f > 1

6s + c1 for each k, where
c1 is some constant (we obtain the same constant for all k). Passing to the

colimit, we conclude that [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]A(2)∗/(ξ2

1 ,ξ2) shares the
same vanishing region f > 1

6s+ c1.
The second step is to consider the normal extension in which we add ξ2,

corresponding to the class h21:

E(ξ2)→ A(2)∗/ξ
2
1 → A(2)∗/(ξ

2
1 , ξ2).

The A(2)∗/(ξ
2
1 , ξ2)-coaction on E(ξ2) is trivial. We have E2-pages as the

first row:

[S/(h0, P ),Σ−1F0/h1]A(2)∗/(ξ2
1 ,ξ2) ⊗M2[h21] //

��

· · · // [S/(h0, P ), F0/h
∞
1 ]A(2)∗/(ξ2

1 ,ξ2) ⊗M2[h21]

[S/(h0, P ),Σ−1F0/h1]A(2)∗/ξ2
1 // · · · // [S/(h0, P ), F0/h

∞
1 ]A(2)∗/ξ2

1

The spectral sequence collapses at the E2-page. This is because in the
May spectral sequence over A(2) or A, there is a differential d1(h30) =

h1h21+h2h20, but in the group [S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]A(2)∗/(ξ2

1 ,ξ2), h0

and h2 are zero. As a result, h21 is also non-nilpotent. For some constant c2,

the vanishing region of [S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]A(2)∗/ξ2

1 is f > 1
5s+ c2

for each k according to Theorem 4.5, and the same is true for the colimit

[S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]A(2)∗/ξ2

1 .
Next we consider the Cartan-Eilenberg spectral sequence corresponding

to the extension:
E(ξ2

1)→ A(2)∗ → A(2)∗/ξ
2
1.

Here the class ξ2
1 corresponds to the class h2 in the May spectral sequence.

The A(2)∗/ξ
2
1-coaction on E(ξ2

1) is trivial as well. We have E2-pages as in
the first row:

[S/(h0, P ),Σ−1F0/h1]A(2)∗/ξ2
1 ⊗M2[h2] //

��

· · · // [S/(h0, P ), F0/h
∞
1 ]A(2)∗/ξ2

1 ⊗M2[h2]

[S/(h0, P ),Σ−1F0/h1]A(2)∗ // · · · // [S/(h0, P ), F0/h
∞
1 ]A(2)∗

We do have some non-zero differentials appear. In the previous steps,
by introducing [τ2] = (6, 1, 3) and [ξ2] = (5, 1, 3), which give rise to non-
nilpotent elements in Ext, we arrived a vanishing region of f > 1

5s + c3,

where c3 is a constant. However [ξ2
1 ] = (3, 1, 2) is nilpotent since h4

2 = 0 in
ExtA(2)∗ and Ext.

Moving from A(2)∗ to A∗, we have many more elements to introduce.

However those elements won’t satisfy f
s > 1

5 . By Theorem 4.5 (or Re-

mark 4.7), for each k, [S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]A vanishes if f = 1

5s+
c3. Since the vanishing plane passes through the point (−6, 0,−1) + 3 ·
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(3, 1, 2) = (3, 3, 5), the constant c3 is 12
5 and the region f > 1

5s + 12
5 would

be carried through to A∗. We conclude that

Proposition 4.10. The group [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]s,f,w has a vanish-

ing region of f > 1
5s+ 12

5 .

Note that it is possible for many reasons that the vanishing region we have
found is not optimal. First, we could consider the ”slope” of the motivic
weight side f

w instead of fs under certain bounded below conditions. Second,
if other elements were included, more differentials would occur, allowing for
a larger vanishing region. More calculation is required to clarify these cases.

5. The motivic periodicity theorem

Let F0 and F01 still be the same as in Definition 3.1, so that

[S,Σ−1,1,0F0/h
∞
1 ]s,f,w ∼= [S, F01]s,f,w

when f > 1
2s + 3. Given a self-map θ on S/hk0 let us recall the diagram

where the first row is exact:

[S/(hk0, θ),Σ
−1,1,0F0/h

∞
1 ] // [S/hk0,Σ

−1,1,0F0/h
∞
1 ]

θ //

��

[S/hk0,Σ
−1,1,0F0/h

∞
1 ]

��

// Σ−1,1,0[S/(hk0, θ),Σ
−1,1,0F0/h

∞
1 ]

[S,Σ−1,1,0F0/h
∞
1 ]

Pr(−) // [S,Σ−1,1,0F0/h
∞
1 ]

The vertical maps are isomorphisms whenever f > 1
2s + 3

2 − k due to

Corollary 3.9. We would like to further restrict the condition to f > 1
2s +

3 − k in order to eliminate the indeterminacy. The vanishing condition on
[S/(hk0, θ),Σ

−1,1,0F0/h
∞
1 ], which is the same as the vanishing condition on

[S/(hk0, θ), F01]s,f,w, tells us whether θ is an isomorphism.
In the previous section, we established the case when k = 1, given in

Proposition 4.10. We show in Figure 6 the (2r+1, 2r, 2r)-periodic pattern

for [S/hk0,Σ
−1,1,0F0/h

∞
1 ]A(1)∗ , where k ≤ 2r. By an analogous computa-

tion, one can see that for a general positive integer k ≤ 2r, the groups

[S/(hk0, P
2r−2

), F01]s,f,w admit a parallel vanishing region as in the k = 1
case.

We have the following lemma for the f -intercept:

Lemma 5.1 (Corollary of [Kra, Lemma 5.4]). Let M,N ∈ Stable(A∗) with

M compact. Let M1 = M/θ1 be the cofiber of the self-map Σs1,f1,w1M
θ1−→M ,

and let M2 = M/(θ1, θ2) be the cofiber of the self-map Σs2,f2,w2M/θ1
θ2−→

M/θ1. Define M ′1 and M ′2 with respect to the self-maps Σs′1,f
′
1,w
′
1M

θ′1−→ M

and Σs′2,f
′
2,w
′
2M/θ′1

θ′2−→M/θ′1 in the same way. Suppose θi and θ′i are parallel,
i.e. (si, fi, wi) = λi(s

′
i, f
′
i , w
′
i) where λi are non-zero real numbers and i =

1, 2.
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s

f

(−1, 0,−1)

(3, k + 1, 1)

· · ·
...

...

(2r+1 + 3, 2r + k + 1, 2r + 2− 1)

Figure 6. [S/hk0,Σ
−1,1,0F0/h

∞
1 ]
A(1)∗
∗,∗,∗

Further let a, b ∈ R and suppose fi > asi + bwi and f ′i > as′i + bw′i for
i = 1, 2. We make the convention that the f -intercept is ∞ if there is no
such vanishing plane. Then the minimal f -intercepts of the vanishing planes
parallel to f = as+ bw on [M2, N ] and [M ′2, N ] agree.

Proof of Lemma 5.1. We construct the iterated cofiber L1 = M/(θ1, θ
′
1)

and L2 = M/(θ1, θ2, θ
′
1, θ
′
2). Since fi > asi + bwi and f ′i > as′i + bw′i for i =

1, 2, the minimal f -intercepts for the vanishing planes parellel to f = as+bw
agree on [Mi, N ], [M ′i , N ] and [Li, N ] by inductively applying Lemma 3.7.

Note that the notation for L1 and L2 is ambiguous. The notation does
not indicate that M/θ1 should admit a θ′1 self-map or vice versa. Because of
the uniqueness of (homological) self-maps that Krause has shown in [Kra,
Sec. 4], there is a self-map θ′′1 compatible with both θ1 and θ′1, which acts
on M by a power of θ1, and by a power of θ′1. We will take L1 to be the
cofiber of the self-map θ′′1 . Similarly, there exists a self-map θ′′2 on L1 that
acts on M1 by a power of θ2, and on M ′1 by a power of θ′2. So we can set L2

as the cofiber of the self-map θ′′2 . �

Remark 5.2. Krause’s proof of the uniqueness of self-maps is in the classical
setting, yet for the C-motivic case the proof is analogous.

Remark 5.3. The cofiber sequences arising from the Verdier’s axiom and
the 3 × 3 lemma offer an alternative way to view the vanishing condition

of [S/(hk0, P
2r−2

), F01]s,f,w. Let m,n, l, l′ ∈ N be positive with m ≤ 4l and
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m+ n ≤ 4(l + l′). We have the following cofiber sequences:

S/hm0 → S/hm+n
0 → S/hn0

S/(hm0 , P
l+l′)→ S/(hm+n

0 , P l+l
′
)→ S/(hn0 , P

l+l′)

S/(hm0 , P
l)→ S/(hm0 , P

l+l′)→ S/(hm0 , P
l′).

Passing to the induced long exact sequences in homology, we conclude that

for k ≤ 2r, the groups [S/(hk0, P
2r−2

), F01]s,f,w admit the same vanishing
condition as [S/(h0, P ), F01]s,f,w.

It follows that for any k ≤ 2r and any self-map θ = P 2r−2
of S/hk0,

the corresponding groups [S/(hk0, θ), F01] have a vanishing region of f >
1
5s+ 12

5 . Combining with Theorem 3.10, we arrive at the motivic version of
Theorem 1.1:

Theorem 5.4 (Another way of stating Theorem 1.3). For r ≥ 2, the Massey
product operation Pr(−) := 〈hr+1, h

2r
0 ,−〉 is uniquely defined on Exts,f,w =

Hs,f,w(A) when s > 0 and f > 1
2s+ 3− 2r.

Furthermore, for f > 1
5s+ 12

5 ,

Pr : [S, F01]s,f,w
Pr(−)−−−−→ [S, F01]s+2r+1,f+2r,w+2r.

is an isomorphism when restricted to the subgroup consisting of elements
that are torsion with respect to both h0 and h1.
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