Computations of de Rham cohomology rings of classifying stacks at torsion primes

Eric Primozic

Abstract. We compute the de Rham cohomology rings of BG_2 and $B\text{Spin}(n)$ for $7 \leq n \leq 11$ over base fields of characteristic 2.

Contents

Introduction 1002
Acknowledgments 1004
1. Preliminaries 1004
2. G_2 1006
3. Spin groups 1010
References 1026

Introduction

Let G be a smooth affine algebraic group over a commutative ring R. In [17], Totaro defines the Hodge cohomology group $H^i(BG,\Omega^j)$ for $i, j \geq 0$ to be the ith étale cohomology group of the sheaf of differential forms Ω^j over R on the big étale site of the classifying stack BG. For $n \geq 0$, let $H^n_{\text{H}}(BG/R) := \oplus_j H^j(BG,\Omega^{n-j})$ denote the total Hodge cohomology group of degree n. De Rham cohomology groups $H^n_{\text{DR}}(BG/R)$ are defined to be the étale cohomology groups of the de Rham complex of BG. Let \mathfrak{g} denote the Lie algebra associated to G and let $O(\mathfrak{g}) = S(\mathfrak{g}^*)$ denote the ring of polynomial functions on \mathfrak{g}. In [17, Corollary 2.2], Totaro showed that the Hodge cohomology of BG is related to the representation theory of G:

$$H^i(BG,\Omega^j) \cong H^{i-j}(G,S^j(\mathfrak{g}^*)) .$$

Let G be a split reductive group defined over \mathbb{Z}. From the work of Bhatt-Morrow-Scholze in p-adic Hodge theory [1, Theorem 1.1], one might expect that
\[\text{dim}_{F_p} H^i_{\text{dR}}(BG_{F_p}/F_p) \geq \text{dim}_{F_p} H^i(BG_{\mathbb{C}}, F_p) \] for all primes \(p\) and \(i \geq 0\). The results from [1] do not immediately apply to \(BG\) since \(BG\) is not proper as a stack over \(\mathbb{Z}\). For \(p\) a non-torsion prime of a split reductive group \(G\) defined over \(\mathbb{Z}\), Totaro showed that

\[H^*_{\text{dR}}(BG_{F_p}/F_p) \cong H^*(BG_{\mathbb{C}}, F_p) \] \[\text{[17, Theorem 9.2]}\].

It remains to compare \(H^*_{\text{dR}}(BG_{F_p}/F_p)\) with \(H^*(BG_{\mathbb{C}}, F_p)\) for \(p\) a torsion prime of \(G\). For \(n \geq 3, 2\) is a torsion prime for the split group \(SO(n)\). Totaro showed that

\[H^*_{\text{dR}}(BSO(n)_{F_2}/F_2) \cong H^*(BSO(n)_{\mathbb{C}}, F_2) \cong \mathbb{F}_2[w_2, \ldots, w_n] \]
as graded rings where \(w_2, \ldots, w_n\) are the Stiefel-Whitney classes \[\text{[17, Theorem 11.1]}\]. In general, the rings \(H^*_{\text{dR}}(BG_{F_p}/F_p)\) and \(H^*(BG_{\mathbb{C}}, F_p)\) are different though. For example,

\[\text{dim}_{F_2} H^{32}_{\text{dR}}(BSpin(11)_{F_2}/F_2) > \text{dim}_{F_2} H^{32}(BSpin(11)_{\mathbb{C}}, F_2) \]

\[\text{[17, Theorem 12.1]}\].

In this paper, we verify inequality (1) for more examples. For the torsion prime \(2\) of the split reductive group \(G_2\) over \(\mathbb{Z}\), we show that

\[H^*_{\text{dR}}(B(G_2)_{F_2}/F_2) \cong H^*(B(G_2)_{\mathbb{C}}, F_2) \cong \mathbb{F}_2[y_4, y_6, y_7] \]
as graded rings where \(|y_i| = i\) for \(i = 4, 6, 7\). For the spin groups, we show that

\[H^*_{\text{dR}}(BSpin(n)_{F_2}/F_2) \cong H^*(BSpin(n)_{\mathbb{C}}, F_2) \]

\[\text{(3)}\]

for \(7 \leq n \leq 10\). Note that \(2\) is a torsion prime for \(Spin(n)\) for \(n \geq 7\). The isomorphism (3) holds for \(1 \leq n \leq 6\) by the “accidental” isomorphisms for spin groups along with (2).

For \(n = 11\), we make a full computation of the de Rham cohomology ring of \(BSpin(n)_{F_2}\):

\[H^*_{\text{dR}}(BSpin(11)_{F_2}/F_2) \cong \mathbb{F}_2[w_4, w_6, w_7, w_8, w_{10}, w_{11}, w_{64}]/(w_7w_{10} + w_6w_{11}, w_{11}^3 + w_1^2w_7w_4 + w_{11}w_8w_7^2)\]

where \(|w_i| = i\) for all \(i\). Equivalently,

\[H^*(BSpin(11)_{\mathbb{C}}, F_2) \cong H^*(BSO(11)_{\mathbb{C}}, F_2)/J \otimes \mathbb{F}_2[w_{64}]\]

where \(J\) is the ideal generated by the regular sequence

\[w_2, Sq^1(w_2), Sq^2 Sq^1(w_2), \ldots, Sq^{16} Sq^8 \cdots Sq^1 w_2.\]

Thus, the rings \(H^*_{\text{dR}}(BSpin(n)_{F_2}/F_2)\) and \(H^*(BSpin(n)_{\mathbb{C}}, F_2)\) are not isomorphic in general even though \(H^*_{\text{dR}}(BSO(n)_{F_2}/F_2) \cong H^*(BSO(n)_{\mathbb{C}}, F_2)\) for all \(n\). Steenrod squares on de Rham cohomology over a base field of
characteristic 2 have not yet been constructed. If they exist, our calculation suggests that their action on \(H^*_{dR}(BSO(n)_{F_2}/F_2) \cong H^*(BSO(n)_C,F_2) \) would have to be different from the action of the topological Steenrod operations.

Acknowledgments

I thank Burt Totaro for suggesting this project to me and for providing advice. I thank the referee for carefully reading this paper and suggesting improvements to the exposition.

1. Preliminaries

In this section, we recall results from [17] that will be used in our computations. These results were also used by Totaro in [17, Theorem 11.1] to compute the de Rham cohomology of \(BSO(n)_k \) for \(k \) a field of characteristic 2.

The first result we mention [17, Proposition 9.3] is an analogue of the Leray-Serre spectral sequence from topology.

Proposition 1.1. Let \(G \) be a split reductive group defined over a field \(F \) and let \(P \) be a parabolic subgroup of \(G \) with Levi quotient \(L \) (this means that \(P \cong R_u(P) \times L \) where \(R_u(P) \) is the unipotent radical of \(P \) [2, 14.19]). There exists a spectral sequence of algebras

\[
E_2^{i,j} = H^i_H(BG/F) \otimes H^j_L((G/P)/F) \Rightarrow H^{i+j}_H(BL/F).
\]

Proposition 1.1 is the main tool that we will use to compute Hodge cohomology rings of classifying stacks. To apply Proposition 1.1, we will choose a parabolic subgroup \(P \) for which \(H^*_H(BL/F) \) is a polynomial ring.

To fill in the 0th column of the \(E_2 \) page in Proposition 1.1, we use a result of Srinivas [15].

Proposition 1.2. Let \(G \) be split reductive over a field \(F \) and let \(P \) be a parabolic subgroup of \(G \). The cycle class map

\[
CH^*(G/P) \otimes_{\mathbb{Z}} F \rightarrow H^*_H((G/P)/F)
\]

is an isomorphism.

Under the cycle class map, \(CH^i(G/P) \otimes_{\mathbb{Z}} F \) maps to \(H^i(G/P,\Omega^i) \). From the work of Chevalley [5] and Demazure [6], \(CH^*(G/P) \) is independent of the field \(F \) and is isomorphic to the singular cohomology ring \(H^*(G_C/P_C,\mathbb{Z}) \).

The last piece of information we will use to compute \(H^*_H(BG/F) \) is the ring of \(G \)-invariants \(O(\mathfrak{g})^G = \oplus_i H^i(BG,\Omega^i) \). Let \(T \) be a maximal torus in \(G \) with Lie algebra \(\mathfrak{t} \) and Weyl group \(W \). There is a restriction homomorphism

\[
O(\mathfrak{g})^G \rightarrow O(\mathfrak{t})^W.
\]
We will need the following theorem which is due to Chaput and Romagny [4, Theorem 1.1]. For the following theorem, a split algebraic group G over a field F is simple if every proper smooth normal connected subgroup of G is trivial.

Theorem 1.3. Assume that G is simple over a field F. Then the restriction homomorphism (4) is an isomorphism unless $\text{char}(F) = 2$ and $G_{\mathbb{F}}$ is a product of copies of $\text{Sp}(2n)$ for some $n \in \mathbb{N}$.

From the rings $O(g)^G, CH^*(G/P), H^*_H(BL/F)$, we will be able to determine the E_∞ terms of the spectral sequence in Proposition 1.1. This will allow us to determine $H^*_H(BG/F)$ by using the following version of the Zeeman comparison theorem [12, Theorem VII.2.4].

Theorem 1.4. Fix a field F. Let $\{\bar{E}^{i,j}_r\}, \{E^{i,j}_r\}$ be first quadrant (cohomological) spectral sequences of F-vector spaces such that $\bar{E}^{i,j}_{2} = \bar{E}^{i,0}_2 \otimes_F E^{0,j}_2$ and $E^{i,j}_2 = E^{i,0}_2 \otimes_F E^{0,j}_2$ for all i,j. Let $\{f^{i,j}_r : \bar{E}^{i,j}_r \to E^{i,j}_r\}$ be a morphism of spectral sequences such that $f^{i,j}_{2} = f^{i,0}_{2} \otimes f^{0,j}_{2}$ for all i,j. Fix $N, Q \in \mathbb{N}$. Assume that $f^{i,j}_{2}$ is an isomorphism for all i,j with $i+j < N$ and an injection for $i+j = N$. If $f^{0,i}_{2}$ is an isomorphism for all $i < Q$ and an injection for $i = Q$, then $f^{0,i}_{2}$ is an isomorphism for all $i < \min(N,Q+1)$ and an injection for $i = \min(N,Q+1)$.

We recall a result from [17, Section 11] on the degeneration of the Hodge spectral sequence for split reductive groups, under some assumptions. The result in [17, Section 11] was proved for the special orthogonal groups but the proof works more generally.

Proposition 1.5. Let G be a split reductive group over a field F and assume that the Hodge cohomology ring of BG is generated as an F-algebra by classes in $\bigoplus_i H^{i+1}(BG, \Omega^i)$ and $\bigoplus_i H^i(BG, \Omega^i)$. Then the Hodge spectral sequence $E_1^{i,j} = H^j(BG, \Omega^i) \Rightarrow H^*_dR(BG/F)$ (5) for BG degenerates at the E_1 page.

Proof. From [17, Lemma 8.2], there are natural maps

$$H^i(BG, \Omega^i) \to H^i_{dR}(BG/F)$$

and

$$H^{i+1}(BG, \Omega^i) \to H^{2i+1}_{dR}(BG/F)$$

for all $i \geq 0$. These maps are compatible with products. Let T denote a maximal torus of G. From the group homomorphism $T \to G$, we have the commuting square
\[\oplus_i H^i(BG, \Omega^i) \longrightarrow \oplus_i H^{2i}_{\text{dR}}(BG/F) \]
\[\oplus_i H^i(BT, \Omega^i) \longrightarrow H^{2i}_{\text{dR}}(BT/F). \]

The restriction homomorphism (4) induces an injection
\[\oplus_i H^i(BG, \Omega^i) \hookrightarrow \oplus_i H^i(BT, \Omega^i) \]
[17, Lemma 8.2]. Hence, from diagram (6), we get that the natural map
\[\oplus_i H^i(BG, \Omega^i) \rightarrow \oplus_i H^{2i}_{\text{dR}}(BG/F) \]
is an injection. Hence, any differentials into the diagonal in the spectral sequence (5) must be 0. Then all classes in \(\oplus_i H^i(BG, \Omega^j) \) must be permanent cycles in the spectral sequence (5) since \(H^i(BG, \Omega^j) = 0 \) for \(i < j \) by [17, Corollary 2.2]. This proves that the Hodge spectral sequence for \(BG \) degenerates. \(\square \)

The following definition will be used later to describe the Hodge cohomology of flag varieties.

Definition 1.6. Let \(F \) be a field. For variables \(x_1, \ldots, x_n \) let \(\Delta(x_1, \ldots, x_n) \) denote the \(F \)-vector space with basis given by the products \(x_{i_1} \cdots x_{i_r} \) for \(1 \leq i_1 < i_2 < \cdots < i_r \leq n \).

2. **\(G_2 \)**

Let \(k \) be a field of characteristic 2 and let \(G \) denote the split form of \(G_2 \) over \(k \).

Theorem 2.1. The Hodge cohomology ring of \(BG \) is freely generated as a commutative \(k \)-algebra by generators \(y_4 \in H^2(BG, \Omega^2) \), \(y_6 \in H^3(BG, \Omega^3) \), and \(y_7 \in H^4(BG, \Omega^3) \). The Hodge spectral sequence for \(BG \) degenerates at \(E_1 \) and we have
\[H^*_{\text{dR}}(BG/k) \cong H^*_{\text{h}}(BG/k) = k[y_4, y_6, y_7]. \]

From the computation [12, Corollary VII.6.3] of the singular cohomology ring of \(B(G_2)_C \) with \(\mathbb{F}_2 \)-coefficients, we then have \(H^*(B(G_2)_C, k) \cong H^*_{\text{dR}}(BG/k) \).

Proof. We first choose a suitable parabolic subgroup of \(G \). Let \(P \) be the parabolic subgroup of \(G \) corresponding to inclusion of the long root.
From Proposition 1.2, $CH^*(G/P)$ is independent of the field k and the characteristic of k. As discussed in [9, §23.3], if we consider $(G_2)_C$ over \mathbb{C} along with the corresponding parabolic subgroup $P_\mathbb{C}$, $(G_2)_C/P_\mathbb{C}$ is isomorphic to a smooth quadric Q_5 in \mathbb{P}^6. Hence, by [8, Chapter XIII], $H^*_H((G/P)/k)$ is isomorphic to

$$CH^*(Q_5) \otimes \mathbb{Z} k \cong k[v, w]/(v^6, w^2, v^3 - 2w) = k[v, w]/(v^3, w^2)$$

where $|v| = 2$ and $|w| = 6$ in $H^*_H((G/P)/k)$.

We next show that the Levi quotient L of P is isomorphic to $GL(2)_k$. This can be seen by constructing an isomorphism from the root datum of $GL(2)_k$ to the root datum of the Levi quotient. Let $(X_1, R_1, X_1^\vee, R_1^\vee)$ be the usual root datum of $GL(2)_k$ where $X_1 = \mathbb{Z} \chi_1 + \mathbb{Z} \chi_2$, $R_1 = \mathbb{Z} (\chi_1 - \chi_2)$, and we take our torus to be the set of diagonal matrices in $GL(2)_k$. We take $(X_2, R_2, X_2^\vee, R_2^\vee)$ to be the root datum of G as described in [3, Plate IX]. Here, $X_2 = \{(a, b, c) \in \mathbb{Z}^3 \mid a + b + c = 0\}$. The long root α for G is then $(-2, 1, 1)$ and the root datum of $P/R_\mu(P)$ is $(X_2, \pm \alpha, X_2^\vee, \pm \frac{1}{2} \alpha)$. An isomorphism from the root datum of $GL(2)_k$ to the root datum of G can then be obtained from the isomorphism

$$X_1 \to X_2$$

$$\chi_1 \mapsto (-1, 1, 0), \chi_2 \mapsto (1, 0, -1).$$

Thus, $L \cong GL(2)_k$.

We now analyze the spectral sequence

$$E^{i,j}_2 = H^i_H(BG/k) \otimes H^j_H((G/P)/k) \Rightarrow H^{i+j}_H(BL/k) \quad (7)$$

from Proposition 1.1. From [7, Proposition] and [10, II.4.22],

$$H^*_H(BL/k) = S^*(\mathfrak{g}_L)^{GL(2)_k} \cong S^*(t)^{S_2} = k[x_1, x_2]$$

where $x_1 \in H^1(BL, \Omega^1)$ and $x_2 \in H^2(BL, \Omega^2)$. Here, t is the space of all diagonal matrices in \mathfrak{g}_L and S_2 acts on t by permuting the diagonal entries.

In order to compute $H^*_H(BG/k)$ from the spectral sequence above, we must first compute the ring of invariants of $S^*(\mathfrak{g}_2)^G$. From Theorem 1.3, $S^*(\mathfrak{g}_2)^G \cong S^*(t_0)^W$ where t_0 is the Lie algebra of a maximal torus T in G and W is the corresponding Weyl group of G. By [17, Corollary 2.2],

$$H^i(BG, \Omega^1) \cong S^i(t_0)^W$$

for $i \geq 0$.

Proposition 2.2. The ring of invariants $S^*(t_0)^W$ is equal to $k[y_4, y_6]$ where $|y_4| = 2$ and $|y_6| = 3$ in $S^*(t_0)^W$.

Proof. Following the notation in [3, Plate IX], $W \cong \mathbb{Z}_2 \times S_3$ acts on the root lattice $X_2 = \{(a, b, c) \in \mathbb{Z}^3 \mid a + b + c = 0\}$ by multiplication by -1 and by permuting the coordinates. Hence, since we are working in characteristic 2, W acts on $S^*(t_0) = k[t_1, t_2, t_3]/(t_1 + t_2 + t_3)$ by permuting t_1, t_2, and t_3. We then have $S^*(t_0)^W = k[t_1 t_2 + t_1 t_3 + t_2 t_3, t_1 t_2 t_3] = k[y_4, y_6]$. \qed
We can now carry out the computation of $H^*_H(BG/k)$. First, we show that the class $v \in E^{2,0}_2$ is a permanent cycle. Consider the filtration on $H^*_H(BL/k) = k \cdot v$ given by (7): $H^*_H(BL/k) \hookrightarrow E^{2,0}_2$, where $H^*_H(BL/k)/E^{2,0}_\infty \cong E^{0,2}_\infty$. Here, $E^{1,1}_2 = 0$ and

$$E^{2,0}_\infty = E^{2,0}_2 = H^2_H(BG/k) = H^1(BG, \Omega^1)$$

(we have $H^2(BG, O) = 0$ since $H^2(BL, O) = 0$ and there are no differentials entering $E^{2,0}_2$) since $H^*_H((G/P)/k) = \oplus_i H^i(G/P, \Omega^i)$ is concentrated in even degrees. Hence,

$$E^{2,0}_\infty = H^3_H(BG/k) = H^1(BG, \Omega^1) = 0,$$

by Proposition 2.2. It follows that $E^{0,2}_\infty \cong E^{0,2}_2 = k \cdot v$ which implies that $d_3(v) = 0$. As (7) is a spectral sequence of algebras, it follows that v and v^2 are permanent cycles. Using that $H^*_H(BL/k)$ is concentrated in even degrees, we then get that $H^3_H(BG/k) = E^{3,0}_2 = E^{3,0}_\infty = 0$ and $H^5_H(BG/k) = E^{5,0}_2 = E^{5,0}_\infty = 0$.

Next, we show that $w \in H^5_H((G/P)/k) = E^{0,6}_2$ is transgressive with $0 \not= d_7(w) \in E^{7,0}_7$. Note that $\dim_k H^6_H(BL/k) = 2$. As v is a permanent cycle in E_2, we observe that $E^{4,2}_\infty \cong E^{4,2}_2 \cong k \cdot y_4 \otimes_k k \cdot v \cong k$ and $E^{6,0}_\infty \cong E^{6,0}_2 \cong k \cdot y_6 \cong k$. Hence, $\dim_k H^6_H(BL/k) = 2 = \dim_k E^{4,2}_\infty + \dim_k E^{6,0}_\infty$. From the filtration on $H^6_H(BL/k)$ given by the spectral sequence (7), it follows that $E^{0,6}_\infty = 0$. As $H^3_H(BG/k) = E^{3,0}_2 = E^{3,0}_\infty = 0$ and $H^5_H(BG/k) = E^{5,0}_2 = E^{5,0}_\infty = 0$, we then get that $0 \not= d_7(w) \in E^{7,0}_7$ and $d_7(w)$ lifts to a non-zero element $y_7 \in H^4(BG, \Omega^3) \subseteq H^7_H(BG/k)$.

```
|   k · w   | 0 | 0 | 0 | 0 | 0 | 0 |
|          |   |   |   |   |   |   |
| k · v^2  | 0 | 0 | 0 | 0 | 0 | 0 |
|          |   |   |   |   |   |   |
| k · v    | 0 | 0 | 0 | 0 | 0 | 0 |
|          |   |   |   |   |   |   |
| k        | 0 | 0 | 0 | 0 | 0 | 0 |
|          |   |   |   |   |   |   |
```
Now, we can determine the E_∞ terms in (7). For n odd, $E_\infty^{i,n-i} = 0$ since $H^n_H(BL/k)$ is concentrated in even degrees. Let $n \in \mathbb{N}$ be even. The k-dimension of $H^n_H(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a,b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b = n\}.$$

For $i = 0, 1, 2$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $i = 0, 1, 2$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a,b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 4a + 6b = n - 2i\}$. As v is a permanent cycle in (7), $E_2^{n-2i,2i} \cong E_7^{n-2i,2i}$ for $i = 0, 1, 2$. As $y_7 \in H^4(BG, \Omega^3)$ and $H^i(BG, \Omega^j) = 0$ for $i < j$,

$$y_7 : x \not\in \oplus_j H^j(BG, \Omega^j)$$

for all $x \in H^*_H(BG/k)$. Hence,

$$H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2}) \otimes_k k \cdot v^i \subseteq E_2^{n-2i,2i} \cong E_7^{n-2i,2i}$$

injects into $E_\infty^{n-2i,2i}$ for $i = 0, 1, 2$.

Define a bijection $f_n : S_n \to S_{0,n} \cup S_{1,n} \cup S_{2,n}$ by

$$f_n(a,b) = \begin{cases}
(b,a/3) & \text{if } a \equiv 0 \mod 3, \\
(b,(a-1)/3) & \text{if } a \equiv 1 \mod 3, \\
(b,(a-2)/3) & \text{if } a \equiv 2 \mod 3.
\end{cases}$$

Then

$$\dim_k H^n_H(BL/k) = |S_n| = |S_{0,n}| + |S_{1,n}| + |S_{2,n}|$$

$$\leq \dim_k E_\infty^{n,0} + \dim_k E_\infty^{n,-2,2} + \dim_k E_\infty^{n,-4,4}$$

where the inequality follows from the fact proved above that

$$H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$$

injects into $E_\infty^{n-2i,2i}$ for $i = 0, 1, 2$. From the filtration on $H^n_H(BL/k)$ defined by the spectral sequence (7), it follows that $H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2}) \cong E_\infty^{n-2i,2i}$ for $i = 0, 1, 2$ and $E_\infty^{n-2i,2i} = 0$ for $i \geq 3$.

We can now finish the computation of the Hodge cohomology of BG by using Zeeman’s comparison theorem. Let F_* denote the cohomological spectral sequence of k-vector spaces concentrated on the 0th column with E_2 page given by

$$F_2^{0,i} = \begin{cases}
k & \text{if } i = 0, \\
k \cdot v & \text{if } i = 2, \\
k \cdot v^2 & \text{if } i = 4, \\
0 & \text{if } i \not\in 0, 2, 4. \end{cases}$$

As $v \in E_2^{0,2}$ in the spectral sequence (7) is transgressive with $d_r(v) = 0$ for all $r \geq 2$, there exists a map of of spectral sequences $F_* \to E_*$ that takes $v \in F_2^{0,2}$ to $v \in E_2^{0,2}$ and $v^2 \in E_2^{0,4}$ to $v^2 \in E_2^{0,4}$.

Fixing a variable y, let H_* denote the cohomological spectral sequence with E_2 page given by $H_2 = \Delta(w) \otimes k[y]$ where w is of bidegree $(0,6)$, y is
of bidegree \((7,0)\), and \(w\) is transgressive with \(d_7(wy^i) = y^{i+1}\) for all \(i \geq 0\).

As \(w \in E_2^{0,6}\) is transgressive with \(d_7(w) = y_7 \in E_2^{7,0}\), there exists a map of spectral sequence \(H_* \to E_*\) such that \(w \in H_2^{0,6}\) maps to \(w \in E_2^{0,6}\) and \(y \in H_2^{7,0}\) maps to \(y_7 \in E_2^{7,0}\). Elements of the ring of \(G\)-invariants \(k[y_4, y_6]\) are permanent cycles in the spectral sequence (7) since they are concentrated on the 0th row. Thus, by tensoring the previous maps of spectral sequences, we get a map

\[
\alpha : I_* := F_* \otimes H_* \otimes k[y_4, y_6] \to E_*
\]

of spectral sequences.

As shown above, the map \(\alpha\) induces an isomorphism \(I_\infty \cong F_2 \otimes k[y_4, y_6] \to E_\infty\) on \(E_\infty\) pages. The 0th columns of the \(E_2\) pages of the spectral sequences \(I_*\) and \(E_*\) are both isomorphic to \(k[v, w]/(v^3, w^2)\) and \(\alpha\) induces an isomorphism on the 0th columns of the \(E_2\) pages. Thus, by Theorem 1.4, \(\alpha\) induces an isomorphism on the 0th rows of the \(E_2\) pages. Hence,

\[
H_*^*(BG/k) = k[y_4, y_6, y_7].
\]

From Proposition 1.5, the Hodge spectral sequence for \(BG\) degenerates.

\(\square\)

Corollary 2.3. Let \(G\) be a \(k\)-form of \(G_2\). Then

\[
H_*^*(BG/k) \cong k[x_4, x_6, x_7]
\]

where \(|x_i| = i\) for \(i = 4, 6, 7\).

Proof. Letting \(k_s\) denote the separable closure of \(k\), we have \(BG \times_k \text{Spec}(k_s) \cong B(G_2)_{k_s}\). From Theorem 2.1, \(H_*^*(B(G_2)_{k_s})/k_s) \cong k_s[x'_4, x'_6, x'_7]\) for some \(x'_4, x'_6, x'_7 \in H_7^*(B(G_2)_{k_s})/k_s)\) with \(|x'_i| = i\) for all \(i\). As Hodge cohomology commutes with extensions of the base field,

\[
H_*^*(BG \times_k \text{Spec}(k_s))/k_s) \cong H_*^*(BG/k) \otimes_k k_s.
\]

It follows that \(H_*^*(BG/k) \cong k[x_4, x_6, x_7]\) for some \(x_4, x_6, x_7 \in H_*^*(BG/k)\).

\(\square\)

3. **Spin groups**

Let \(k\) be a field of characteristic 2 and let \(G\) denote the split group \(\text{Spin}(n)_k\) over \(k\) for \(n \geq 7\).

Let \(P_0 \subset SO(n)_k\) denote a parabolic subgroup that stabilizes a maximal isotropic subspace. Let \(P \subset G\) denote the inverse image of \(P_0\) under the double cover map \(G \to SO(n)_k\). The Hodge cohomology of \(G/P\) is given by Proposition 1.2 and [12, Theorem III.6.11].

Proposition 3.1. There is an isomorphism

\[
H_*^*(G/P)/k) \cong k[e_1, \ldots, e_s]/(e_i^2 = e_{2i}),
\]

where \(s = [(n - 1)/2]\), \(e_m = 0\) for \(m > s\), and \(|e_i| = 2i\) for all \(i\).
The Levi quotient of P_0 is isomorphic to $GL(r)_k$ where $r = \lfloor n/2 \rfloor$. Hence, the Levi quotient L of P is a double cover of $GL(r)_k$.

Proposition 3.2. The torsion index of L is equal to 1.

Proof. We show that the torsion index of the corresponding compact connected Lie group M is equal to 1. As M is a double cover of $U(r)$, M is isomorphic to $(S^1 \times SU(r))/2\mathbb{Z}$ where $k \in \mathbb{Z}$ acts on $S^1 \times SU(r)$ by

$$ (z, A) \mapsto (ze^{2\pi ik/r}, e^{-2\pi ik/r} A). $$

Hence, the derived subgroup $[M, M]$ of M is isomorphic to $SU(r)$. As $SU(r)$ has torsion index 1, M has torsion index 1 by [16, Lemma 2.1]. Thus, L has torsion index equal to 1. □

Corollary 3.3. We have

$$ H^{\text{H}}_*(BL/k) = O(l)^L = k[A, c_2, \ldots, c_r] $$

where $|c_i| = 2i$ in $H^*_H(BL/k)$ for all i and $|A| = 2$.

Proof. From Proposition 3.2 and [17, Theorem 9.1],

$$ H^*_H(BL/k) = O(t)^L. $$

Let T be a maximal torus in L with Lie algebra t and Weyl group W. From Theorem 1.3, $O(t)^L \cong O(t)^W$. To compute $O(t)^W$, we use that L is a double cover of $GL(r)_k$. We have

$$ S(X^*(T) \otimes k) \cong \mathbb{Z}[x_1, \ldots, x_r, A]/(2A = x_1 + \cdots + x_r) \otimes k $$

$$ \cong k[x_1, \ldots, x_r, A]/(x_1 + \cdots + x_r). $$

The Weyl group W of L is isomorphic to the symmetric group S_r and acts on $S(X^*(T) \otimes k)$ by permuting x_1, \ldots, x_r. From [13, Proposition 4.1],

$$ (k[x_1, \ldots, x_r, A]/(x_1 + \cdots + x_r))^{S_r} = k[A, c_2, \ldots, c_r] $$

where c_1, \ldots, c_r are the elementary symmetric polynomials in the variables

$$ x_1, \ldots, x_r. $$

□

For our calculations, we will need to know the Hodge cohomology of $BSO(n)_k$ [17, Theorem 11.1].

Theorem 3.4. The Hodge spectral sequence for $BSO(n)_k$ degenerates and

$$ H^*_H(BSO(n)_k/k) = k[u_2, \ldots, u_n] $$

where $u_{2i} \in H^i(BSO(n)_k, \Omega^i)$ and $u_{2i+1} \in H^{i+1}(BSO(n)_k, \Omega^i)$ for all relevant i.

We'll also need to know the ring of invariants of $G = \text{Spin}(n)_k$ for all $n \geq 6$. This can be found in [17, Section 12].
Lemma 3.5. For $n \geq 6$,

$$O(g)^G = \begin{cases} k[c_2, \ldots, c_r, \eta_{r-1}] & \text{if } n = 2r + 1 \\ k[c_2, \ldots, c_r, \mu_{r-1}] & \text{if } n = 2r \text{ and } r \text{ is even} \\ k[c_2, \ldots, c_r, \mu_r] & \text{if } n = 2r \text{ and } r \text{ is odd} \end{cases}$$

where $|c_i| = i$, $|\eta_j| = 2^j$, and $|\mu_j| = 2^{j-1}$ in $O(g)^G$ for all i and j.

Note that under the inclusion $O(g)^G \subset H^*_H(BG/k)$, the degree of an invariant function in $H^*_H(BG/k)$ is twice its degree in $O(g)^G$.

Theorem 3.6. Let $n = 7$. The Hodge spectral sequence for BG degenerates and

$$H^i_{dR}(BG/k) \cong H^i_H(BG/k) = k[y_4, y_6, y_7, y_8]$$

where $|y_i| = i$ for $i = 4, 6, 7, 8$.

Proof. From Lemma 3.5,

$$O(g)^G = k[y_4, y_6, y_8]$$

where $|y_i| = i$ in $H^*_H(BG/k)$, viewing $O(g)^G$ as a subring of $H^*_H(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H^i_H(BG/k) \otimes H^j_H(G/P)/k \Rightarrow H^{i+j}_H(BL/k)$$

(8)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H^*_H((G/P)/k) \cong k[e_1, e_2, e_3]/(e_2^2 = e_2e_1) = k[e_1, e_3]/(e_1^3, e_3^2)$$

and

$$H^*_H(BL/k) \cong k[A, c_2, c_3].$$

First, we show that $e_1 \in E^{0,2}_2$ is a permanent cycle. From the filtration on $H^*_H(BL/k) = k \cdot A$ given by (8), we have

$$1 = \dim_k E^{0,2}_\infty + \dim_k E^{2,0}_\infty = \dim_k E^{0,2}_\infty + \dim_k E^{2,0}_2.$$

As $H^*_H(BL/k) = \oplus_i H^i(BL, \Omega^i)$, $E^{2,0}_2 = H^1(BG, \Omega^1) = 0$. Hence, $E^{0,2}_2 = E^0_{-2} = k \cdot e_1$ which implies that e_1 is a permanent cycle. As $e_2 = e_1^2$, it follows that e_2 is a permanent cycle. Hence, $E^{4,2}_\infty \cong E^{4,2}_2 \cong k \cdot (y_4 \otimes e_1)$ and $E^{6,0}_\infty \cong E^{6,0}_2 \cong k \cdot y_6$.

We next show that $e_3 \in E^{3,0}_2$ is transgressive with $d_7(e_3) \neq 0$. As e_1 is a permanent cycle and $H^*_H(BL/k) = 0$ for i odd, the spectral sequence (8) implies that $E^{3,0}_2 = E^{5,0}_2 = 0$. Consider the filtration of (8) on $H^*_H(BL/k)$. We have

$$\dim_k H^6_H(BL/k) = 3 = \dim_k E^{6,0}_\infty + \dim_k E^{4,2}_\infty + \dim_k E^{0,6}_\infty = 2 + \dim_k E^{0,6}_2$$

which implies that $E^{0,6}_\infty \cong k \cdot e_1 e_2$. As $E^{3,0}_2 = E^{5,0}_2 = 0$, we must then have $e_3 \in E^{3,0}_7$ and $0 \neq d_7(e_3) \in E^{7,0}_2$. The class $d_7(e_3)$ lifts to a non-zero class $y_7 \in H^1(BG, \Omega^3) \subseteq E^{7,0}_2 = H^*_H(BG/k)$.
We can now determine the E_∞ page of (8). For n odd, $E_2^{i,n-i} = 0$ since $H^*_H(BL/k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H^*_H(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b + 6c = n\}.$$

For $i = 0, 1, 2, 3$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $i = 0, 1, 2, 3$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a, b, c) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 4a + 6b + 8c = n - 2i\}$. As e_1 is a permanent cycle in (8),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1 \subseteq E_\infty^{n-2i,2i}$$

for $i = 0, 1, 2, 3$.

Define a bijection $f_n : S_n \to S_{0,n} \cup S_{1,n} \cup S_{2,n} \cup S_{3,n}$ by

$$f_n(a, b, c) = \begin{cases}
(b, c, a/4) & \text{if } a \equiv 0 \mod 4, \\
(b, c, (a - 1)/4) & \text{if } a \equiv 1 \mod 4, \\
(b, c, (a - 2)/4) & \text{if } a \equiv 2 \mod 4, \\
(b, c, (a - 3)/4) & \text{if } a \equiv 3 \mod 4.
\end{cases}$$

Then

$$\dim_k H^*_H(BL/k) = |S_n| = |S_{0,n}| + |S_{1,n}| + |S_{2,n}| + |S_{3,n}|.$$

As

$$\dim_k H^*_H(BL/k) \geq E^{n,0}_\infty + E^{n-2,2}_\infty + E^{n-4,4}_\infty + E^{n-6,6}_\infty$$

and $V_{i,n} \subseteq E^{n-2i,2i}_\infty$ for $i = 0, 1, 2, 3$, it follows that $V_{i,n} \cong E^{n-2i,2i}_\infty$ for $i = 0, 1, 2, 3$ and $E^{n-2i,2i}_\infty = 0$ for $i \geq 4$.

We now use Theorem 1.4 to finish the computation of the Hodge cohomology of BG. Let F_* denote the cohomological spectral sequence of k-vector spaces concentrated on the 0th column given by $F_2 = \Delta(e_1, e_2)$ where e_i is of bidegree $(0, 2i)$ for $i = 1, 2$. As e_1 is a permanent cycle in (8), there
is a map of spectral sequences $F_* \to E_*$ taking $e_i \in E^{0,2i}_2$ to $e_i \in E^{0,2i}_2$ for $i = 1, 2$. Fix a variable y. Let H_\ast be the spectral sequence with E_2 page given by $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree $(0, 6)$, y is of bidegree $(7, 0)$, and e_3 is transgressive with $d_7(e_3^i) = y^{i+1}$ for all i. As $e_3 \in E^{0,6}_2$ is transgressive with $d_7(e_3) = y_7$, there exists a map of spectral sequences $H_* \to E_*$ taking $e_3 \in H^{0,6}_2$ to $e_3 \in E^{0,6}_2$ and $y \in H^{7,0}_2$ to $y_7 \in E^{7,0}_2$.

Elements in the ring of G-invariants $k[y_4, y_6, y_8]$ are permanent cycles in the spectral sequence (8). Tensoring maps of spectral sequences, we get a map

$$\alpha : I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8] \to E_*$$

of spectral sequences. As $I_\infty \cong F_2 \otimes k[y_4, y_6, y_8]$, α induces isomorphisms on E_∞ terms and on the 0th columns of the E_2 pages. Hence, by Theorem 1.4, α induces an isomorphism on the 0th rows of the E_2 pages. Thus,

$$H^\ast_H(BG/k) = k[y_4, y_6, y_7, y_8].$$

The Hodge spectral sequence for BG degenerates by Proposition 1.5.

As Hodge cohomology commutes with extensions of the base field, we have the following result.

Corollary 3.7. Let k be a field of characteristic 2 and let G be a k-form of $\text{Spin}(7)$. Then

$$H^\ast_H(BG/k) \cong k[x_4, x_6, x_7, x_8]$$

where $|x_i| = i$ for all i.

Theorem 3.8. Let $n = 8$. The Hodge spectral sequence for BG degenerates and

$$H^n_H(BG/k) \cong H^n_H(BG/k) = k[y_4, y_6, y_7, y_8, y'_8]$$

where $|y_i| = i$ for $i = 4, 6, 7, 8$ and $|y'_8| = 8$.

Proof. From Lemma 3.5,

$$O(g)^G = k[y_4, y_6, y_8, y'_8]$$

where $|y_i| = i$ and $|y'_8| = 8$ in $H^\ast_H(BG/k)$, viewing $O(g)^G$ as a subring of $H^\ast_H(BG/k)$. Consider the spectral sequence

$$E^{i,j}_2 = H^i_H(BG/k) \otimes H^j_H((G/P)/k) \Rightarrow H^{i+j}_H(BL/k)$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H^i_H((G/P)/k) \cong k[e_1, e_2, e_3]/(e_1^2 = e_2) = k[e_1, e_3]/(e_1^2, e_3^2)$$

and

$$H^i_H(BL/k) \cong k[A, c_2, c_3, c_4].$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (9) and $e_3 \in E^{0,6}_2$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H^m_H(BG/k) \cong H^m_H(B\text{Spin}(7)/k/k)$ for $m < 8$ and $H^8_H(BG/k) = k \cdot y_8 \otimes k \cdot y'_8$.

We can now determine the E_∞ terms for (9). For n odd, $E_i^{i,n-i} = 0$ since $H^n_{\Omega}(BL/k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H^n_{\Omega}(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b + 6c + 8d = n\}.$$

For $i = 0, 1, 2, 3$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $i = 0, 1, 2, 3$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 4a + 6b + 8c + 8d = n - 2i\}$. As e_1 is a permanent cycle in (9),

$$V_{i,n} \cong V_{i,n} \otimes_k e_1^i \subseteq E_\infty^{n-2i,2i}$$

for $i = 0, 1, 2, 3$.

Define a bijection $f_n : S_n \to S_{0,n} \cup S_{1,n} \cup S_{2,n} \cup S_{3,n}$ by

$$f_n(a, b, c, d) = \begin{cases} (b, c, d, a/4) \in S_{0,n} & \text{if } a \equiv 0 \mod 4, \\ (b, c, d, (a - 1)/4) \in S_{1,n} & \text{if } a \equiv 1 \mod 4, \\ (b, c, d, (a - 2)/4) \in S_{2,n} & \text{if } a \equiv 2 \mod 4, \\ (b, c, d, (a - 3)/4) \in S_{3,n} & \text{if } a \equiv 3 \mod 4. \end{cases}$$

Then

$$\dim_k H^n_{\Omega}(BL/k) = |S_n| = |S_{0,n}| + |S_{1,n}| + |S_{2,n}| + |S_{3,n}|.$$

As

$$\dim_k H^n_{\Omega}(BL/k) \geq E_\infty^{n,0} + E_\infty^{n-2,2} + E_\infty^{n-4,4} + E_\infty^{n-6,6}$$

and $V_{i,n} \subseteq E_\infty^{n-2i,2i}$ for $i = 0, 1, 2, 3$, it follows that $V_{i,n} \cong E_\infty^{n-2i,2i}$ for $i = 0, 1, 2, 3$ and $E_\infty^{n-2i,2i} = 0$ for $i \geq 4$.

Let F_* denote the spectral sequence concentrated on the 0th column with $F_2 = \Delta(e_1, e_2, e_4)$ where e_i is of bidegree $(0, 2i)$. There is a map of spectral sequences $F_* \to E_*$ taking e_i to e_i for $i = 1, 2, 4$. Fix a variable y. Let H_* denote the spectral sequence with E_2 page $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree $(0, 6)$, y is of bidegree $(7, 0)$, and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. There is an obvious map of spectral sequences $H_* \to E_*$. Classes in the ring of G-invariants are permanent cycles in the spectral sequence (9). Tensoring these maps, we get a map of spectral sequences

$$\alpha : I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_8'] \to E_*.$$

The map α induces an isomorphism on E_∞ terms and on the 0th columns of the E_2 pages. Theorem 1.4 then implies that α induces an isomorphism on the 0th rows of the E_2 pages. Thus,

$$H^n_{\Omega}(BG/k) = k[y_4, y_6, y_7, y_8, y_8'].$$

Proposition 1.5 implies that the Hodge spectral sequence for BG degenerates.
Corollary 3.9. Let k be a field of characteristic 2 and let G be a k-form for $\text{Spin}(8)$. Then

$$H^*_\text{H}(BG/k) \cong k[y_4, y_6, y_7, y_8, y_8']$$

where $|y_i| = i$ for $i = 4, 6, 7, 8$ and $|y_8'| = 8$.

Theorem 3.10. Let $n = 9$. The Hodge spectral sequence for BG degenerates and

$$H^*_\text{dR}(BG/k) \cong H^*_\text{H}(BG/k) = k[y_4, y_6, y_7, y_8, y_{16}]$$

where $|y_i| = i$ for $i = 4, 6, 7, 8, 16$.

Proof. From Lemma 3.5,

$$O(g)^G = k[y_4, y_6, y_8, y_{16}]$$

where $|y_i| = i$ in $H^*_\text{H}(BG/k)$, viewing $O(g)^G$ as a subring of $H^*_\text{H}(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H^i_\text{H}(BG/k) \otimes H^j_\text{H}((G/P)/k) \Rightarrow H^{i+j}_\text{H}(BL/k)$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H^\ast_\text{H}((G/P)/k) \cong k[e_1, e_2, e_3, e_4]/(e_1^2 = e_2) = k[e_1, e_3]/(e_1^8, e_3^2)$$

and

$$H^*_\text{H}(BL/k) \cong k[A, c_2, c_3, c_4].$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (10) and $e_3 \in E_2^{b,6}$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H^n_\text{H}(BG/k) \cong H^n_\text{H}(B\text{Spin}(7)/k)$ for $m \leq 10$.

We now determine the E_{∞} terms for (10). For n odd, $E_\infty^{n,n-i} = 0$ since $H^*_\text{H}(BL/k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H^*_\text{H}(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b + 6c + 8d = n\}.$$

For $0 \leq i \leq 7$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $0 \leq i \leq 7$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 4a + 6b + 8c + 16d = n - 2i\}$. As e_1 is a permanent cycle in (10),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E_{\infty}^{n-2i,2i}$$

for $0 \leq i \leq 7$.

Define a bijection $f_n : S_n \to \bigcup_{i=0}^{7} S_{i,n}$ by $f_n(a, b, c, d) = (b, c, d, (a - i)/8) \in S_{i,n}$ for $a \equiv i \mod (8)$. Then

$$\dim_k H^*_\text{H}(BL/k) = |S_n| = \sum_{i=0}^{7} |S_{i,n}|.$$
As
\[\dim_k H^n_{\text{H}}(BL/k) \geq \sum_{i=0}^{7} E_{\infty}^{-2i,2i} \]
and \(V_{i,n} \subseteq E_{\infty}^{-2i,2i} \) for \(0 \leq i \leq 7 \), it follows that \(V_{i,n} \cong E_{\infty}^{-2i,2i} \) for \(0 \leq i \leq 7 \)
and \(E_{\infty}^{-2i,2i} = 0 \) for \(i \geq 8 \).

Let \(F_* \) denote the cohomological spectral sequence concentrated on the 0th column with \(E_2 \) page given by \(E_2 = \Delta(e_1, e_2, e_4) \) where \(e_1 \) has bidegree \((0,2i)\) for \(i = 1, 2, 4 \). As \(e_1 \) is a permanent cycle in the spectral sequence \((10) \), there exists a map \(F_* \to E_* \) of spectral sequences taking \(e_i \) to \(e_i \) for \(i = 1, 2, 4 \). Let \(y \) be a variable and let \(H_* \) denote the spectral sequence with \(E_2 \) page \(H_2 = \Delta(e_3) \otimes k[y] \) where \(e_3 \) is of bidegree \((0,6)\), \(y \) is of bidegree \((7,0)\), and \(e_3 \) is transgressive with \(d_7(e_3 y^i) = y^{i+1} \) for all \(i \). As \(e_3 \) is transgressive in the spectral sequence \((10) \) with \(d_7(e_3) = y_7 \), there exists a map of spectral sequences \(H_* \to E_* \) taking \(e_3 \) to \(e_3 \) and \(y \) to \(y_7 \).

Elements in the ring of \(G \)-invariants \(k[y_4, y_6, y_8, y_16] \) are permanent cycles in the spectral sequence \((10) \). Tensoring maps of spectral sequences, we get a map
\[\alpha : I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_16] \to E_* . \]
The map \(\alpha \) induces an isomorphism on \(E_\infty \) terms and on the 0th columns of the \(E_2 \) pages. Hence, Theorem 1.4 implies that \(\alpha \) induces an isomorphism on the 0th rows of the \(E_2 \) pages. Thus,
\[H^n_{\text{H}}(BG/k) = k[y_4, y_6, y_7, y_8, y_16] . \]
Proposition 5 implies that the Hodge spectral sequence for \(BG \) degenerates.

\[
\square
\]

Corollary 3.11. Let \(k \) be a field of characteristic 2 and let \(G \) be a \(k \)-form for \(\text{Spin}(9) \). Then
\[H^n_{\text{H}}(BG/k) \cong k[y_4, y_6, y_7, y_8, y_16] \]
where \(|y_i| = i \) for \(i = 4, 6, 7, 8, 16 \).

Remark 3.12. Assume that \(k \) is perfect. Let \(\mu_2 \) denote the group scheme of the 2nd roots of unity over \(k \). For \(n \geq 10 \), the Hodge cohomology of \(BG \) is no longer a polynomial ring. To determine the relations that hold in \(H^n_{\text{H}}(BG/k) \), we will restrict cohomology classes to the classifying stack of a certain subgroup of \(G \) considered in [17, Section 12]. Let \(r = [n/2] \) and let \(T \cong G_r^n \) denote a split maximal torus of \(G \). Assume that \(n \not\equiv 2 \mod 4 \) so that the Weyl group \(W \) of \(G \) contains \(-1\), acting by inversion on \(T \). Then \(-1\) acts by the identity on \(T[2] \cong \mu_2^n \) (for \(n \in \mathbb{N}, T[n] \subset T \) is the kernel of the \(n \)th power map \(T \to T \)) and \(G \) contains a subgroup \(Q \cong \mu_2^n \times \mathbb{Z}/2 \). Under the double cover \(G \to SO(n)_k \), the image of \(Q \) is isomorphic to \(K \cong \mu_2^{n-1} \times \mathbb{Z}/2 \) and \(Q \to K \) is a split surjection. We will need to know the Hodge cohomology rings of the classifying stacks of these groups. For a
commutative ring R, we let $\text{rad} \subset R$ denote the ideal of nilpotent elements.

From [17, Proposition 10.1],

$$H^i_H(B\mu_2/k)/\text{rad} \cong k[t]$$

where $t \in H^1(B\mu_2, \Omega^1)$. From [17, Lemma 10.2],

$$H^i_*((B\mathbb{Z}/2)/k) = k[s]$$

where $s \in H^1(B\mathbb{Z}/2, \Omega^0)$. The Künneth formula [17, Proposition 5.1] then lets us calculate the Hodge cohomology ring of $B\mu_2^i \times B(\mathbb{Z}/2)^j$ for any $i, j \geq 0$. Fix $i, j > 0$. Then

$$H^i_*(B\mu_2^i \times B(\mathbb{Z}/2)^j)/\text{rad} \cong k[t_1, \ldots, t_i, s_1, \ldots, s_j]$$

where $t_i \in H^1(B\mu_2^i \times B(\mathbb{Z}/2)^j, \Omega^1)$ for all l and $s_l \in H^1(B\mu_2^i \times B(\mathbb{Z}/2)^j, \Omega^0)$ for all l.

Theorem 3.13. Let $n = 10$. The Hodge spectral sequence for BG degenerates and

$$H^*_K(BG/k) \cong H^*_H(BG/k) = k[y_4, y_6, y_7, y_8, y_{10}, y_{32}]/(y_7y_{10})$$

where $|y_i| = i$ for $i = 4, 6, 7, 8, 10, 32$.

Proof. We may assume that $k = \mathbb{F}_2$ so that Remark 3.12 applies. From Lemma 3.5,

$$O(g)^G = k[y_4, y_6, y_8, y_{10}, y_{32}]$$

Consider the spectral sequence

$$E_2^{i,j} = H^i_H(BG/k) \otimes H^j_H((G/P)/k) \Rightarrow H^{i+j}H(BL/k)$$

(11)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H^i_H((G/P)/k) \cong k[e_1, e_2, e_3, e_4]/(e_1^2 = e_2) = k[e_1, e_3]/(e_1^8, e_3^2)$$

and

$$H^*_H(BL/k) \cong k[A, c_2, c_3, c_4, c_5].$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (11) and $e_3 \in E_2^{6,0}$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H^m_H(BG/k) \cong H^m_H(BSpin(9), k/k)$ for $m < 10$.

Let $F*$ be the spectral sequence concentrated on the 0th column with E_2 page given by $E_2 = \Delta(e_1, e_2, e_4)$ where e_i has bidegree $(0, 2i)$ for all i. As e_1 is a permanent cycle in (11), there exists a map of spectral sequence $F_* \to E_*$ taking e_i to e_i for $i = 1, 2, 4$. Fix a variable y. Let H_* denote the spectral sequence with E_2 page $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 has bidegree $(0, 6)$, y has bidegree $(7, 0)$, and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. As e_3 is transgressive in (11) with $d_7(e_3) = y_7$, there exists a map of spectral sequences $H_* \to E_*$ taking e_3 to e_3 and y to y_7. Elements in the ring
of G-invariants $k[y_4, y_6, y_8, y_{10}, y_{32}]$ are permanent cycles in (11). Tensoring maps of spectral sequences, we get a map

$$\alpha : I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_{10}, y_{32}] \to E_*$$

which induces an isomorphism on the 0th columns of the E_2 pages.

Let n be even. The k-dimension of $H^n_H(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d, e) \in \mathbb{Z}^5_{\geq 0} : 2a + 4b + 6c + 8d + 10e = n\}.$$

For $0 \leq i \leq 15$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $0 \leq i \leq 15$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a, b, c, d, e) \in \mathbb{Z}^5_{\geq 0} : 4a + 6b + 8c + 10d + 32e = n - 2i\}$. As $e_1 \in H^2_H((G/P)/k)$ is a permanent cycle in (11),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E^{n-2i,2i}_\infty$$

for $0 \leq i \leq 7$. Hence, the map α in (12) induces injections on all E_∞ terms. For n odd, α induces isomorphisms $0 = E_{i,n}^{n-i,i} \cong E_{i,n}^{n-i,i} = 0$ for all i since $H^n_H(BL/k)$ is concentrated in even degrees.

Define a bijection $f_n : S_n \to \bigcup_{i=0}^{15} S_{i,n}$ by $f_n(a, b, c, d, e) = (b, c, d, e, (a - i)/16) \in S_{i,n}$ for $a \equiv i \mod (16)$. Then

$$\dim_k H^n_H(BL/k) = |S_n| = \sum_{i=0}^{15} |S_{i,n}| = \sum_{i=0}^{15} \dim_k V_{i,n}. \quad (13)$$

Now assume that $n \leq 14$. Then f_n gives a bijection

$$S_n \to \bigcup_{i=0}^{7} S_{i,n}.$$

As

$$\dim_k H^n_H(BL/k) \geq \sum_{i=0}^{7} E_{i,n}^{n-2i,2i}$$

and $V_{i,n} \subseteq E^{n-2i,2i}_\infty$ for $0 \leq i \leq 7$, it follows that $V_{i,n} \cong E^{n-2i,2i}_\infty$ for $0 \leq i \leq 7$ and $E^{n-2i,2i}_\infty = 0$ for $i \geq 8$. As α induces injections on all E_∞ terms, Theorem 1.4 implies that α in (12) induces an isomorphism $I_{2}^{0,0} \to E_{2}^{0,0}$ for $n < 16$.

Now we consider the filtration on $H^H_16(BL/k)$ given by (11). From the bijection f_{16} defined in the previous paragraph, we have

$$\dim_k H^16_H(BL/k) = 1 + \sum_{i=0}^{7} |S_{i,n}| = 1 + \sum_{i=0}^{7} \dim_k V_{i,n} \otimes k \cdot e_1^i.$$

As e_1 is a permanent cycle and α induces isomorphisms on 0th row terms of the E_2 pages in degrees less than 16, we must then have

$$E^{10,0}_\infty \cong (H^10_H(BG/k) \otimes k \cdot e_3^3) \oplus (k \cdot z \otimes k \cdot e_3)$$
for some \(0 \neq z \in H^1(BG/k)\). Hence, \(y_7z = 0\) in \(H^*_H(BG/k)\). Write \(z = ay_4y_6 + by_{10}\) for some \(a, b \in k\).

We now show that \(a = 0\) by restricting \(y_7z = 0\) to the Hodge cohomology of the classifying stack of the subgroup \(\text{Spin}(8)_k\) of \(G\). Under the isomorphism

\[
H^*_H(B\text{Spin}(8)_k/k) \cong k[y_4, y_6, y_7, y_8, y_{10}]
\]

of Theorem 3.10, the pullback from \(H^*_H(BG/k)\) to \(H^*_H(B\text{Spin}(8)_k/k)\) maps \(y_4, y_6, y_{10} \in H^*_H(BG/k)\) to \(y_4, y_6, y_{10}\), and \(0\) respectively in \(H^*_H(B\text{Spin}(8)_k/k)\). Hence, to show that \(a = 0\), it suffices to show that \(y_7 \in H^*_H(BG/k)\) restricts to \(y_7 \in H^*_H(B\text{Spin}(8)_k/k)\). From the isomorphism

\[
H^*_H(B\text{SO}(m)_k/k) \cong k[u_2, \ldots, u_m]
\]

of Theorem 3.4 for \(m \geq 0\), the class \(u_7 \in H^*_H(B\text{SO}(10)_k/k)\) restricts to \(u_7 \in H^*_H(B\text{SO}(8)_k/k)\). Thus, we are reduced to showing that \(u_7 \in H^*_H(B\text{Spin}(8)_k/k)\) pulls back to a non-zero multiple of \(y_7 \in H^*_H(B\text{Spin}(8)_k/k)\).

Consider the subgroups \(\mu_2^4 \times \mathbb{Z}/2 \cong Q \subseteq \text{Spin}(8)_k\) and \(\mu_2^3 \times \mathbb{Z}/2 \cong K \subseteq \text{SO}(8)_k\) defined in Remark 3.12. As the morphism \(Q \to K\) is split surjective, if we can show that \(u_7\) restricts to a non-zero class in \(H^*_H(BK/k)\), then \(u_7\) would restrict to a non-zero class in \(H^*_H(B\text{Spin}(8)_k/k)\). From the inclusion \(O(2)_k \subset O(8)_k\), \(O(8)_k\) contains a subgroup of the form \(\mu_2^4 \times (\mathbb{Z}/2)^4\). As \(\text{SO}(8)_k\) is the kernel of the Dickson determinant (also called the Dickson invariant in some sources [11, §23]) \(O(8)_k \to \mathbb{Z}/2\), it follows that \(\text{SO}(8)_k\) contains a subgroup \(H \cong \mu_2^4 \times (\mathbb{Z}/2)^3\). Write

\[
H^*_H(BH/k)/\text{rad} \cong k[t_1, \ldots, t_4, s_1, \ldots, s_4]/(s_1 + s_2 + s_3 + s_4)
\]

using Remark 3.12. From the proof of [17, Lemma 11.4], the pullback of \(u_7\) to \(H^*_H(BK/k)/\text{rad}\) followed by pullback to

\[
H^*_H(BK/k)/\text{rad} \cong k[t_1, \ldots, t_4, s]((t_1 + \cdots + t_4)
\]

is given by

\[
\begin{align*}
u_7 \mapsto &\sum_{j=1}^{3} s_j (t_j + t_4) \sum_{1 \leq i_1 < i_2 \leq 3 \atop i_1, i_2 \neq j} t_{i_1} t_{i_2} \mapsto \sum_{j=1}^{3} s(t_j + t_4) \sum_{1 \leq i_1 < i_2 \leq 3 \atop i_1, i_2 \neq j} t_{i_1} t_{i_2} \\
&= s \sum_{1 \leq i_1 < i_2 \leq 3} (t_{i_1} + t_{i_2}) t_{i_1} t_{i_2} \neq 0.
\end{align*}
\]

Thus, \(u_7 \in H^*_H(B\text{SO}(8)_k/k)\) pulls back to a non-zero multiple of

\[
y_7 \in H^*_H(B\text{Spin}(8)_k/k)
\]
which implies that \(y_7y_{10} = 0 \) in \(H^*_H(BG/k) \).

\[
\begin{array}{c}
\sum_{j=1}^3 s(t_j + t_4) \sum_{1 \leq i_1 < i_2 \leq 3} t_{i_1} t_{i_2} \in H^7_H(BK/k) \rightarrow H^7_H(BQ/k)
\end{array}
\]

Using the relation \(y_7y_{10} = 0 \), we now modify the spectral sequence \(I_* \) defined above to define a new spectral sequence \(J_* \) that better approximates (and will actually be isomorphic to) the spectral sequence (11). Let

\[
(yy_{10}) := F_2 \otimes (\Delta(e_3) \otimes yk[y]) \otimes y_{10}k[y_4, y_6, y_8, y_{10}, y_{32}].
\]

Define the \(E_2 \) page of \(J_* \) by \(J_2 = I_2/(yy_{10}) \). Define the differentials \(d'_m \) of \(J_* \) so that \(I_2 \rightarrow J_2 \) induces a map \(I_* \rightarrow J_* \) of cohomological spectral sequences of \(k \)-vector spaces and \(d'_m = 0 \) for \(m > 7 \). This means that \(d'_7(f \otimes e_3 \otimes y_{10}g) = f \otimes y \otimes y_{10}g = 0 \) and \(d'_m(f \otimes e_3 \otimes y_{10}g) = 0 \) for \(m > 7 \), \(f \in F_2 \), and \(g \in k[y_4, y_6, y_8, y_{10}, y_{32}] \). The \(E_\infty \) page of \(J_* \) is given by

\[
J_\infty \cong (F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}]) \oplus (F_2 \otimes e_3 \otimes y_{10}k[y_4, y_6, y_8, y_{10}, y_{32}]).
\]

As \(y_7y_{10} = 0 \) in \(H^*_H(BG/k) \), \(\alpha \) induces a map \(\alpha' : J_* \rightarrow E_* \) of spectral sequences. To finish the calculation, we will show that \(\alpha' \) induces an isomorphism on \(E_\infty \) terms so that Theorem 1.4 will apply. For \(n \) odd, \(E^{n-1,i}_\infty = 0 \) for all \(i \) since \(H^*_H(BL/k) \) is concentrated in even degrees. Now assume that \(n \) is even. For \(0 \leq i \leq 7 \),

\[
V_{i,n} \cong H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2}) \otimes e_1^i \subseteq E^{n-2i-2i}_\infty.
\]

For \(8 \leq i \leq 15 \),

\[
V_{i,n} \cong y_{10}H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2}) \otimes e_1^{i-8} e_3 \subseteq E^{n-2i+10,2i-10}_\infty.
\]

Hence, from the description of the \(E_\infty \) terms of \(J_* \) given above, it follows that \(\alpha' \) induces an injection \(J^{n-2i,2i}_\infty \rightarrow E^{n-2i,2i}_\infty \) for all \(i \). Equation (13) then implies that \(J^{2i-2i,2i}_\infty \cong L^{2i-2i,2i}_\infty \) for all \(i \).

Thus, \(\alpha' \) induces an isomorphism on \(E_\infty \) pages and an isomorphism on the 0th columns of the \(E_2 \) pages of the 2 spectral sequences. Theorem 1.4 then implies that

\[
H^*_H(BG/k) \cong k[y_4, y_6, y_7, y_8, y_{10}, y_{32}] / (y_7y_{10}).
\]

From Proposition 5, the Hodge spectral sequence for \(BG \) degenerates.

\[\square \]

Corollary 3.14. Let \(G \) be a \(k \)-form of \(\text{Spin}(10) \). Then

\[
H^*_H(BG/k) \cong k[y_4, y_6, y_7, y_8, y_{10}, y_{32}] / (y_7y_{10})
\]
where |y_i| = i for all i.

Theorem 3.15. Let n = 11. The Hodge spectral sequence for BG degenerates and

\[H^*_d(BG/k) \cong H^*_H(BG/k) = k[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}] / (y_7y_{10} + y_6y_{11}) \]

where |y_i| = i for i = 4, 6, 7, 8, 10, 11, 32.

Proof. We may assume that k = F_2 so that Remark 3.12 applies. From Lemma 3.5,

\[O(g)^G \cong k[y_4, y_6, y_7, y_8, y_{32}] \]

where |y_i| = i in H^*_H(BG/k), viewing O(g)^G as a subring of H^*_H(BG/k).

Consider the spectral sequence

\[E^{i,j}_2 = H^i_H(BG/k) \otimes H^j_H((G/P)/k) \Rightarrow H^{i+j}_H(BL/k) \] (14)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

\[H^*_H((G/P)/k) \cong k[e_1, e_2, e_3, e_4, e_5] / (e_i^2 = e_{2i}) \]

and

\[H^*_H(BL/k) \cong k[A, c_2, c_3, c_4, c_5] \]

Using Theorem 3.4, write H^*_H(BSO(11)_k/k) = k[u_2, \ldots, u_{11}]. From the inclusions O(2)^5 \subset O(10)_k \subset SO(11)_k, SO(11)_k contains a subgroup H \cong \mu_2^5 \times (\mathbb{Z}/2)^5. Write H^*_H(BH/k)/rad \cong k[t_1, \ldots, t_5, s_1, \ldots, s_5] as described in Remark 3.12. Under the pullback map H^*_H(BSO(11)_k/k) \to H^*_H(BH/k)/rad, u_{2m} pulls back to the mth elementary symmetric polynomial

\[\sum_{1 \leq i_1 < \cdots < i_m \leq 5} t_{i_1} \cdots t_{i_m} \] (15)

and u_{2m+1} pulls back to

\[\sum_{j=1}^{5} s_j \sum_{1 \leq i_1 < \cdots < i_m \leq 5 \text{ one equal to } j} t_{i_1} \cdots t_{i_m} \]

for 1 \leq m \leq 5 [17, Lemma 11.4]. To be concise, from now on we will write u_{2m} to denote the image of u_{2m} under pullback maps to H^*_H(BH/k)/rad or H^*_H(BK/k)/rad whenever we are dealing with these two rings.

Let Q \cong (\mu_2^5 \times \mathbb{Z}/2) \subset G and K \cong (\mu_2^5 \times \mathbb{Z}/2) \subset SO(11)_k be the subgroups described in Remark 3.12. Write H^*_H(BK/k)/rad \cong k[t_1, \ldots, t_5, s] / (t_1 + \cdots + t_5). Under the pullback map H^*_H(BSO(11)_k/k) \to H^*_H(BK/k)/rad, u_7 maps to s_{u_6} \neq 0 and u_{11} maps to s_{u_{10}} \neq 0. As Q \rightarrow K is split, it follows that u_7, u_{11} restrict to nonzero classes y_7 \in H^*_H(BG/k) and y_{11} \in H^*_H(BG/k).

Also, y_4y_7 and y_{11} are linearly independent in H^*_H(BG/k).

Returning to the spectral sequence (14), calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (14) and \(e_3 \in E^{0,6}_2 \) is transgressive with \(0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3) \). We have \(H^{m}_H(BG/k) \cong H^{m}_H(Bspin(10)_k/k) \) for \(m \leq 10 \).
Let F_* be the spectral sequence concentrated on the 0th column with E_2 page given by $\Delta(e_1, e_2, e_4)$ with e_i of bidegree $(0, 2i)$ for $i = 1, 2, 4$. Fix a variable y and let H_* be the spectral sequence with $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree $(0, 6)$, y is of bidegree $(7, 0)$, and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. There exists a map of spectral sequence
\[
\alpha : I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_{10}, y_{32}] \to E_*
\]
taking e_i to e_i for $i = 1, 2, 3, 4$ and taking y to y_7. The E_∞ page of I_* is given by $I_\infty \cong F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}]$ and α induces an injection $I^{i,j}_\infty \to E^{i,j}_\infty$ for all i,j with $i + j \leq 17$. For n odd, α induces an isomorphism $0 = I^{n-i,i}_\infty \cong E^{n-i,i}_\infty = 0$ for all i such that $H^n_\Omega(BL/k)$ is concentrated in even degrees.

Let n be even. The k-dimension of $H^n_\Omega(BL/k)$ is equal to the cardinality of the set
\[
S_n = \{(a, b, c, d, e) \in \mathbb{Z}_{\geq 0}^5 : 2a + 4b + 6c + 8d + 10e = n\}.
\]
For $0 \leq i \leq 15$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $0 \leq i \leq 15$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a, b, c, d, e) \in \mathbb{Z}_{\geq 0}^5 : 4a + 6b + 8c + 10d + 32e = n - 2i\}$. As $e_1 \in H^1_\Omega((G/P)/k)$ is a permanent cycle in (14),
\[
V_{i,n} \cong V_{i,n} \otimes k \cdot e_1 \subseteq E^{n-2i,2i}_\infty
\]
for $0 \leq i \leq 7$ and $n \leq 16$.

Define a bijection $f_n : S_n \to \bigcup_{i=0}^{15} S_{i,n}$ by $f_n(a, b, c, d, e) = (b, c, d, e, (a - i)/16) \in S_{i,n}$ for $a \equiv i \mod (16)$. Then
\[
\dim_k H^n_\Omega(BL/k) = |S_n| = \sum_{i=0}^{15} |S_{i,n}| = \sum_{i=0}^{15} \dim_k V_{i,n}.
\]
Now assume that $n \leq 14$. Then f_n gives a bijection
\[
S_n \to \bigcup_{i=0}^{7} S_{i,n}.
\]
As
\[
\dim_k H^n_\Omega(BL/k) \geq \sum_{i=0}^{7} E^{n-2i,2i}_\infty
\]
and $V_{i,n} \subseteq E^{n-2i,2i}_\infty$ for $0 \leq i \leq 7$, it follows that $V_{i,n} \cong E^{n-2i,2i}_\infty$ for $0 \leq i \leq 7$ and $E^{n-2i,2i}_\infty = 0$ for $i \geq 8$. In particular, $E^{0,10}_\infty \cong k \cdot e_1^5$. As mentioned above, we have $H^m_\Omega(BG/k) = 0$ for $m = 3, 5, 9$. After adding a k-multiple of $e_3e_1^2$ to e_3, we can assume that $d_7(e_3) = 0$. Then the isomorphism $E^{0,10}_\infty \cong k \cdot e_1^5$ implies that $d_{11}(e_5) \neq 0$. Hence, e_5 is transgressive in (14) and $y_{11} \in H^6(BG, \Omega^5)$ is a lifting of $d_{11}(e_5)$ to $E^{11,0}_2$.

Fix a variable x. Let J_* denote the spectral sequence with E_2 page $J_2 = \Delta(e_5) \otimes k[x]$ where e_5 has bidegree $(0, 10)$, x has bidegree $(11, 0)$, and e_5 is transgressive with $d_{11}(e_5 x^i) = x^{i+1}$ for all i.

\[
\begin{array}{ccc}
 k \cdot e_5 & k \cdot e_5 x & \cdots \\
 \downarrow d_{11} & \downarrow d_{11} & \\
 0 & k \cdot x & k \cdot x^2 & \cdots
\end{array}
\]

As e_5 is transgressive in (14), there exists a map of spectral sequences $J_* \to E_*$ taking e_5 to e_5 and x to y_{11}. Tensoring with the map α defined above, we get a map

\[
\alpha' : K_* := I_* \otimes J_* \to E_*
\]

which induces an isomorphism on the 0th columns of the E_2 pages. The E_∞ page of K_* is given by

\[
K_\infty \cong I_\infty \cong F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}].
\]

As mentioned above, α and hence α' induce isomorphisms on $E_\infty^{i,j}$ terms for $n < 16$ and injections on all E_∞ terms on or below the line $i + j = 17$. Theorem 1.4 implies that α' induces an isomorphism $K_2^{n,0} \to E_2^{n,0}$ for $n < 16$.

Next, we consider the filtration on $H_\ast^{16}(BL/k)$ given by (14). From (16),

\[
\dim_k H_\ast^{16}(BL/k) = 1 + \sum_{i=0}^{7} |S_{i,16}| = 1 + \sum_{i=0}^{7} \dim_k V_{i,16} \otimes k \cdot e_i^1.
\]

We must then have either $d_7(c_3 f) = y_7 f = 0 \in H_\ast^{17}(BG/k)$ for some $0 \neq f \in H_\ast^{16}(BG/k)$ or $d_{11}(e_5 g) = y_{11} g = d_7(e_5) h = y_7 h \in H_\ast^{17}(BG/k)$ for some $0 \neq g \in H_\ast^{6}(BG/k)$ and $h \in H_\ast^{10}(BG/k)$. Let a, b, c, k, t, s, t_5, not all zero, such that

\[
ay_{11}y_6 + by_7y_{10} + cy_7y_{10} = 0 \in H_\ast^{17}(BG/k).
\]

The class $au_{11}u_6 + bu_{10}u_6 + cu_{10}u_6 \in H_\ast^{17}(BSO(11)_k/k)$ pulls back to

\[
ay_{11}y_6 + by_7y_{10} + cy_7y_{10} = 0 \in H_\ast^{17}(BG/k).
\]

Under the pullback map \(H_\ast^{17}(BSO(11)_k/k) \to H_\ast^{17}(BK/k)/\rad \cong k[t_1, \ldots, t_5, s]/(t_1 + \cdots + t_5),\)

$au_{11}u_6 + bu_{10}u_6 + cu_{10}u_6$ maps to $asu_{10}u_6 + bsu_{6}u_{10} + csu_{6}u_{4}u_{6}$, which equals 0 since $Q \to K$ is split. Then $c = 0$ and $a = b$ since the elementary symmetric polynomials (15) in

\[
k[t_1, \ldots, t_5]/(t_1 + \cdots + t_5)
\]

generate a polynomial subring.

\[
\begin{array}{ccc}
 au_{11}u_6 + bu_{10}u_6 + cu_{10}u_6 \in H_\ast^{17}(BSO(11)_k/k) & \longrightarrow & 0 \in H_\ast^{17}(BG/k) \\
 \downarrow & & \downarrow \\
 asu_{10}u_6 + bsu_{6}u_{10} + csu_{6}u_{4}u_{6} \in H_\ast^{17}(BK/k)/\rad & \longrightarrow & 0 \in H_\ast^{17}(BQ/k)/\rad
\end{array}
\]
Thus, the relation $y_7y_{10} + y_6y_{11} = 0$ holds in $H^n_{\mathbb{H}}(BG/k)$ and $E^n_{\infty,10} \cong (k \cdot y_6 \otimes e_5) \oplus (k \cdot y_6 \otimes e_1^5)$. We now use the relation $y_7y_{10} + y_6y_{11} = 0$ to define a new spectral sequence L_* from K_*. Let $(y_6x + y_7y_{10}) \subset K_2$ denote the ideal generated by $y_6x + y_7y_{10}$ and let $L_2 := K_2/(y_6x + y_7y_{10})$. Define the differentials d'_m of L_* so that $K_2 \to L_2$ induces a map of spectral sequences $K_* \to L_*$ and $d'_m = 0$ for $m > 11$. Then $\alpha' : K_* \to E_*$ induces a map of spectral sequences $\alpha'' : L_* \to E_*$. The E_∞ page of L_* is given by

$$L_\infty \cong (F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}]) \oplus (F_2 \otimes y_6k[y_4, y_6, y_8, y_{10}, y_{32}] \otimes e_5).$$

We now show by induction that α'' induces an isomorphism $L_2^{n,0} \to E_2^{n,0}$ for all n. For $n < 16$, we have shown that $L_2^{n,0} \cong E_2^{n,0}$. Now let $n \geq 16$ and assume that α'' induces an isomorphism $L_2^{m,0} \to E_2^{m,0}$ for all $m < n$. First, suppose that n is even. As $L_2^{m,0} \cong E_2^{m,0}$ for $m < n$, $y_7g \neq 0 \in H^n_{\mathbb{H}}(BG/k)$ for all $0 \neq g \in H^n_{\mathbb{H}}(BG/k)$ with $|g| < n - 7$. Hence, for any $0 \neq g \in H^n_{\mathbb{H}}(BG/k)$ with $|g| = m < n - 7$, $g \otimes e_3e_5 \in E_2^{m,16} \cong E_{\infty}^{m,16}$ is not in the kernel of the differential $d_7 : E_7^{m,16} \to E_7^{m+7,10} \cong E_7^{m+7,10}$. As $y_{77} \in H^4(BG, \Omega^3)$ and $y_{11} \in H^6(BG, \Omega^5)$, $y_{77}z, y_{11}z \notin \oplus_i H^i(BG, \Omega^i)$ for all $z \in H^n_{\mathbb{H}}(BG/k)$. It follows that α'' induces an injection $L_{i,j}^{n} \to E_{\infty}^{n,i,j}$ for all i, j with $m = i + j \leq n$

$$L_{\infty}^{m-2i,2i} \cong V_{i,m} \otimes e_1^i \subseteq E_{\infty}^{m-2i,2i}$$

for $0 \leq i \leq 4$,

$$L_{\infty}^{m-2i,2i} \cong (V_{i,m} \otimes e_1^i) \oplus (y_6 V_{i+3,m} \otimes e_1^{i-5} e_5) \subseteq E_{\infty}^{m-2i,2i}$$

for $5 \leq i \leq 7$, and

$$L_{\infty}^{m-2i,2i} \cong y_6 V_{i+3,m} \otimes e_1^{i-5} e_5 \subseteq E_{\infty}^{m-2i,2i}$$

for $8 \leq i \leq 12$. The equality in (16) then implies that α'' induces isomorphisms $L_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i, j with $i + j \leq n$. As mentioned above, α'' induces isomorphisms $0 = L_{n+1-i,j}^{n+1-i,j} \to E_{\infty}^{n+1-i,j} = 0$ for all i since $n + 1$ is odd. Theorem 1.4 then implies that α'' induces an isomorphism $L_2^{n,0} \cong E_2^{n,0} = H^n_{\mathbb{H}}(BG/k)$.

Now assume that n is odd. We have $0 = L_{\infty}^{i,j} \cong E_{\infty}^{i,j} = 0$ for all i, j with $i + j = n$. An argument similar to the one used above for when n is even shows that α'' induces injections $L_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i, j with $i + j \leq n + 1$. Equation (16) then implies that α'' induces isomorphisms $L_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i, j with $i + j \leq n + 1$. It follows that α'' induces an isomorphism $L_2^{n,0} \cong E_2^{n,0} = H^n_{\mathbb{H}}(BG/k)$ by an application of Theorem 1.4. Thus, by induction, we have obtained that the 0th row of L_2 is isomorphic to the 0th row of E_2

$$H^n_{\mathbb{H}}(BG/k) = k[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}] / (y_7 y_{10} + y_6 y_{11}).$$

The Hodge spectral sequence for BG degenerates by Proposition 5.

□
Corollary 3.16. Let G be a k-form of Spin(11). Then

$$H^*(BG/k) \cong k[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}]/(y_7y_{10} + y_6y_{11})$$

where $|y_i| = i$ for $i = 4, 6, 7, 8, 10, 11, 32$.

References

(Eric Primozic) **Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada**

primozic@ualberta.ca

This paper is available via http://nyjm.albany.edu/j/2020/26-42.html.