Computations of de Rham cohomology rings of classifying stacks at torsion primes

Eric Primozic

Abstract

We compute the de Rham cohomology rings of $B G_{2}$ and $B \operatorname{Spin}(n)$ for $7 \leq n \leq 11$ over base fields of characteristic 2 .

Contents

Introduction 1002
Acknowledgments 1004

1. Preliminaries 1004
2. G_{2} 1006
3. Spin groups 1010
References 1026

Introduction

Let G be a smooth affine algebraic group over a commutative ring R. In [17], Totaro defines the Hodge cohomology group $H^{i}\left(B G, \Omega^{j}\right)$ for $i, j \geq 0$ to be the i th étale cohomology group of the sheaf of differential forms Ω^{j} over R on the big étale site of the classifying stack $B G$. For $n \geq 0$, let $H_{\mathrm{H}}^{n}(B G / R):=\oplus_{j} H^{j}\left(B G, \Omega^{n-j}\right)$ denote the total Hodge cohomology group of degree n. De Rham cohomology groups $H_{\mathrm{dR}}^{n}(B G / R)$ are defined to be the étale cohomology groups of the de Rham complex of $B G$. Let \mathfrak{g} denote the Lie algebra associated to G and let $O(\mathfrak{g})=S\left(\mathfrak{g}^{*}\right)$ denote the ring of polynomial functions on \mathfrak{g}. In [17, Corollary 2.2], Totaro showed that the Hodge cohomology of $B G$ is related to the representation theory of G :

$$
H^{i}\left(B G, \Omega^{j}\right) \cong H^{i-j}\left(G, S^{j}\left(\mathfrak{g}^{*}\right)\right) .
$$

Let G be a split reductive group defined over \mathbb{Z}. From the work of Bhatt-Morrow-Scholze in p-adic Hodge theory [1, Theorem 1.1], one might expect that

Received October 8, 2019.
2010 Mathematics Subject Classification. 14F40, 20G05.
Key words and phrases. Hodge cohomology, de Rham cohomology, torsion prime, classifying space.

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}} H_{\mathrm{dR}}^{i}\left(B G_{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \geq \operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(B G_{\mathbb{C}}, \mathbb{F}_{p}\right) \tag{1}
\end{equation*}
$$

for all primes p and $i \geq 0$. The results from [1] do not immediately apply to $B G$ since $B G$ is not proper as a stack over \mathbb{Z}. For p a non-torsion prime of a split reductive group G defined over \mathbb{Z}, Totaro showed that

$$
\begin{equation*}
H_{\mathrm{dR}}^{*}\left(B G_{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \cong H^{*}\left(B G_{\mathbb{C}}, \mathbb{F}_{p}\right) \tag{2}
\end{equation*}
$$

[17, Theorem 9.2]. It remains to compare $H_{\mathrm{dR}}^{*}\left(B G_{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)$ with $H^{*}\left(B G_{\mathbb{C}}, \mathbb{F}_{p}\right)$ for p a torsion prime of G. For $n \geq 3,2$ is a torsion prime for the split group $S O(n)$. Totaro showed that

$$
H_{\mathrm{dR}}^{*}\left(B S O(n)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right) \cong H^{*}\left(B S O(n)_{\mathbb{C}}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[w_{2}, \ldots, w_{n}\right]
$$

as graded rings where w_{2}, \ldots, w_{n} are the Stiefel-Whitney classes [17, Theorem 11.1]. In general, the rings $H_{\mathrm{dR}}^{*}\left(B G_{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)$ and $H^{*}\left(B G_{\mathbb{C}}, \mathbb{F}_{p}\right)$ are different though. For example,

$$
\operatorname{dim}_{\mathbb{F}_{2}} H_{\mathrm{dR}}^{32}\left(B \operatorname{Spin}(11)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right)>\operatorname{dim}_{\mathbb{F}_{2}} H^{32}\left(B \operatorname{Spin}(11)_{\mathbb{C}}, \mathbb{F}_{2}\right)
$$

[17, Theorem 12.1].
In this paper, we verify inequality (1) for more examples. For the torsion prime 2 of the split reductive group G_{2} over \mathbb{Z}, we show that

$$
H_{\mathrm{dR}}^{*}\left(B\left(G_{2}\right)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right) \cong H^{*}\left(B\left(G_{2}\right)_{\mathbb{C}}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{4}, y_{6}, y_{7}\right]
$$

as graded rings where $\left|y_{i}\right|=i$ for $i=4,6,7$. For the spin groups, we show that

$$
\begin{equation*}
H_{\mathrm{dR}}^{*}\left(B \operatorname{Spin}(n)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right) \cong H^{*}\left(B \operatorname{Spin}(n)_{\mathbb{C}}, \mathbb{F}_{2}\right) \tag{3}
\end{equation*}
$$

for $7 \leq n \leq 10$. Note that 2 is a torsion prime for $\operatorname{Spin}(n)$ for $n \geq 7$. The isomorphism (3) holds for $1 \leq n \leq 6$ by the "accidental" isomorphisms for spin groups along with (2).

For $n=11$, we make a full computation of the de Rham cohomology ring of $B \operatorname{Spin}(n)_{\mathbb{F}_{2}}$:

$$
H_{\mathrm{dR}}^{*}\left(B \operatorname{Spin}(11)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{11}, y_{32}\right] /\left(y_{7} y_{10}+y_{6} y_{11}\right)
$$

where $\left|y_{i}\right|=i$ for all i. We can compare this result with the computation of the singular cohomology of $B \mathrm{Spin}(11)_{\mathbb{C}}$ given by Quillen [14]:

$$
\begin{array}{r}
H^{*}\left(B \operatorname{Spin}(11)_{\mathbb{C}}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[w_{4}, w_{6}, w_{7}, w_{8}, w_{10}, w_{11}, w_{64}\right] /\left(w_{7} w_{10}+w_{6} w_{11}\right. \\
\left.w_{11}^{3}+w_{11}^{2} w_{7} w_{4}+w_{11} w_{8} w_{7}^{2}\right)
\end{array}
$$

where $\left|w_{i}\right|=i$ for all i. Equivalently,

$$
H^{*}\left(B \operatorname{Spin}(11)_{\mathbb{C}}, \mathbb{F}_{2}\right) \cong H^{*}\left(B S O(11)_{\mathbb{C}}, \mathbb{F}_{2}\right) / J \otimes \mathbb{F}_{2}\left[w_{64}\right]
$$

where J is the ideal generated by the regular sequence

$$
w_{2}, S q^{1}\left(w_{2}\right), S q^{2} S q^{1}\left(w_{2}\right), \ldots, S q^{16} S q^{8} \cdots S q^{1} w_{2}
$$

Thus, the rings $H_{\mathrm{dR}}^{*}\left(B \operatorname{Spin}(n)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right)$ and $H^{*}\left(B \operatorname{Spin}(n)_{\mathbb{C}}, \mathbb{F}_{2}\right)$ are not isomorphic in general even though $H_{\mathrm{dR}}^{*}\left(B S O(n)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right) \cong H^{*}\left(B S O(n)_{\mathbb{C}}, \mathbb{F}_{2}\right)$ for all n. Steenrod squares on de Rham cohomology over a base field of
characteristic 2 have not yet been constructed. If they exist, our calculation suggests that their action on $H_{\mathrm{dR}}^{*}\left(B S O(n)_{\mathbb{F}_{2}} / \mathbb{F}_{2}\right) \cong H^{*}\left(B S O(n)_{\mathbb{C}}, \mathbb{F}_{2}\right)$ would have to be different from the action of the topological Steenrod operations.

Acknowledgments

I thank Burt Totaro for suggesting this project to me and for providing advice. I thank the referee for carefully reading this paper and suggesting improvements to the exposition.

1. Preliminaries

In this section, we recall results from [17] that will be used in our computations. These results were also used by Totaro in [17, Theorem 11.1] to compute the de Rham cohomology of $B S O(n)_{k}$ for k a field of characteristic 2.

The first result we mention [17, Proposition 9.3] is an analogue of the Leray-Serre spectral sequence from topology.

Proposition 1.1. Let G be a split reductive group defined over a field F and let P be a parabolic subgroup of G with Levi quotient L (this means that $P \cong R_{u}(P) \rtimes L$ where $R_{u}(P)$ is the unipotent radical of $P[2,14.19]$). There exists a spectral sequence of algebras

$$
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / F) \otimes H_{\mathrm{H}}^{j}((G / P) / F) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / F) .
$$

Proposition 1.1 is the main tool that we will use to compute Hodge cohomology rings of classifying stacks. To apply Proposition 1.1, we will choose a parabolic subgroup P for which $H_{\mathrm{H}}^{*}(B L / F)$ is a polynomial ring.

To fill in the 0th column of the E_{2} page in Proposition 1.1, we use a result of Srinivas [15].

Proposition 1.2. Let G be split reductive over a field F and let P be a parabolic subgroup of G. The cycle class map

$$
C H^{*}(G / P) \otimes_{\mathbb{Z}} F \rightarrow H_{\mathrm{H}}^{*}((G / P) / F)
$$

is an isomorphism.
Under the cycle class map, $C H^{i}(G / P) \otimes_{\mathbb{Z}} F$ maps to $H^{i}\left(G / P, \Omega^{i}\right)$. From the work of Chevalley [5] and Demazure [6], $C H^{*}(G / P)$ is independent of the field F and is isomorphic to the singular cohomology ring $H^{*}\left(G_{\mathbb{C}} / P_{\mathbb{C}}, \mathbb{Z}\right)$.

The last piece of information we will use to compute $H_{\mathrm{H}}^{*}(B G / F)$ is the ring of G-invariants $O(\mathfrak{g})^{G}=\oplus_{i} H^{i}\left(B G, \Omega^{i}\right)$. Let T be a maximal torus in G with Lie algebra \mathfrak{t} and Weyl group W. There is a restriction homomorphism

$$
\begin{equation*}
O(\mathfrak{g})^{G} \rightarrow O(\mathfrak{t})^{W} \tag{4}
\end{equation*}
$$

We will need the following theorem which is due to Chaput and Romagny [4, Theorem 1.1]. For the following theorem, a split algebraic group G over a field F is simple if every proper smooth normal connected subgroup of G is trivial.

Theorem 1.3. Assume that G is simple over a field F. Then the restriction homomorphism (4) is an isomorphism unless $\operatorname{char}(F)=2$ and $G_{\bar{F}}$ is a product of copies of $S p(2 n)$ for some $n \in \mathbb{N}$.

From the rings $O(\mathfrak{g})^{G}, C H^{*}(G / P), H_{\mathrm{H}}^{*}(B L / F)$, we will be able to determine the E_{∞} terms of the spectral sequence in Proposition 1.1. This will allow us to determine $H_{\mathrm{H}}^{*}(B G / F)$ by using the following version of the Zeeman comparison theorem [12, Theorem VII.2.4].

Theorem 1.4. Fix a field F. Let $\left\{\bar{E}_{r}^{i, j}\right\},\left\{E_{r}^{i, j}\right\}$ be first quadrant (cohomological) spectral sequences of F-vector spaces such that $\bar{E}_{2}^{i, j}=\bar{E}_{2}^{i, 0} \otimes_{F} \bar{E}_{2}^{0, j}$ and $E_{2}^{i, j}=E_{2}^{i, 0} \otimes_{F} E_{2}^{0, j}$ for all i, j. Let $\left\{f_{r}^{i, j}: \bar{E}_{r}^{i, j} \rightarrow E_{r}^{i, j}\right\}$ be a morphism of spectral sequences such that $f_{2}^{i, j}=f_{2}^{i, 0} \otimes f_{2}^{0, j}$ for all i, j. Fix $N, Q \in \mathbb{N}$. Assume that $f_{\infty}^{i, j}$ is an isomorphism for all i, j with $i+j<N$ and an injection for $i+j=N$. If $f_{2}^{0, i}$ is an isomorphism for all $i<Q$ and an injection for $i=Q$, then $f_{2}^{i, 0}$ is an isomorphism for all $i<\min (N, Q+1)$ and an injection for $i=\min (N, Q+1)$.

We recall a result from [17, Section 11] on the degeneration of the Hodge spectral sequence for split reductive groups, under some assumptions. The result in [17, Section 11] was proved for the special orthogonal groups but the proof works more generally.

Proposition 1.5. Let G be a split reductive group over a field F and assume that the Hodge cohomology ring of $B G$ is generated as an F-algebra by classes in $\oplus_{i} H^{i+1}\left(B G, \Omega^{i}\right)$ and $\oplus_{i} H^{i}\left(B G, \Omega^{i}\right)$. Then the Hodge spectral sequence

$$
\begin{equation*}
E_{1}^{i, j}=H^{j}\left(B G, \Omega^{i}\right) \Rightarrow H_{\mathrm{dR}}^{i+j}(B G / F) \tag{5}
\end{equation*}
$$

for $B G$ degenerates at the E_{1} page.
Proof. From [17, Lemma 8.2], there are natural maps

$$
H^{i}\left(B G, \Omega^{i}\right) \rightarrow H_{\mathrm{dR}}^{2 i}(B G / F)
$$

and

$$
H^{i+1}\left(B G, \Omega^{i}\right) \rightarrow H_{\mathrm{dR}}^{2 i+1}(B G / F)
$$

for all $i \geq 0$. These maps are compatible with products. Let T denote a maximal torus of G. From the group homomorphism $T \rightarrow G$, we have the commuting square

The restriction homomorphism (4) induces an injection

$$
\oplus_{i} H^{i}\left(B G, \Omega^{i}\right) \rightarrow \oplus_{i} H^{i}\left(B T, \Omega^{i}\right)
$$

[17, Lemma 8.2]. Hence, from diagram (6), we get that the natural map

$$
\oplus_{i} H^{i}\left(B G, \Omega^{i}\right) \rightarrow \oplus_{i} H_{\mathrm{dR}}^{2 i}(B G / F)
$$

is an injection. Hence, any differentials into the diagonal in the spectral sequence (5) must be 0 . Then all classes in $\oplus_{i} H^{i+1}\left(B T, \Omega^{i}\right)$ must be permanent cycles (an element x in the E_{2} page of a spectral sequence E_{*} is called a permanent cycle if $d_{i}(x)=0$ for all $\left.i \geq 2\right)$ in (5). Classes in $\oplus_{i} H^{i}\left(B T, \Omega^{i}\right)$ must be permanent cycles in the spectral sequence (5) since $H^{i}\left(B G, \Omega^{j}\right)=0$ for $i<j$ by [17, Corollary 2.2]. This proves that the Hodge spectral sequence for $B G$ degenerates.

The following definition will be used later to describe the Hodge cohomology of flag varieties.

Definition 1.6. Let F be a field. For variables x_{1}, \ldots, x_{n} let $\Delta\left(x_{1}, \ldots, x_{n}\right)$ denote the F-vector space with basis given by the products $x_{i_{1}} \cdots x_{i_{r}}$ for $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n$.

2. G_{2}

Let k be a field of characteristic 2 and let G denote the split form of G_{2} over k.

Theorem 2.1. The Hodge cohomology ring of $B G$ is freely generated as a commutative k-algebra by generators $y_{4} \in H^{2}\left(B G, \Omega^{2}\right), y_{6} \in H^{3}\left(B G, \Omega^{3}\right)$, and $y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$. The Hodge spectral sequence for $B G$ degenerates at E_{1} and we have

$$
H_{\mathrm{dR}}^{*}(B G / k) \cong H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}\right] .
$$

From the computation [12, Corollary VII.6.3] of the singular cohomology ring of $B\left(G_{2}\right)_{\mathbb{C}}$ with \mathbb{F}_{2}-coefficients, we then have $H^{*}\left(B\left(G_{2}\right)_{\mathbb{C}}, k\right) \cong$ $H_{\mathrm{dR}}^{*}(B G / k)$.

Proof. We first choose a suitable parabolic subgroup of G. Let P be the parabolic subgroup of G corresponding to inclusion of the long root.

From Proposition 1.2, $C H^{*}(G / P)$ is independent of the field k and the characteristic of k. As discussed in [9, §23.3], if we consider $\left(G_{2}\right)_{\mathbb{C}}$ over \mathbb{C} along with the corresponding parabolic subgroup $P_{\mathbb{C}},\left(G_{2}\right)_{\mathbb{C}} / P_{\mathbb{C}}$ is isomorphic to a smooth quadric Q_{5} in \mathbb{P}^{6}. Hence, by [8, Chapter XIII], $H_{\mathrm{H}}^{*}((G / P) / k)$ is isomorphic to

$$
C H^{*}\left(Q_{5}\right) \otimes_{\mathbb{Z}} k \cong k[v, w] /\left(v^{6}, w^{2}, v^{3}-2 w\right)=k[v, w] /\left(v^{3}, w^{2}\right)
$$

where $|v|=2$ and $|w|=6$ in $H_{\mathrm{H}}^{*}((G / P) / k)$.
We next show that the Levi quotient L of P is isomorphic to $G L(2)_{k}$. This can be seen by constructing an isomorphism from the root datum of $G L(2)_{k}$ to the root datum of the Levi quotient. Let ($X_{1}, R_{1}, X_{1}^{\vee}, R_{1}^{\vee}$) be the usual root datum of $G L(2)_{k}$ where $X_{1}=\mathbb{Z} \chi_{1}+\mathbb{Z} \chi_{2}, R_{1}=\mathbb{Z}\left(\chi_{1}-\chi_{2}\right)$, and we take our torus to be the set of diagonal matrices in $G L(2)_{k}$. We take ($X_{2}, R_{2}, X_{2}^{\vee}, R_{2}^{\vee}$) to be the root datum of G as described in [3, Plate IX]. Here, $X_{2}=\left\{(a, b, c) \in \mathbb{Z}^{3} \mid a+b+c=0\right\}$. The long root α for G is then $(-2,1,1)$ and the root datum of $P / R_{u}(P)$ is $\left(X_{2}, \pm \alpha, X_{2}^{\vee}, \pm \frac{1}{3} \alpha\right)$. An isomorphism from the root datum of $G L(2)_{k}$ to the root datum of G can then be obtained from the isomorphism

$$
\begin{gathered}
X_{1} \rightarrow X_{2} \\
\chi_{1} \longmapsto(-1,1,0), \chi_{2} \longmapsto(1,0,-1) .
\end{gathered}
$$

Thus, $L \cong G L(2)_{k}$.
We now analyze the spectral sequence

$$
\begin{equation*}
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / k) \otimes H_{\mathrm{H}}^{j}((G / P) / k) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / k) \tag{7}
\end{equation*}
$$

from Proposition 1.1. From [7, Proposition] and [10, II.4.22],

$$
H_{\mathrm{H}}^{*}(B L / k)=S^{*}\left(\mathfrak{g l}_{2}\right)^{G L(2)_{k}} \cong S^{*}(\mathfrak{t})^{S_{2}}=k\left[x_{1}, x_{2}\right]
$$

where $x_{1} \in H^{1}\left(B L, \Omega^{1}\right)$ and $x_{2} \in H^{2}\left(B L, \Omega^{2}\right)$. Here, \mathfrak{t} is the space of all diagonal matrices in $\mathfrak{g l}_{2}$ and S_{2} acts on \mathfrak{t} by permuting the diagonal entries.

In order to compute $H_{\mathrm{H}}^{*}(B G / k)$ from the spectral sequence above, we must first compute the ring of invariants of $S^{*}\left(\mathfrak{g}_{2}\right)^{G}$. From Theorem 1.3, $S^{*}\left(\mathfrak{g}_{2}\right)^{G} \cong S^{*}\left(\mathfrak{t}_{0}\right)^{W}$ where \mathfrak{t}_{0} is the Lie algebra of a maximal torus T in G and W is the corresponding Weyl group of G. By [17, Corollary 2.2],

$$
H^{i}\left(B G, \Omega^{i}\right) \cong S^{i}\left(\mathfrak{t}_{\mathfrak{o}}\right)^{W}
$$

for $i \geq 0$.
Proposition 2.2. The ring of invariants $S^{*}\left(\mathfrak{t}_{0}\right)^{W}$ is equal to $k\left[y_{4}, y_{6}\right]$ where $\left|y_{4}\right|=2$ and $\left|y_{6}\right|=3$ in $S^{*}\left(\mathfrak{t}_{0}\right)^{W}$.
Proof. Following the notation in [3, Plate IX], $W \cong Z_{2} \times S_{3}$ acts on the root lattice $X_{2}=\left\{(a, b, c) \in \mathbb{Z}^{3} \mid a+b+c=0\right\}$ by multiplication by -1 and by permuting the coordinates. Hence, since we are working in characteristic $2, W$ acts on $S^{*}\left(t_{0}\right)=k\left[t_{1}, t_{2}, t_{3}\right] /\left(t_{1}+t_{2}+t_{3}\right)$ by permuting t_{1}, t_{2}, and t_{3}. We then have $S^{*}\left(\mathfrak{t}_{0}\right)^{W}=k\left[t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}, t_{1} t_{2} t_{3}\right]=k\left[y_{4}, y_{6}\right]$.

We can now carry out the computation of $H_{\mathrm{H}}^{*}(B G / k)$. First, we show that the class $v \in E_{2}^{0,2}$ is a permanent cycle. Consider the filtration on $H_{\mathrm{H}}^{2}(B L / k)=k \cdot v$ given by $(7): H_{\mathrm{H}}^{2}(B L / k) \hookleftarrow E_{\infty}^{2,0}$, where $H_{\mathrm{H}}^{2}(B L / k) / E_{\infty}^{2,0} \cong$ $E_{\infty}^{0,2}$. Here, $E_{2}^{1,1}=0$ and

$$
E_{\infty}^{2,0}=E_{2}^{2,0}=H_{\mathrm{H}}^{2}(B G / k)=H^{1}\left(B G, \Omega^{1}\right)
$$

(we have $H^{2}(B G, \mathcal{O})=0$ since $H^{2}(B L, \mathcal{O})=0$ and there are no differentials entering $\left.E_{2}^{2,0}\right)$ since $H_{\mathrm{H}}^{*}((G / P) / k)=\oplus_{i} H^{i}\left(G / P, \Omega^{i}\right)$ is concentrated in even degrees. Hence,

$$
E_{\infty}^{2,0}=H_{\mathrm{H}}^{2}(B G / k)=H^{1}\left(B G, \Omega^{1}\right)=0,
$$

by Proposition 2.2. It follows that $E_{\infty}^{0,2} \cong E_{2}^{0,2}=k \cdot v$ which implies that $d_{3}(v)=0$. As (7) is a spectral sequence of algebras, it follows that v and v^{2} are permanent cycles. Using that $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees, we then get that $H_{\mathrm{H}}^{3}(B G / k)=E_{2}^{3,0}=E_{\infty}^{3,0}=0$ and $H_{\mathrm{H}}^{5}(B G / k)=$ $E_{2}^{5,0}=E_{\infty}^{5,0}=0$.

Next, we show that $w \in H_{\mathrm{H}}^{6}((G / P) / k)=E_{2}^{0,6}$ is transgressive with $0 \neq$ $d_{7}(w) \in E_{7}^{7,0}$. Note that $\operatorname{dim}_{k} H_{\mathrm{H}}^{6}(B L / k)=2$. As v is a permanent cycle in E_{*}, we observe that $E_{\infty}^{4,2} \cong E_{2}^{4,2} \cong k \cdot y_{4} \otimes_{k} k \cdot v \cong k$ and $E_{\infty}^{6,0} \cong E_{2}^{6,0} \cong k \cdot y_{6} \cong$ k. Hence, $\operatorname{dim}_{k} H_{\mathrm{H}}^{6}(B L / k)=2=\operatorname{dim}_{k} E_{\infty}^{4,2}+\operatorname{dim}_{k} E_{\infty}^{6,0}$. From the filtration on $H_{\mathrm{H}}^{6}(B L / k)$ given by the spectral sequence (7), it follows that $E_{\infty}^{0,6}=0$. As $H_{\mathrm{H}}^{3}(B G / k)=E_{2}^{3,0}=E_{\infty}^{3,0}=0$ and $H_{\mathrm{H}}^{5}(B G / k)=E_{2}^{5,0}=E_{\infty}^{5,0}=0$, we then get that $0 \neq d_{7}(w) \in E_{7}^{7,0}$ and $d_{7}(w)$ lifts to a non-zero element $y_{7} \in H^{4}\left(B G, \Omega^{3}\right) \subseteq H_{\mathrm{H}}^{7}(B G / k)$.

Now, we can determine the E_{∞} terms in (7). For n odd, $E_{\infty}^{i, n-i}=0$ since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees. Let $n \in \mathbb{N}$ be even. The k-dimension of $H_{\mathrm{H}}^{n}(B L / k)$ is equal to the cardinality of the set

$$
S_{n}=\left\{(a, b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}: 2 a+4 b=n\right\} .
$$

For $i=0,1,2$, set $V_{i, n}:=H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)$. For $i=0,1,2, \operatorname{dim}_{k} V_{i, n}$ is equal to the cardinality of the set $S_{i, n}=\left\{(a, b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}: 4 a+6 b=\right.$ $n-2 i\}$. As v is a permanent cycle in (7), $E_{2}^{n-2 i, 2 i} \cong E_{7}^{n-2 i, 2 i}$ for $i=0,1,2$. As $y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$ and $H^{i}\left(B G, \Omega^{j}\right)=0$ for $i<j$,

$$
y_{7} \cdot x \notin \oplus_{j} H^{j}\left(B G, \Omega^{j}\right)
$$

for all $x \in H_{\mathrm{H}}^{*}(B G / k)$. Hence,

$$
H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right) \otimes_{k} k \cdot v^{i} \subseteq E_{2}^{n-2 i, 2 i} \cong E_{7}^{n-2 i, 2 i}
$$

injects into $E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2$.
Define a bijection $f_{n}: S_{n} \rightarrow S_{0, n} \cup S_{1, n} \cup S_{2, n}$ by

$$
f_{n}(a, b)=\left\{\begin{array}{l}
(b, a / 3) \in S_{0, n} \text { if } a \equiv 0 \bmod 3, \\
(b,(a-1) / 3) \in S_{1, n} \text { if } a \equiv 1 \bmod 3, \\
(b,(a-2) / 3) \in S_{2 . n} \text { if } a \equiv 2 \bmod 3 .
\end{array}\right.
$$

Then

$$
\begin{aligned}
& \operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k)=\left|S_{n}\right|=\left|S_{0, n}\right|+\left|S_{1, n}\right|+\left|S_{2, n}\right| \\
& \leq \operatorname{dim}_{k} E_{\infty}^{n, 0}+\operatorname{dim}_{k} E_{\infty}^{n-2,2}+\operatorname{dim}_{k} E_{\infty}^{n-4,4}
\end{aligned}
$$

where the inequality follows from the fact proved above that

$$
H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)
$$

injects into $E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2$. From the filtration on $H_{\mathrm{H}}^{n}(B L / k)$ defined by the spectral sequence (7), it follows that $H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right) \cong$ $E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2$ and $E_{\infty}^{n-2 i, 2 i}=0$ for $i \geq 3$.

We can now finish the computation of the Hodge cohomology of $B G$ by using Zeeman's comparison theorem. Let F_{*} denote the cohomological spectral sequence of k-vector spaces concentrated on the 0th column with E_{2} page given by

$$
F_{2}^{0, i}=\left\{\begin{array}{l}
k \text { if } i=0, \\
k \cdot v \text { if } i=2, \\
k \cdot v^{2} \text { if } i=4, \\
0 \text { if } i \neq 0,2,4 .
\end{array}\right.
$$

As $v \in E_{2}^{0,2}$ in the spectral sequence (7) is transgressive with $d_{r}(v)=0$ for all $r \geq 2$, there exists a map of of spectral sequences $F_{*} \rightarrow E_{*}$ that takes $v \in F_{2}^{0,2}$ to $v \in E_{2}^{0,2}$ and $v^{2} \in F_{2}^{0,4}$ to $v^{2} \in E_{2}^{0,4}$.

Fixing a variable y, let H_{*} denote the cohomological spectral sequence with E_{2} page given by $H_{2}=\Delta(w) \otimes k[y]$ where w is of bidegree $(0,6), y$ is
of bidegree (7,0), and w is transgressive with $d_{7}\left(w y^{i}\right)=y^{i+1}$ for all $i \geq 0$. As $w \in E_{2}^{0,6}$ is transgressive with $d_{7}(w)=y_{7} \in E_{2}^{7,0}$, there exists a map of spectral sequence $H_{*} \rightarrow E_{*}$ such that $w \in H_{2}^{0,6}$ maps to $w \in E_{2}^{0,6}$ and $y \in H_{2}^{7,0}$ maps to $y_{7} \in E_{2}^{7,0}$. Elements of the ring of G-invariants $k\left[y_{4}, y_{6}\right]$ are permanent cycles in the spectral sequence (7) since they are concentrated on the 0th row. Thus, by tensoring the previous maps of spectral sequences, we get a map

$$
\alpha: I_{*}:=F_{*} \otimes H_{*} \otimes k\left[y_{4}, y_{6}\right] \rightarrow E_{*}
$$

of spectral sequences.
As shown above, the map α induces an isomorphism $I_{\infty} \cong F_{2} \otimes k\left[y_{4}, y_{6}\right] \rightarrow$ E_{∞} on E_{∞} pages. The 0 th columns of the E_{2} pages of the spectral sequences I_{*} and E_{*} are both isomorphic to $k[v, w] /\left(v^{3}, w^{2}\right)$ and α induces an isomorphism on the 0 th columns of the E_{2} pages. Thus, by Theorem 1.4, α induces an isomorphism on the 0 th rows of the E_{2} pages. Hence,

$$
H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}\right] .
$$

From Proposition 1.5, the Hodge spectral sequence for $B G$ degenerates.

Corollary 2.3. Let G be a k-form of G_{2}. Then

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[x_{4}, x_{6}, x_{7}\right]
$$

where $\left|x_{i}\right|=i$ for $i=4,6,7$.
Proof. Letting k_{s} denote the separable closure of k, we have $B G \times{ }_{k} \operatorname{Spec}\left(k_{s}\right) \cong$ $B\left(G_{2}\right)_{k_{s}}$. From Theorem 2.1, $\left.H_{\mathrm{H}}^{*}\left(B\left(G_{2}\right)_{k_{s}}\right) / k_{s}\right) \cong k_{s}\left[x_{4}^{\prime}, x_{6}^{\prime}, x_{7}^{\prime}\right]$ for some $x_{4}^{\prime}, x_{6}^{\prime}, x_{7}^{\prime} \in H_{\mathrm{H}}^{*}\left(B\left(G_{2}\right)_{k_{s}} / k_{s}\right)$ with $\left|x_{i}^{\prime}\right|=i$ for all i. As Hodge cohomology commutes with extensions of the base field,

$$
H_{\mathrm{H}}^{*}\left(\left(B G \times_{k} \operatorname{Spec}\left(k_{s}\right)\right) / k_{s}\right) \cong H_{\mathrm{H}}^{*}(B G / k) \otimes_{k} k_{s} .
$$

It follows that $H_{\mathrm{H}}^{*}(B G / k) \cong k\left[x_{4}, x_{6}, x_{7}\right]$ for some $x_{4}, x_{6}, x_{7} \in H_{\mathrm{H}}^{*}(B G / k)$.

3. Spin groups

Let k be a field of characteristic 2 and let G denote the split group $\operatorname{Spin}(n)_{k}$ over k for $n \geq 7$.

Let $P_{0} \subset S O(n)_{k}$ denote a parabolic subgroup that stabilizes a maximal isotropic subspace. Let $P \subset G$ denote the inverse image of P_{0} under the double cover map $G \rightarrow S O(n)_{k}$. The Hodge cohomology of G / P is given by Proposition 1.2 and [12, Theorem III.6.11].

Proposition 3.1. There is an isomorphism

$$
H_{\mathrm{H}}^{*}((G / P) / k) \cong k\left[e_{1}, \ldots, e_{s}\right] /\left(e_{i}^{2}=e_{2 i}\right),
$$

where $s=\lfloor(n-1) / 2\rfloor, e_{m}=0$ for $m>s$, and $\left|e_{i}\right|=2 i$ for all i.

The Levi quotient of P_{0} is isomorphic to $G L(r)_{k}$ where $r=\lfloor n / 2\rfloor$. Hence, the Levi quotient L of P is a double cover of $G L(r)_{k}$.
Proposition 3.2. The torsion index of L is equal to 1 .
Proof. We show that the torsion index of the corresponding compact connected Lie group M is equal to 1 . As M is a double cover of $U(r), M$ is isomorphic to $\left(S^{1} \times S U(r)\right) / 2 \mathbb{Z}$ where $k \in \mathbb{Z}$ acts on $S^{1} \times S U(r)$ by

$$
(z, A) \mapsto\left(z e^{2 \pi i k / r}, e^{-2 \pi i k / r} A\right) .
$$

Hence, the derived subgroup [M, M] of M is isomorphic to $S U(r)$. As $S U(r)$ has torsion index $1, M$ has torsion index 1 by [16, Lemma 2.1]. Thus, L has torsion index equal to 1 .

Corollary 3.3. We have

$$
H_{\mathrm{H}}^{*}(B L / k)=O(\mathfrak{r})^{L}=k\left[A, c_{2}, \ldots, c_{r}\right]
$$

where $\left|c_{i}\right|=2 i$ in $H_{\mathrm{H}}^{*}(B L / k)$ for all i and $|A|=2$.
Proof. From Proposition 3.2 and [17, Theorem 9.1],

$$
H_{\mathrm{H}}^{*}(B L / k)=O(\mathfrak{l})^{L} .
$$

Let T be a maximal torus in L with Lie algebra \mathfrak{t} and Weyl group W. From Theorem 1.3, $O(\mathfrak{l})^{L} \cong O(\mathfrak{t})^{W}$. To compute $O(\mathfrak{t})^{W}$, we use that L is a double cover of $G L(r)_{k}$. We have

$$
\begin{aligned}
S\left(X^{*}(T) \otimes k\right) & \cong \mathbb{Z}\left[x_{1}, \ldots, x_{r}, A\right] /\left(2 A=x_{1}+\cdots+x_{r}\right) \otimes k \\
& \cong k\left[x_{1}, \ldots, x_{r}, A\right] /\left(x_{1}+\cdots+x_{r}\right) .
\end{aligned}
$$

The Weyl group W of L is isomorphic to the symmetric group S_{r} and acts on $S\left(X^{*}(T) \otimes k\right)$ by permuting x_{1}, \ldots, x_{r}. From [13, Proposition 4.1],

$$
\left(k\left[x_{1}, \ldots, x_{r}, A\right] /\left(x_{1}+\cdots+x_{r}\right)\right)^{S_{r}}=k\left[A, c_{2}, \ldots, c_{r}\right]
$$

where c_{1}, \ldots, c_{r} are the elementary symmetric polynomials in the variables

$$
x_{1}, \ldots, x_{r} .
$$

For our calculations, we will need to know the Hodge cohomology of $B S O(n)_{k}$ [17, Theorem 11.1].
Theorem 3.4. The Hodge spectral sequence for $B S O(n)_{k}$ degenerates and

$$
H_{\mathrm{H}}^{*}\left(B S O(n)_{k} / k\right)=k\left[u_{2}, \ldots, u_{n}\right]
$$

where $u_{2 i} \in H^{i}\left(B S O(n)_{k}, \Omega^{i}\right)$ and $u_{2 i+1} \in H^{i+1}\left(B S O(n)_{k}, \Omega^{i}\right)$ for all relevant i.

We'll also need to know the ring of invariants of $G=\operatorname{Spin}(n)_{k}$ for all $n \geq 6$. This can be found in [17, Section 12].

Lemma 3.5. For $n \geq 6$,

$$
O(\mathfrak{g})^{G}=\left\{\begin{array}{l}
k\left[c_{2}, \ldots, c_{r}, \eta_{r-1}\right] \text { if } n=2 r+1 \\
k\left[c_{2}, \ldots, c_{r}, \mu_{r-1}\right] \text { if } n=2 r \text { and } r \text { is even } \\
k\left[c_{2}, \ldots, c_{r}, \mu_{r}\right] \text { if } n=2 r \text { and } r \text { is odd }
\end{array}\right.
$$

where $\left|c_{i}\right|=i,\left|\eta_{j}\right|=2^{j}$, and $\left|\mu_{j}\right|=2^{j-1}$ in $O(\mathfrak{g})^{G}$ for all i and j.
Note that under the inclusion $O(\mathfrak{g})^{G} \subset H_{\mathrm{H}}^{*}(B G / k)$, the degree of an invariant function in $H_{\mathrm{H}}^{*}(B G / k)$ is twice its degree in $O(\mathfrak{g})^{G}$.

Theorem 3.6. Let $n=7$. The Hodge spectral sequence for $B G$ degenerates and

$$
H_{\mathrm{dR}}^{*}(B G / k) \cong H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}\right]
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8$.
Proof. From Lemma 3.5,

$$
O(\mathfrak{g})^{G}=k\left[y_{4}, y_{6}, y_{8}\right]
$$

where $\left|y_{i}\right|=i$ in $H_{\mathrm{H}}^{*}(B G / k)$, viewing $O(\mathfrak{g})^{G}$ as a subring of $H_{\mathrm{H}}^{*}(B G / k)$. Consider the spectral sequence

$$
\begin{equation*}
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / k) \otimes H_{\mathrm{H}}^{j}((G / P) / k) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / k) \tag{8}
\end{equation*}
$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$
H_{\mathrm{H}}^{*}((G / P) / k) \cong k\left[e_{1}, e_{2}, e_{3}\right] /\left(e_{i}^{2}=e_{2 i}\right)=k\left[e_{1}, e_{3}\right] /\left(e_{1}^{4}, e_{3}^{2}\right)
$$

and

$$
H_{\mathrm{H}}^{*}(B L / k) \cong k\left[A, c_{2}, c_{3}\right] .
$$

First, we show that $e_{1} \in E_{2}^{0,2}$ is a permanent cycle. From the filtration on $H_{\mathrm{H}}^{2}(B L / k)=k \cdot A$ given by (8), we have

$$
1=\operatorname{dim}_{k} E_{\infty}^{0,2}+\operatorname{dim}_{k} E_{\infty}^{2,0}=\operatorname{dim}_{k} E_{\infty}^{0,2}+\operatorname{dim}_{k} E_{2}^{2,0} .
$$

As $H_{\mathrm{H}}^{*}(B L / k)=\oplus_{i} H^{i}\left(B L, \Omega^{i}\right), E_{2}^{2,0}=H^{1}\left(B G, \Omega^{1}\right)=0$. Hence, $E_{\infty}^{0,2}=$ $E_{2}^{0,2}=k \cdot e_{1}$ which implies that e_{1} is a permanent cycle. As $e_{2}=e_{1}^{2}$, it follows that e_{2} is a permanent cycle. Hence, $E_{\infty}^{4,2} \cong E_{2}^{4,2} \cong k \cdot\left(y_{4} \otimes e_{1}\right)$ and $E_{\infty}^{6,0} \cong E_{2}^{6,0} \cong k \cdot y_{6}$.

We next show that $e_{3} \in E_{2}^{0,6}$ is transgressive with $d_{7}\left(e_{3}\right) \neq 0$. As e_{1} is a permanent cycle and $H_{\mathrm{H}}^{i}(B L / k)=0$ for i odd, the spectral sequence (8) implies that $E_{2}^{3,0}=E_{2}^{5,0}=0$. Consider the filtration of (8) on $H_{\mathrm{H}}^{6}(B L / k)$. We have

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{6}(B L / k)=3=\operatorname{dim}_{k} E_{\infty}^{6,0}+\operatorname{dim}_{k} E_{\infty}^{4,2}+\operatorname{dim}_{k} E_{\infty}^{0,6}=2+\operatorname{dim}_{k} E_{\infty}^{0,6}
$$

which implies that $E_{\infty}^{0,6} \cong k \cdot e_{1} e_{2}$. As $E_{2}^{3,0}=E_{2}^{5,0}=0$, we must then have $e_{3} \in E_{7}^{0,6}$ and $0 \neq d_{7}\left(e_{3}\right) \in E_{7}^{7,0}$. The class $d_{7}\left(e_{3}\right)$ lifts to a non-zero class $y_{7} \in H^{4}\left(B G, \Omega^{3}\right) \subseteq E_{2}^{7,0}=H_{\mathrm{H}}^{7}(B G / k)$.

We can now determine the E_{∞} page of (8). For n odd, $E_{\infty}^{i, n-i}=0$ since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H_{\mathrm{H}}^{n}(B L / k)$ is equal to the cardinality of the set

$$
S_{n}=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}: 2 a+4 b+6 c=n\right\} .
$$

For $i=0,1,2,3$, set $V_{i, n}:=H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)$. For $i=0,1,2,3$, $\operatorname{dim}_{k} V_{i, n}$ is equal to the cardinality of the set $S_{i, n}=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times\right.$ $\left.\mathbb{Z}_{\geq 0}: 4 a+6 b+8 c=n-2 i\right\}$. As e_{1} is a permanent cycle in (8),

$$
V_{i, n} \cong V_{i, n} \otimes k \cdot e_{1}^{i} \subseteq E_{\infty}^{n-2 i, 2 i}
$$

for $i=0,1,2,3$.
Define a bijection $f_{n}: S_{n} \rightarrow S_{0, n} \cup S_{1, n} \cup S_{2, n} \cup S_{3, n}$ by

$$
f_{n}(a, b, c)=\left\{\begin{array}{l}
(b, c, a / 4) \in S_{0, n} \text { if } a \equiv 0 \bmod 4, \\
(b, c,(a-1) / 4) \in S_{1, n} \text { if } a \equiv 1 \bmod 4, \\
(b, c,(a-2) / 4) \in S_{2, n} \text { if } a \equiv 2 \bmod 4, \\
(b, c,(a-3) / 4) \in S_{3, n} \text { if } a \equiv 3 \bmod 4
\end{array}\right.
$$

Then

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k)=\left|S_{n}\right|=\left|S_{0, n}\right|+\left|S_{1, n}\right|+\left|S_{2, n}\right|++\left|S_{3, n}\right| .
$$

As

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k) \geq E_{\infty}^{n, 0}+E_{\infty}^{n-2,2}+E_{\infty}^{n-4,4}+E_{\infty}^{n-6,6}
$$

and $V_{i, n} \subseteq E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2,3$, it follows that $V_{i, n} \cong E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2,3$ and $E_{\infty}^{n-2 i, 2 i}=0$ for $i \geq 4$.

We now use Theorem 1.4 to finish the computation of the Hodge cohomology of $B G$. Let F_{*} denote the cohomological spectral sequence of k-vector spaces concentrated on the 0 th column given by $F_{2}=\Delta\left(e_{1}, e_{2}\right)$ where e_{i} is of bidegree $(0,2 i)$ for $i=1,2$. As e_{1} is a permanent cycle in (8), there
is a map of spectral sequences $F_{*} \rightarrow E_{*}$ taking $e_{i} \in F_{2}^{0,2 i}$ to $e_{i} \in E_{2}^{0,2 i}$ for $i=1,2$. Fix a variable y. Let H_{*} be the spectral sequence with E_{2} page given by $H_{2}=\Delta\left(e_{3}\right) \otimes k[y]$ where e_{3} is of bidegree $(0,6), y$ is of bidegree $(7,0)$, and e_{3} is transgressive with $d_{7}\left(e_{3} y^{i}\right)=y^{i+1}$ for all i. As $e_{3} \in E_{2}^{0,6}$ is transgressive with $d_{7}\left(e_{3}\right)=y_{7}$, there exists a map of spectral sequences $H_{*} \rightarrow E_{*}$ taking $e_{3} \in H_{2}^{0,6}$ to $e_{3} \in E_{2}^{0,6}$ and $y \in H_{2}^{7,0}$ to $y_{7} \in E_{2}^{7,0}$.

Elements in the ring of G-invariants $k\left[y_{4}, y_{6}, y_{8}\right]$ are permanent cycles in the spectral sequence (8). Tensoring maps of spectral sequences, we get a map

$$
\alpha: I_{*}:=F_{*} \otimes H_{*} \otimes k\left[y_{4}, y_{6}, y_{8}\right] \rightarrow E_{*}
$$

of spectral sequences. As $I_{\infty} \cong F_{2} \otimes k\left[y_{4}, y_{6}, y_{8}\right], \alpha$ induces isomorphisms on E_{∞} terms and on the 0 th columns of the E_{2} pages. Hence, by Theorem 1.4, α induces an isomorphism on the 0th rows of the E_{2} pages. Thus,

$$
H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}\right] .
$$

The Hodge spectral sequence for $B G$ degenerates by Proposition 1.5.
As Hodge cohomology commutes with extensions of the base field, we have the following result.

Corollary 3.7. Let k be a field of characteristic 2 and let G be a k-form of Spin(7). Then

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[x_{4}, x_{6}, x_{7}, x_{8}\right]
$$

where $\left|x_{i}\right|=i$ for all i.
Theorem 3.8. Let $n=8$. The Hodge spectral sequence for $B G$ degenerates and

$$
H_{\mathrm{dR}}^{*}(B G / k) \cong H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{8}^{\prime}\right]
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8$ and $\left|y_{8}^{\prime}\right|=8$.
Proof. From Lemma 3.5,

$$
O(\mathfrak{g})^{G}=k\left[y_{4}, y_{6}, y_{8}, y_{8}^{\prime}\right]
$$

where $\left|y_{i}\right|=i$ and $\left|y_{8}^{\prime}\right|=8$ in $H_{\mathrm{H}}^{*}(B G / k)$, viewing $O(\mathfrak{g})^{G}$ as a subring of $H_{\mathrm{H}}^{*}(B G / k)$. Consider the spectral sequence

$$
\begin{equation*}
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / k) \otimes H_{\mathrm{H}}^{j}((G / P) / k) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / k) \tag{9}
\end{equation*}
$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$
H_{\mathrm{H}}^{*}((G / P) / k) \cong k\left[e_{1}, e_{2}, e_{3}\right] /\left(e_{i}^{2}=e_{2 i}\right)=k\left[e_{1}, e_{3}\right] /\left(e_{1}^{4}, e_{3}^{2}\right)
$$

and

$$
H_{\mathrm{H}}^{*}(B L / k) \cong k\left[A, c_{2}, c_{3}, c_{4}\right] .
$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_{1} is a permanent cycle in (9) and $e_{3} \in E_{2}^{0,6}$ is transgressive with $0 \neq d_{7}\left(e_{3}\right)=y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$. We have $H_{\mathrm{H}}^{m}(B G / k) \cong H_{\mathrm{H}}^{m}\left(B \operatorname{Spin}(7)_{k} / k\right)$ for $m<8$ and $H_{\mathrm{H}}^{8}(B G / k)=k \cdot y_{8} \oplus k \cdot y_{8}^{\prime}$.

We can now determine the E_{∞} terms for (9). For n odd, $E_{\infty}^{i, n-i}=0$ since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H_{\mathrm{H}}^{n}(B L / k)$ is equal to the cardinality of the set

$$
S_{n}=\left\{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}: 2 a+4 b+6 c+8 d=n\right\}
$$

For $i=0,1,2,3$, set $V_{i, n}:=H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)$. For $i=0,1,2,3$, $\operatorname{dim}_{k} V_{i, n}$ is equal to the cardinality of the set $S_{i, n}=\left\{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times\right.$ $\left.\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}: 4 a+6 b+8 c+8 d=n-2 i\right\}$. As e_{1} is a permanent cycle in (9),

$$
V_{i, n} \cong V_{i, n} \otimes k \cdot e_{1}^{i} \subseteq E_{\infty}^{n-2 i, 2 i}
$$

for $i=0,1,2,3$.
Define a bijection $f_{n}: S_{n} \rightarrow S_{0, n} \cup S_{1, n} \cup S_{2, n} \cup S_{3, n}$ by

$$
f_{n}(a, b, c, d)=\left\{\begin{array}{l}
(b, c, d, a / 4) \in S_{0, n} \text { if } a \equiv 0 \bmod 4 \\
(b, c, d,(a-1) / 4) \in S_{1, n} \text { if } a \equiv 1 \quad \bmod 4, \\
(b, c, d,(a-2) / 4) \in S_{2, n} \text { if } a \equiv 2 \bmod 4 \\
(b, c, d,(a-3) / 4) \in S_{3, n} \text { if } a \equiv 3 \quad \bmod 4
\end{array}\right.
$$

Then

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k)=\left|S_{n}\right|=\left|S_{0, n}\right|+\left|S_{1, n}\right|+\left|S_{2, n}\right|++\left|S_{3, n}\right| .
$$

As

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k) \geq E_{\infty}^{n, 0}+E_{\infty}^{n-2,2}+E_{\infty}^{n-4,4}+E_{\infty}^{n-6,6}
$$

and $V_{i, n} \subseteq E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2,3$, it follows that $V_{i, n} \cong E_{\infty}^{n-2 i, 2 i}$ for $i=0,1,2,3$ and $E_{\infty}^{n-2 i, 2 i}=0$ for $i \geq 4$.

Let F_{*} denote the spectral sequence concentrated on the 0 th column with $F_{2}=\Delta\left(e_{1}, e_{2}, e_{4}\right)$ where e_{i} is of bidegree $(0,2 i)$. There is a map of spectral sequences $F_{*} \rightarrow E_{*}$ taking e_{i} to e_{i} for $i=1,2,4$. Fix a variable y. Let H_{*} denote the spectral sequence with E_{2} page $H_{2}=\Delta\left(e_{3}\right) \otimes k[y]$ where e_{3} is of bidegree $(0,6), y$ is of bidegree $(7,0)$, and e_{3} is transgressive with $d_{7}\left(e_{3} y^{i}\right)=y^{i+1}$ for all i. There is an obvious map of spectral sequences $H_{*} \rightarrow E_{*}$. Classes in the ring of G-invariants are permanent cycles in the spectral sequence (9). Tensoring these maps, we get a map of spectral sequences

$$
\alpha: I_{*}:=F_{*} \otimes H_{*} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{8}^{\prime}\right] \rightarrow E_{*} .
$$

The map α induces an isomorphism on E_{∞} terms and on the 0 th columns of the E_{2} pages. Theorem 1.4 then implies that α induces an isomorphism on the 0 th rows of the E_{2} pages. Thus,

$$
H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{8}^{\prime}\right] .
$$

Proposition 1.5 implies that the Hodge spectral sequence for $B G$ degenerates.

Corollary 3.9. Let k be a field of characteristic 2 and let G be a k-form for $\operatorname{Spin}(8)$. Then

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{8}^{\prime}\right]
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8$ and $\left|y_{8}^{\prime}\right|=8$.
Theorem 3.10. Let $n=9$. The Hodge spectral sequence for $B G$ degenerates and

$$
H_{\mathrm{dR}}^{*}(B G / k) \cong H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{16}\right]
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8,16$.
Proof. From Lemma 3.5,

$$
O(\mathfrak{g})^{G}=k\left[y_{4}, y_{6}, y_{8}, y_{16}\right]
$$

where $\left|y_{i}\right|=i$ in $H_{\mathrm{H}}^{*}(B G / k)$, viewing $O(\mathfrak{g})^{G}$ as a subring of $H_{\mathrm{H}}^{*}(B G / k)$. Consider the spectral sequence

$$
\begin{equation*}
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / k) \otimes H_{\mathrm{H}}^{j}((G / P) / k) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / k) \tag{10}
\end{equation*}
$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$
H_{\mathrm{H}}^{*}((G / P) / k) \cong k\left[e_{1}, e_{2}, e_{3}, e_{4}\right] /\left(e_{i}^{2}=e_{2 i}\right)=k\left[e_{1}, e_{3}\right] /\left(e_{1}^{8}, e_{3}^{2}\right)
$$

and

$$
H_{\mathrm{H}}^{*}(B L / k) \cong k\left[A, c_{2}, c_{3}, c_{4}\right] .
$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_{1} is a permanent cycle in (10) and $e_{3} \in E_{2}^{0,6}$ is transgressive with $0 \neq d_{7}\left(e_{3}\right)=y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$. We have $H_{\mathrm{H}}^{m}(B G / k) \cong H_{\mathrm{H}}^{m}\left(B \operatorname{Spin}(7)_{k} / k\right)$ for $m \leq 10$.

We now determine the E_{∞} terms for (10). For n odd, $E_{\infty}^{i, n-i}=0$ since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H_{\mathrm{H}}^{n}(B L / k)$ is equal to the cardinality of the set

$$
S_{n}=\left\{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}: 2 a+4 b+6 c+8 d=n\right\}
$$

For $0 \leq i \leq 7$, set $V_{i, n}:=H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)$. For $0 \leq i \leq 7, \operatorname{dim}_{k} V_{i, n}$ is equal to the cardinality of the set $S_{i, n}=\left\{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}\right.$: $4 a+6 b+8 c+16 d=n-2 i\}$. As e_{1} is a permanent cycle in (10),

$$
V_{i, n} \cong V_{i, n} \otimes k \cdot e_{1}^{i} \subseteq E_{\infty}^{n-2 i, 2 i}
$$

for $0 \leq i \leq 7$.
Define a bijection $f_{n}: S_{n} \rightarrow \bigcup_{i=0}^{7} S_{i, n}$ by $f_{n}(a, b, c, d)=(b, c, d,(a-i) / 8) \in$ $S_{i, n}$ for $a \equiv i \bmod (8)$. Then

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k)=\left|S_{n}\right|=\sum_{i=0}^{7}\left|S_{i, n}\right| .
$$

As

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k) \geq \sum_{i=0}^{7} E_{\infty}^{n-2 i, 2 i}
$$

and $V_{i, n} \subseteq E_{\infty}^{n-2 i, 2 i}$ for $0 \leq i \leq 7$, it follows that $V_{i, n} \cong E_{\infty}^{n-2 i, 2 i}$ for $0 \leq i \leq 7$ and $E_{\infty}^{n-2 i, 2 i}=0$ for $i \geq 8$.

Let F_{*} denote the cohomological spectral sequence concentrated on the 0 th column with E_{2} page given by $F_{2}=\Delta\left(e_{1}, e_{2}, e_{4}\right)$ where e_{i} has bidegree $(0,2 i)$ for $i=1,2,4$. As e_{1} is a permanent cycle in the spectral sequence (10), there exists a map $F_{*} \rightarrow E_{*}$ of spectral sequences taking e_{i} to e_{i} for $i=1,2,4$. Let y be a free variable and let H_{*} denote the spectral sequence with E_{2} page $H_{2}=\Delta\left(e_{3}\right) \otimes k[y]$ where e_{3} is of bidegree $(0,6), y$ is of bidegree $(7,0)$, and e_{3} is transgressive with $d_{7}\left(e_{3} y^{i}\right)=y^{i+1}$ for all i. As e_{3} is transgressive in the spectral sequence (10) with $d_{7}\left(e_{3}\right)=y_{7}$, there exists a map of spectral sequences $H_{*} \rightarrow E_{*}$ taking e_{3} to e_{3} and y to y_{7}.

Elements in the ring of G-invariants $k\left[y_{4}, y_{6}, y_{8}, y_{16}\right]$ are permanent cycles in the spectral sequence (10). Tensoring maps of spectral sequences, we get a map

$$
\alpha: I_{*}:=F_{*} \otimes H_{*} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{16}\right] \rightarrow E_{*} .
$$

The map α induces an isomorphism on E_{∞} terms and on the 0 th columns of the E_{2} pages. Hence, Theorem 1.4 implies that α induces an isomorphism on the 0 th rows of the E_{2} pages. Thus,

$$
H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{16}\right] .
$$

Proposition 5 implies that the Hodge spectral sequence for $B G$ degenerates.

Corollary 3.11. Let k be a field of characteristic 2 and let G be a k-form for $\operatorname{Spin}(9)$. Then

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{16}\right]
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8,16$.
Remark 3.12. Assume that k is perfect. Let μ_{2} denote the group scheme of the 2nd roots of unity over k. For $n \geq 10$, the Hodge cohomology of $B G$ is no longer a polynomial ring. To determine the relations that hold in $H_{\mathrm{H}}^{*}(B G / k)$, we will restrict cohomology classes to the classifying stack of a certain subgroup of G considered in [17, Section 12]. Let $r=\lfloor n / 2\rfloor$ and let $T \cong \mathbb{G}_{m}^{r}$ denote a split maximal torus of G. Assume that $n \not \equiv 2 \bmod 4$ so that the Weyl group W of G contains -1 , acting by inversion on T. Then -1 acts by the identity on $T[2] \cong \mu_{2}^{r}$ (for $n \in \mathbb{N}, T[n] \subset T$ is the kernel of the nth power map $T \rightarrow T$) and G contains a subgroup $Q \cong \mu_{2}^{r} \times \mathbb{Z} / 2$. Under the double cover $G \rightarrow S O(n)_{k}$, the image of Q is isomorphic to $K \cong \mu_{2}^{r-1} \times \mathbb{Z} / 2$ and $Q \rightarrow K$ is a split surjection. We will need to know the Hodge cohomology rings of the classifying stacks of these groups. For a
commutative ring R, we let $\operatorname{rad} \subset R$ denote the ideal of nilpotent elements. From [17, Proposition 10.1],

$$
H_{\mathrm{H}}^{*}\left(B \mu_{2} / k\right) / \mathrm{rad} \cong k[t]
$$

where $t \in H^{1}\left(B \mu_{2}, \Omega^{1}\right)$. From [17, Lemma 10.2],

$$
H_{\mathrm{H}}^{*}((B \mathbb{Z} / 2) / k)=k[s]
$$

where $s \in H^{1}\left(B \mathbb{Z} / 2, \Omega^{0}\right)$. The Künneth formula [17, Proposition 5.1] then lets us calculate the Hodge cohomology ring of $B \mu_{2}^{i} \times B(\mathbb{Z} / 2)^{j}$ for any $i, j \geq$ 0 . Fix $i, j>0$. Then

$$
H_{\mathrm{H}}^{*}\left(\left(B \mu_{2}^{i} \times B(\mathbb{Z} / 2)^{j}\right) / k\right) / \mathrm{rad} \cong k\left[t_{1}, \ldots, t_{i}, s_{1}, \ldots, s_{j}\right]
$$

where $t_{l} \in H^{1}\left(B \mu_{2}^{i} \times B(\mathbb{Z} / 2)^{j}, \Omega^{1}\right)$ for all l and $s_{l} \in H^{1}\left(B \mu_{2}^{i} \times B(\mathbb{Z} / 2)^{j}, \Omega^{0}\right)$ for all l.

Theorem 3.13. Let $n=10$. The Hodge spectral sequence for $B G$ degenerates and

$$
H_{\mathrm{dR}}^{*}(B G / k) \cong H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{32}\right] /\left(y_{7} y_{10}\right)
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8,10,32$.
Proof. We may assume that $k=\mathbb{F}_{2}$ so that Remark 3.12 applies. From Lemma 3.5,

$$
O(\mathfrak{g})^{G}=k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]
$$

where $\left|y_{i}\right|=i$ in $H_{\mathrm{H}}^{*}(B G / k)$, viewing $O(\mathfrak{g})^{G}$ as a subring of $H_{\mathrm{H}}^{*}(B G / k)$. Consider the spectral sequence

$$
\begin{equation*}
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / k) \otimes H_{\mathrm{H}}^{j}((G / P) / k) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / k) \tag{11}
\end{equation*}
$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$
H_{\mathrm{H}}^{*}((G / P) / k) \cong k\left[e_{1}, e_{2}, e_{3}, e_{4}\right] /\left(e_{i}^{2}=e_{2 i}\right)=k\left[e_{1}, e_{3}\right] /\left(e_{1}^{8}, e_{3}^{2}\right)
$$

and

$$
H_{\mathrm{H}}^{*}(B L / k) \cong k\left[A, c_{2}, c_{3}, c_{4}, c_{5}\right] .
$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_{1} is a permanent cycle in (11) and $e_{3} \in E_{2}^{0,6}$ is transgressive with $0 \neq d_{7}\left(e_{3}\right)=y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$. We have $H_{\mathrm{H}}^{m}(B G / k) \cong H_{\mathrm{H}}^{m}\left(B \operatorname{Spin}(9)_{k} / k\right)$ for $m<10$.

Let F_{*} be the spectral sequence concentrated on the 0th column with E_{2} page given by $F_{2}=\Delta\left(e_{1}, e_{2}, e_{4}\right)$ where e_{i} has bidegree $(0,2 i)$ for all i. As e_{1} is a permanent cycle in (11), there exists a map of spectral sequence $F_{*} \rightarrow E_{*}$ taking e_{i} to e_{i} for $i=1,2,4$. Fix a variable y. Let H_{*} denote the spectral sequence with E_{2} page $H_{2}=\Delta\left(e_{3}\right) \otimes k[y]$ where e_{3} has bidegree $(0,6), y$ has bidegree $(7,0)$, and e_{3} is transgressive with $d_{7}\left(e_{3} y^{i}\right)=y^{i+1}$ for all i. As e_{3} is transgessive in (11) with $d_{7}\left(e_{3}\right)=y_{7}$, there exists a map of spectral sequences $H_{*} \rightarrow E_{*}$ taking e_{3} to e_{3} and y to y_{7}. Elements in the ring
of G-invariants $k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]$ are permanent cycles in (11). Tensoring maps of spectral sequences, we get a map

$$
\begin{equation*}
\alpha: I_{*}:=F_{*} \otimes H_{*} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right] \rightarrow E_{*} \tag{12}
\end{equation*}
$$

which induces an isomorphism on the 0 th columns of the E_{2} pages.
Let n be even. The k-dimension of $H_{\mathrm{H}}^{n}(B L / k)$ is equal to the cardinality of the set

$$
S_{n}=\left\{(a, b, c, d, e) \in \mathbb{Z}_{\geq 0}^{5}: 2 a+4 b+6 c+8 d+10 e=n\right\} .
$$

For $0 \leq i \leq 15$, set $V_{i, n}:=H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)$. For $0 \leq i \leq 15$, $\operatorname{dim}_{k} V_{i, n}$ is equal to the cardinality of the set $S_{i, n}=\left\{(a, b, c, d, e) \in \mathbb{Z}_{\geq 0}^{5}\right.$: $4 a+6 b+8 c+10 d+32 e=n-2 i\}$. As $e_{1} \in H_{\mathrm{H}}^{2}((G / P) / k)$ is a permanent cycle in (11),

$$
V_{i, n} \cong V_{i, n} \otimes k \cdot e_{1}^{i} \subseteq E_{\infty}^{n-2 i, 2 i}
$$

for $0 \leq i \leq 7$. Hence, the map α in (12) induces injections on all E_{∞} terms. For n odd, α induces isomorphisms $0=I_{\infty}^{n-i, i} \cong E_{\infty}^{n-i, i}=0$ for all i since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees.

Define a bijection $f_{n}: S_{n} \rightarrow \bigcup_{i=0}^{15} S_{i, n}$ by $f_{n}(a, b, c, d, e)=(b, c, d, e,(a-$ i)/16) $\in S_{i, n}$ for $a \equiv i \bmod (16)$. Then

$$
\begin{equation*}
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k)=\left|S_{n}\right|=\sum_{i=0}^{15}\left|S_{i, n}\right|=\sum_{i=0}^{15} \operatorname{dim}_{k} V_{i, n} . \tag{13}
\end{equation*}
$$

Now assume that $n \leq 14$. Then f_{n} gives a bijection

$$
S_{n} \rightarrow \bigcup_{i=0}^{7} S_{i, n}
$$

As

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k) \geq \sum_{i=0}^{7} E_{\infty}^{n-2 i, 2 i}
$$

and $V_{i, n} \subseteq E_{\infty}^{n-2 i, 2 i}$ for $0 \leq i \leq 7$, it follows that $V_{i, n} \cong E_{\infty}^{n-2 i, 2 i}$ for $0 \leq i \leq 7$ and $E_{\infty}^{n-2 i, 2 i}=0$ for $i \geq 8$. As α induces injections on all E_{∞} terms, Theorem 1.4 implies that α in (12) induces an isomorphism $I_{2}^{n, 0} \rightarrow E_{2}^{n, 0}$ for $n<16$.

Now we consider the filtration on $H_{\mathrm{H}}^{16}(B L / k)$ given by (11). From the bijection f_{16} defined in the previous paragraph, we have

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{16}(B L / k)=1+\sum_{i=0}^{7}\left|S_{i, n}\right|=1+\sum_{i=0}^{7} \operatorname{dim}_{k} V_{i, n} \otimes k \cdot e_{1}^{i} .
$$

As e_{1} is a permanent cycle and α induces isomorphisms on 0th row terms of the E_{2} pages in degrees less than 16, we must then have

$$
E_{\infty}^{10,6} \cong\left(H_{\mathrm{H}}^{10}(B G / k) \otimes k \cdot e_{1}^{3}\right) \oplus\left(k \cdot z \otimes k \cdot e_{3}\right)
$$

for some $0 \neq z \in H_{\mathrm{H}}^{10}(B G / k)$. Hence, $y_{7} z=0$ in $H_{\mathrm{H}}^{*}(B G / k)$. Write $z=$ $a y_{4} y_{6}+b y_{10}$ for some $a, b \in k$.

We now show that $a=0$ by restricting $y_{7} z=0$ to the Hodge cohomology of the classifying stack of the subgroup $\operatorname{Spin}(8)_{k}$ of G. Under the isomorphism

$$
H_{\mathrm{H}}^{*}\left(B \operatorname{Spin}(8)_{k} / k\right) \cong k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{16}\right]
$$

of Theorem 3.10, the pullback from $H_{\mathrm{H}}^{*}(B G / k)$ to $H_{\mathrm{H}}^{*}\left(B \operatorname{Spin}(8)_{k} / k\right)$ maps $y_{4}, y_{6}, y_{10} \in H_{\mathrm{H}}^{*}(B G / k)$ to y_{4}, y_{6}, and 0 respectively in $H_{\mathrm{H}}^{*}\left(B \operatorname{Spin}(8)_{k} / k\right)$. Hence, to show that $a=0$, it suffices to show that $y_{7} \in H_{\mathrm{H}}^{*}(B G / k)$ restricts to $y_{7} \in H_{\mathrm{H}}^{*}\left(B \operatorname{Spin}(8)_{k} / k\right)$. From the isomorphism

$$
H_{\mathrm{H}}^{*}\left(B S O(m)_{k} / k\right) \cong k\left[u_{2}, \ldots, u_{m}\right]
$$

of Theorem 3.4 for $m \geq 0$, the class $u_{7} \in H_{\mathrm{H}}^{7}\left(B S O(10)_{k} / k\right)$ restricts to $u_{7} \in$ $H_{\mathrm{H}}^{7}\left(B S O(8)_{k} / k\right)$. Thus, we are reduced to showing that $u_{7} \in H_{\mathrm{H}}^{7}\left(B S O(8)_{k} / k\right)$ pulls back to a non-zero multiple of $y_{7} \in H_{\mathrm{H}}^{*}\left(B \operatorname{Spin}(8)_{k} / k\right)$.

Consider the subgroups $\mu_{2}^{4} \times \mathbb{Z} / 2 \cong Q \subseteq \operatorname{Spin}(8)_{k}$ and $\mu_{2}^{3} \times \mathbb{Z} / 2 \cong K \subseteq$ $S O(8)_{k}$ defined in Remark 3.12. As the morphism $Q \rightarrow K$ is split surjective, if we can show that u_{7} restricts to a nonzero class in $H_{\mathrm{H}}^{*}(B K / k)$, then u_{7} would restrict to a nonzero class in $H_{\mathrm{H}}^{7}\left(B \operatorname{Spin}(8)_{k} / k\right)$. From the inclusion $O(2)_{k}^{4} \subset O(8)_{k}, O(8)_{k}$ contains a subgroup of the form $\mu_{2}^{4} \times(\mathbb{Z} / 2)^{4}$. As $S O(8)_{k}$ is the kernel of the Dickson determinant (also called the Dickson invariant in some sources $[11, \S 23]) O(8)_{k} \rightarrow \mathbb{Z} / 2$, it follows that $S O(8)_{k}$ contains a subgroup $H \cong \mu_{2}^{4} \times(\mathbb{Z} / 2)^{3}$. Write

$$
H_{\mathrm{H}}^{*}(B H / k) / \mathrm{rad} \cong k\left[t_{1}, \ldots, t_{4}, s_{1}, \ldots, s_{4}\right] /\left(s_{1}+s_{2}+s_{3}+s_{4}\right)
$$

using Remark 3.12. From the proof of [17, Lemma 11.4], the pullback of u_{7} to $H_{\mathrm{H}}^{*}(B H / k) / \mathrm{rad}$ followed by pullback to

$$
H_{\mathrm{H}}^{*}(B K / k) / \mathrm{rad} \cong k\left[t_{1}, \ldots, t_{4}, s\right] /\left(t_{1}+\cdots+t_{4}\right)
$$

is given by

$$
\begin{gathered}
u_{7} \mapsto \sum_{j=1}^{3} s_{j}\left(t_{j}+t_{4}\right) \sum_{\substack{1 \leq i_{1}<i_{2} \leq 3 \\
i_{1}, i_{2} \neq j}} t_{i_{1}} t_{i_{2}} \mapsto \sum_{j=1}^{3} s\left(t_{j}+t_{4}\right) \sum_{\substack{1 \leq i_{1}<i_{2} \leq 3 \\
i_{1}, i_{2} \neq j}} t_{i_{1}} t_{i_{2}} \\
=s \sum_{1 \leq i_{1}<i_{2} \leq 3}\left(t_{i_{1}}+t_{i_{2}}\right) t_{i_{1}} t_{i_{2}} \neq 0 .
\end{gathered}
$$

Thus, $u_{7} \in H_{\mathrm{H}}^{7}\left(B S O(8)_{k} / k\right)$ pulls back to a nonzero multiple of

$$
y_{7} \in H_{\mathrm{H}}^{7}\left(B \operatorname{Spin}(8)_{k} / k\right)
$$

which implies that $y_{7} y_{10}=0$ in $H_{\mathrm{H}}^{*}(B G / k)$.

Using the relation $y_{7} y_{10}=0$, we now modify the spectral sequence I_{*} defined above to define a new spectral sequence J_{*} that better approximates (and will actually be isomorphic to) the spectral sequence (11). Let

$$
\left(y y_{10}\right):=F_{2} \otimes\left(\Delta\left(e_{3}\right) \otimes y k[y]\right) \otimes y_{10} k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right] .
$$

Define the E_{2} page of J_{*} by $J_{2}=I_{2} /\left(y y_{10}\right)$. Define the differentials d_{m}^{\prime} of J_{*} so that $I_{2} \rightarrow J_{2}$ induces a map $I_{*} \rightarrow J_{*}$ of cohomological spectral sequences of k-vector spaces and $d_{m}^{\prime}=0$ for $m>7$. This means that $d_{7}^{\prime}\left(f \otimes e_{3} \otimes y_{10} g\right)=$ $f \otimes y \otimes y_{10} g=0$ and $d_{m}^{\prime}\left(f \otimes e_{3} \otimes y_{10} g\right)=0$ for $m>7, f \in F_{2}$, and $g \in k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]$. The E_{∞} page of J_{*} is given by

$$
J_{\infty} \cong\left(F_{2} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]\right) \oplus\left(F_{2} \otimes e_{3} \otimes y_{10} k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]\right)
$$

As $y_{7} y_{10}=0$ in $H_{\mathrm{H}}^{*}(B G / k), \alpha$ induces a map $\alpha^{\prime}: J_{*} \rightarrow E_{*}$ of spectral sequences. To finish the calculation, we will show that α^{\prime} induces an isomorphism on E_{∞} terms so that Theorem 1.4 will apply. For n odd, $E_{\infty}^{n-i, i}=0$ for all i since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees. Now assume that n is even. For $0 \leq i \leq 7$,

$$
V_{i, n} \cong H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right) \otimes e_{1}^{i} \subseteq E_{\infty}^{n-2 i, 2 i} .
$$

For $8 \leq i \leq 15$,

$$
V_{i, n} \cong y_{10} H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right) \otimes e_{1}^{i-8} e_{3} \subseteq E_{\infty}^{n-2 i+10,2 i-10} .
$$

Hence, from the description of the E_{∞} terms of J_{*} given above, it follows that α^{\prime} induces an injection $J_{\infty}^{n-2 i, 2 i} \rightarrow E_{\infty}^{n-2 i, 2 i}$ for all i. Equation (13) then implies that $J_{\infty}^{n-2 i, 2 i} \cong E_{\infty}^{n-2 i, 2 i}$ for all i.

Thus, α^{\prime} induces an isomorphism on E_{∞} pages and an isomorphism on the 0 th columns of the E_{2} pages of the 2 spectral sequences. Theorem 1.4 then implies that

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{32}\right] /\left(y_{7} y_{10}\right) .
$$

From Proposition 5, the Hodge spectral sequence for $B G$ degenerates.

Corollary 3.14. Let G be a k-form of $\operatorname{Spin}(10)$. Then

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{32}\right] /\left(y_{7} y_{10}\right)
$$

where $\left|y_{i}\right|=i$ for all i.
Theorem 3.15. Let $n=11$. The Hodge spectral sequence for $B G$ degenerates and

$$
H_{\mathrm{dR}}^{*}(B G / k) \cong H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{11}, y_{32}\right] /\left(y_{7} y_{10}+y_{6} y_{11}\right)
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8,10,11,32$.
Proof. We may assume that $k=\mathbb{F}_{2}$ so that Remark 3.12 applies. From Lemma 3.5,

$$
O(\mathfrak{g})^{G} \cong k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]
$$

where $\left|y_{i}\right|=i$ in $H_{\mathrm{H}}^{*}(B G / k)$, viewing $O(\mathfrak{g})^{G}$ as a subring of $H_{\mathrm{H}}^{*}(B G / k)$. Consider the spectral sequence

$$
\begin{equation*}
E_{2}^{i, j}=H_{\mathrm{H}}^{i}(B G / k) \otimes H_{\mathrm{H}}^{j}((G / P) / k) \Rightarrow H_{\mathrm{H}}^{i+j}(B L / k) \tag{14}
\end{equation*}
$$

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$
H_{\mathrm{H}}^{*}((G / P) / k) \cong k\left[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right] /\left(e_{i}^{2}=e_{2 i}\right)=k\left[e_{1}, e_{3}, e_{5}\right] /\left(e_{1}^{8}, e_{3}^{2}, e_{5}^{2}\right)
$$

and

$$
H_{\mathrm{H}}^{*}(B L / k) \cong k\left[A, c_{2}, c_{3}, c_{4}, c_{5}\right] .
$$

Using Theorem 3.4, write $H_{\mathrm{H}}^{*}\left(B S O(11)_{k} / k\right)=k\left[u_{2}, \ldots, u_{11}\right]$. From the inclusions $O(2)_{k}^{5} \subset O(10)_{k} \subset S O(11)_{k}, S O(11)_{k}$ contains a subgroup $H \cong \mu_{2}^{5} \times$ $(\mathbb{Z} / 2)^{5}$. Write $H_{\mathrm{H}}^{*}(B H / k) / \mathrm{rad} \cong k\left[t_{1}, \ldots, t_{5}, s_{1}, \ldots, s_{5}\right]$ as described in Remark 3.12. Under the pullback map $H_{\mathrm{H}}^{*}\left(B S O(11)_{k} / k\right) \rightarrow H_{\mathrm{H}}^{*}(B H / k) / \mathrm{rad}$, $u_{2 m}$ pulls back to the m th elementary symmetric polynomial

$$
\begin{equation*}
\sum_{1 \leq i_{1}<\cdots<i_{m} \leq 5} t_{i_{1}} \cdots t_{i_{m}} \tag{15}
\end{equation*}
$$

and $u_{2 m+1}$ pulls back to

$$
\sum_{j=1}^{5} s_{j} \sum_{\substack{1 \leq i_{1}<\cdots<i_{m} \leq 5 \\ \text { one equal to } \mathrm{j}}} t_{i_{1}} \cdots t_{i_{m}}
$$

for $1 \leq m \leq 5$ [17, Lemma 11.4]. To be concise, from now on we will write $u_{2 m}$ to denote the image of $u_{2 m}$ under pullback maps to $H_{\mathrm{H}}^{*}(B H / k) / \mathrm{rad}$ or $H_{\mathrm{H}}^{*}(B K / k) / \mathrm{rad}$ whenever we are dealing with these two rings.

Let $Q \cong\left(\mu_{2}^{5} \times \mathbb{Z} / 2\right) \subset G$ and $K \cong\left(\mu_{2}^{4} \times \mathbb{Z} / 2\right) \subset S O(11)_{k}$ be the subgroups described in Remark 3.12. Write $H_{\mathrm{H}}^{*}(B K / k) / \mathrm{rad} \cong k\left[t_{1}, \ldots, t_{5}, s\right] /\left(t_{1}+\cdots+\right.$ $\left.t_{5}\right)$. Under the pullback map $H_{\mathrm{H}}^{*}\left(B S O(11)_{k} / k\right) \rightarrow H_{\mathrm{H}}^{*}(B K / k) / \mathrm{rad}, u_{7}$ maps to $s u_{6} \neq 0$ and u_{11} maps to $s u_{10} \neq 0$. As $Q \rightarrow K$ is split, it follows that u_{7}, u_{11} restrict to nonzero classes $y_{7} \in H_{\mathrm{H}}^{7}(B G / k)$ and $y_{11} \in H_{\mathrm{H}}^{11}(B G / k)$. Also, $y_{4} y_{7}$ and y_{11} are linearly independent in $H_{\mathrm{H}}^{11}(B G / k)$.

Returning to the spectral sequence (14), calculations similar to those performed in the proof of Proposition 3.6 show that e_{1} is a permanent cycle in (14) and $e_{3} \in E_{2}^{0,6}$ is transgressive with $0 \neq d_{7}\left(e_{3}\right)=y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$. We have $H_{\mathrm{H}}^{m}(B G / k) \cong H_{\mathrm{H}}^{m}\left(B \operatorname{Spin}(10)_{k} / k\right)$ for $m \leq 10$.

Let F_{*} be the spectral sequence concentrated on the 0 th column with E_{2} page given by $\Delta\left(e_{1}, e_{2}, e_{4}\right)$ with e_{i} of bidegree $(0,2 i)$ for $i=1,2,4$. Fix a variable y and let H_{*} be the spectral sequence with $H_{2}=\Delta\left(e_{3}\right) \otimes k[y]$ where e_{3} is of bidegree $(0,6), y$ is of bidegree $(7,0)$, and e_{3} is transgressive with $d_{7}\left(e_{3} y^{i}\right)=y^{i+1}$ for all i. There exists a map of spectral sequence

$$
\alpha: I_{*}:=F_{*} \otimes H_{*} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right] \rightarrow E_{*}
$$

taking e_{i} to e_{i} for $i=1,2,3,4$ and taking y to y_{7}. The E_{∞} page of I_{*} is given by $I_{\infty} \cong F_{2} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]$ and α induces an injection $I_{\infty}^{i, j} \rightarrow E_{\infty}^{i, j}$ for all i, j with $i+j \leq 17$. For n odd, α induces an isomorphism $0=I_{\infty}^{n-i, i} \cong$ $E_{\infty}^{n-i, i}=0$ for all i since $H_{\mathrm{H}}^{*}(B L / k)$ is concentrated in even degrees.

Let n be even. The k-dimension of $H_{\mathrm{H}}^{n}(B L / k)$ is equal to the cardinality of the set

$$
S_{n}=\left\{(a, b, c, d, e) \in \mathbb{Z}_{\geq 0}^{5}: 2 a+4 b+6 c+8 d+10 e=n\right\}
$$

For $0 \leq i \leq 15$, set $V_{i, n}:=H^{(n-2 i) / 2}\left(B G, \Omega^{(n-2 i) / 2}\right)$. For $0 \leq i \leq 15$, $\operatorname{dim}_{k} V_{i, n}$ is equal to the cardinality of the set $S_{i, n}=\left\{(a, b, c, d, e) \in \mathbb{Z}_{>0}^{5}\right.$: $4 a+6 b+8 c+10 d+32 e=n-2 i\}$. As $e_{1} \in H_{\mathrm{H}}^{2}((G / P) / k)$ is a permanent cycle in (14),

$$
V_{i, n} \cong V_{i, n} \otimes k \cdot e_{1}^{i} \subseteq E_{\infty}^{n-2 i, 2 i}
$$

for $0 \leq i \leq 7$ and $n \leq 16$.
Define a bijection $f_{n}: S_{n} \rightarrow \bigcup_{i=0}^{15} S_{i, n}$ by $f_{n}(a, b, c, d, e)=(b, c, d, e,(a-$ $i) / 16) \in S_{i, n}$ for $a \equiv i \bmod (16)$. Then

$$
\begin{equation*}
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k)=\left|S_{n}\right|=\sum_{i=0}^{15}\left|S_{i, n}\right|=\sum_{i=0}^{15} \operatorname{dim}_{k} V_{i, n} \tag{16}
\end{equation*}
$$

Now assume that $n \leq 14$. Then f_{n} gives a bijection

$$
S_{n} \rightarrow \bigcup_{i=0}^{7} S_{i, n}
$$

As

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{n}(B L / k) \geq \sum_{i=0}^{7} E_{\infty}^{n-2 i, 2 i}
$$

and $V_{i, n} \subseteq E_{\infty}^{n-2 i, 2 i}$ for $0 \leq i \leq 7$, it follows that $V_{i, n} \cong E_{\infty}^{n-2 i, 2 i}$ for $0 \leq i \leq 7$ and $E_{\infty}^{n-2 i, 2 i}=0$ for $i \geq 8$. In particular, $E_{\infty}^{0,10} \cong k \cdot e_{1}^{5}$. As mentioned above, we have $H_{\mathrm{H}}^{m}(B G / k)=0$ for $m=3,5,9$. After adding a k-multiple of $e_{3} e_{1}^{2}$ to e_{5}, we can assume that $d_{7}\left(e_{5}\right)=0$. Then the isomorphism $E_{\infty}^{0,10} \cong$ $k \cdot e_{1}^{5}$ implies that $d_{11}\left(e_{5}\right) \neq 0$. Hence, e_{5} is transgressive in (14) and $y_{11} \in$ $H^{6}\left(B G, \Omega^{5}\right)$ is a lifting of $d_{11}\left(e_{5}\right)$ to $E_{2}^{11,0}$.

Fix a variable x. Let J_{*} denote the spectral sequence with E_{2} page $J_{2}=$ $\Delta\left(e_{5}\right) \otimes k[x]$ where e_{5} has bidegree $(0,10), x$ has bidegree $(11,0)$, and e_{5} is transgressive with $d_{11}\left(e_{5} x^{i}\right)=x^{i+1}$ for all i.

As e_{5} is transgressive in (14), there exists a map of spectral sequences $J_{*} \rightarrow E_{*}$ taking e_{5} to e_{5} and x to y_{11}. Tensoring with the map α defined above, we get a map

$$
\alpha^{\prime}: K_{*}:=I_{*} \otimes J_{*} \rightarrow E_{*}
$$

which induces an isomorphism on the 0 th columns of the E_{2} pages. The E_{∞} page of K_{*} is given by

$$
K_{\infty} \cong I_{\infty} \cong F_{2} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]
$$

As mentioned above, α and hence α^{\prime} induce isomorphisms on $E_{\infty}^{n-i, i}$ terms for $n<16$ and injections on all E_{∞} terms on or below the line $i+j=17$. Theorem 1.4 implies that α^{\prime} induces an isomorphism $K_{2}^{n, 0} \rightarrow E_{2}^{n, 0}$ for $n<$ 16.

Next, we consider the filtration on $H_{\mathrm{H}}^{16}(B L / k)$ given by (14). From (16),

$$
\operatorname{dim}_{k} H_{\mathrm{H}}^{16}(B L / k)=1+\sum_{i=0}^{7}\left|S_{i, 16}\right|=1+\sum_{i=0}^{7} \operatorname{dim}_{k} V_{i, 16} \otimes k \cdot e_{1}^{i}
$$

We must then have either $d_{7}\left(e_{3} f\right)=y_{7} f=0 \in H_{\mathrm{H}}^{17}(B G / k)$ for some $0 \neq$ $f \in H_{\mathrm{H}}^{10}(B G / k)$ or $d_{11}\left(e_{5} g\right)=y_{11} g=d_{7}\left(e_{3}\right) h=y_{7} h \in H_{\mathrm{H}}^{17}(B G / k)$ for some $0 \neq g \in H_{\mathrm{H}}^{6}(B G / k)$ and $h \in H_{\mathrm{H}}^{10}(B G / k)$. Let $a, b, c \in k$, not all zero, such that $a y_{11} y_{6}+b y_{7} y_{10}+c y_{7} y_{4} y_{6}=0 \in H_{\mathrm{H}}^{17}(B G / k)$.

The class $a u_{11} u_{6}+b u_{7} u_{10}+c u_{7} u_{4} u_{6} \in H_{\mathrm{H}}^{17}\left(B S O(11)_{k} / k\right)$ pulls back to $a y_{11} y_{6}+b y_{7} y_{10}+c y_{7} y_{4} y_{6}=0 \in H_{\mathrm{H}}^{17}(B G / k)$. Under the pullback map

$$
H_{\mathrm{H}}^{*}\left(B S O(11)_{k} / k\right) \rightarrow H_{\mathrm{H}}^{*}(B K / k) / \mathrm{rad} \cong k\left[t_{1}, \ldots, t_{5}, s\right] /\left(t_{1}+\cdots+t_{5}\right)
$$

$a u_{11} u_{6}+b u_{7} u_{10}+c u_{7} u_{4} u_{6}$ maps to $a s u_{10} u_{6}+b s u_{6} u_{10}+c s u_{6} u_{4} u_{6}$, which equals 0 since $Q \rightarrow K$ is split. Then $c=0$ and $a=b$ since the elementary symmetric polynomials (15) in

$$
k\left[t_{1}, \ldots, t_{5}\right] /\left(t_{1}+\cdots+t_{5}\right)
$$

generate a polynomial subring.

Thus, the relation $y_{7} y_{10}+y_{6} y_{11}=0$ holds in $H_{\mathrm{H}}^{*}(B G / k)$ and $E_{\infty}^{6,10} \cong(k$. $\left.y_{6} \otimes e_{5}\right) \oplus\left(k \cdot y_{6} \otimes e_{1}^{5}\right)$. We now use the relation $y_{7} y_{10}+y_{6} y_{11}=0$ to define a new spectral sequence L_{*} from K_{*}. Let $\left(y_{6} x+y y_{10}\right) \subset K_{2}$ denote the ideal generated by $y_{6} x+y y_{10}$ and let $L_{2}:=K_{2} /\left(y_{6} x+y y_{10}\right)$. Define the differentials d_{m}^{\prime} of L_{*} so that $K_{2} \rightarrow L_{2}$ induces a map of spectral sequences $K_{*} \rightarrow L_{*}$ and $d_{m}^{\prime}=0$ for $m>11$. Then $\alpha^{\prime}: K_{*} \rightarrow E_{*}$ induces a map of spectral sequences $\alpha^{\prime \prime}: L_{*} \rightarrow E_{*}$. The E_{∞} page of L_{*} is given by

$$
L_{\infty} \cong\left(F_{2} \otimes k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right]\right) \oplus\left(F_{2} \otimes y_{6} k\left[y_{4}, y_{6}, y_{8}, y_{10}, y_{32}\right] \otimes e_{5}\right) .
$$

We now show by induction that $\alpha^{\prime \prime}$ induces an isomorphism $L_{2}^{n, 0} \rightarrow E_{2}^{n, 0}$ for all n. For $n<16$, we have shown that $L_{2}^{n, 0} \cong E_{2}^{n, 0}$. Now let $n \geq 16$ and assume that $\alpha^{\prime \prime}$ induces an isomorphism $L_{2}^{m, 0} \rightarrow E_{2}^{m, 0}$ for all $m<n$. First, suppose that n is even. As $L_{2}^{m, 0} \cong E_{2}^{m, 0}$ for $m<n, y_{7} g \neq 0 \in$ $H_{\mathrm{H}}^{*}(B G / k)$ for all $0 \neq g \in H_{\mathrm{H}}^{*}(B G / k)$ with $|g|<n-7$. Hence, for any $0 \neq g \in H_{\mathrm{H}}^{m}(B G / k)$ with $|g|=m<n-7, g \otimes e_{3} e_{5} \in E_{2}^{m, 16} \cong E_{7}^{m, 16}$ is not in the kernel of the differential $d_{7}: E_{7}^{m, 16} \rightarrow E_{7}^{m+7,10} \cong E_{2}^{m+7,10}$. As $y_{7} \in H^{4}\left(B G, \Omega^{3}\right)$ and $y_{11} \in H^{6}\left(B G, \Omega^{5}\right), y_{7} z, y_{11} z \notin \oplus_{i} H^{i}\left(B G, \Omega^{i}\right)$ for all $z \in H_{\mathrm{H}}^{*}(B G / k)$. It follows that $\alpha^{\prime \prime}$ induces an injection $L_{\infty}^{i, j} \rightarrow E_{\infty}^{i, j}$ for all i, j with $m=i+j \leq n$:

$$
L_{\infty}^{m-2 i, 2 i} \cong V_{i, m} \otimes e_{1}^{i} \subseteq E_{\infty}^{m-2 i, 2 i}
$$

for $0 \leq i \leq 4$,

$$
L_{\infty}^{m-2 i, 2 i} \cong\left(V_{i, m} \otimes e_{1}^{i}\right) \oplus\left(y_{6} V_{i+3, m} \otimes e_{1}^{i-5} e_{5}\right) \subseteq E_{\infty}^{m-2 i, 2 i}
$$

for $5 \leq i \leq 7$, and

$$
L_{\infty}^{m-2 i, 2 i} \cong y_{6} V_{i+3, m} \otimes e_{1}^{i-5} e_{5} \subseteq E_{\infty}^{m-2 i, 2 i}
$$

for $8 \leq i \leq 12$. The equality in (16) then implies that $\alpha^{\prime \prime}$ induces isomorphisms $L_{\infty}^{i, j} \rightarrow E_{\infty}^{i, j}$ for all i, j with $i+j \leq n$. As mentioned above, $\alpha^{\prime \prime}$ induces isomorphisms $0=L_{\infty}^{n+1-i, i} \rightarrow E_{\infty}^{n+1-i, i}=0$ for all i since $n+1$ is odd. Theorem 1.4 then implies that $\alpha^{\prime \prime}$ induces an isomorphism $L_{2}^{n, 0} \cong E_{2}^{n, 0}=H_{\mathrm{H}}^{n}(B G / k)$.

Now assume that n is odd. We have $0=L_{\infty}^{i, j} \cong E_{\infty}^{i, j}=0$ for all i, j with $i+j=n$. An argument similar to the one used above for when n is even shows that $\alpha^{\prime \prime}$ induces injections $L_{\infty}^{i, j} \rightarrow E_{\infty}^{i, j}$ for all i, j with $i+j \leq n+1$. Equation (16) then implies that $\alpha^{\prime \prime}$ induces isomorphisms $L_{\infty}^{i, j} \rightarrow E_{\infty}^{i, j}$ for all i, j with $i+j \leq n+1$. It follows that $\alpha^{\prime \prime}$ induces an isomorphism $L_{2}^{n, 0} \cong$ $E_{2}^{n, 0}=H_{\mathrm{H}}^{n}(B G / k)$ by an application of Theorem 1.4. Thus, by induction, we have obtained that the 0 th row of L_{2} is isomorphic to the 0 th row of E_{2} :

$$
H_{\mathrm{H}}^{*}(B G / k)=k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{11}, y_{32}\right] /\left(y_{7} y_{10}+y_{6} y_{11}\right) .
$$

The Hodge spectral sequence for $B G$ degenerates by Proposition 5 .

Corollary 3.16. Let G be a k-form of $\operatorname{Spin}(11)$. Then

$$
H_{\mathrm{H}}^{*}(B G / k) \cong k\left[y_{4}, y_{6}, y_{7}, y_{8}, y_{10}, y_{11}, y_{32}\right] /\left(y_{7} y_{10}+y_{6} y_{11}\right)
$$

where $\left|y_{i}\right|=i$ for $i=4,6,7,8,10,11,32$.

References

[1] Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Integral p-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219-397. MR3905467, Zbl 07018374, arXiv:1602.03148, doi: 10.1007/s10240-019-00102z. 1002, 1003
[2] Borel, Armand. Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991. xii+288 pp. ISBN: 0-387-97370-2. MR1102012 (92d:20001), Zbl 0726.20030. 1004
[3] Bourbaki, Nicolas. Lie groups and Lie algebras. Chapters 4-6. Elements of Mathematics. Springer-Verlag, Berlin, 2002. xii+300 pp. ISBN: 3-540-42650-7. MR1890629 (2003a:17001), Zbl 1145.17001. 1007
[4] Chaput, Pierre-Emmanuel; Romagny, Matthieu. On the adjoint quotient of Chevalley groups over arbitrary base schemes. J. Inst. Math. Jussieu 9 (2010), no. 4, 673-704. MR2684257 (2011h:20097), Zbl 1202.13004, doi: 10.1017/S1474748010000125. 1005
[5] Chevalley, Claude. Sur les décompositions cellulaires des espaces G / B. Proc. Sympos. Pure Math., 56, Part 1. Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), 1-23. Amer. Math. Soc., Providence, RI, 1994. MR1278698 (95e:14041), Zbl 0824.14042, doi: 10.1090/pspum/056.1. 1004
[6] Demazure, Michel. Invariants symétriques entiers des groupes de Weyl et torsion. Invent. Math. 21 (1973), 287-301. MR0342522 (49\#7268), Zbl 0269.22010, doi: 10.1007/BF01418790. 1004
[7] Donkin, Stephen. On conjugating representations and adjoint representations of semisimple groups. Invent. Math. 91 (1988), no. 1, 137-145. MR0918240 (89a:20047), Zbl 0639.20021, doi: 10.1007/BF01404916. 1007
[8] Elman, Richard; Karpenko, Nikita; Merkurjev, Alexander. The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56. American Mathematical Society, Providence, RI, 2008. viii+435 pp. ISBN: 978-0-8218-4329-1. MR2427530 (2009d:11062), Zbl 1165.11042, doi: 10.1090/coll/056. 1007
[9] Fulton, William; Harris, Joe. Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991. xvi+551 pp. ISBN: 0-387-97527-6; 0-387-97495-4. MR1153249 (93a:20069), Zbl 0744.22001, doi: 10.1007/978-1-4612-0979-9. 1007
[10] Jantzen, Jens Carsten. Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs, 107. American Mathematical Society, Providence, RI, 2003. xiv+576 pp. ISBN: 0-8218-3527-0. MR2015057 (2004h:20061), Zbl 1034.20041. 1007
[11] Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre. The book of involutions. American Mathematical Society Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998. xxii+593 pp. ISBN: 0-8218-0904-0. MR1632779 (2000a:16031), Zbl 0955.16001, doi: 10.1090/coll/044. 1020
[12] Mimura, Mamoru; Toda, Hirosi. Topology of Lie groups. I, II. Translated from the 1978 Japanese edition by the authors. Translations of Mathematical

Monographs, 91. American Mathematical Society, Providence, RI, 1991. iv +451 pp. ISBN: 0-8218-4541-1. MR1122592 (92h:55001), Zbl 0757.57001. 1005, 1006, 1010
[13] Nakajima, Haruhisa. Invariants of finite groups generated by pseudoreflections in positive characteristic. Tsukuba J. Math. 3 (1979), no. 1, 109-122. MR0543025 (82i:20058), Zbl 0418.20041, doi: 10.21099/tkbjm/1496158618. 1011
[14] Quillen, Daniel. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971), 197-212. MR0290401 (44\#7582), Zbl 0225.55015, doi: 10.1007/BF01350050. 1003
[15] Srinivas, Vasudevan. Gysin maps and cycle classes for Hodge cohomology. Proc. Indian Acad. Sci. Math. Sci. 103 (1993), no. 3, 209-247. MR1273351 (95d:14010), Zbl 0816.14003, doi: 10.1007/BF02866988. 1004
[16] Totaro, Burt. The torsion index of E_{8} and other groups. Duke Math. J. 129 (2005), no. 2, 219-248. MR2165542 (2006f:57039a), Zbl 1093.57011, doi: 10.1215/S0012-7094-05-12922-2. 1011
[17] Totaro, Burt. Hodge theory of classifying stacks. Duke Math. J. 167 (2018), no. 8, 1573-1621. MR3807317, Zbl 1423.14149, doi: 10.1215/00127094-20180003. 1002, 1003, 1004, 1005, 1006, 1007, 1011, 1017, 1018, 1020, 1022
(Eric Primozic) Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
primozic@ualberta.ca
This paper is available via http://nyjm.albany.edu/j/2020/26-42.html.

