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Computations of de Rham cohomology
rings of classifying stacks

at torsion primes

Eric Primozic

Abstract. We compute the de Rham cohomology rings of BG2 and
BSpin(n) for 7 ≤ n ≤ 11 over base fields of characteristic 2.
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Introduction

Let G be a smooth affine algebraic group over a commutative ring R. In
[17], Totaro defines the Hodge cohomology group H i(BG,Ωj) for i, j ≥ 0
to be the ith étale cohomology group of the sheaf of differential forms Ωj

over R on the big étale site of the classifying stack BG. For n ≥ 0, let
Hn

H(BG/R) := ⊕jHj(BG,Ωn−j) denote the total Hodge cohomology group
of degree n. De Rham cohomology groups Hn

dR(BG/R) are defined to be
the étale cohomology groups of the de Rham complex of BG. Let g denote
the Lie algebra associated to G and let O(g) = S(g∗) denote the ring of
polynomial functions on g. In [17, Corollary 2.2], Totaro showed that the
Hodge cohomology of BG is related to the representation theory of G:

H i(BG,Ωj) ∼= H i−j(G,Sj(g∗)).

Let G be a split reductive group defined over Z. From the work of Bhatt-
Morrow-Scholze in p-adic Hodge theory [1, Theorem 1.1], one might expect
that
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dimFpH
i
dR(BGFp/Fp) ≥ dimFpH

i(BGC,Fp) (1)

for all primes p and i ≥ 0. The results from [1] do not immediately apply
to BG since BG is not proper as a stack over Z. For p a non-torsion prime
of a split reductive group G defined over Z, Totaro showed that

H∗dR(BGFp/Fp) ∼= H∗(BGC,Fp) (2)

[17, Theorem 9.2]. It remains to compare H∗dR(BGFp/Fp) with H∗(BGC,Fp)
for p a torsion prime of G. For n ≥ 3, 2 is a torsion prime for the split group
SO(n). Totaro showed that

H∗dR(BSO(n)F2/F2) ∼= H∗(BSO(n)C,F2) ∼= F2[w2, . . . , wn]

as graded rings where w2, . . . , wn are the Stiefel-Whitney classes [17, The-
orem 11.1]. In general, the rings H∗dR(BGFp/Fp) and H∗(BGC,Fp) are dif-
ferent though. For example,

dimF2H
32
dR(BSpin(11)F2/F2) > dimF2H

32(BSpin(11)C,F2)

[17, Theorem 12.1].
In this paper, we verify inequality (1) for more examples. For the torsion

prime 2 of the split reductive group G2 over Z, we show that

H∗dR(B(G2)F2/F2) ∼= H∗(B(G2)C,F2) ∼= F2[y4, y6, y7]

as graded rings where |yi| = i for i = 4, 6, 7. For the spin groups, we show
that

H∗dR(BSpin(n)F2/F2) ∼= H∗(BSpin(n)C,F2) (3)

for 7 ≤ n ≤ 10. Note that 2 is a torsion prime for Spin(n) for n ≥ 7. The
isomorphism (3) holds for 1 ≤ n ≤ 6 by the “accidental” isomorphisms for
spin groups along with (2).

For n = 11, we make a full computation of the de Rham cohomology ring
of BSpin(n)F2 :

H∗dR(BSpin(11)F2/F2) ∼= F2[y4, y6, y7, y8, y10, y11, y32]/(y7y10 + y6y11)

where |yi| = i for all i. We can compare this result with the computation of
the singular cohomology of BSpin(11)C given by Quillen [14]:

H∗(BSpin(11)C,F2) ∼= F2[w4, w6, w7, w8, w10, w11, w64]/(w7w10 + w6w11,

w3
11 + w2

11w7w4 + w11w8w
2
7)

where |wi| = i for all i. Equivalently,

H∗(BSpin(11)C,F2) ∼= H∗(BSO(11)C,F2)/J ⊗ F2[w64]

where J is the ideal generated by the regular sequence

w2, Sq
1(w2), Sq

2Sq1(w2), . . . , Sq
16Sq8 · · ·Sq1w2.

Thus, the rings H∗dR(BSpin(n)F2/F2) and H∗(BSpin(n)C,F2) are not iso-
morphic in general even though H∗dR(BSO(n)F2/F2) ∼= H∗(BSO(n)C,F2)
for all n. Steenrod squares on de Rham cohomology over a base field of
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characteristic 2 have not yet been constructed. If they exist, our calcula-
tion suggests that their action on H∗dR(BSO(n)F2/F2) ∼= H∗(BSO(n)C,F2)
would have to be different from the action of the topological Steenrod oper-
ations.
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1. Preliminaries

In this section, we recall results from [17] that will be used in our com-
putations. These results were also used by Totaro in [17, Theorem 11.1] to
compute the de Rham cohomology of BSO(n)k for k a field of characteristic
2.

The first result we mention [17, Proposition 9.3] is an analogue of the
Leray-Serre spectral sequence from topology.

Proposition 1.1. Let G be a split reductive group defined over a field F
and let P be a parabolic subgroup of G with Levi quotient L (this means that
P ∼= Ru(P )oL where Ru(P ) is the unipotent radical of P [2, 14.19]). There
exists a spectral sequence of algebras

Ei,j2 = H i
H(BG/F )⊗Hj

H((G/P )/F )⇒ H i+j
H (BL/F ).

Proposition 1.1 is the main tool that we will use to compute Hodge coho-
mology rings of classifying stacks. To apply Proposition 1.1, we will choose
a parabolic subgroup P for which H∗H(BL/F ) is a polynomial ring.

To fill in the 0th column of the E2 page in Proposition 1.1, we use a result
of Srinivas [15].

Proposition 1.2. Let G be split reductive over a field F and let P be a
parabolic subgroup of G. The cycle class map

CH∗(G/P )⊗Z F → H∗H((G/P )/F )

is an isomorphism.

Under the cycle class map, CH i(G/P )⊗Z F maps to H i(G/P,Ωi). From
the work of Chevalley [5] and Demazure [6], CH∗(G/P ) is independent of
the field F and is isomorphic to the singular cohomology ring H∗(GC/PC,Z).

The last piece of information we will use to compute H∗H(BG/F ) is the
ring of G-invariants O(g)G = ⊕iH i(BG,Ωi). Let T be a maximal torus in G
with Lie algebra t and Weyl group W . There is a restriction homomorphism

O(g)G → O(t)W . (4)
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We will need the following theorem which is due to Chaput and Romagny
[4, Theorem 1.1]. For the following theorem, a split algebraic group G over
a field F is simple if every proper smooth normal connected subgroup of G
is trivial.

Theorem 1.3. Assume that G is simple over a field F . Then the restriction
homomorphism ( 4) is an isomorphism unless char(F ) = 2 and GF is a
product of copies of Sp(2n) for some n ∈ N.

From the rings O(g)G, CH∗(G/P ), H∗H(BL/F ), we will be able to deter-
mine the E∞ terms of the spectral sequence in Proposition 1.1. This will
allow us to determine H∗H(BG/F ) by using the following version of the Zee-
man comparison theorem [12, Theorem VII.2.4].

Theorem 1.4. Fix a field F . Let {Ēi,jr }, {Ei,jr } be first quadrant (cohomo-

logical) spectral sequences of F -vector spaces such that Ēi,j2 = Ēi,02 ⊗F Ē
0,j
2

and Ei,j2 = Ei,02 ⊗F E
0,j
2 for all i, j. Let {f i,jr : Ēi,jr → Ei,jr } be a morphism

of spectral sequences such that f i,j2 = f i,02 ⊗ f
0,j
2 for all i, j. Fix N,Q ∈ N.

Assume that f i,j∞ is an isomorphism for all i, j with i+ j < N and an injec-

tion for i+ j = N. If f0,i2 is an isomorphism for all i < Q and an injection

for i = Q, then f i,02 is an isomorphism for all i < min (N,Q+ 1) and an
injection for i = min (N,Q+ 1).

We recall a result from [17, Section 11] on the degeneration of the Hodge
spectral sequence for split reductive groups, under some assumptions. The
result in [17, Section 11] was proved for the special orthogonal groups but
the proof works more generally.

Proposition 1.5. Let G be a split reductive group over a field F and assume
that the Hodge cohomology ring of BG is generated as an F -algebra by classes
in ⊕iH i+1(BG,Ωi) and ⊕iH i(BG,Ωi). Then the Hodge spectral sequence

Ei,j1 = Hj(BG,Ωi)⇒ H i+j
dR (BG/F ) (5)

for BG degenerates at the E1 page.

Proof. From [17, Lemma 8.2], there are natural maps

H i(BG,Ωi)→ H2i
dR(BG/F )

and

H i+1(BG,Ωi)→ H2i+1
dR (BG/F )

for all i ≥ 0. These maps are compatible with products. Let T denote a
maximal torus of G. From the group homomorphism T → G, we have the
commuting square
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⊕iH i(BG,Ωi) ⊕iH2i
dR(BG/F )

⊕iH i(BT,Ωi) H2i
dR(BT/F ).

∼=

(6)

The restriction homomorphism (4) induces an injection

⊕iH i(BG,Ωi)→ ⊕iH i(BT,Ωi)

[17, Lemma 8.2]. Hence, from diagram (6), we get that the natural map

⊕iH i(BG,Ωi)→ ⊕iH2i
dR(BG/F )

is an injection. Hence, any differentials into the diagonal in the spectral
sequence (5) must be 0. Then all classes in ⊕iH i+1(BT,Ωi) must be perma-
nent cycles (an element x in the E2 page of a spectral sequence E∗ is called
a permanent cycle if di(x) = 0 for all i ≥ 2) in (5). Classes in ⊕iH i(BT,Ωi)
must be permanent cycles in the spectral sequence (5) since H i(BG,Ωj) = 0
for i < j by [17, Corollary 2.2]. This proves that the Hodge spectral sequence
for BG degenerates. �

The following definition will be used later to describe the Hodge coho-
mology of flag varieties.

Definition 1.6. Let F be a field. For variables x1, . . . , xn let ∆(x1, . . . , xn)
denote the F -vector space with basis given by the products xi1 · · ·xir for
1 ≤ i1 < i2 < · · · < ir ≤ n.

2. G2

Let k be a field of characteristic 2 and let G denote the split form of G2

over k.

Theorem 2.1. The Hodge cohomology ring of BG is freely generated as a
commutative k-algebra by generators y4 ∈ H2(BG,Ω2), y6 ∈ H3(BG,Ω3),
and y7 ∈ H4(BG,Ω3). The Hodge spectral sequence for BG degenerates at
E1 and we have

H∗dR(BG/k) ∼= H∗H(BG/k) = k[y4, y6, y7].

From the computation [12, Corollary VII.6.3] of the singular cohomol-
ogy ring of B(G2)C with F2-coefficients, we then have H∗(B(G2)C, k) ∼=
H∗dR(BG/k).

Proof. We first choose a suitable parabolic subgroup of G. Let P be the
parabolic subgroup of G corresponding to inclusion of the long root.
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From Proposition 1.2, CH∗(G/P ) is independent of the field k and the
characteristic of k. As discussed in [9, §23.3], if we consider (G2)C over
C along with the corresponding parabolic subgroup PC, (G2)C/PC is iso-
morphic to a smooth quadric Q5 in P6. Hence, by [8, Chapter XIII],
H∗H((G/P )/k) is isomorphic to

CH∗(Q5)⊗Z k ∼= k[v, w]/(v6, w2, v3 − 2w) = k[v, w]/(v3, w2)

where |v| = 2 and |w| = 6 in H∗H((G/P )/k) .
We next show that the Levi quotient L of P is isomorphic to GL(2)k.

This can be seen by constructing an isomorphism from the root datum of
GL(2)k to the root datum of the Levi quotient. Let (X1, R1, X

∨
1 , R

∨
1 ) be

the usual root datum of GL(2)k where X1 = Zχ1 + Zχ2, R1 = Z(χ1 − χ2),
and we take our torus to be the set of diagonal matrices in GL(2)k. We
take (X2, R2, X

∨
2 , R

∨
2 ) to be the root datum of G as described in [3, Plate

IX]. Here, X2 = {(a, b, c) ∈ Z3 | a + b + c = 0}. The long root α for G is
then (−2, 1, 1) and the root datum of P/Ru(P ) is (X2,±α,X∨2 ,±1

3α). An
isomorphism from the root datum of GL(2)k to the root datum of G can
then be obtained from the isomorphism

X1 → X2

χ1 7−→ (−1, 1, 0), χ2 7−→ (1, 0,−1).

Thus, L ∼= GL(2)k.
We now analyze the spectral sequence

Ei,j2 = H i
H(BG/k)⊗Hj

H((G/P )/k)⇒ H i+j
H (BL/k) (7)

from Proposition 1.1. From [7, Proposition] and [10, II.4.22],

H∗H(BL/k) = S∗(gl2)
GL(2)k ∼= S∗(t)S2 = k[x1, x2]

where x1 ∈ H1(BL,Ω1) and x2 ∈ H2(BL,Ω2). Here, t is the space of all
diagonal matrices in gl2 and S2 acts on t by permuting the diagonal entries.

In order to compute H∗H(BG/k) from the spectral sequence above, we
must first compute the ring of invariants of S∗(g2)

G. From Theorem 1.3,
S∗(g2)

G ∼= S∗(t0)
W where t0 is the Lie algebra of a maximal torus T in G

and W is the corresponding Weyl group of G. By [17, Corollary 2.2],

H i(BG,Ωi) ∼= Si(t0)
W

for i ≥ 0.

Proposition 2.2. The ring of invariants S∗(t0)
W is equal to k[y4, y6] where

|y4| = 2 and |y6| = 3 in S∗(t0)
W .

Proof. Following the notation in [3, Plate IX], W ∼= Z2 × S3 acts on the
root lattice X2 = {(a, b, c) ∈ Z3 | a+ b+ c = 0} by multiplication by −1 and
by permuting the coordinates. Hence, since we are working in characteristic
2, W acts on S∗(t0) = k[t1, t2, t3]/(t1 + t2 + t3) by permuting t1, t2, and t3.
We then have S∗(t0)

W = k[t1t2 + t1t3 + t2t3, t1t2t3] = k[y4, y6]. �
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We can now carry out the computation of H∗H(BG/k). First, we show

that the class v ∈ E0,2
2 is a permanent cycle. Consider the filtration on

H2
H(BL/k) = k·v given by (7): H2

H(BL/k)←↩ E2,0
∞ , whereH2

H(BL/k)/E2,0
∞ ∼=

E0,2
∞ . Here, E1,1

2 = 0 and

E2,0
∞ = E2,0

2 = H2
H(BG/k) = H1(BG,Ω1)

(we have H2(BG,O) = 0 since H2(BL,O) = 0 and there are no differentials

entering E2,0
2 ) since H∗H((G/P )/k) = ⊕iH i(G/P,Ωi) is concentrated in even

degrees. Hence,

E2,0
∞ = H2

H(BG/k) = H1(BG,Ω1) = 0,

by Proposition 2.2. It follows that E0,2
∞ ∼= E0,2

2 = k · v which implies that
d3(v) = 0. As (7) is a spectral sequence of algebras, it follows that v and
v2 are permanent cycles. Using that H∗H(BL/k) is concentrated in even

degrees, we then get that H3
H(BG/k) = E3,0

2 = E3,0
∞ = 0 and H5

H(BG/k) =

E5,0
2 = E5,0

∞ = 0.

Next, we show that w ∈ H6
H((G/P )/k) = E0,6

2 is transgressive with 0 6=
d7(w) ∈ E7,0

7 . Note that dimkH
6
H(BL/k) = 2. As v is a permanent cycle in

E∗, we observe that E4,2
∞ ∼= E4,2

2
∼= k·y4⊗kk·v ∼= k and E6,0

∞ ∼= E6,0
2
∼= k·y6 ∼=

k. Hence, dimkH
6
H(BL/k) = 2 = dimkE

4,2
∞ + dimkE

6,0
∞ . From the filtration

on H6
H(BL/k) given by the spectral sequence (7), it follows that E0,6

∞ = 0.

As H3
H(BG/k) = E3,0

2 = E3,0
∞ = 0 and H5

H(BG/k) = E5,0
2 = E5,0

∞ = 0,

we then get that 0 6= d7(w) ∈ E7,0
7 and d7(w) lifts to a non-zero element

y7 ∈ H4(BG,Ω3) ⊆ H7
H(BG/k).

k · w

0 0 0 0 0 0 0 0

k · v2 0 0 0 k · v2y4 0 k · v2y6 k · v2y7

0 0 0 0 0 0 0 0

k · v 0 0 0 k · vy4 0 k · vy6 k · vy7

0 0 0 0 0 0 0 0

k 0 0 0 k · y4 0 k · y6 k · y7
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Now, we can determine the E∞ terms in (7). For n odd, Ei,n−i∞ = 0
since H∗H(BL/k) is concentrated in even degrees. Let n ∈ N be even. The
k-dimension of Hn

H(BL/k) is equal to the cardinality of the set

Sn = {(a, b) ∈ Z≥0 × Z≥0 : 2a+ 4b = n}.

For i = 0, 1, 2, set Vi,n := H(n−2i)/2(BG,Ω(n−2i)/2). For i = 0, 1, 2, dimkVi,n
is equal to the cardinality of the set Si,n = {(a, b) ∈ Z≥0 × Z≥0 : 4a+ 6b =

n− 2i}. As v is a permanent cycle in (7), En−2i,2i2
∼= En−2i,2i7 for i = 0, 1, 2.

As y7 ∈ H4(BG,Ω3) and H i(BG,Ωj) = 0 for i < j,

y7 · x /∈ ⊕jHj(BG,Ωj)

for all x ∈ H∗H(BG/k). Hence,

H(n−2i)/2(BG,Ω(n−2i)/2)⊗k k · vi ⊆ En−2i,2i2
∼= En−2i,2i7

injects into En−2i,2i∞ for i = 0, 1, 2.
Define a bijection fn : Sn → S0,n ∪ S1,n ∪ S2,n by

fn(a, b) =


(b, a/3) ∈ S0,n if a ≡ 0 mod 3,

(b, (a− 1)/3) ∈ S1,n if a ≡ 1 mod 3,

(b, (a− 2)/3) ∈ S2.n if a ≡ 2 mod 3.

Then
dimkH

n
H(BL/k) = |Sn| = |S0,n|+ |S1,n|+ |S2,n|

≤ dimkE
n,0
∞ + dimkE

n−2,2
∞ + dimkE

n−4,4
∞

where the inequality follows from the fact proved above that

H(n−2i)/2(BG,Ω(n−2i)/2)

injects into En−2i,2i∞ for i = 0, 1, 2. From the filtration on Hn
H(BL/k) de-

fined by the spectral sequence (7), it follows that H(n−2i)/2(BG,Ω(n−2i)/2) ∼=
En−2i,2i∞ for i = 0, 1, 2 and En−2i,2i∞ = 0 for i ≥ 3.

We can now finish the computation of the Hodge cohomology of BG
by using Zeeman’s comparison theorem. Let F∗ denote the cohomological
spectral sequence of k-vector spaces concentrated on the 0th column with
E2 page given by

F 0,i
2 =


k if i = 0,

k · v if i = 2,

k · v2 if i = 4,

0 if i 6= 0, 2, 4.

As v ∈ E0,2
2 in the spectral sequence (7) is transgressive with dr(v) = 0 for

all r ≥ 2, there exists a map of of spectral sequences F∗ → E∗ that takes
v ∈ F 0,2

2 to v ∈ E0,2
2 and v2 ∈ F 0,4

2 to v2 ∈ E0,4
2 .

Fixing a variable y, let H∗ denote the cohomological spectral sequence
with E2 page given by H2 = ∆(w)⊗ k[y] where w is of bidegree (0, 6), y is
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of bidegree (7, 0), and w is transgressive with d7(wy
i) = yi+1 for all i ≥ 0.

As w ∈ E0,6
2 is transgressive with d7(w) = y7 ∈ E7,0

2 , there exists a map

of spectral sequence H∗ → E∗ such that w ∈ H0,6
2 maps to w ∈ E0,6

2 and

y ∈ H7,0
2 maps to y7 ∈ E7,0

2 . Elements of the ring of G-invariants k[y4, y6] are
permanent cycles in the spectral sequence (7) since they are concentrated
on the 0th row. Thus, by tensoring the previous maps of spectral sequences,
we get a map

α : I∗ := F∗ ⊗H∗ ⊗ k[y4, y6]→ E∗

of spectral sequences.
As shown above, the map α induces an isomorphism I∞ ∼= F2⊗k[y4, y6]→

E∞ on E∞ pages. The 0th columns of the E2 pages of the spectral sequences
I∗ and E∗ are both isomorphic to k[v, w]/(v3, w2) and α induces an isomor-
phism on the 0th columns of the E2 pages. Thus, by Theorem 1.4, α induces
an isomorphism on the 0th rows of the E2 pages. Hence,

H∗H(BG/k) = k[y4, y6, y7].

From Proposition 1.5, the Hodge spectral sequence for BG degenerates.
�

Corollary 2.3. Let G be a k-form of G2. Then

H∗H(BG/k) ∼= k[x4, x6, x7]

where |xi| = i for i = 4, 6, 7.

Proof. Letting ks denote the separable closure of k, we haveBG×kSpec(ks) ∼=
B(G2)ks . From Theorem 2.1, H∗H(B(G2)ks)/ks)

∼= ks[x
′
4, x

′
6, x

′
7] for some

x
′
4, x

′
6, x

′
7 ∈ H∗H(B(G2)ks/ks) with |x′

i| = i for all i. As Hodge cohomology
commutes with extensions of the base field,

H∗H((BG×k Spec(ks))/ks) ∼= H∗H(BG/k)⊗k ks.
It follows that H∗H(BG/k) ∼= k[x4, x6, x7] for some x4, x6, x7 ∈ H∗H(BG/k).

�

3. Spin groups

Let k be a field of characteristic 2 and let G denote the split group
Spin(n)k over k for n ≥ 7.

Let P0 ⊂ SO(n)k denote a parabolic subgroup that stabilizes a maximal
isotropic subspace. Let P ⊂ G denote the inverse image of P0 under the
double cover map G→ SO(n)k. The Hodge cohomology of G/P is given by
Proposition 1.2 and [12, Theorem III.6.11].

Proposition 3.1. There is an isomorphism

H∗H((G/P )/k) ∼= k[e1, . . . , es]/(e
2
i = e2i),

where s = b(n− 1)/2c, em = 0 for m > s, and |ei| = 2i for all i.
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The Levi quotient of P0 is isomorphic to GL(r)k where r = bn/2c. Hence,
the Levi quotient L of P is a double cover of GL(r)k.

Proposition 3.2. The torsion index of L is equal to 1.

Proof. We show that the torsion index of the corresponding compact con-
nected Lie group M is equal to 1. As M is a double cover of U(r), M is
isomorphic to (S1 × SU(r))/2Z where k ∈ Z acts on S1 × SU(r) by

(z,A) 7→ (ze2πik/r, e−2πik/rA).

Hence, the derived subgroup [M,M ] of M is isomorphic to SU(r). As SU(r)
has torsion index 1, M has torsion index 1 by [16, Lemma 2.1]. Thus, L has
torsion index equal to 1. �

Corollary 3.3. We have

H∗H(BL/k) = O(l)L = k[A, c2, . . . , cr]

where |ci| = 2i in H∗H(BL/k) for all i and |A| = 2.

Proof. From Proposition 3.2 and [17, Theorem 9.1],

H∗H(BL/k) = O(l)L.

Let T be a maximal torus in L with Lie algebra t and Weyl group W. From
Theorem 1.3, O(l)L ∼= O(t)W . To compute O(t)W , we use that L is a double
cover of GL(r)k. We have

S(X∗(T )⊗ k) ∼= Z[x1, . . . , xr, A]/(2A = x1 + · · ·+ xr)⊗ k
∼= k[x1, . . . , xr, A]/(x1 + · · ·+ xr).

The Weyl group W of L is isomorphic to the symmetric group Sr and acts
on S(X∗(T )⊗ k) by permuting x1, . . . , xr. From [13, Proposition 4.1],

(k[x1, . . . , xr, A]/(x1 + · · ·+ xr))
Sr = k[A, c2, . . . , cr]

where c1, . . . , cr are the elementary symmetric polynomials in the variables

x1, . . . , xr.

�

For our calculations, we will need to know the Hodge cohomology of
BSO(n)k [17, Theorem 11.1].

Theorem 3.4. The Hodge spectral sequence for BSO(n)k degenerates and

H∗H(BSO(n)k/k) = k[u2, . . . , un]

where u2i ∈ H i(BSO(n)k,Ω
i) and u2i+1 ∈ H i+1(BSO(n)k,Ω

i) for all rele-
vant i.

We’ll also need to know the ring of invariants of G = Spin(n)k for all
n ≥ 6. This can be found in [17, Section 12].
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Lemma 3.5. For n ≥ 6,

O(g)G =


k[c2, . . . , cr, ηr−1] if n = 2r + 1

k[c2, . . . , cr, µr−1] if n = 2r and r is even

k[c2, . . . , cr, µr] if n = 2r and r is odd

where |ci| = i, |ηj | = 2j , and |µj | = 2j−1 in O(g)G for all i and j.

Note that under the inclusion O(g)G ⊂ H∗H(BG/k), the degree of an
invariant function in H∗H(BG/k) is twice its degree in O(g)G.

Theorem 3.6. Let n = 7. The Hodge spectral sequence for BG degenerates
and

H∗dR(BG/k) ∼= H∗H(BG/k) = k[y4, y6, y7, y8]

where |yi| = i for i = 4, 6, 7, 8.

Proof. From Lemma 3.5,

O(g)G = k[y4, y6, y8]

where |yi| = i in H∗H(BG/k), viewing O(g)G as a subring of H∗H(BG/k).
Consider the spectral sequence

Ei,j2 = H i
H(BG/k)⊗Hj

H((G/P )/k)⇒ H i+j
H (BL/k) (8)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

H∗H((G/P )/k) ∼= k[e1, e2, e3]/(e
2
i = e2i) = k[e1, e3]/(e

4
1, e

2
3)

and

H∗H(BL/k) ∼= k[A, c2, c3].

First, we show that e1 ∈ E0,2
2 is a permanent cycle. From the filtration

on H2
H(BL/k) = k ·A given by (8), we have

1 = dimkE
0,2
∞ + dimkE

2,0
∞ = dimkE

0,2
∞ + dimkE

2,0
2 .

As H∗H(BL/k) = ⊕iH i(BL,Ωi), E2,0
2 = H1(BG,Ω1) = 0. Hence, E0,2

∞ =

E0,2
2 = k · e1 which implies that e1 is a permanent cycle. As e2 = e21, it

follows that e2 is a permanent cycle. Hence, E4,2
∞ ∼= E4,2

2
∼= k · (y4 ⊗ e1) and

E6,0
∞ ∼= E6,0

2
∼= k · y6.

We next show that e3 ∈ E0,6
2 is transgressive with d7(e3) 6= 0. As e1 is

a permanent cycle and H i
H(BL/k) = 0 for i odd, the spectral sequence (8)

implies that E3,0
2 = E5,0

2 = 0. Consider the filtration of (8) on H6
H(BL/k).

We have

dimkH
6
H(BL/k) = 3 = dimkE

6,0
∞ + dimkE

4,2
∞ + dimkE

0,6
∞ = 2 + dimkE

0,6
∞

which implies that E0,6
∞ ∼= k · e1e2. As E3,0

2 = E5,0
2 = 0, we must then have

e3 ∈ E0,6
7 and 0 6= d7(e3) ∈ E7,0

7 . The class d7(e3) lifts to a non-zero class

y7 ∈ H4(BG,Ω3) ⊆ E7,0
2 = H7

H(BG/k).
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k · e1e2 ⊕ k · e3

0 0 0 0 0 0 0 0

k · e2 0 0 0 k · e2y4 0 k · e2y6 k · e2y7

0 0 0 0 0 0 0 0

k · e1 0 0 0 k · e1y4 0 k · e1y6 k · e1y7

0 0 0 0 0 0 0 0

k 0 0 0 k · y4 0 k · y6 k · y7

We can now determine the E∞ page of (8). For n odd, Ei,n−i∞ = 0 since
H∗H(BL/k) is concentrated in even degrees. Assume that n ∈ N is even.
The k-dimension of Hn

H(BL/k) is equal to the cardinality of the set

Sn = {(a, b, c) ∈ Z≥0 × Z≥0 × Z≥0 : 2a+ 4b+ 6c = n}.
For i = 0, 1, 2, 3, set Vi,n := H(n−2i)/2(BG,Ω(n−2i)/2). For i = 0, 1, 2, 3,
dimkVi,n is equal to the cardinality of the set Si,n = {(a, b, c) ∈ Z≥0×Z≥0×
Z≥0 : 4a+ 6b+ 8c = n− 2i}. As e1 is a permanent cycle in (8),

Vi,n ∼= Vi,n ⊗ k · ei1 ⊆ En−2i,2i∞

for i = 0, 1, 2, 3.
Define a bijection fn : Sn → S0,n ∪ S1,n ∪ S2,n ∪ S3,n by

fn(a, b, c) =


(b, c, a/4) ∈ S0,n if a ≡ 0 mod 4,

(b, c, (a− 1)/4) ∈ S1,n if a ≡ 1 mod 4,

(b, c, (a− 2)/4) ∈ S2,n if a ≡ 2 mod 4,

(b, c, (a− 3)/4) ∈ S3,n if a ≡ 3 mod 4.

Then

dimkH
n
H(BL/k) = |Sn| = |S0,n|+ |S1,n|+ |S2,n|+ +|S3,n|.

As
dimkH

n
H(BL/k) ≥ En,0∞ + En−2,2∞ + En−4,4∞ + En−6,6∞

and Vi,n ⊆ En−2i,2i∞ for i = 0, 1, 2, 3, it follows that Vi,n ∼= En−2i,2i∞ for

i = 0, 1, 2, 3 and En−2i,2i∞ = 0 for i ≥ 4.
We now use Theorem 1.4 to finish the computation of the Hodge cohomol-

ogy of BG. Let F∗ denote the cohomological spectral sequence of k-vector
spaces concentrated on the 0th column given by F2 = ∆(e1, e2) where ei
is of bidegree (0, 2i) for i = 1, 2. As e1 is a permanent cycle in (8) , there
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is a map of spectral sequences F∗ → E∗ taking ei ∈ F 0,2i
2 to ei ∈ E0,2i

2 for
i = 1, 2. Fix a variable y. Let H∗ be the spectral sequence with E2 page
given by H2 = ∆(e3) ⊗ k[y] where e3 is of bidegree (0, 6), y is of bidegree

(7, 0), and e3 is transgressive with d7(e3y
i) = yi+1 for all i. As e3 ∈ E0,6

2
is transgressive with d7(e3) = y7, there exists a map of spectral sequences

H∗ → E∗ taking e3 ∈ H0,6
2 to e3 ∈ E0,6

2 and y ∈ H7,0
2 to y7 ∈ E7,0

2 .
Elements in the ring of G-invariants k[y4, y6, y8] are permanent cycles in

the spectral sequence (8). Tensoring maps of spectral sequences, we get a
map

α : I∗ := F∗ ⊗H∗ ⊗ k[y4, y6, y8]→ E∗

of spectral sequences. As I∞ ∼= F2 ⊗ k[y4, y6, y8], α induces isomorphisms
on E∞ terms and on the 0th columns of the E2 pages. Hence, by Theorem
1.4, α induces an isomorphism on the 0th rows of the E2 pages. Thus,

H∗H(BG/k) = k[y4, y6, y7, y8].

The Hodge spectral sequence for BG degenerates by Proposition 1.5. �

As Hodge cohomology commutes with extensions of the base field, we
have the following result.

Corollary 3.7. Let k be a field of characteristic 2 and let G be a k-form of
Spin(7). Then

H∗H(BG/k) ∼= k[x4, x6, x7, x8]

where |xi| = i for all i.

Theorem 3.8. Let n = 8. The Hodge spectral sequence for BG degenerates
and

H∗dR(BG/k) ∼= H∗H(BG/k) = k[y4, y6, y7, y8, y
′
8]

where |yi| = i for i = 4, 6, 7, 8 and |y′8| = 8.

Proof. From Lemma 3.5,

O(g)G = k[y4, y6, y8, y
′
8]

where |yi| = i and |y′8| = 8 in H∗H(BG/k), viewing O(g)G as a subring of
H∗H(BG/k). Consider the spectral sequence

Ei,j2 = H i
H(BG/k)⊗Hj

H((G/P )/k)⇒ H i+j
H (BL/k) (9)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

H∗H((G/P )/k) ∼= k[e1, e2, e3]/(e
2
i = e2i) = k[e1, e3]/(e

4
1, e

2
3)

and
H∗H(BL/k) ∼= k[A, c2, c3, c4].

Calculations similar to those performed in the proof of Proposition 3.6 show
that e1 is a permanent cycle in (9) and e3 ∈ E0,6

2 is transgressive with
0 6= d7(e3) = y7 ∈ H4(BG,Ω3). We have Hm

H (BG/k) ∼= Hm
H (BSpin(7)k/k)

for m < 8 and H8
H(BG/k) = k · y8 ⊕ k · y′8.
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We can now determine the E∞ terms for (9). For n odd, Ei,n−i∞ = 0 since
H∗H(BL/k) is concentrated in even degrees. Assume that n ∈ N is even.
The k-dimension of Hn

H(BL/k) is equal to the cardinality of the set

Sn = {(a, b, c, d) ∈ Z≥0 × Z≥0 × Z≥0 × Z≥0 : 2a+ 4b+ 6c+ 8d = n}.

For i = 0, 1, 2, 3, set Vi,n := H(n−2i)/2(BG,Ω(n−2i)/2). For i = 0, 1, 2, 3,
dimkVi,n is equal to the cardinality of the set Si,n = {(a, b, c, d) ∈ Z≥0 ×
Z≥0 × Z≥0 × Z≥0 : 4a+ 6b+ 8c+ 8d = n− 2i}. As e1 is a permanent cycle
in (9),

Vi,n ∼= Vi,n ⊗ k · ei1 ⊆ En−2i,2i∞

for i = 0, 1, 2, 3.
Define a bijection fn : Sn → S0,n ∪ S1,n ∪ S2,n ∪ S3,n by

fn(a, b, c, d) =


(b, c, d, a/4) ∈ S0,n if a ≡ 0 mod 4,

(b, c, d, (a− 1)/4) ∈ S1,n if a ≡ 1 mod 4,

(b, c, d, (a− 2)/4) ∈ S2,n if a ≡ 2 mod 4,

(b, c, d, (a− 3)/4) ∈ S3,n if a ≡ 3 mod 4.

Then

dimkH
n
H(BL/k) = |Sn| = |S0,n|+ |S1,n|+ |S2,n|+ +|S3,n|.

As

dimkH
n
H(BL/k) ≥ En,0∞ + En−2,2∞ + En−4,4∞ + En−6,6∞

and Vi,n ⊆ En−2i,2i∞ for i = 0, 1, 2, 3, it follows that Vi,n ∼= En−2i,2i∞ for

i = 0, 1, 2, 3 and En−2i,2i∞ = 0 for i ≥ 4.
Let F∗ denote the spectral sequence concentrated on the 0th column with

F2 = ∆(e1, e2, e4) where ei is of bidegree (0, 2i). There is a map of spectral
sequences F∗ → E∗ taking ei to ei for i = 1, 2, 4. Fix a variable y. Let
H∗ denote the spectral sequence with E2 page H2 = ∆(e3) ⊗ k[y] where
e3 is of bidegree (0, 6), y is of bidegree (7, 0), and e3 is transgressive with
d7(e3y

i) = yi+1 for all i. There is an obvious map of spectral sequences
H∗ → E∗. Classes in the ring of G-invariants are permanent cycles in the
spectral sequence (9). Tensoring these maps, we get a map of spectral
sequences

α : I∗ := F∗ ⊗H∗ ⊗ k[y4, y6, y8, y
′
8]→ E∗.

The map α induces an isomorphism on E∞ terms and on the 0th columns
of the E2 pages. Theorem 1.4 then implies that α induces an isomorphism
on the 0th rows of the E2 pages. Thus,

H∗H(BG/k) = k[y4, y6, y7, y8, y
′
8].

Proposition 1.5 implies that the Hodge spectral sequence for BG degener-
ates.

�
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Corollary 3.9. Let k be a field of characteristic 2 and let G be a k-form
for Spin(8). Then

H∗H(BG/k) ∼= k[y4, y6, y7, y8, y
′
8]

where |yi| = i for i = 4, 6, 7, 8 and |y′8| = 8.

Theorem 3.10. Let n = 9. The Hodge spectral sequence for BG degenerates
and

H∗dR(BG/k) ∼= H∗H(BG/k) = k[y4, y6, y7, y8, y16]

where |yi| = i for i = 4, 6, 7, 8, 16.

Proof. From Lemma 3.5,

O(g)G = k[y4, y6, y8, y16]

where |yi| = i in H∗H(BG/k), viewing O(g)G as a subring of H∗H(BG/k).
Consider the spectral sequence

Ei,j2 = H i
H(BG/k)⊗Hj

H((G/P )/k)⇒ H i+j
H (BL/k) (10)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

H∗H((G/P )/k) ∼= k[e1, e2, e3, e4]/(e
2
i = e2i) = k[e1, e3]/(e

8
1, e

2
3)

and

H∗H(BL/k) ∼= k[A, c2, c3, c4].

Calculations similar to those performed in the proof of Proposition 3.6 show
that e1 is a permanent cycle in (10) and e3 ∈ E0,6

2 is transgressive with
0 6= d7(e3) = y7 ∈ H4(BG,Ω3). We have Hm

H (BG/k) ∼= Hm
H (BSpin(7)k/k)

for m ≤ 10.
We now determine the E∞ terms for (10). For n odd, Ei,n−i∞ = 0 since

H∗H(BL/k) is concentrated in even degrees. Assume that n ∈ N is even.
The k-dimension of Hn

H(BL/k) is equal to the cardinality of the set

Sn = {(a, b, c, d) ∈ Z≥0 × Z≥0 × Z≥0 × Z≥0 : 2a+ 4b+ 6c+ 8d = n}.

For 0 ≤ i ≤ 7, set Vi,n := H(n−2i)/2(BG,Ω(n−2i)/2). For 0 ≤ i ≤ 7, dimkVi,n is
equal to the cardinality of the set Si,n = {(a, b, c, d) ∈ Z≥0×Z≥0×Z≥0×Z≥0 :
4a+ 6b+ 8c+ 16d = n− 2i}. As e1 is a permanent cycle in (10),

Vi,n ∼= Vi,n ⊗ k · ei1 ⊆ En−2i,2i∞

for 0 ≤ i ≤ 7.

Define a bijection fn : Sn →
7⋃
i=0

Si,n by fn(a, b, c, d) = (b, c, d, (a− i)/8) ∈

Si,n for a ≡ i mod (8). Then

dimkH
n
H(BL/k) = |Sn| =

7∑
i=0

|Si,n|.



DE RHAM COHOMOLOGY RINGS OF CLASSIFYING STACKS 1017

As

dimkH
n
H(BL/k) ≥

7∑
i=0

En−2i,2i∞

and Vi,n ⊆ En−2i,2i∞ for 0 ≤ i ≤ 7, it follows that Vi,n ∼= En−2i,2i∞ for 0 ≤ i ≤ 7

and En−2i,2i∞ = 0 for i ≥ 8.
Let F∗ denote the cohomological spectral sequence concentrated on the

0th column with E2 page given by F2 = ∆(e1, e2, e4) where ei has bidegree
(0, 2i) for i = 1, 2, 4. As e1 is a permanent cycle in the spectral sequence
(10), there exists a map F∗ → E∗ of spectral sequences taking ei to ei for
i = 1, 2, 4. Let y be a free variable and let H∗ denote the spectral sequence
with E2 page H2 = ∆(e3) ⊗ k[y] where e3 is of bidegree (0, 6), y is of
bidegree (7, 0), and e3 is transgressive with d7(e3y

i) = yi+1 for all i. As e3
is transgressive in the spectral sequence (10) with d7(e3) = y7, there exists
a map of spectral sequences H∗ → E∗ taking e3 to e3 and y to y7.

Elements in the ring of G-invariants k[y4, y6, y8, y16] are permanent cycles
in the spectral sequence (10). Tensoring maps of spectral sequences, we get
a map

α : I∗ := F∗ ⊗H∗ ⊗ k[y4, y6, y8, y16]→ E∗.

The map α induces an isomorphism on E∞ terms and on the 0th columns of
the E2 pages. Hence, Theorem 1.4 implies that α induces an isomorphism
on the 0th rows of the E2 pages. Thus,

H∗H(BG/k) = k[y4, y6, y7, y8, y16].

Proposition 5 implies that the Hodge spectral sequence for BG degenerates.
�

Corollary 3.11. Let k be a field of characteristic 2 and let G be a k-form
for Spin(9). Then

H∗H(BG/k) ∼= k[y4, y6, y7, y8, y16]

where |yi| = i for i = 4, 6, 7, 8, 16.

Remark 3.12. Assume that k is perfect. Let µ2 denote the group scheme
of the 2nd roots of unity over k. For n ≥ 10, the Hodge cohomology of
BG is no longer a polynomial ring. To determine the relations that hold in
H∗H(BG/k), we will restrict cohomology classes to the classifying stack of a
certain subgroup of G considered in [17, Section 12]. Let r = bn/2c and let
T ∼= Gr

m denote a split maximal torus of G. Assume that n 6≡ 2 mod 4 so
that the Weyl group W of G contains −1, acting by inversion on T. Then
−1 acts by the identity on T [2] ∼= µr2 (for n ∈ N, T [n] ⊂ T is the kernel
of the nth power map T → T ) and G contains a subgroup Q ∼= µr2 × Z/2.
Under the double cover G → SO(n)k, the image of Q is isomorphic to
K ∼= µr−12 × Z/2 and Q → K is a split surjection. We will need to know
the Hodge cohomology rings of the classifying stacks of these groups. For a
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commutative ring R, we let rad ⊂ R denote the ideal of nilpotent elements.
From [17, Proposition 10.1],

H∗H(Bµ2/k)/rad ∼= k[t]

where t ∈ H1(Bµ2,Ω
1). From [17, Lemma 10.2],

H∗H((BZ/2)/k) = k[s]

where s ∈ H1(BZ/2,Ω0). The Künneth formula [17, Proposition 5.1] then
lets us calculate the Hodge cohomology ring of Bµi2×B(Z/2)j for any i, j ≥
0. Fix i, j > 0. Then

H∗H((Bµi2 ×B(Z/2)j)/k)/rad ∼= k[t1, . . . , ti, s1, . . . , sj ]

where tl ∈ H1(Bµi2×B(Z/2)j ,Ω1) for all l and sl ∈ H1(Bµi2×B(Z/2)j ,Ω0)
for all l.

Theorem 3.13. Let n = 10. The Hodge spectral sequence for BG degener-
ates and

H∗dR(BG/k) ∼= H∗H(BG/k) = k[y4, y6, y7, y8, y10, y32]/(y7y10)

where |yi| = i for i = 4, 6, 7, 8, 10, 32.

Proof. We may assume that k = F2 so that Remark 3.12 applies. From
Lemma 3.5,

O(g)G = k[y4, y6, y8, y10, y32]

where |yi| = i in H∗H(BG/k), viewing O(g)G as a subring of H∗H(BG/k).
Consider the spectral sequence

Ei,j2 = H i
H(BG/k)⊗Hj

H((G/P )/k)⇒ H i+j
H (BL/k) (11)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

H∗H((G/P )/k) ∼= k[e1, e2, e3, e4]/(e
2
i = e2i) = k[e1, e3]/(e

8
1, e

2
3)

and

H∗H(BL/k) ∼= k[A, c2, c3, c4, c5].

Calculations similar to those performed in the proof of Proposition 3.6 show
that e1 is a permanent cycle in (11) and e3 ∈ E0,6

2 is transgressive with
0 6= d7(e3) = y7 ∈ H4(BG,Ω3). We have Hm

H (BG/k) ∼= Hm
H (BSpin(9)k/k)

for m < 10.
Let F∗ be the spectral sequence concentrated on the 0th column with

E2 page given by F2 = ∆(e1, e2, e4) where ei has bidegree (0, 2i) for all i.
As e1 is a permanent cycle in (11), there exists a map of spectral sequence
F∗ → E∗ taking ei to ei for i = 1, 2, 4. Fix a variable y. Let H∗ denote the
spectral sequence with E2 page H2 = ∆(e3) ⊗ k[y] where e3 has bidegree
(0, 6), y has bidegree (7, 0), and e3 is transgressive with d7(e3y

i) = yi+1 for
all i. As e3 is transgessive in (11) with d7(e3) = y7, there exists a map of
spectral sequences H∗ → E∗ taking e3 to e3 and y to y7. Elements in the ring
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of G-invariants k[y4, y6, y8, y10, y32] are permanent cycles in (11). Tensoring
maps of spectral sequences, we get a map

α : I∗ := F∗ ⊗H∗ ⊗ k[y4, y6, y8, y10, y32]→ E∗ (12)

which induces an isomorphism on the 0th columns of the E2 pages.
Let n be even. The k-dimension of Hn

H(BL/k) is equal to the cardinality
of the set

Sn = {(a, b, c, d, e) ∈ Z5
≥0 : 2a+ 4b+ 6c+ 8d+ 10e = n}.

For 0 ≤ i ≤ 15, set Vi,n := H(n−2i)/2(BG,Ω(n−2i)/2). For 0 ≤ i ≤ 15,
dimkVi,n is equal to the cardinality of the set Si,n = {(a, b, c, d, e) ∈ Z5

≥0 :

4a + 6b + 8c + 10d + 32e = n − 2i}. As e1 ∈ H2
H((G/P )/k) is a permanent

cycle in (11),

Vi,n ∼= Vi,n ⊗ k · ei1 ⊆ En−2i,2i∞

for 0 ≤ i ≤ 7. Hence, the map α in (12) induces injections on all E∞ terms.

For n odd, α induces isomorphisms 0 = In−i,i∞ ∼= En−i,i∞ = 0 for all i since
H∗H(BL/k) is concentrated in even degrees.

Define a bijection fn : Sn →
15⋃
i=0

Si,n by fn(a, b, c, d, e) = (b, c, d, e, (a −

i)/16) ∈ Si,n for a ≡ i mod (16). Then

dimkH
n
H(BL/k) = |Sn| =

15∑
i=0

|Si,n| =
15∑
i=0

dimkVi,n. (13)

Now assume that n ≤ 14. Then fn gives a bijection

Sn →
7⋃
i=0

Si,n.

As

dimkH
n
H(BL/k) ≥

7∑
i=0

En−2i,2i∞

and Vi,n ⊆ En−2i,2i∞ for 0 ≤ i ≤ 7, it follows that Vi,n ∼= En−2i,2i∞ for 0 ≤ i ≤ 7

and En−2i,2i∞ = 0 for i ≥ 8. As α induces injections on all E∞ terms, Theorem
1.4 implies that α in (12) induces an isomorphism In,02 → En,02 for n < 16.

Now we consider the filtration on H16
H (BL/k) given by (11). From the

bijection f16 defined in the previous paragraph, we have

dimkH
16
H (BL/k) = 1 +

7∑
i=0

|Si,n| = 1 +
7∑
i=0

dimkVi,n ⊗ k · ei1.

As e1 is a permanent cycle and α induces isomorphisms on 0th row terms
of the E2 pages in degrees less than 16, we must then have

E10,6
∞
∼= (H10

H (BG/k)⊗ k · e31)⊕ (k · z ⊗ k · e3)
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for some 0 6= z ∈ H10
H (BG/k). Hence, y7z = 0 in H∗H(BG/k). Write z =

ay4y6 + by10 for some a, b ∈ k.
We now show that a = 0 by restricting y7z = 0 to the Hodge coho-

mology of the classifying stack of the subgroup Spin(8)k of G. Under the
isomorphism

H∗H(BSpin(8)k/k) ∼= k[y4, y6, y7, y8, y16]

of Theorem 3.10, the pullback from H∗H(BG/k) to H∗H(BSpin(8)k/k) maps
y4, y6, y10 ∈ H∗H(BG/k) to y4, y6, and 0 respectively in H∗H(BSpin(8)k/k).
Hence, to show that a = 0, it suffices to show that y7 ∈ H∗H(BG/k) restricts
to y7 ∈ H∗H(BSpin(8)k/k). From the isomorphism

H∗H(BSO(m)k/k) ∼= k[u2, . . . , um]

of Theorem 3.4 for m ≥ 0, the class u7 ∈ H7
H(BSO(10)k/k) restricts to u7 ∈

H7
H(BSO(8)k/k). Thus, we are reduced to showing that u7 ∈ H7

H(BSO(8)k/k)
pulls back to a non-zero multiple of y7 ∈ H∗H(BSpin(8)k/k).

Consider the subgroups µ42 × Z/2 ∼= Q ⊆ Spin(8)k and µ32 × Z/2 ∼= K ⊆
SO(8)k defined in Remark 3.12. As the morphism Q→ K is split surjective,
if we can show that u7 restricts to a nonzero class in H∗H(BK/k), then u7
would restrict to a nonzero class in H7

H(BSpin(8)k/k). From the inclusion
O(2)4k ⊂ O(8)k, O(8)k contains a subgroup of the form µ42 × (Z/2)4. As
SO(8)k is the kernel of the Dickson determinant (also called the Dickson
invariant in some sources [11, §23]) O(8)k → Z/2, it follows that SO(8)k
contains a subgroup H ∼= µ42 × (Z/2)3. Write

H∗H(BH/k)/rad ∼= k[t1, . . . , t4, s1, . . . , s4]/(s1 + s2 + s3 + s4)

using Remark 3.12. From the proof of [17, Lemma 11.4], the pullback of u7
to H∗H(BH/k)/rad followed by pullback to

H∗H(BK/k)/rad ∼= k[t1, . . . , t4, s]/(t1 + · · ·+ t4)

is given by

u7 7→
3∑
j=1

sj(tj + t4)
∑

1≤i1<i2≤3
i1,i2 6=j

ti1ti2 7→
3∑
j=1

s(tj + t4)
∑

1≤i1<i2≤3
i1,i2 6=j

ti1ti2

= s
∑

1≤i1<i2≤3
(ti1 + ti2)ti1ti2 6= 0.

Thus, u7 ∈ H7
H(BSO(8)k/k) pulls back to a nonzero multiple of

y7 ∈ H7
H(BSpin(8)k/k)
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which implies that y7y10 = 0 in H∗H(BG/k).

u7 ∈ H7
H(BSO(10)k/k) y7 ∈ H7

H(BG/k)

u7 ∈ H7
H(BSO(8)k/k) y7 ∈ H7

H(BSpin(8)k/k)

∑3
j=1 s(tj + t4)

∑
1≤i1<i2≤3
i1,i2 6=j

ti1ti2 ∈ H7
H(BK/k) H7

H(BQ/k)
6=0

Using the relation y7y10 = 0, we now modify the spectral sequence I∗
defined above to define a new spectral sequence J∗ that better approximates
(and will actually be isomorphic to) the spectral sequence (11). Let

(yy10) := F2 ⊗ (∆(e3)⊗ yk[y])⊗ y10k[y4, y6, y8, y10, y32].

Define the E2 page of J∗ by J2 = I2/(yy10). Define the differentials d′m of J∗
so that I2 → J2 induces a map I∗ → J∗ of cohomological spectral sequences
of k-vector spaces and d′m = 0 for m > 7. This means that d′7(f⊗e3⊗y10g) =
f ⊗ y ⊗ y10g = 0 and d′m(f ⊗ e3 ⊗ y10g) = 0 for m > 7, f ∈ F2, and
g ∈ k[y4, y6, y8, y10, y32]. The E∞ page of J∗ is given by

J∞ ∼= (F2 ⊗ k[y4, y6, y8, y10, y32])⊕ (F2 ⊗ e3 ⊗ y10k[y4, y6, y8, y10, y32]).

As y7y10 = 0 in H∗H(BG/k), α induces a map α′ : J∗ → E∗ of spectral
sequences. To finish the calculation, we will show that α′ induces an isomor-

phism on E∞ terms so that Theorem 1.4 will apply. For n odd, En−i,i∞ = 0
for all i since H∗H(BL/k) is concentrated in even degrees. Now assume that
n is even. For 0 ≤ i ≤ 7,

Vi,n ∼= H(n−2i)/2(BG,Ω(n−2i)/2)⊗ ei1 ⊆ En−2i,2i∞ .

For 8 ≤ i ≤ 15,

Vi,n ∼= y10H
(n−2i)/2(BG,Ω(n−2i)/2)⊗ ei−81 e3 ⊆ En−2i+10,2i−10

∞ .

Hence, from the description of the E∞ terms of J∗ given above, it follows

that α′ induces an injection Jn−2i,2i∞ → En−2i,2i∞ for all i. Equation (13) then

implies that Jn−2i,2i∞ ∼= En−2i,2i∞ for all i.
Thus, α′ induces an isomorphism on E∞ pages and an isomorphism on

the 0th columns of the E2 pages of the 2 spectral sequences. Theorem 1.4
then implies that

H∗H(BG/k) ∼= k[y4, y6, y7, y8, y10, y32]/(y7y10).

From Proposition 5, the Hodge spectral sequence for BG degenerates.
�

Corollary 3.14. Let G be a k-form of Spin(10). Then

H∗H(BG/k) ∼= k[y4, y6, y7, y8, y10, y32]/(y7y10)
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where |yi| = i for all i.

Theorem 3.15. Let n = 11. The Hodge spectral sequence for BG degener-
ates and

H∗dR(BG/k) ∼= H∗H(BG/k) = k[y4, y6, y7, y8, y10, y11, y32]/(y7y10 + y6y11)

where |yi| = i for i = 4, 6, 7, 8, 10, 11, 32.

Proof. We may assume that k = F2 so that Remark 3.12 applies. From
Lemma 3.5,

O(g)G ∼= k[y4, y6, y8, y10, y32]

where |yi| = i in H∗H(BG/k), viewing O(g)G as a subring of H∗H(BG/k).
Consider the spectral sequence

Ei,j2 = H i
H(BG/k)⊗Hj

H((G/P )/k)⇒ H i+j
H (BL/k) (14)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

H∗H((G/P )/k) ∼= k[e1, e2, e3, e4, e5]/(e
2
i = e2i) = k[e1, e3, e5]/(e

8
1, e

2
3, e

2
5)

and
H∗H(BL/k) ∼= k[A, c2, c3, c4, c5].

Using Theorem 3.4, writeH∗H(BSO(11)k/k) = k[u2, . . . , u11]. From the in-
clusionsO(2)5k ⊂ O(10)k ⊂ SO(11)k, SO(11)k contains a subgroupH ∼= µ52×
(Z/2)5. Write H∗H(BH/k)/rad ∼= k[t1, . . . , t5, s1, . . . , s5] as described in Re-
mark 3.12. Under the pullback map H∗H(BSO(11)k/k) → H∗H(BH/k)/rad,
u2m pulls back to the mth elementary symmetric polynomial∑

1≤i1<···<im≤5
ti1 · · · tim (15)

and u2m+1 pulls back to

5∑
j=1

sj
∑

1≤i1<···<im≤5
one equal to j

ti1 · · · tim

for 1 ≤ m ≤ 5 [17, Lemma 11.4]. To be concise, from now on we will write
u2m to denote the image of u2m under pullback maps to H∗H(BH/k)/rad or
H∗H(BK/k)/rad whenever we are dealing with these two rings.

Let Q ∼= (µ52×Z/2) ⊂ G and K ∼= (µ42×Z/2) ⊂ SO(11)k be the subgroups
described in Remark 3.12. Write H∗H(BK/k)/rad ∼= k[t1, . . . , t5, s]/(t1+· · ·+
t5). Under the pullback map H∗H(BSO(11)k/k)→ H∗H(BK/k)/rad, u7 maps
to su6 6= 0 and u11 maps to su10 6= 0. As Q → K is split, it follows that
u7, u11 restrict to nonzero classes y7 ∈ H7

H(BG/k) and y11 ∈ H11
H (BG/k).

Also, y4y7 and y11 are linearly independent in H11
H (BG/k).

Returning to the spectral sequence (14), calculations similar to those per-
formed in the proof of Proposition 3.6 show that e1 is a permanent cycle in
(14) and e3 ∈ E0,6

2 is transgressive with 0 6= d7(e3) = y7 ∈ H4(BG,Ω3). We
have Hm

H (BG/k) ∼= Hm
H (BSpin(10)k/k) for m ≤ 10.
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Let F∗ be the spectral sequence concentrated on the 0th column with E2

page given by ∆(e1, e2, e4) with ei of bidegree (0, 2i) for i = 1, 2, 4. Fix a
variable y and let H∗ be the spectral sequence with H2 = ∆(e3)⊗k[y] where
e3 is of bidegree (0, 6), y is of bidegree (7, 0), and e3 is transgressive with
d7(e3y

i) = yi+1 for all i. There exists a map of spectral sequence

α : I∗ := F∗ ⊗H∗ ⊗ k[y4, y6, y8, y10, y32]→ E∗

taking ei to ei for i = 1, 2, 3, 4 and taking y to y7. The E∞ page of I∗ is given

by I∞ ∼= F2 ⊗ k[y4, y6, y8, y10, y32] and α induces an injection Ii,j∞ → Ei,j∞ for

all i, j with i + j ≤ 17. For n odd, α induces an isomorphism 0 = In−i,i∞ ∼=
En−i,i∞ = 0 for all i since H∗H(BL/k) is concentrated in even degrees.

Let n be even. The k-dimension of Hn
H(BL/k) is equal to the cardinality

of the set

Sn = {(a, b, c, d, e) ∈ Z5
≥0 : 2a+ 4b+ 6c+ 8d+ 10e = n}.

For 0 ≤ i ≤ 15, set Vi,n := H(n−2i)/2(BG,Ω(n−2i)/2). For 0 ≤ i ≤ 15,
dimkVi,n is equal to the cardinality of the set Si,n = {(a, b, c, d, e) ∈ Z5

≥0 :

4a + 6b + 8c + 10d + 32e = n − 2i}. As e1 ∈ H2
H((G/P )/k) is a permanent

cycle in (14),

Vi,n ∼= Vi,n ⊗ k · ei1 ⊆ En−2i,2i∞

for 0 ≤ i ≤ 7 and n ≤ 16.

Define a bijection fn : Sn →
15⋃
i=0

Si,n by fn(a, b, c, d, e) = (b, c, d, e, (a −

i)/16) ∈ Si,n for a ≡ i mod (16). Then

dimkH
n
H(BL/k) = |Sn| =

15∑
i=0

|Si,n| =
15∑
i=0

dimkVi,n. (16)

Now assume that n ≤ 14. Then fn gives a bijection

Sn →
7⋃
i=0

Si,n.

As

dimkH
n
H(BL/k) ≥

7∑
i=0

En−2i,2i∞

and Vi,n ⊆ En−2i,2i∞ for 0 ≤ i ≤ 7, it follows that Vi,n ∼= En−2i,2i∞ for 0 ≤ i ≤ 7

and En−2i,2i∞ = 0 for i ≥ 8. In particular, E0,10
∞ ∼= k · e51. As mentioned

above, we have Hm
H (BG/k) = 0 for m = 3, 5, 9. After adding a k-multiple of

e3e
2
1 to e5, we can assume that d7(e5) = 0. Then the isomorphism E0,10

∞ ∼=
k · e51 implies that d11(e5) 6= 0. Hence, e5 is transgressive in (14) and y11 ∈
H6(BG,Ω5) is a lifting of d11(e5) to E11,0

2 .



1024 ERIC PRIMOZIC

Fix a variable x. Let J∗ denote the spectral sequence with E2 page J2 =
∆(e5)⊗ k[x] where e5 has bidegree (0, 10), x has bidegree (11, 0), and e5 is
transgressive with d11(e5x

i) = xi+1 for all i.

k · e5 k · e5x · · ·

0 k · x k · x2 · · ·

d11 d11

As e5 is transgressive in (14), there exists a map of spectral sequences
J∗ → E∗ taking e5 to e5 and x to y11. Tensoring with the map α defined
above, we get a map

α′ : K∗ := I∗ ⊗ J∗ → E∗

which induces an isomorphism on the 0th columns of the E2 pages. The E∞
page of K∗ is given by

K∞ ∼= I∞ ∼= F2 ⊗ k[y4, y6, y8, y10, y32].

As mentioned above, α and hence α′ induce isomorphisms on En−i,i∞ terms
for n < 16 and injections on all E∞ terms on or below the line i + j = 17.
Theorem 1.4 implies that α′ induces an isomorphism Kn,0

2 → En,02 for n <
16.

Next, we consider the filtration on H16
H (BL/k) given by (14). From (16),

dimkH
16
H (BL/k) = 1 +

7∑
i=0

|Si,16| = 1 +
7∑
i=0

dimkVi,16 ⊗ k · ei1.

We must then have either d7(e3f) = y7f = 0 ∈ H17
H (BG/k) for some 0 6=

f ∈ H10
H (BG/k) or d11(e5g) = y11g = d7(e3)h = y7h ∈ H17

H (BG/k) for some
0 6= g ∈ H6

H(BG/k) and h ∈ H10
H (BG/k). Let a, b, c ∈ k, not all zero, such

that ay11y6 + by7y10 + cy7y4y6 = 0 ∈ H17
H (BG/k).

The class au11u6 + bu7u10 + cu7u4u6 ∈ H17
H (BSO(11)k/k) pulls back to

ay11y6 + by7y10 + cy7y4y6 = 0 ∈ H17
H (BG/k). Under the pullback map

H∗H(BSO(11)k/k)→ H∗H(BK/k)/rad ∼= k[t1, . . . , t5, s]/(t1 + · · ·+ t5),

au11u6 + bu7u10 + cu7u4u6 maps to asu10u6 + bsu6u10 + csu6u4u6, which
equals 0 since Q → K is split. Then c = 0 and a = b since the elementary
symmetric polynomials (15) in

k[t1, . . . , t5]/(t1 + · · ·+ t5)

generate a polynomial subring.

au11u6 + bu7u10 + cu7u4u6 ∈ H17
H (BSO(11)k/k) 0 ∈ H17

H (BG/k)

asu10u6 + bsu6u10 + csu6u4u6 ∈ H17
H (BK/k)/rad 0 ∈ H17

H (BQ/k)/rad
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Thus, the relation y7y10 + y6y11 = 0 holds in H∗H(BG/k) and E6,10
∞ ∼= (k ·

y6 ⊗ e5)⊕ (k · y6 ⊗ e51). We now use the relation y7y10 + y6y11 = 0 to define
a new spectral sequence L∗ from K∗. Let (y6x + yy10) ⊂ K2 denote the
ideal generated by y6x + yy10 and let L2 := K2/(y6x + yy10). Define the
differentials d′m of L∗ so that K2 → L2 induces a map of spectral sequences
K∗ → L∗ and d′m = 0 for m > 11. Then α′ : K∗ → E∗ induces a map of
spectral sequences α′′ : L∗ → E∗. The E∞ page of L∗ is given by

L∞ ∼= (F2 ⊗ k[y4, y6, y8, y10, y32])⊕ (F2 ⊗ y6k[y4, y6, y8, y10, y32]⊗ e5).

We now show by induction that α′′ induces an isomorphism Ln,02 → En,02

for all n. For n < 16, we have shown that Ln,02
∼= En,02 . Now let n ≥ 16

and assume that α′′ induces an isomorphism Lm,02 → Em,02 for all m < n.

First, suppose that n is even. As Lm,02
∼= Em,02 for m < n, y7g 6= 0 ∈

H∗H(BG/k) for all 0 6= g ∈ H∗H(BG/k) with |g| < n − 7. Hence, for any

0 6= g ∈ Hm
H (BG/k) with |g| = m < n − 7, g ⊗ e3e5 ∈ Em,162

∼= Em,167 is

not in the kernel of the differential d7 : Em,167 → Em+7,10
7

∼= Em+7,10
2 . As

y7 ∈ H4(BG,Ω3) and y11 ∈ H6(BG,Ω5), y7z, y11z 6∈ ⊕iH i(BG,Ωi) for all

z ∈ H∗H(BG/k). It follows that α′′ induces an injection Li,j∞ → Ei,j∞ for all
i, j with m = i+ j ≤ n :

Lm−2i,2i∞
∼= Vi,m ⊗ ei1 ⊆ Em−2i,2i∞

for 0 ≤ i ≤ 4,

Lm−2i,2i∞
∼= (Vi,m ⊗ ei1)⊕ (y6Vi+3,m ⊗ ei−51 e5) ⊆ Em−2i,2i∞

for 5 ≤ i ≤ 7, and

Lm−2i,2i∞
∼= y6Vi+3,m ⊗ ei−51 e5 ⊆ Em−2i,2i∞

for 8 ≤ i ≤ 12. The equality in (16) then implies that α′′ induces iso-

morphisms Li,j∞ → Ei,j∞ for all i, j with i + j ≤ n. As mentioned above,

α′′ induces isomorphisms 0 = Ln+1−i,i
∞ → En+1−i,i

∞ = 0 for all i since
n + 1 is odd. Theorem 1.4 then implies that α′′ induces an isomorphism
Ln,02

∼= En,02 = Hn
H(BG/k).

Now assume that n is odd. We have 0 = Li,j∞ ∼= Ei,j∞ = 0 for all i, j with
i + j = n. An argument similar to the one used above for when n is even

shows that α′′ induces injections Li,j∞ → Ei,j∞ for all i, j with i + j ≤ n + 1.

Equation (16) then implies that α′′ induces isomorphisms Li,j∞ → Ei,j∞ for all

i, j with i + j ≤ n + 1. It follows that α′′ induces an isomorphism Ln,02
∼=

En,02 = Hn
H(BG/k) by an application of Theorem 1.4. Thus, by induction,

we have obtained that the 0th row of L2 is isomorphic to the 0th row of E2 :

H∗H(BG/k) = k[y4, y6, y7, y8, y10, y11, y32]/(y7y10 + y6y11).

The Hodge spectral sequence for BG degenerates by Proposition 5.
�
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Corollary 3.16. Let G be a k-form of Spin(11). Then

H∗H(BG/k) ∼= k[y4, y6, y7, y8, y10, y11, y32]/(y7y10 + y6y11)

where |yi| = i for i = 4, 6, 7, 8, 10, 11, 32.
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