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Elliptic curves over finite fields with
Fibonacci numbers of points

Yuri Bilu, Carlos A. Gómez, Jhonny C. Gómez
and Florian Luca

Abstract. For a prime power q and an elliptic curve E over Fq having
q + 1− a points, where a ∈ [−2

√
q, 2
√
q] let {#Em}m≥1 be the sequence

of numbers whose mth term is the number of points of E over Fqm . In
this paper, we determine all instances when

#({#Em}m≥1 ∩ {Fn}n≥1) ≥ 2,

where {Fn}n≥1 is the sequence of Fibonacci numbers. That is, we de-
termine all six–tuples (a, q,m1,m2, n1, n2) such that #E = q + 1− a,
#Em1 = Fn1 and #Em2 = Fn2 .
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1. The problem and the result

Let E be a curve of genus 1 over the finite field Fq. It is known that
its number of points #E is of the form q + 1− a, where a ∈ [−2

√
q, 2
√
q].

Knowing q and a it is easy to determine the number of points of E defined
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over the extension Fqm of Fq. Namely, letting #Em denote this number,
we have that #Em = qm + 1− (αm + αm), where α, α are the two roots of
the quadratic equation x2 − ax+ q = 0. In particular, #Em = qm + 1− am,
where am = αm + αm satisfies am ∈ [−2qm/2, 2qm/2]. Thus, the parame-
ters q and a determine entirely the sequence {#Em}m≥1. The details can
be found in Silverman [10, Section V.2].

We let F be our sequence of favorite numbers and we ask what can we
say about q and a such that the sequence {#Em}m≥1 contains members
from F . Formulated in this way, it is likely that there are infinitely many
solutions to our problem if F contains arbitrarily large numbers. That is,
take m = 1 and note that it suffices to find q and a with |a| ≤ 2

√
q such that

q + 1− a = f ∈ F . This is equivalent to q ∈ [(
√
f − 1)2, (

√
f + 1)2], a well

known conjecture which however does not seem to follow from the Riemann
Hypothesis. Goldston [4] deduced the validity of this conjecture assuming a
strong form of Montgomery’s pair correlation conjecture. See [2] for related
results. So, to make our problem more interesting, we ask what about pairs
(q, a) such that {#Em}m≥1 and F have at least two members in common?

Here, we completely answer this question for the case when F := {Fn}n≥1
is the sequence of Fibonacci numbers. To make the notation more precise, if
#E = q + 1− a, then we write Em(q, a) := #Em for all m ≥ 1. Our result
is the following:

Theorem 1.1. The only solutions (q, a) with q a prime power and a an
integer in the interval [−2

√
q, 2
√
q] of the system of Diophantine equations

Em1(q, a) = Fn1 , Em2(q, a) = Fn2 ,

with 1 ≤ m1 < m2 are

E1(2, 1) = F3, E2(2, 1) = F6;
E1(2, 2) = F2, E2(2, 2) = F5, E3(2, 2) = F7;
E1(4, 2) = F4, E2(4, 2) = F8;
E1(5, 3) = F4, E3(5, 3) = F12;
E1(7, 3) = F5, E2(7, 3) = F10.

(1)

Examples of actual curves with the above number of points are, respectively:

C1 := {(x, y) ∈ F2
2 : y2 + xy = x3 + x2 + 1} = {∞, (0, 1)};

C2 := {(x, y) ∈ F2
2 : y2 + y = x3 + x+ 1} = {∞};

C3 := {(x, y) ∈ (F2[θ]/(θ
2 + θ + 1))2 : y2 + y = x3 + θx}

= {∞, (0, 0), (0, 1)};
C4 := {(x, y) ∈ F2

5 : y2 = x3 + 4x+ 2} = {∞, (3, 1), (3, 4)};
C5 := {(x, y) ∈ F2

7 : y2 = x3 + x+ 1} = {∞, (0, 1), (0, 6), (2, 3), (2, 4)}.
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2. The method

It is well–known that

Fn =
αn − βn√

5
for all n ≥ 0, where (α, β) =

(
1 +
√

5

2
,
1−
√

5

2

)
.

Since Fn = αn/
√

5(1 + O(α−2n)) and Em(q, a) = qm(1 + O(q−m/2)), the
equation Em(q, a) = Fn can be treated using linear forms in logarithms.
That is, such equation implies easily that

|n logα− log
√

5−m log q| = O(α−n/2) = O(q−m/2). (2)

Using lower bounds for linear forms in logarithms, this gives

n = O((log n)(log q)).

The constant in O is not small (at least 1012) since one works with linear
forms in 3 logarithms. It remains to find some estimate independent of q.
Writing down estimates (2) for (m,n) = (mi, ni) for i = 1, 2, and eliminating
the log q term one gets

|(n1m2 −m1n2) logα− (m1 −m2) log
√

5| = O(m2α
−n1/2).

Now, using lower bounds for a linear form in 2 logs, one gets easily that
n1 = O(log n2). Since also log q = O(n1) = O(log n2) by going back to the
linear form (2) for (m,n) = (m2, n2), one gets

n2 = O((log n2)(log q)) = O((log n2)
2)

and one bounds n2. In principle, this is all up to the computational details.
As for the computational details, we first apply a linear form in 3 logs due
to Matveev. This gives m2 < 4× 1012 and later that q < 1055 and we need
to lower these bounds. For this we apply a linear form in 3 logs due to
Mignotte which lowers somewhat the bound on m2 to m2 ≤ 4× 109. When
lowering further the bounds, one can apply the Baker–Davenport procedure
on the left–hand side of estimate (2) in order to find an actual numerical
lower bound for that expression but one needs some good set of candidates
for q. We win by showing that one of the three situations arises:

(i) q is small; i.e., q < 2× 1010;
(ii) n1 is small; i.e, n1 ≤ 100 and q ∈ [(

√
Fn1 − 1)2, (

√
Fn1 + 1)2] is

prime;
(iii) m2 is small; i.e, m2 < 4 × 109, m1 = 1 and m2 determines, up to a

few choices, both parameters n1 and a; hence, q = Fn1 + (a− 1).

In each one of the above three cases, we get a certain list of possible values
for q. For example, in case (i) there are 882206716 values of q and in case
(ii), there are 7769416102. We applied the Baker–Davenport reductions for
all the q’s gathered from the above three cases and show that in all instances
n2 ≤ 1000. Finally, we show how to cover the range n2 ≤ 1000.
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3. Tools

3.1. Linear forms in logarithms. In order to prove our main result The-
orem 1.1, we need to use several times a Baker–type lower bound for a
nonzero linear form in logarithms of algebraic numbers. For us, they are
in two or three logarithms. We start by recalling a result of Matveev [6,
Theorem 2.1].

Theorem 3.1 (Matveev). Let γ1, . . . , γt be positive totally real multiplica-
tively independent algebraic numbers. Let K := Q(γ1, . . . , γt) and let D :=
[K : Q]. Let b1, . . . , bt be nonzero integers, and put

Λ := b1 log γ1 + · · ·+ bt log γt. (3)

Let Aj (1 ≤ j ≤ t) and E be defined by

Aj ≥ max{Dh(γj), | log γj |},
E := max{1,max{|bj |Aj/At : 1 ≤ j ≤ t}},

where h(γ) is the Weil height of γ. Then

log |Λ| > −C(t)C0W0D
2Ω,

where

C(t) :=
8

(t− 1)!
(t+ 2)(2t+ 3)(4e(t+ 1))t+1;

C0 := log(e4.4t+7t5.5D2 log(eD));

W0 := log(1.5eED log(eD));

Ω := A1 · · ·At.

The above linear form in logarithms gives us a huge bound on m2. With
a lot more work, we can save a factor of 103 by using the following result of
Mignotte [7, Proposition 5.2]; see also [8].

Theorem 3.2. Let Λ := b2 log γ2 − b1 log γ1 − b3 log γ3 6= 0 with b1, b2, b3
positive integers with gcd(b1, b2, b3) = 1 and γ1, γ2, γ3 positive real algebraic
numbers > 1 in a field K of degree D. Let

d1 = gcd(b1, b2) = b1/b
′
1 = b2/b

′
2, d3 = gcd(b2, b3) = b2/b

′′
2 = b3/b

′′
3.

Let a1, a2, a3 be real numbers such that

ai ≥ max{4, 4.296 log γi + 2Dh(γi)}, i = 1, 2, 3, Ω := a1a2a3 ≥ 100.

Put

b′ :=

(
b′1
a2

+
b′2
a1

)(
b′′3
a2

+
b′′2
a3

)
, logB := max{0.882 + log b′, 10/D}.

Then one of the following holds:

(i)

log |Λ| > exp
(
−790.95ΩD2(logB)2

)
;
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(ii) there exist nonzero integers r0, s0 with r0b2 = s0b1 satisfying the
inequalities

|r0| < 5.61(D logB)1/3a2 and |s0| < 5.61(D logB)1/3a1;

(iii) there exist integers r1 6= 0, s1 6= 0, t1, t2 satisfying

gcd(r1, t1) = gcd(s1, t2) = 1, (t1b1 + r1b3)s1 = r1b2t2,

and also

|r1s1| < 5.61δ(D logB)1/3a3,

|s1t1| < 5.61δ(D logB)1/3a1,

|r1t2| < 5.61δ(D logB)1/3a2,

where δ := gcd(r1, s1). If t1 = 0, we can take r1 = 1 and if t2 = 0
we can take s1 = 1.

When t = 2 and γ1, γ2 are positive and multiplicatively independent, we
can use a result of Laurent, Mignotte and Nesterenko [5]. Namely, let in
this case B1, B2 be real numbers larger than 1 such that

logBi ≥ max

{
h(γi),

| log γi|
D

,
1

D

}
, for i = 1, 2,

and put

b′ :=
|b1|

D logB2
+

|b2|
D logB1

.

Put

Λ := b1 log γ1 + b2 log γ2. (4)

We note that Λ 6= 0 because γ1 and γ2 are multiplicatively independent. The
following result is due to Laurent, Mignotte and Nesterenko ([5], Corollary 2,
p. 288).

Theorem 3.3 (Laurent, Mignotte, Nesterenko). With the above notation,
assuming that γ1, γ2 are positive and multiplicatively independent, then

log |Λ| > −24.34D4

(
max

{
log b′ + 0.14,

21

D
,
1

2

})2

logB1 logB2.

3.2. Continued fractions. During the course of our calculations, we get
some upper bounds on our variables which are too large, thus we need to
reduce them. To do so, we use some results from the theory of continued
fractions. Specifically, for a nonhomogeneous linear form in two integer
variables, we use a slight variation of a result due to Dujella and Pethő ([3],
Lemma 5a, pp. 303–304), which itself is a generalization of a result of Baker
and Davenport [1].

For a real number X, we write ||X|| := min{|X − n| : n ∈ Z} for the
distance from X to the nearest integer.
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Lemma 3.4 (Dujella, Pethő). Let M and Q be positive integers such that
Q > 6M , and A,B, τ, µ be some real numbers with A > 0 and B > 1. Let
further ε := ||µQ|| −M ||τQ||. If ε > 0, then there is no solution to the
inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(AQ/ε)

logB
.

In practical applications Q is always the denominator of a convergent
of the continued fraction of τ , though this is not formally required for the
statement.

The above lemma cannot be applied when µ = 0 since then ε < 0. In this
case, we use the following classical result in the theory of Diophantine ap-
proximation, which is the well–known Legendre criterion (see Theorem 8.2.4
in [9]).

Lemma 3.5 (Legendre). (i) Let τ be an irrational real number and x, y
integers such that ∣∣∣∣τ − x

y

∣∣∣∣ < 1

2y2
. (5)

Then x/y = Pk/Qk is a convergent of τ . Furthermore,∣∣∣∣τ − x

y

∣∣∣∣ ≥ 1

(ak+1 + 2)y2
, (6)

where [a0, . . . , ak, . . .] is the continued fraction expansion of τ .
(ii) If x, y are integers with y ≥ 1 and

|yτ − x| < |Qkτ − Pk|,
then y ≥ Qk+1.

Recall that Pk/Qk = [a0, . . . , ak] for all k ≥ 0.

4. The final computations

We assume that we have shown that n2 ≤ 1000 and we show how to finish
off the problem.

4.1. The case of small q. We take q ≤ 10000. We generated a list Q of
all prime powers q ≤ 10000. There are 1229 primes p ≤ 10000 but adjoining
also the prime powers of exponent > 1 in this range we get a list of 1280
elements. For each q ∈ Q and each a ∈ [−2

√
q, 2
√
q], we generated Em(q, a)

for m ≥ 1 as follows. First of all {Em(q, a)}m≥0 is linearly recurrent of
order 4 whose initial values are

E0(q, a) = 0, E1(q, a) = q + 1− a, E2(q, a) = (q + 1)2 − a2,
E3(q, a) = q3 + 1− a(a2 − 3q).
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Its characteristic polynomial is

(X − 1)(X − q)(X2 − aX + q) = X4 − (q + a+ 1)X3 + (aq + a+ 2q)X2

− (qa+ q2 + q)X + q2.

Hence,

Em(q, a) = (q + a+ 1)Em−1(q, a)− (aq + a+ 2q)Em−2(q, a)

+ (qa+ q2 + q)Em−3(q, a)− q2Em−4(q, a) for all m ≥ 4.

We claim the following: if Em(q, a) = Fn with q ≤ 10000 and n ≤ 1000,
then

m ≤Mq :=

⌊
log((1− 1/225)−2F1000)

log q

⌋
. (7)

Indeed, we may assume that m ≥ 50, because Mq ≥ 50 for q ≤ 10000.
Hence,

F1000 ≥ qm + 1− 2
√
qm = qm

(
1− 1

qm/2

)2

≥ qm
(

1− 1

225

)2

,

so

qm <

(
1− 1

225

)−2
F1000.

This proves (7).
Thus, for all q ∈ Q and all a ∈ [−2

√
q, 2
√
q] we generated, using the above

4th order linear recurrence, the numbers Em(q, a) for m ∈ [1,Mq] and we
intersected this list with the list of Fibonacci numbers Fn for n ∈ [1, 1000].
We asked Mathematica to tell us those pairs (q, a) such that this intersection
has at least two elements. This calculation took about 10 minutes and gave
the following 5 pairs:

(q, a) ∈ {(2, 1), (2, 2), (4, 2), (5, 3), (7, 3)},
and the actual solutions are the ones from the statement of Theorem 1.1.

4.2. The case of large q. Here, we assume that q > 10000. We have

Fn ≥ (
√
qm − 1)2 = qm

(
1− 1

qm/2

)2

> qm(0.99)2.

We deduce two things. First, since q > 10000, we get

m <
log(Fn(0.99)−2)

log q
<

log(F1000(0.99)−2)

log 10000
< 52.2,

so m ∈ [1, 52]. Next, if m ≥ 2, since αn−1 > Fn, we get

αn−1 > Fn ≥ qm(0.99)2 ≥ (10000× 0.99)2 = 99002,

which gives

n > 1 +
log(99002)

logα
> 39,

so n ∈ [40, 1000]. Thus, n2 > n1 ≥ 40 if m1 ≥ 2.
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We next deduce that m1 = 1. Assume for a contradiction that m1 ≥ 2.
We return to
αn√

5
(1 + x) = qm(1 + y)2, |x| = α−2n < 10−16, |y| ≤ q−m/2 < 10−2m1 .

(8)
Taking logarithms and using the fact that m1 ≥ 2, we get

|n logα− log
√

5−m log q| ≤ | log(1 + x)|+ 2| log(1 + y)|
< 1.01|x|+ 2.02|y|

<
2.03

10min{8,2m1}
.

Apply the above with (n,m) = (ni,mi) and i = 1, 2. Multiplying the above
estimate for i = 1 with m2 and the one for i = 2 with m1 and subtracting
them we get

|(n2m1 −m2n1) logα− (m2 −m1) log(
√

5)| < 2.03(m2 +m1)

10min{8,2m1}
.

The convergent p3/q3 of log
√

5/ logα is 97/58 and m2 − m1 < 52 < 58,
while the convergent p2/q2 is 5/3. Thus, from Lemma 3.5 (ii),

|(n2m1 −m2n1) logα− (m2 −m1) log(
√

5)| ≥ |p2 logα− q2 log
√

5| > 0.008,

which gives

0.008 <
2.03(m2 +m1)

10min{8,2m1}
,

so
0.008× 10min{8,2m1} < 2.03(m2 +m1).

If m1 ≥ 3, the left–hand side is at least 8000, while the right–hand side is at
most 2.03×(52+51) < 210, a contradiction. Thus, m1 = 2, so the left–hand
side is 80. Thus, 80 < 2.03(m2 + 2), giving m2 ≥ 38. Thus,

F1000 ≥ Fn2 ≥ (0.99)2qm2 ≥ (0.99)2q38,

so q < 3.1× 106. Thus, Fn1 ≤ (1.01)2qm1 ≤ (1.01)2(3.1× 106)2, so n1 ≤ 63.
This shows that n1 ∈ [40, 63]. We checked that there is no solution to the
equation E2(q, a) = Fn with n ∈ [40, 63]. The way we did it, was to note
that

Fn = E2(q, a) = (q + 1)2 − a2 = (q + 1 + a)(q + 1− a).

Thus,
q + 1 + a = d1, q + 1− a = d2

for some divisors d1, d2 of Fn whose product is Fn. Thus, d2 = Fn/d1 and
so

q =
1

2

(
d1 +

Fn
d1

)
− 1, a =

1

2

(
d1 −

Fn
d1

)
(9)

hold for some divisor d1 of Fn. In a few seconds, Mathematica confirmed
that there is no n1 in [40, 63] such that for some divisor d1 of Fn1 , the
quantities q and a defined in (9) above are integers with |a| ≤ 2

√
q.
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Thus, m1 = 1. Therefore, we have Fn1 = E1(q, a) = q+1−a. Since E1 is a
subgroup of Em2 , it follows that E1(q, a) | Em2(q, a) by Lagrange’s theorem.
Hence, Fn1 | Fn2 , which implies that n1 | n2. So, n2 = n1`. Assume first
that n1 ≥ 40. Since 40 ≤ n1 < n2 ≤ 1000, we get ` ∈ [2, 25]. Also, since
n1 = n2/` ≤ 1000/2, it follows that n1 ≤ 500. Now we fix n1 ∈ [40, 500]
and ` ∈ [2, 1000/n1]. Clearly, ` is at most 25 but it could be smaller if n1 is
large. We use the same battlehorse estimate (8), namely

|n logα− log
√

5−m log q| ≤ | log(1 + x)|+ 2| log(1 + y)|

with

|x| = α−2n, |y| ≤ q−
m
2 ,

for (m,n) = (mi, ni) and i = 1, 2. Since

(1.01)2qm ≥ qm (1 + y)2 = Fn,

it follows that qm/2 ≤ 1.01/
√
Fn. Thus,

|n logα− log
√

5−m log q| ≤ 1.01|x|+ 2(1.01)|y| ≤ 1.01

α2n
+

2(1.01)2√
Fn

<
2.05√
Fn
.

We apply the above inequality with (n,m) equal to (n1, 1) and (n1`,m2),
multiply the first one with m2 and subtract it from the second to get

|(n1m2 − n1`) logα+ (m2 − 1) log
√

5| < 2.05(m2 + 1)√
Fn1

.

Since m2 ≤ 52, this implies that∣∣∣∣∣m2 −
n1` logα− log

√
5

n1 logα− log
√

5

∣∣∣∣∣ < 110

(n1 logα− log
√

5)
√
Fn1

.

In particular, m2 is uniquely determined, that is

m2 :=

⌊
n1` logα− log

√
5

n1 logα− log
√

5
+

110

(n1 logα− log
√

5)
√
Fn1

⌋
,

and{
n1` logα− log

√
5

n1 logα− log
√

5
+

110

(n1 logα− log
√

5)
√
Fn1

}
<

220

(n1 logα− log
√

5)
√
Fn1

.

The right–hand side above is very small (smaller than 0.0011 at n1 = 40).
We ran a computer code which checked for all n1 ∈ [40, 500] and all
` ∈ [2, b1000/n1c], whether the above inequality is fulfilled. This took less
than one second. No solution was found.

We still need to cover the range m1 = 1, n1 < 40. Since q > 104 and
αn1−1 > Fn1 ≥ q(0.99)2, we have that

n1 > 1 +
log q(0.99)2

logα
> 20.09,
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so n1 ≥ 21. We used the same method as the beginning of Subsection 4.1.
Namely, for n1 ∈ [21, 39], we have

√
q <

√
Fn1 + 1. Hence, a is an integer

in the interval [−2(
√
Fn1 + 1), 2(

√
Fn1 + 1)]. For each such value of a, we

put q := Fn1 − (a − 1) and generated Em(q, a) for m = 2, 3, . . . ,Mq (note
that E1(q, a) = Fn1 by construction), where Mq is the maximal m such that
qm(0.99)2 ≤ F1000. We took

Mq :=

⌊
logF1000(0.99)2

log q

⌋
.

Then we intersected the list of {Em(q, a) : 1 ≤ m ≤Mq} with the Fibonacci
sequence and looked for values for which this intersection has at least two
members. This computation took a few minutes and no solution was found.
Thus, the only solutions for n2 ≤ 1000 are the ones appearing in (1).

For the rest of the paper, we assume that n2 > 1000.

5. A linear form in 3 logs

Recall that we are studying

Fn1 = Em1(q, a), Fn2 = Em2(q, a),

where n1 < n2. We have the following lemma.

Lemma 5.1. Assume n2 > 1000. Then

m2 < 4× 1012.

Proof. We write

(
√
qm + 1)2 ≥ Em(q, a) = Fn ≥ (

√
qm − 1)2.

Thus,

qm2/2 ≥
√
Fn2 − 1 ≥

√
F1001 − 1 > 10100.

In particular,

1.001qm2 ≥ Fn2 ≥ 0.999qm2 . (10)

We thus get that

αn2

√
5

(1 + x) = qm2(1 + y)2 with |x| = α−2n2 , |y| ≤ q−m2/2.

Thus,

|n2 logα− log
√

5−m2 log q| ≤ | log(1 + x)|+ 2| log(1 + y)|
≤ 1.01|x|+ 2.02|y|

<
2.03√
Fn2

. (11)

Let |Λ| be the expression in the left–hand side in (11). The fact that Λ 6=
0 is easy since Λ = 0 implies α2n2 ∈ Q which is false for any positive
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integer n2. We assume first that q is not a power of 5 and we apply Matveev’s
Theorem 3.1 with

t := 3, γ1 := α, γ2 :=
√

5, γ3 := q, b1 := n2, b2 := −1, b3 := −m2. (12)

The numbers γ1, γ2, γ3 are totally real, positive and multiplicatively inde-
pendent (because q is not a power of 5). We have K = Q(α) which has
D = 2, so we can take A1 := logα, A2 := log 5, A3 := 2 log q. Then

|b1|A1

A3
=
n2 logα

2 log q
,
|b2|A2

A3
=

log 5

2 log q
,
|b3|A3

A3
= m2,

and by estimate (11), we have

m2 ≥
n2 logα

log q
− log

√
5

log q
− 2.03

(log q)
√
Fn2

> max

{
n2 logα

2 log q
,

log 5

2 log q

}
since n2 > 1000. Thus, we can take E = m2. We thus get that

log |Λ| > −C(3)C0W0D
2Ω,

where

C(3) =
8

2!
(3 + 2)(2 · 3 + 3)(4e(3 + 1))4 < 6.45× 108;

C0 = log(e4.4·3+735.522 log(2e)) < 28.16;

W0 = log(1.5em2(2) log(2e)) < logm2 + 2.63;

Ω = (logα)(log 5)(2 log q) < 1.55 log q,

so
log |Λ| > −1.13× 1011(logm2 + 2.63) log q. (13)

Using (11) together with estimate (10), we get that

|Λ| < 2.03√
Fn2

≤ 2.03

0.999qm2/2
<

2.04

qm2/2
,

and taking logarithms and using (13), we get

(m2/2) log q < log(2.04) + 1.127× 1011(logm2 + 2.63) log q,

so

m2 <
2 log(2.04)

log q
+ 1.254× 1010(logm2 + 2.63)

< 1.255× 1011(logm2 + 2.63),

which gives m2 < 4× 1012.
This was when q is not a power of 5. If q is a power of 5 then Theorem 3.1

does not apply with data (12) because γ2 and γ3 are multiplicatively depen-
dent. However, in this case we can use Theorem 3.3 and obtain an even
sharper result. If q = 5λ some positive integer λ, then (11) becomes

|2n2 logα− (2λm2 + 1) log 5| < 4.06√
Fn2

. (14)
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Next, we apply Theorem 3.3 with t := 2, γ1 := α, γ2 := 5, b1 := 2n2 and
b2 := −(2λm2 + 1). Again, since K = Q(

√
5), we have D = 2. Here, we take

logB1 := 1/2, logB2 := log 5,

b′ =
2n2

2 logB2
+

2λm2 + 1

2 logB1
=

n2
log 5

+
2λm2 + 1

logα
<

3n2
log 5

+ 1,

where the last inequality follows by dividing both sides of (14) by the product
(logα)(log 5) and using the fact that 4.06/

√
Fn2 is very small. We thus get

that

log |Λ| > −23.34× 23(logα) log 5 max{log(3n2/ log 5 + 1) + 0.14, 10.5}2.
Combining the above inequality with (14) and using Fn2 > αn2−2, we get

(n2 − 2)(logα)/2 < log(4.06)

+ 23.34× 23 log 5 max{log(3n2/ log 5 + 1) + 0.14, 10.5}2.
If the maximum in the right above is 10.5, then

log(3n2/ log 5 + 1) + 0.14 ≤ 10.5,

which gives n2 ≤ 20, 000. If the maximum above is not 10.5, we then get
n2 < 220, 000. Thus, n2 < 2.2× 105. Using also (14), we have

m2 < 2λm2 + 1 <
2n2 logα

log 5
+ 1 < 1.4× 105,

which is much sharper than the desired inequality. �

6. The case (i) of Section 2

Here, we deal with q ≤ 2× 1010. This is case (i) in Section 2. Recall that
Lemma 5.1 gives m2 < 4× 1012, and next since αn2−2 < Fn2 ≤ qm2(1.001)2,
according to (10), we get

n2 < 2 +
m2 log q + 2 log(1.001)

logα
< 2× 1014.

We have to reduce this bound. We assume first that q is not a power of 5.
We apply the Baker–Davenport reduction method explained in Lemma 3.4
to inequality (11) written under the form∣∣∣∣∣n2 logα

log q
−m2 −

log
√

5

log q

∣∣∣∣∣ < 2.03α

(log q)αn2/2
. (15)

If q = pλ, we then get that∣∣∣∣∣n2 logα

λ log p
−m2 −

log
√

5

λ log p

∣∣∣∣∣ < 2.03α

(λ log p)αn2/2
,

and multiplying across by λ, we get inequality (15) with the same n2 and
with m2 replaced by m′2 := λm2. Thus, we may assume that q is prime 6= 5
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when applying the Baker–Davenport reduction to estimate (15). We take
A := 5 > (2.03α/ log p) for any p ≥ 2 and B :=

√
α.

We took M := 2.3 × 1015. Since F79 > 1.4 × 1016 > 6M , it follows that
if Pk/Qk denotes the kth convergent of τ := logα/ log q, then Q79 > 6M .
For each prime q < 2 × 1010 which is not 5, we computed w := ‖Q79µ‖,
where µ := log(

√
5)/ log q. Since M‖Q79τ‖ = M |Q79τ − P79| < M/Q79,

we checked at each step that wQ79 > 2M . This ensures that at each step
‖Q79µ‖ −M‖Q79τ‖ > w/2, so one can take ε := w/2. In order not to have
to keep track of w, Q79, we simply checked that Q79/w < 1080 at each step.
In few days, a Mathematica code went through all the 882206715 primes
q 6= 5 smaller than 2 × 1010 and confirmed that indeed in each case all the
above conditions were fulfilled. Thus,

n2 <
log(AQε−1)

log
√
α

<
log(2A(Q/w))

log
√
α

<
log(2× 5× 1080)

log
√
α

< 800,

which is what we wanted. Assume next that q = 5λ. Inequality (15) gives∣∣∣∣2n2 logα

log 5
− (2λm2 + 1)

∣∣∣∣ < 4.06α

(log 5)αn2/2
<

5

αn2/2
.

Thus,∣∣∣∣ logα

log 5
− 2λm2 + 1

2n2

∣∣∣∣ < 5

(2n2)αn2/2
<

1

2(2n2)2
for n2 > 30,

where the last inequality is implied by αn2/2 > 20n2, which holds for n2 > 30.
Thus, by Lemma 3.5 (i), if n2 > 30, the fraction (2λm2 + 1)/(2n2) is a con-
vergent of logα/ log 5 with denominator at most 2n2 < 4×1014. This shows
that (2λm2 + 1)/(2n2) = Pk/Qk for some k < 29 since Q29 > 1016 > 2n2.
We also have max{ak : 0 ≤ k ≤ 29} = 59. Thus, again by Lemma 3.5 (i),∣∣∣∣ logα

log 5
− 2λm2 + 1

2n2

∣∣∣∣ ≥ 1

(59 + 2)(2n2)2
=

1

244n22
.

We thus get that for n2 ≥ 30,

1

244n22
<

∣∣∣∣ logα

log 5
− 2λm2 + 1

2n2

∣∣∣∣ < 5

(2n2)αn2/2
,

so αn2/2 < 610n2, therefore n2 ≤ 42. This shows that n2 ≤ 42 in case q is a
power of 5.

From now on, we may assume that n2 > 1000 and that q > 2× 1010. In
particular, Fn1 ≥ q(0.999)2 ≥ 2× 1010(0.999)2, so n1 > 50.

7. Another linear form in 3 logs

Recall that we are studying

Fn1 = Em1(q, a), Fn2 = Em2(q, a),

where n1 < n2. We have the following lemma.
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Lemma 7.1. Assume n2 > 1000. Put logB := 0.8882+log(m2
2 log q). Then

one of the following holds:

(i)

m2 < 1.5× 106(logB)2;

(ii) There exist integers a, b, c with an2 + b+ cm2 = 0, where

|a| < 29(logB)1/3, |b| < 48(logB)1/3, |c| < 59 log q(logB)1/3.

Proof. As the proof of Lemma 5.1, we can write

|n2 logα− log
√

5−m2 log q| ≤ 2.03√
Fn2

≤ 2.03√
0.999qm2/2

<
2.04

qm2/2
. (16)

Here, we apply Mignotte’s Theorem 3.2 with

γ1 :=
√

5, γ2 := α, γ3 := q, b1 := 1, b2 := n2, b3 := m2.

The numbers b1, b2, b3 are positive and have gcd(b1, b2, b3) = 1 since b1 = 1.
Further, d1 = 1, so b′1 = b1, b

′
2 = b2. We also have D = 2, and

h(γ1) = (1/2) log 5, h(γ2) = (1/2) logα, h(γ3) = log q,

so we can take

a1 := 6.68 > (4.296 + 4) log
√

5;

a2 := 4 = max{4, (4.296 + 2) logα};
a3 := 8.296 log q.

Then Ω := a1a2a3 > 221 log q ≥ 221 log 2 > 100. Then we can take

b′ =

(
1

4
+

n2
6.68

)(
m2

4
+

n2
log q

)
.

Since

αn2−2 < Fn2 < 1.001qm2 ,

we have that

n2 < 2 +
log(1.001qm2)

logα
< 2.003 + 2.07m2 log q.

Thus,

b′ < (0.55 + 0.31m2 log q)(2.22m2 + 2.003/ log q)

< m2
2(log q)

((
0.55

m2 log q
+ 0.31

)(
2.22 +

2.003

m2 log q

))
< m2

2 log q,



ELLIPTIC CURVES WITH FIBONACCI NUMBERS OF POINTS 725

where we used the fact that n2 > 1000, so

qm2 > Fn2(0.999)−1 > F1000(0.999)−1,

so m2 log q > log(F1000(0.999)−1) > 480. Thus, we can take

logB := max{0.882 + log(m2
2 log q), 5}.

In case the maximum is at 5, we get m2 log q ≤ exp(5− 0.882) < 62, which
contradicts the fact that m2 log q > 480. Thus, we take

logB = 0.882 + log(m2
2 log q).

We now go through the possibilities (i)–(iii) of Theorem 3.2.

7.1. The instance (i). In this case, we have

|Λ| > exp(−790.95× (222 log q)× 4× (0.882 + log(m2
2 log q))2

= exp
(
−702364(0.882 + log(m2

2 log q))2 log q
)
.

Comparing the above inequality with (16), we get

(m2/2) log q < log(2.04) + 702364(0.882 + log(m2
2 log q))2 log q

< 702365(0.882 + log(m2
2 log q)) log q,

which gives

m2 < 1.5× 106(0.882 + log(m2
2 log q))2. (17)

7.2. The instance (ii). We may assume that r0 and s0 are coprime, if
not we simplify their greatest common divisor. Since b1 = 1, we get that
r0 = 1, s0 = b2. Thus,

n2 = b2 < 5.61×4(2(0.882+log(m2
2 log q)))1/3 < 29(0.882+log(m2

2 log q))1/3.

However, since qm2 < Fn20.999−1 < αn2−10.999−1, we have that

m2
2 log q ≤ (m2 log q)2

log 2
<

((n2 − 1) logα− log(0.999))2

log 2
,

which implies that

n2 < 29

(
0.882 + log

(
((n2 − 1) logα− log(0.999))2

log 2

))1/3

,

which gives n2 < 58, a contradiction.
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7.3. The instance (iii). In case t1 = 0, we may take r1 = 1 and we get
s1m2 = t2n2, where r1, t2 are positive, coprime,

s1 < 5.61× 8.296 log q(2 logB)1/3

< 59 log q(logB)1/3;

t2 < 5.61× 4(2 logB)1/3

< 29(logB)1/3.

In case t1 6= 0, reducing the equation in (iii) modulo r1, we get the divisibil-
ity r1 | t1s1b1 and since b1 = 1 and r1 and s1 are coprime, we get that r1 | s1.
Thus, r1 = δ, s1 = δs′1, and the equality in (iii) lead to t1s

′
1+δs′1m2 = t2n2,

where

|δs′1| < 5.61× 8.296 log q(2 logB)1/3

< 59 log q(logB)1/3;

|t1s′1| < 5.61× 6.68(2 logB)1/3

< 48(logB)1/3;

|t2| < 5.61× 4(2 logB)1/3

< 29(logB)1/3.

This is situation (ii) described in the statement of the lemma with the
coefficients (a, b, c) := (t2,−t1s′1,−δs′1). �

8. Bounding q

We start again with the equation

αn − βn√
5

= qm + 1− am,

where now q ≥ 2× 1010. As in previous arguments, this implies

|n logα− log
√

5−m log q| < 2.03√
Fn

<
2.03√

0.999qm/2
<

2.04

qm/2
.

We write the above inequality for (mi, ni) for i = 1, 2, we multiply the one
for i = 1 by m2 and the one for i = 2 by m1, subtract them and use the
absolute value inequality to get that

|(m2n1 −m1n2) logα− (m2 −m1) log
√

5| < 2.04(m2 +m1)

qm1/2
. (18)

This implies∣∣∣∣∣m2n1 −m1n2
m2 −m1

− log
√

5

logα

∣∣∣∣∣ < 2.04(m2 +m1)

(m2 −m1)(logα)qm1/2
. (19)
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The 30th convergent of the continued fraction of log
√

5/ logα is

P29

Q29
= [1, 1, 2, 19, 2, 9, 1, 1, 3, 1, 9, 1, 2, 6, 1, 1, 1, 5, 1, 14, 29, 1, 2, 1, 4, 2, 1, 2, 9, 18],

with the denominator Q29 > 4 × 1012. Since ak ≤ 29 for k = 0, . . . , 29, the
left–hand side of (19) exceeds 1/(31(m2 −m1)

2), which implies that

qm1/2 <
2.04× 31(m2

2 −m2
1)

logα
. (20)

In particular, since m2 < 4×1012 and q > 2×1010, we get that qm1 < 5×1054

and m1 ∈ {1, 2, 3, 4, 5}. Further,

Fn1 < qm1(1.001) < 1055, so n1 < 265.

8.1. A better bound on m2. Here, we prove the following lemma.

Lemma 8.1. We have m2 < 4× 109.

Proof. We call upon Lemma 7.1. In situation (i), we get, using (20), that

m2 < 1.5× 106
(
0.882 + log(2m2

2 log(2.04× 31m2
2/ logα))

)2
,

so m2 < 4 × 109. This is the saving by a factor of 103. Let us look at
possibility (ii). There,

logB = 0.882 + log(m2
2 log q) < 0.882 + log((4× 1012)2 log 1055) < 64,

so (logB)1/3 < 4. We thus have

an2 + b+ cm2 = 0,

where |a| < 116, |b| < 200, |c| < 240 log q. We write again

|n2 logα− log
√

5−m2 log q| < 2.03√
Fn2

.

We multiply both sides with a and get

|(−b− cm2) logα− a log
√

5− am2 log q| < 240√
Fn2

.

Thus,

|m2(a log q + c logα) + a log
√

5 + b logα| < 240√
Fn2

.

Multiplying by m1 (less than or equal to 5), we get∣∣∣m2(a log(qm1) + cm1 logα) + am1 log
√

5 + bm1 logα
∣∣∣ < 240m1√

Fn2

≤ 1200√
Fn2

.

Now

qm1 = Fn1 − (1− am1) = Fn1(1 + x),

where x = −(1− am1)/Fn1 . Then

log(qm1) = logFn1 + log(1 + x).
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Now

|x| ≤ 2qm1/2 + 1

Fn1

<
2qm1/2 + 1

0.999qm1
<

2.01

qm1/2
<

2.01

105
.

Thus,

log(1 + x) = y, where |y| = |x− x2/2 + x3/3 + · · · | < 2.02

105
.

Hence,

|m2(a logFn1 + cm1 logα+ ay) + am1 log
√

5 + bm1 logα| < 1200√
Fn2

. (21)

We have

|ay| < 120 · 2.02

105
<

2.43

103
.

We checked numerically that |a logFn1 +cm1 logα| > 2.5/103. This is equiv-
alent to the inequality

‖a(logFn1/ logα)‖ > 2.5

103(logα)

with a ∈ [1, 116] and n1 ∈ [50, 265], which we checked numerically (interest-
ing enough this inequality fails for a = 119). This shows that

|a logFn1 + cm1 logα+ ay| > 0.07

103
=

7

105
.

So, we get that

|m2(a log(qm1) + (cm1) logα) + (am1) log
√

5 + (bm1) logα|

>
7m2

105
−m1(|a| log

√
5 + |b| logα).

Combining the above inequality with estimate (21), we get

7m2

105
−m1(|a| log

√
5 + |b| logα) <

1200√
Fn2

< 1,

so

m2 <
105

7
(5(120 log

√
5 + 200 logα) + 1) < 2× 107,

which is better than the conclusion from situation (i). �

As a byproduct, let us show that m1 = 1. Indeed, since m2 < 4× 109,
inequality (20) now implies that qm1/2 < 2.2 × 1021, which shows that
m1 ∈ {1, 2, 3, 4} and that Fn1 < (1.001)qm1 < 5 × 1042, so n1 < 210. We
need to eliminate the cases m1 ∈ {2, 3, 4}. We use the method described at
(9). Say m1 = 2. Then

Fn1 = (q + 1)2 − a2 = (q + 1 + a)(q + 1− a),

so there is a divisor d1 of Fn1 such that with

q + 1 = (d1 + Fn1/d1)/2, a = (d1 − Fn1/d1)/2,
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we have that q and a are integers with |a| < 2
√
q. A Mathematica code

checked in a few minutes that there is no n1 ∈ [50, 210] with Fn1 having
such a divisor d1. The argument applies to m1 = 4 as well since in that
case, with a2 := a2 − 2q, we have that E4(q, a) = E2(q

2, a2). For m1 = 3,
we have

Fn1 = E3(q, a) = (q + 1− a)((q + 1)2 + a2 + a(q + 1)− 3q).

Thus, putting d1 = q + 1− a, we have that d1 is a divisor of Fn1 and

(q + 1)2 + a2 + a(q + 1)− 3q = Fn1/d1.

Substituting q + 1 = d1 + a in the above quadratic, we get

3a2 + 3(d1 − 1)a+ ((d21 − Fn1/d1)− 3(d1 − 1)) = 0.

In particular, z := (1/3)(d21 − Fn1/d1) is an integer. Secondly, the above
quadratic has integer roots so ∆ := (d1 − 1)2 − 4(z − d1 + 1) must be a
perfect square. A Mathematica code checked in a few minutes that there
is no n1 ∈ [50, 210] such that Fn1 has a divisor d1 such that z is an integer
and ∆ is a perfect square. Thus, m1 = 1. In particular, n1 | n2.

Finally, since q < 5× 1042 (by 20) and m2 < 4× 109, by (15), we have

n2 <
log
√

5 +m2 log q + 1

logα
< 2× 1012.

9. The case (ii) of Section 2

We start again with the equation

αn − βn√
5

= qm + 1− am,

where again q ≥ 2× 1010. As in previous arguments, this implies∣∣∣ni logα− log
√

5−mi log q
∣∣∣ < 2.03√

Fni

<
2.04

qmi/2
.

We write the above inequality for (mi, ni) for i = 1, 2, we multiply the one
for i = 1 by m2 and the one for i = 2 by m1, subtract them and use the
absolute value inequality to get that

|(m2n1 −m1n2) logα− (m2 −m1) log
√

5| < 2.04(m2 +m1)

q1/2
. (22)

Lemma 9.1. If n2 > 1000, then

2.04(m2 +m1)

q1/2
< logα. (23)

Proof. Assume inequality (23) fails. Then

q1/2 < 2.04(logα)−1(m2 +m1) < 2× 1010.

Thus,
Fn1 < 1.001q < 5× 1020,
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so it follows that n1 ≤ 100. Let us compute a bound on n2. Using (10), we
have

αn2−2 ≤ Fn2 ≤ 1.001qm2 ,

so

n2 ≤ 2 +
log(1.001qm2)

logα
≤ 2 +

log(1.001) + 4× 109 × log(4× 1020)

logα
,

therefore n2 < 4× 1011. In particular, the inequality n2 < 2× 1014 as at the
beginning of Section 6 holds and together with it the inequality (15) holds
as well. If q is not a prime, then q = pλ with λ ≥ 2. Since q < 4 × 1020,
it follows that p < (4 × 1020)1/2 < 2 × 1010, and the calculations from
Section 6, based on the Baker–Davenport reductions when q = pλ for some
prime p < 2× 1010 and n2 < 2× 1014, show that in fact n2 ≤ 1000. So, we
may assume that q is prime. Now since also m1 = 1, we have

(
√
q − 1)2 ≤ Fn1 ≤ (

√
q + 1)2,

so

q ∈ [(
√
Fn1 − 1)2, (

√
Fn1 + 1)2]. (24)

These ones are the primes appearing in (ii) in Section 2. So, for each
n1 ∈ [50, 100] we generated the primes in [(

√
Fn1 − 1)2, (

√
Fn1 + 1)2] and

for each one of those primes we applied the Baker–Davenport Lemma 3.4
to (15) with

τ := logα/ log q, µ := log
√

5/ log q, A := 5, B := α1/2

in order to lower n2. There are

100∑
n1=50

(
π
(

(
√
Fn1 + 1)2

)
− π

(
(
√
Fn1 − 1)2

))
= 7769416102

primes q, where π denotes the prime counting function. We split the range of
n1 on various computers and we look for the prime numbers q in the interval
indicated in (24) to apply the exactly same procedure as in Section 6 (using
Q := Q79). We checked that Q/w < 1080 and also that ε > w/2. Hence,
again

n2 <
log(AQε−1)

log
√
α

<
log(2A(Q/w))

log
√
α

<
log(2× 5× 1080)

log
√
α

< 800,

which is what we wanted and in fact gives a contradiction since we assumed
that n2 > 1000. The calculations were done with Mathematica and the
running time was about two weeks on 25 computers. This takes care of the
proof of the current lemma. �
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10. The case (iii) of Section 2

We return to (22) and we suppose that (23) holds. Thus,

|(m2n1−m1n2) logα− (m2−m1) log
√

5| < 2.03α(m2 +m1)

αn1/2
< logα. (25)

Thus, ∣∣∣∣∣(m2n1 −m1n2)− (m2 −m1)
log
√

5

logα

∣∣∣∣∣ < 1.

In particular, if m2 and m1 are given, then

m2n1 −m1n2 ∈ {bxc, dxe} where x := (m2 −m1)
log
√

5

logα
. (26)

We need to throw into the mix one more element. We start again with

Fn = qm + 1− am, (n,m) = (ni,mi) for i = 1, 2.

At i = 1, we have m1 = 1, am1 = a. So, we write q = Fn1 + (a − 1) and
take logarithms to get

log q = log(Fn1 + (a− 1)) = logFn1 + log

(
1 +

a− 1

Fn1

)
= n1 logα− log

√
5 + ζ1 +

a− 1

Fn1

+ ζ2,

where

|ζ1| ≤
1.01

α2n1
and |ζ2| ≤ 1.01

(
a− 1

Fn1

)2

.

We need a better bound for |ζ2|. Note that

|a− 1| ≤ 2
√
q + 1 ≤ 2

√
Fn1 + 3 ≤ 2.001

√
Fn1 ,

therefore

|ζ2| ≤ 1.01

(
2.001√
Fn1

)2

<
4.05

Fn1

.

Thus,

|ζ1 + ζ2| ≤ |ζ1|+ |ζ2| ≤
4.05

Fn1

+
1.01

α2n1
<

4.06

Fn1

.

We thus get that

log q = n1 logα− log
√

5 +
a− 1

Fn1

+ ζ, |ζ| ≤ 4.06

Fn1

. (27)

We do the same for (n,m) = (n2,m2). Here, we get

log qm2 = n2 logα− log
√

5 +
am2 − 1

Fn2

+ ζ ′1, |ζ ′1| ≤
4.06

Fn2

.
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Clearly, we may assume that n2 = n1` with ` ≥ 5, since otherwise ` ≤ 4
and since n1 ≤ 210, we would get n2 ≤ 4 × 210 < 1000, which is what we
wanted. Thus,∣∣∣∣am2 − 1

Fn2

∣∣∣∣ ≤ 2
√
Fn2 + 3

Fn2

≤ 3√
Fn2

≤ 3α

α`n1/2
≤ 3α

α2.5n1
<

0.01

Fn1

.

Similarly,

|ζ ′1| ≤
4.06

Fn2

≤ 4.06α2

αn2
≤ 4.06α2

α5n1
≤ 0.01

Fn1

.

Hence,

log(qm2) = n2 logα− log
√

5 + ζ ′, |ζ ′| ≤ 0.02

Fn1

. (28)

Thus, multiplying (27) by m2 and subtracting (28), we get∣∣∣∣(n1m2 − n2) logα− (m2 − 1) log
√

5 +
m2(a− 1)

Fn1

∣∣∣∣ ≤ m2|ζ|+ |ζ ′|

≤ 4.06m2 + 0.02

Fn1

.

Dividing both sides by m2 and multiplying by Fn1 , we get∣∣∣∣∣(n1m2 − n2) logα− (m2 − 1) log
√

5

m2
· Fn1 − (a− 1)

∣∣∣∣∣ < 4.06 +
0.02

m2
< 4.1.

This shows that, for κ ∈ [−4, 4],

a− 1 =

⌊
(n1m2 − n2) logα− (m2 − 1) log

√
5

m2
· Fn1

⌉
+ κ. (29)

We are now ready to do some calculations. For each m2 ∈ [2, 4 × 109], we
compute the integer in the right–hand side of equation (26) and its divisors
n1 ∈ [50, 210]. If there are no such divisors n1, then m2 is not convenient
and we ignore it. If there are such n1, then we also find n2 via the formula
(26) with m1 = 1 which gives n2 = m2n1−z, where z ∈ {bxc, dxe}. Now for
every such (n1, n2), we compute a − 1 using (29). There are 9 possibilities
for a − 1 according to the value of the integer κ ∈ [−4, 4]. Then we set
q := Fn1 +(a−1). These are the q’s from item (iii) of Section 2. We ran the
code by splitting the interval [2, 4×109] for m2 in various sub-intervals which
were run independently on several computers. In each case, we selected the
q’s that are prime or prime powers. This was computationally challenging
and we did not keep track of q’s (in fact, it is quite likely that the same q
could be obtained from various choices of m2). Once such q was found prime
or a prime power, we applied the Baker–Davenport reduction Lemma 3.4 to
inequality (15), with such q and the remaining parameters as explained in
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Section 6. It was again checked that in all cases Q/w < 1080, so again

n2 <
log(2AQ/w)

log
√
α

<
log(2× 5× 1080)

log
√
α

< 800.

Hence, again n2 < 1000, which finishes the proof of the theorem.
All calculations were done with Mathematica. The total calculation time

for the Mathematica software for this paper was 20 days on 25 parallel
desktop computers (Intel Xeon E3-1240 v5, 3.5 GHz, 16 Gb of RAM).
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deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), no.

http://www.ams.org/mathscinet-getitem?mr=0248079
http://www.emis.de/cgi-bin/MATH-item?0177.06802
http://www.emis.de/cgi-bin/MATH-item?0177.06802
http://dx.doi.org/10.1093/qmath/20.1.129
http://www.ams.org/mathscinet-getitem?mr=1764888
http://www.emis.de/cgi-bin/MATH-item?1047.11087
http://dx.doi.org/10.1007/s000130050469
http://www.ams.org/mathscinet-getitem?mr=1645552
http://www.emis.de/cgi-bin/MATH-item?0911.11018
http://www.ams.org/mathscinet-getitem?mr=1073669
http://www.emis.de/cgi-bin/MATH-item?0719.11065
http://www.emis.de/cgi-bin/MATH-item?0719.11065
http://dx.doi.org/10.1017/S001708950000937X
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