A construction of pseudo-Anosov braids with small normalized entropies

Susumu Hirose and Eiko Kin

Abstract. Let b be a pseudo-Anosov braid whose permutation has a fixed point and let M_b be the mapping torus by the pseudo-Anosov homeomorphism defined on the genus 0 fiber F_b associated with b. We prove that there is a 2-dimensional subcone C_0 contained in the fibered cone C of F_b such that the fiber F_α for each primitive integral class $\alpha \in C_0$ has genus 0. We also give a constructive description of the monodromy $\phi_\alpha : F_\alpha \rightarrow F_\alpha$ of the fibration on M_b over the circle, and consequently provide a construction of many sequences of pseudo-Anosov braids with small normalized entropies. As an application we prove that the smallest entropy among skew-palindromic braids with n strands is comparable to $1/n$, and the smallest entropy among elements of the odd/even spin mapping class groups of genus g is comparable to $1/g$.

Contents

1. Introduction 563
2. Preliminaries 568
3. i-increasing braids and Theorem 3.2 572
4. Proof of Theorem 3.2 575
5. Sequences of pseudo-Anosov braids with small normalized entropies 583
6. Stable foliation for the monodromy 584
7. Properties of F-surfaces and E-surfaces 586
8. Application 589
References 595

Received April 6, 2019.

2010 Mathematics Subject Classification. 57M99, 37E30.

Key words and phrases. mapping class groups, pseudo-Anosov, dilatation, normalized entropy, fibered 3-manifolds, braid group.

We would like to thank Mitsuhiro Takasawa for helpful conversations and comments. The first author was supported by Grant-in-Aid for Scientific Research (C) (No. 16K05156), Japan Society for the Promotion of Science. The second author was supported by Grant-in-Aid for Scientific Research (C) (No. 18K03299), Japan Society for the Promotion of Science.
1. Introduction

Let $\Sigma = \Sigma_{g,n}$ be an orientable surface of genus g with n punctures for $n \geq 0$. We set $\Sigma_g = \Sigma_{g,0}$. By mapping class group $\text{Mod}(\Sigma_g)$, we mean the group of isotopy classes of orientation preserving self-homeomorphisms on $\Sigma_{g,n}$ preserving punctures setwise. By Nielsen-Thurston classification, elements in $\text{Mod}(\Sigma)$ are classified into three types: periodic, reducible, pseudo-Anosov [30, 9]. For $\phi \in \text{Mod}(\Sigma)$ we choose a representative $\Phi \in \phi$ and consider the mapping torus $M_\phi = \Sigma \times \mathbb{R} / \sim$, where \sim identifies $(x, t + 1)$ with $(\Phi(x), t)$ for $x \in \Sigma$ and $t \in \mathbb{R}$. Then Σ is a fiber of a fibration on M_ϕ over the circle S^1 and ϕ is called the monodromy. A theorem by Thurston [31] asserts that M_ϕ admits a hyperbolic structure of finite volume if and only if ϕ is pseudo-Anosov.

For a pseudo-Anosov element $\phi \in \text{Mod}(\Sigma)$ there is a representative $\Phi : \Sigma \to \Sigma$ of ϕ called a pseudo-Anosov homeomorphism with the following property: Φ admits a pair of transverse measured foliations (F^u, μ^u) and (F^s, μ^s) and a constant $\lambda = \lambda(\phi) > 1$ depending on ϕ such that F^u and F^s are invariant under Φ, and μ^u and μ^s are uniformly multiplied by λ and λ^{-1} under Φ. The constant $\lambda(\phi)$ is called the dilatation and F^u and F^s are called the unstable and stable foliation. We call the logarithm $\log(\lambda(\phi))$ the entropy, and call

$$\text{Ent}(\phi) = |\chi(\Sigma)| \log(\lambda(\phi))$$

the normalized entropy of ϕ, where $\chi(\Sigma)$ is the Euler characteristic of Σ. Such normalization of the entropy is suited for the context of 3-manifolds [8, 22].

Penner [27] proved that if $\phi \in \text{Mod}(\Sigma_{g,n})$ is pseudo-Anosov, then

$$\frac{\log 2}{12g - 12 + 4n} \leq \log(\lambda(\phi)).$$

(1.1)

See also [22, Corollary 2]. For a fixed surface Σ, the set

$$\{ \log \lambda(\phi) \mid \phi \in \text{Mod}(\Sigma) \text{ is pseudo-Anosov} \}$$

is a closed, discrete subset of \mathbb{R} ([1]). For any subgroup or subset $G \subset \text{Mod}(\Sigma)$ let $\delta(G)$ denote the minimum of $\lambda(\phi)$ over all pseudo-Anosov elements $\phi \in G$. Then $\delta(G) \geq \delta(\text{Mod}(\Sigma))$. We write $f \asymp h$ if there is a universal constant $P > 0$ such that $1/P \leq f/h \leq P$. It is proved by Penner [27] that the minimal entropy among pseudo-Anosov elements in $\text{Mod}(\Sigma_g)$ on the closed surface of genus g satisfies

$$\log \delta(\text{Mod}(\Sigma_g)) \asymp \frac{1}{g}.$$

See also [16, 32, 33] for other sequences of mapping class groups.

For any $P > 0$, consider the set Ψ_P consisting of all pseudo-Anosov homeomorphisms $\Phi : \Sigma \to \Sigma$ defined on any surface Σ with the normalized entropy $|\chi(\Sigma)| \log \lambda(\Phi) \leq P$. This is an infinite set in general (take $P > 2 \log(2 + \sqrt{3})$ for example) and is well-understood in the context of
hyperbolic fibered 3-manifolds. The universal finiteness theorem by Farb-Leininger-Margalit [8] states that the set of homeomorphism classes of mapping tori of pseudo-Anosov homeomorphisms $\Phi^\circ : \Sigma^0 \to \Sigma^0$ is finite, where $\Phi^\circ : \Sigma^0 \to \Sigma^0$ is the fully punctured pseudo-Anosov homeomorphism obtained from $\Phi \in \Psi_P$. (Clearly $\lambda(\Phi^\circ) = \lambda(\Phi)$.) In other words such $\Phi^\circ : \Sigma^0 \to \Sigma^0$ is a monodromy of a fiber in some fibered cone for a hyperbolic fibered 3-manifold in the finite list determined by P. Thus 3-manifolds in the finite list govern all pseudo-Anosov elements in Ψ_P. It is natural to ask the dynamics and a constructive description of elements in Ψ_P. There are some results about this question by several authors [4, 15, 20, 21, 33], but it is not completely understood. In this paper we restrict our attention to the pseudo-Anosov elements in Ψ_P defined on the genus 0 surfaces, and provide an approach for a concrete description of those elements.

Let B_n be the braid group with n strands. The group B_n is generated by the braids $\sigma_1, \ldots, \sigma_{n-1}$ as in Figure 1. Let S_n be the symmetric group, the group of bijections of $\{1, \ldots, n\}$ to itself. A permutation $\mathcal{P} \in S_n$ has a fixed point if $\mathcal{P}(i) = i$ for some i. We have a surjective homomorphism $\pi : B_n \to S_n$ which sends each σ_j to the transposition $(j, j + 1)$.
The closure $\text{cl}(b)$ of a braid $b \in B_n$ is a knot or link in the 3-sphere S^3. The braided link
$$\text{br}(b) = \text{cl}(b) \cup A$$
is a link in S^3 obtained from $\text{cl}(b)$ with its braid axis A (Figure 2). Let M_b denote the exterior of $\text{br}(b)$ which is a 3-manifold with boundary. It is easy to find an $(n+1)$-holed sphere F_b in M_b (Figure 2(3)). Clearly F_b is a fiber of a fibration on $M_b \to S^1$ and its monodromy $\phi_b : F_b \to F_b$ is determined by b. We call F_b the F-surface for b.

A braid $b \in B_n$ is periodic (resp. reducible, pseudo-Anosov) if the associated mapping class $f_b \in \text{Mod}(\Sigma_{0,n+1})$ is of the corresponding type (Section 2.3). If b is pseudo-Anosov, then the dilatation $\lambda(b)$ is defined by $\lambda(f_b)$ and the normalized entropy $\text{Ent}(b)$ is defined by $\text{Ent}(f_b)$. The following theorem is due to Hironaka-Kin [16, Proposition 3.36] together with the observation by Kin-Takasawa [21, Section 4.1].

Theorem 1.1. There is a sequence of pseudo-Anosov braids $z_n \in B_n$ such that $\text{Ent}(z_n) \neq 2 \log(2 + \sqrt{3})$, $M_{z_n} \simeq M_{\sigma_1^2 \sigma_2^{-1}}$ for each $n \geq 3$ and $\text{Ent}(z_n) \to 2 \log(2 + \sqrt{3})$ as $n \to \infty$.

Here \simeq means they are homeomorphic to each other. The limit point $2 \log(2 + \sqrt{3})$ is equal to $\text{Ent}(\sigma_1^2 \sigma_2^{-1})$. By the lower bound (1.1), Theorem 1.1 implies that
$$\log \delta(\text{Mod}(\Sigma_{0,n})) \asymp \frac{1}{n}.$$In particular, the hyperbolic fibered 3-manifold $M_{\sigma_1^2 \sigma_2^{-1}}$ admits an infinitely family of genus 0 fibers of fibrations over S^1.

Let z_n be a pseudo-Anosov braid with d_n strands. We say that a sequence $\{z_n\}$ has a small normalized entropy if $d_n \asymp n$ and there is a constant $P > 0$ which does not depend on n such that $\text{Ent}(z_n) \leq P$. By (1.1) a sequence $\{z_n\}$ having a small normalized entropy means $\log(\lambda(z_n)) \asymp 1/n$. One of the aims in this paper is to give a construction of many sequences of pseudo-Anosov braids with small normalized entropies. The following result generalizes Theorem 1.1.

Theorem A. Suppose that b is a pseudo-Anosov braid whose permutation has a fixed point. There is a sequence of pseudo-Anosov braids $\{z_n\}$ with small normalized entropy such that $\text{Ent}(z_n) \to \text{Ent}(b)$ as $n \to \infty$ and $M_{z_n} \simeq M_b$ for $n \geq 1$.

The proof of Theorem A is constructive. In fact one can describe braids z_n explicitly. For a more general result see Theorems 5.1, 5.2. Let $C \subset H_2(M_b, \partial M_b)$ be the fibered cone containing $[F_b]$. A theorem by Thurston [29] states that for each primitive integral class $a \in C$ there is a connected fiber F_a with the pseudo-Anosov monodromy $\phi_a : F_a \to F_a$ of a fibration on the hyperbolic 3-manifold M_b over S^1. The following theorem states a structure of C.
Theorem B. Suppose that \(b \) is a pseudo-Anosov braid whose permutation has a fixed point. Then there are a 2-dimensional subcone \(C_0 \subset C \) and an integer \(u \geq 1 \) with the following properties.

1. The fiber \(F_a \) for each primitive integral class \(a \in C_0 \) has genus 0.
2. The monodromy \(\phi_a : F_a \to F_a \) for each primitive integral class \(a \in C_0 \) is conjugate to
 \[
 (\omega_1 \psi) \cdots (\omega_{u-1} \psi)(\omega_u \psi)\psi^{m-1} : F_a \to F_a,
 \]
 where \(m \geq 1 \) depends on the class \(a \), \(\psi \) is periodic and each \(\omega_j \) is reducible. Moreover there are homeomorphisms \(\hat{\omega}_j : S_0 \to S_0 \) on a surface \(S_0 \) for \(j = 1, \ldots, u \) determined by \(b \) and an embedding \(h : S_0 \hookrightarrow F_a \) such that \(h(S_0) \) is the support of each \(w_j \) and
 \[
 w_j|_{h(S_0)} = h \circ \hat{\omega}_j \circ h^{-1}.
 \]

Theorem B gives a constructive description of \(\phi_a \). Also it states that each \(w_j : F_a \to F_a \) is reducible supported on a uniformly bounded subsurface \(h(S_0) \subset F_a \). It turns out from the proof that the type of the periodic homeomorphism \(\psi : F_a \to F_a \) does not depend on \(a \in C_0 \) (Remark 3.3), see Figure 3(1). Theorem B reminds us of the symmetry conjecture in [23] by Farb-Leininger-Margalit.

Clearly the permutation of each pure braid has a fixed point. For any pseudo-Anosov braid \(b \), a suitable power \(b^k \) becomes a pure braid and one can apply Theorems A, B for \(b^k \).

We have a remark about Theorem A. While the existence of a sequence \((F_n, \phi_n)\) of fibers and monodromies in \(C \) for which \(\text{Ent}(\phi_n) \to \text{Ent}(b) \) is guaranteed by McMullen [25, Theorem 10.2], it does not say anything about the genera of fibers \(F_n \). Theorem B has the extra (constructive) information that each fiber \(F_n \) along \(C_0 \) is genus 0.
A CONSTRUCTION OF PSEUDO-ANOSOV BRAIDS

Figure 4. Illustration of braids (1) b, (2) $\text{rev}(b)$, (3) $\text{skew}(b)$.

Figure 5. (1) $\mathcal{I} : \Sigma_g \to \Sigma_g$. (2) A basis $\{x_1, y_1, \ldots, x_g, y_g\}$ of $H_1(\Sigma_g; \mathbb{Z}_2)$.

As an application we will determine asymptotic behaviors of the minimal dilatations of a subset of B_n consisting of braids with a symmetry. A braid $b \in B_n$ is palindromic if $\text{rev}(b) = b$, where $\text{rev} : B_n \to B_n$ is a map such that if w is a word of letters $\sigma_j^{\pm 1}$ representing b, then $\text{rev}(b)$ is the braid obtained from b reversing the order of letters in w. A braid $b \in B_n$ is skew-palindromic if $\text{skew}(b) = b$, where $\text{skew}(b) = \Delta \text{rev}(b) \Delta^{-1}$ and Δ is a half twist (Section 2.2). See Figure 4. We will prove that dilatations of palindromic braids have the following lower bound.

Theorem C. If $b \in B_n$ is palindromic and pseudo-Anosov for $n \geq 3$, then

$$\lambda(b) \geq \sqrt{2 + \sqrt{5}}.$$

In contrast with palindromic braids we have the following result.

Theorem D. Let PA_n be the set of skew-palindromic elements in B_n. We have

$$\log \delta(PA_n) \propto \frac{1}{n}.$$

The hyperelliptic mapping class group $\mathcal{H}(\Sigma_g)$ is the subgroup of $\text{Mod}(\Sigma_g)$ consisting of elements with representative homeomorphisms that commute with some fixed hyperelliptic involution $\mathcal{I} : \Sigma_g \to \Sigma_g$ as in Figure 5(1). It is shown in [16] that $\log \delta(\mathcal{H}(\Sigma_g)) \propto 1/g$. See also [7, 15, 19] for other subgroups of $\text{Mod}(\Sigma_g)$. As an application we will determine the asymptotic behavior of the minimal dilatations of the odd/even spin mapping class groups of genus g. To define these subgroups let $(\cdot, \cdot)_2$ be the mod-2 intersection form on $H_1(\Sigma_g; \mathbb{Z}_2)$. A map $q : H_1(\Sigma_g; \mathbb{Z}_2) \to \mathbb{Z}_2$ is a quadratic form if $q(v + w) = q(v) + q(w) + (v, w)_2$ for $v, w \in H_1(\Sigma_g; \mathbb{Z}_2)$. For a quadratic
form q, the *spin mapping class group* $\Mod_g[q]$ is the subgroup of $\Mod(\Sigma_g)$ consisting of elements ϕ such that $q \circ \phi_* = q$. To define the two quadratic forms q_0 and q_1 we choose a basis \{ $x_1, y_1, \ldots, x_g, y_g$ \} of $H_1(\Sigma_g; \mathbb{Z}_2)$ as in Figure 5(2). Let q_0 be the quadratic form such that $q_0(x_i) = q_0(y_i) = 0$ for $1 \leq i \leq g$. Let q_1 be the quadratic form such that $q_1(x_i) = q_1(y_i) = 1$ and $q_1(x_i) = q_1(y_i) = 0$ for $2 \leq i \leq g$. A result of Dye [5] tells us that $\Mod_g[q]$ for any q is conjugate to either $\Mod_g[q_0]$ or $\Mod_g[q_1]$ in $\Mod(\Sigma_g)$. We call $\Mod_g[q_0]$ and $\Mod_g[q_1]$ the *even spin* and *odd spin mapping class group* respectively. It is known that $\Mod_g[q_1]$ attains the minimum index for a proper subgroup of $\Mod(\Sigma_g)$ and $\Mod_g[q_0]$ attains the secondary minimum, see Berrick-Gebhardt-Paris [2].

Theorem E. We have

1. $\log \delta(\Mod_g[q_1] \cap \mathcal{H}(\Sigma_g)) \geq \frac{1}{g}$ and
2. $\log \delta(\Mod_g[q_0] \cap \mathcal{H}(\Sigma_g)) \geq \frac{1}{g}$.

In particular $\log \delta(\Mod_g[q]) \approx 1/g$ for each quadratic form q.

Acknowledgments. We would like to thank Mitsuhiiko Takasawa for helpful conversations and comments. The first author was supported by Grant-in-Aid for Scientific Research (C) (No. 16K05156), Japan Society for the Promotion of Science. The second author was supported by Grant-in-Aid for Scientific Research (C) (No. 18K03299), Japan Society for the Promotion of Science.

2. Preliminaries

2.1. Links. Let L be a link in the 3-sphere S^3. Let $\mathcal{N}(L)$ denote a tubular neighborhood of L and let $\mathcal{E}(L)$ denote the exterior of L, i.e. $\mathcal{E}(L) = S^3 \setminus \text{int}(\mathcal{N}(L))$.

Oriented links L and L' in S^3 are *equivalent*, denoted by $L \sim L'$ if there is an orientation preserving homeomorphism $f : S^3 \to S^3$ such that $f(L) = L'$ with respect to the orientations of the links. Furthermore for components K_i of L and K'_i of L' with $i = 1, \ldots, m$ if f satisfies $f(K_i) = K'_i$ for each i, then (L, K_1, \ldots, K_m) and (L', K'_1, \ldots, K'_m) are *equivalent* and we write $(L, K_1, \ldots, K_m) \sim (L', K'_1, \ldots, K'_m)$.

2.2. Braid groups B_n and spherical braid groups SB_n. Let us set

\[
\delta_j = \sigma_1 \sigma_2 \cdots \sigma_{j-1} \quad \text{and} \quad \rho_j = \sigma_1 \sigma_2 \cdots \sigma_{j-2} \sigma_{j-1}^2.
\]

The half twist Δ_j is given by

\[
\Delta_j = \delta_j \delta_{j-1} \cdots \delta_2.
\]

We often omit the subscript n in Δ_n, δ_n and ρ_n when they are precisely n-braids.
We put indices $1, 2, \ldots, n$ from left to right on the bottoms of strands, and give an orientation of strands from the bottom to the top (Figure 1). The closure $\text{cl}(b)$ is oriented by the strands. We think of $\text{br}(b) = \text{cl}(b) \cup A$ as an oriented link in S^3 choosing an orientation of $A = A_b$ arbitrarily. (In Section 3 we assign an orientation of the braid axis for i-monotonic braids).

If two braids are conjugate to each other, then their braided links are equivalent. Morton proved that the converse holds if their axes are preserved.

Theorem 2.1 (Morton [26]). If $(\text{br}(b), A_b)$ is equivalent to $(\text{br}(c), A_c)$ for braids $b, c \in B_n$, then b and c are conjugate in B_n.

Let us turn to the spherical braid group SB_n with n strands. We also denote by σ_i, the element of SB_n as shown in Figure 1(1). The group SB_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$. For a braid $b \in B_n$ represented by a word of letters $\sigma_i^{\pm 1}$, let $S(b)$ denote the element in SB_n represented by the same word as b.

For a braid b in B_n or SB_n the degree of b means the number n of the strands, denoted by $d(b)$.

2.3. Mapping classes and mapping tori from braids.

Let D_n be the n-punctured disk. Consider the mapping class group $\text{Mod}(D_n)$, the group of isotopy classes of orientation preserving self-homeomorphisms on D_n preserving the boundary ∂D of the disk setwise. We have a surjective homomorphism

$$\Gamma : B_n \rightarrow \text{Mod}(D_n)$$

which sends each generator σ_i to the right-handed half twist t_i between the ith and $(i + 1)$st punctures. The kernel of Γ is an infinite cyclic group generated by the full twist Δ^2.

Collapsing ∂D to a puncture in the sphere we have a homomorphism

$$c : \text{Mod}(D_n) \rightarrow \text{Mod}(\Sigma_{0,n+1})$$

We say that $b \in B_n$ is *periodic* (resp. *reducible*, *pseudo-Anosov*) if $f_b := c(\Gamma(b))$ is of the corresponding Nielsen-Thurston type. The braids $\delta, \rho \in B_n$ are periodic since some power of each braid is the full twist: $\Delta^2 = \delta^0 = \rho^{n-1} \in B_n$.

We also have a surjective homomorphism

$$\widehat{\Gamma} : SB_n \rightarrow \text{Mod}(\Sigma_{0,n})$$

sending each generator σ_i to the right-handed half twist t_i. We say that $\eta \in SB_n$ is *pseudo-Anosov* if $\widehat{\Gamma}(\eta) \in \text{Mod}(\Sigma_{0,n})$ is pseudo-Anosov. In this case $\lambda(\eta)$ is defined by the dilatation of $\widehat{\Gamma}(\eta)$.

2.4. Stable foliations \mathcal{F}_b for pseudo-Anosov braids b. Recall the surjective homomorphism $\pi: B_n \to S_n$. We write $\pi_b = \pi(b)$ for $b \in B_n$. Consider a pseudo-Anosov braid $b \in B_n$ with $\pi_b(i) = i$. Removing the ith strand $b(i)$ from b, we get a braid $b - b(i) \in B_{n-1}$. Taking its spherical element, we have $S(b - b(i)) \in SB_{n-1}$. Note that $b - b(i)$ and $S(b - b(i))$ are not necessarily pseudo-Anosov. A well-known criterion uses the stable foliation \mathcal{F}_b for the monodromy $\phi_b: \mathcal{F}_b \to \mathcal{F}_b$ of a fibration on $M_b \to S^1$ as we recall now. Such a fibration on M_b extends naturally to a fibration on the manifold obtained from M_b by Dehn filling a cusp along the boundary slope of the fiber F_b which lies on the torus $\partial \mathcal{N}(\text{cl}(b(i)))$. Also ϕ_b extends to the monodromy defined on \mathcal{F}_b^\bullet of the extended fibration, where \mathcal{F}_b^\bullet is obtained from \mathcal{F}_b by filling in the boundary component of F_b which lies on $\partial \mathcal{N}(\text{cl}(b(i)))$ with a disk. Then $b - b(i)$ is the corresponding braid for the extended monodromy defined on \mathcal{F}_b^\bullet. Suppose that \mathcal{F}_b is not 1-pronged at the boundary component in question. (See Figure 6 in the case where F_b is 1-pronged at a boundary component.) Then \mathcal{F}_b extends to the stable foliation for $b - b(i)$, and hence $b - b(i)$ is pseudo-Anosov with the same dilatation as b. Furthermore if \mathcal{F}_b is not 1-pronged at the boundary component of F_b which lies on $\partial \mathcal{N}(A)$, then $S(b - b(i))$ is still pseudo-Anosov with the same dilatation as b.

2.5. Thurston norm. Let M be a 3-manifold with boundary (possibly $\partial M = \emptyset$). If M is hyperbolic, i.e. the interior of M possess a complete hyperbolic structure of finite volume, then there is a norm $\| \cdot \|$ on $H_2(M, \partial M; \mathbb{R})$, now called the Thurston norm [29]. The norm $\| \cdot \|$ has the property such that for any integral class $a \in H_2(M, \partial M; \mathbb{R})$, $\|a\| = \min_S \{-\chi(S)\}$, where the minimum is taken over all oriented surface S embedded in M with $a = [S]$ and with no components of non-negative Euler characteristic. The surface S realizing this minimum is called a norm-minimizing surface of a.

Theorem 2.2 (Thurston [29]). *The norm $\| \cdot \|$ on $H_2(M, \partial M; \mathbb{R})$ has the following properties.*

1. There are a set of maximal open cones $\mathcal{C}_1, \cdots, \mathcal{C}_k$ in $H_2(M, \partial M; \mathbb{R})$ and a bijection between the set of isotopy classes of connected fibers of fibrations $M \to S^1$ and the set of primitive integral classes in the union $\mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k$.
The restriction of $\| \cdot \|$ to C_j is linear for each j.

If we let F_a be a fiber of a fibration $M \to S^1$ associated with a primitive integral class a in each C_j, then $\|a\| = -\chi(F_a)$.

We call the open cones C_j fibered cones and call integral classes in C_j fibered classes.

Theorem 2.3 (Fried [11]). For a fibered cone C of a hyperbolic 3-manifold M, there is a continuous function $\text{ent}: C \to \mathbb{R}$ with the following properties.

1. For the monodromy $\phi_a: F_a \to F_a$ of a fibration $M \to S^1$ associated with a primitive integral class $a \in C$, we have $\text{ent}(a) = \log(\lambda(\phi_a))$.
2. $\text{Ent} = \| \cdot \| \text{ent}: C \to \mathbb{R}$ is a continuous function which becomes constant on each ray through the origin.
3. If a sequence $\{a_n\} \subset C$ tends to a point $\neq 0$ in the boundary ∂C as n tends to ∞, then $\text{ent}(a_n) \to \infty$. In particular $\text{Ent}(a_n) = \|a_n\| \text{ent}(a_n) \to \infty$.

We call $\text{ent}(a)$ and $\text{Ent}(a)$ the entropy and normalized entropy of the class $a \in C$.

For a pseudo-Anosov element $\phi \in \text{Mod}(\Sigma)$ we consider the mapping torus M_ϕ. The vector field $\frac{\partial}{\partial t}$ on $\Sigma \times \mathbb{R}$ induces a flow ϕ^t on M_ϕ called the suspension flow.

Theorem 2.4 (Fried [10]). Let ϕ be a pseudo-Anosov mapping class defined on Σ with stable and unstable foliations \mathcal{F}^s and \mathcal{F}^u. Let $\widehat{\mathcal{F}}^s$ and $\widehat{\mathcal{F}}^u$ denote the suspensions of \mathcal{F}^s and \mathcal{F}^u by ϕ. If C is a fibered cone containing the fibered class $[\Sigma]$, then we can modify a norm-minimizing surface F_a associated with each primitive integral class $a \in C$ by an isotopy on M_ϕ with the following properties.

1. F_a is transverse to the suspension flow ϕ^t, and the first return map $\phi_a: F_a \to F_a$ is precisely the pseudo-Anosov monodromy of the fibration on $M_\phi \to S^1$ associated with a. Moreover F_a is unique up to isotopy along flow lines.
2. The stable and unstable foliations for ϕ_a are given by $\widehat{\mathcal{F}}^s \cap F_a$ and $\widehat{\mathcal{F}}^u \cap F_a$.

2.6. Disk twist. Let L be a link in S^3. Suppose an unknot K is a component of L. Then the exterior $\mathcal{E}(K)$ (resp. $\partial \mathcal{E}(K)$) is a solid torus (resp. torus). We take a disk D bounded by the longitude of a tubular neighborhood $N(K)$ of K. We define a mapping class T_D defined on $\mathcal{E}(K)$ as follows. We cut $\mathcal{E}(K)$ along D. We have resulting two sides obtained from D, and reglue two sides by twisting either of the sides 360 degrees so that the mapping class defined on $\partial \mathcal{E}(K)$ is the right-handed Dehn twist about ∂D. Such a mapping class on $\mathcal{E}(K)$ is called the disk twist about D. For simplicity we also call a self-homeomorphism representing the mapping class T_D the disk twist about D, and denote it by the same notation $T_D: \mathcal{E}(K) \to \mathcal{E}(K)$.
Figure 7. Disk twist T_D.

Clearly T_D equals the identity map outside a neighborhood of D in $E(K)$. We observe that if $u + 1$ segments of $L - K$ pass through D for $u \geq 1$, then $T_D(L - K)$ is obtained from $L - K$ by adding the full twist near D. In the case $u = 1$, see Figure 7. We may assume that T_D fixes one of these segments, since any point in D becomes the center of the twisting about D.

For any integer ℓ, consider a homeomorphism

$$T_D^\ell : E(K) \to E(K).$$

Observe that T_D^ℓ converts L into a link $K \cup T_D^\ell(L - K)$ such that $S^3 \setminus L$ is homeomorphic to $S^3 \setminus (K \cup T_D^\ell(L - K))$. Then T_D^ℓ induces a homeomorphism between the exteriors of links

$$h_{D,\ell} : E(L) \to E(K \cup T_D^\ell(L - K)).$$

(2.1)

We use the homeomorphism in (2.1) in later section.

3. i-increasing braids and Theorem 3.2

Definitions of i-increasing braids, signs and intersection numbers.

Let L be an oriented link in S^3 with a trivial component K. We take an oriented disk D bounded by the longitude of $N(K)$ so that the orientation of D agrees with the orientation of K. For each component K' of $L - K$ such that D and K' intersect transversally with $D \cap K' \neq \emptyset$, we assign each point of intersection $+1$ or -1 as shown in Figure 8.
Let b be a braid with $\pi_b(i) = i$. We consider an oriented disk $D = D_{(b,i)}$ bounded by the longitude ℓ_i of $N(\text{cl}(b(i)))$. Such a disk D is unique up to isotopy on $\mathcal{E}(\text{cl}(b(i)))$. We say that a braid $b \in B_n$ with $\pi_b(i) = i$ is i-increasing (resp. i-decreasing) if there is a disk $D = D_{(b,i)}$ as above with the following conditions.

(D1) There is at least one component K' of $\text{cl}(b - b(i))$ such that $D \cap K' \neq \emptyset$.

(D2) Each component of $\text{cl}(b - b(i))$ and D intersect with each other transversally, and every point of intersection has the sign $+1$ (resp. -1).

We set $\epsilon(b,i) = 1$ (resp. $\epsilon(b,i) = -1$), and call it the sign of the pair (b,i). We also call D the associated disk of the pair (b,i). We say that b is i-monotonic if b is i-increasing or i-decreasing. Then we set

$$I(b,i) = D \cap \text{cl}(b - b(i))$$

and let $u(b,i) \geq 1$ be the cardinality of $I(b,i)$. We call $u(b,i)$ the intersection number of the pair (b,i). If the pair (b,i) is specified, then we simply denote $\epsilon(b,i)$ and $u(b,i)$ by ϵ and u respectively. For example $\sigma_1^2\sigma_2^{-1}$ is 1-increasing with $u(\sigma_1^2\sigma_2^{-1},1) = 1$.

A braid b is positive if b is represented by a word in letters σ_j, but not σ_j^{-1}. A braid b is irreducible if the Nielsen-Thurston type of b is not reducible.

Lemma 3.1. Let b be a positive braid with $\pi_b(i) = i$. Then b is i-increasing if b is irreducible.

Proof. Suppose that a positive braid b with $\pi_b(i) = i$ is irreducible. Since b is positive, there is a disk $D = D_{(b,i)}$ with the condition (D2). Assume that D fails in (D1). Let ∂D_n be the boundary of the disk D_n containing n punctures. Consider a neighborhood of $\partial D_n \cup (D_n \cap D)$ in D_n which is an annulus. One of the boundary components of this annulus is an essential
simple closed curve in D_n preserved by $\Gamma(b) \in \text{Mod}(D_n)$. This means that b is reducible, a contradiction. Thus D satisfies (D1), and b is i-increasing. \hfill \Box

Orientation of the axis A. Let b be i-monotonic with $\epsilon(b,i) = \epsilon$ and $u(b,i) = u$. Consider the braided link $\text{br}(b) = \text{cl}(b) \cup A$. The associated disk D has a unique point of intersection with A, and the cardinality of $I(b,i) \cup (D \cap A)$ is $u(b,i) + 1$. To deal with $\text{br}(b) = \text{cl}(b) \cup A$ as an oriented link, we consider an orientation of $\text{cl}(b)$ as we described before, and assign an orientation of A so that the sign of the intersection between D and A coincides with $\epsilon(b,i)$. See Figure 2(2).

Recall that $M_b = \mathcal{E}(\text{br}(b))$ is the exterior of $\text{br}(b)$ which is a surface bundle over S^1. We consider an orientation of the F-surface F_b which agrees with the orientation of A.

E-surface. We now define an oriented surface $E_{(b,i)}$ of genus 0 embedded in M_b. Consider small $u(b,i) + 1$ disks in the oriented disk $D = D_{(b,i)}$ whose centers are points of $I(b,i) \cup (D \cap A)$. Then $E_{(b,i)}$ is a sphere with $u(b,i) + 2$ boundary components obtained from D by removing the interiors of those small disks. We choose the orientation of $E_{(b,i)}$ so that it agrees with the orientation of D. We call $E_{(b,i)}$ the E-surface for b. For example, the 1-increasing braid $\sigma_1^2 \sigma_2^{-1}$ has the E-surface $E_{(\sigma_1^2 \sigma_2^{-1},1)}$ homeomorphic to a 3-holed sphere.

Subcone $C_{(b,i)}$. Consider the 2-dimensional subcone of $H_2(M_b, \partial M_b; \mathbb{R})$ spanned by $[F_b]$ and $[E_{(b,i)}]$ (Figure 9):

$$C_{(b,i)} = \{x[F_b] + y[E_{(b,i)}] \mid x > 0, \ y > 0\}.$$

Let $\overline{C_{(b,i)}}$ denote the closure of $C_{(b,i)}$. We write $(x,y) = x[F_b] + y[E_{(b,i)}]$. We prove the following theorem in Section 4.

Theorem 3.2. For a pseudo-Anosov, i-increasing braid b with $u(b,i) = u$, let C be the fibered cone containing $[F_b]$. We have the following.

1. $C_{(b,i)} \subset C$.
2. The fiber $F(x,y)$ for each primitive integral class $(x,y) \in C_{(b,i)}$ has genus 0.
3. The monodromy $\phi(x,y) : F(x,y) \to F(x,y)$ for each primitive integral class $(x,y) \in C_{(b,i)}$ is conjugate to

$$(\omega_1 \psi) \cdots (\omega_{u-1} \psi)(\omega_u \psi)^{m-1} : F(x,y) \to F(x,y),$$

where $m \geq 1$ depends on (x,y), ψ is periodic and each ω_j is reducible. Moreover there are homeomorphisms $\tilde{\omega}_j : S_0 \to S_0$ for $j = 1, \ldots, u$ on a surface S_0 determined by b and an embedding $h : S_0 \hookrightarrow F(x,y)$ such that the subsurface $h(S_0)$ of $F(x,y)$ is the support of each w_j and

$$w_j|_{h(S_0)} = h \circ \tilde{\omega}_j \circ h^{-1}.$$
The conclusion of Theorem 3.2 holds for \(i\)-decreasing braids as well. We now claim that Theorem 3.2 implies Theorem B.

Proof of Theorem B. Suppose that Theorem 3.2 holds. Let \(b \in B_n\) be a pseudo-Anosov braid such that \(\pi_b(i) = i\). We consider the braid \(b\Delta^{2k} \in B_n\) for \(k \geq 1\). The full twist \(\Delta^2\) is an element in the center \(Z(B_n)\) and \(\Delta^2 = \sigma_j P_j\) holds for each \(1 \leq j \leq n - 1\), where \(P_j\) is positive. Such properties imply that \(b\Delta^{2k}\) is positive for \(k\) large. We fix such large \(k\). Since \(\Gamma(b) = \Gamma(b\Delta^{2k})\) in \(\text{Mod}(D_n)\), the braid \(b\Delta^{2k}\) is certainly pseudo-Anosov. Hence it is \(i\)-increasing by Lemma 3.1. One can apply Theorem 3.2 for this braid, and obtains the subcone \(C(b\Delta^{2k},i)\). Consider the \(k\)th power of the disk twist about the disk \(D_A\) bounded by the longitude of \(N(A)\):

\[
T^k_{D_A} : \mathcal{E}(A) \to \mathcal{E}(A).
\]

Since \(A \cup T^k_{D_A}(\text{cl}(b)) = A \cup \text{cl}(b\Delta^{2k}) = \text{br}(b\Delta^{2k})\), we have \(S^3 \setminus \text{br}(b) \simeq S^3 \setminus \text{br}(b\Delta^{2k})\). Let us set

\[
f_k := h_{D_A,k} : M_b \to M_{b\Delta^{2k}},
\]

where \(h_{D_A,k}\) is the homeomorphism in (2.1). The isomorphism

\[
f_{k*} : H_2(M_b, \partial M_b) \to H_2(M_{b\Delta^{2k}}, \partial M_{b\Delta^{2k}})
\]

sends \([F_b]\) to \([F_{b\Delta^{2k}}]\). (Here we note that the above \(k\) is suppose to be large, but the homeomorphism \(f_k\) makes sense for all integer \(k\).) The pullback of the subcone \(C(b\Delta^{2k},i)\) into \(H_2(M_b, \partial M_b)\) is a desired subcone contained in \(C\). \(\square\)

Remark 3.3. If \(F_{(x,y)}\) is a \((d+1)\)-holed sphere, then the periodic homeomorphism \(\psi : F_{(x,y)} \to F_{(x,y)}\) in Theorem 3.2 is determined by the periodic braid \(\rho = \sigma_1 \sigma_2 \ldots \sigma_d \Delta^{-2} \Delta_{d-1}^2 \in B_d\). See the proof of Theorem 3.2(3) in Section 4.3.

4. Proof of Theorem 3.2

We fix integers \(n \geq 3\) and \(1 \leq i \leq n\). Throughout Section 4, we assume that \(b \in B_n\) is pseudo-Anosov and \(i\)-increasing with \(u(b,i) = u\). We now choose an associated disk about the pair \((b,i)\) suitably. Let \(D\) denote the unit disk with the center \((0,0)\) in the plane \(\mathbb{R}^2\). Let \(J = (-1,1) \times \{0\} \subset D\) be the interval and let \(A_0 = (-2,0)\) be a point in \(\mathbb{R}^2\). We denote by \(D_n\), the disk \(D\) with equally spaced \(n\) points in \(J\). Let us denote these \(n\) points by \(A_1, \ldots, A_n\) from left to right. We take a point \(Q_i \neq A_i \in J\) between \(A_{i-1}\) and \(A_i\) so that the Euclidean distance \(d(Q_i, A_i)\) is sufficiently small (e.g. \(d(Q_i, A_i) < \frac{1}{n+1}\)). Let \(r_i\) denote the closed interval in \([-2,1] \times \{0\}\) with endpoints \(A_0\) and \(Q_i\). (Figure 10(1).) We regard \(b\) as a braid contained in the cylinder \(D \times [0,1] \subset \mathbb{R}^3\) and \(b\) is based at \(n\) points \(A_1 \times \{0\}, \ldots, A_n \times \{0\}\). Since \(\pi_b(i) = i\), one can take a representative of \(b\) such that \(b(i)\) is an interval in the cylinder:
\[\partial D = \ell_i \text{ is a union of four segments. } U_i \text{ is an annulus in the figure.} \]

\[\diamond 1. \ b(i) = \bigcup_{0 \leq t \leq 1} A_i \times \{t\}. \]

Furthermore we may assume that \(\partial D(= \ell_i) \) of an associated disk \(D \) of \((b, i) \) is a union of the following four segments as a set (Figure 10):

\[\diamond 2. \ (\bigcup_{-1 \leq t \leq 2} A_0 \times \{t\}) \cup (r_i \times \{-1\}) \cup (\bigcup_{-1 \leq t \leq 2} Q_i \times \{t\}) \cup (r_i \times \{2\}). \]

Preserving \(\diamond 1, 2 \) we may further assume the following (Figures 10(2), 11(1)):

\[\diamond 3. \text{ For a regular neighborhood } U_i \text{ of } \ell_i \text{ in } D, \text{ we have } I(b,i) \subset U_i. \]

This is because every point \(x \in D \cap K' \), where \(K' \) is a component of \(\text{cl}(b - b(i)) \), one can slide \(x \) along \(K' \) so that the resulting point on \(K' \) is in \(U_i \). Said differently, preserving \(\partial D \) pointwise, we can modify a small neighborhood of \(D \) near \(K' \) so that the resulting associated disk satisfies \(\diamond 3 \).

Under the conditions \(\diamond 1, 2, 3 \) we have the following. For each \(x \in D \cap K' \subset U_i \), there is a segment \(h' \subset K' \) through \(x \) such that \(h' \) passes over \(b(i) \) since \(b \) is \(i \)-increasing. See Figure 11(1). Such a local picture of \(\text{cl}(b) \) is used in the the next section. Hereafter we assume that associated disks possess conditions \(\diamond 1, 2, 3 \).

4.1. Proof of Theorem 3.2(1)

Let \(s \) be the open segment (1-dimensional simplex) in \(H_2(M_b, \partial M_b; \mathbb{R}) \) with the endpoints \(\frac{n-1}{u}[E(b,i)] = (0, \frac{n-1}{u}) \) and \(|F_b| = (1,0) \):

\[s = \{(x,y) \in C_{(b,i)} \mid y = -\frac{n-1}{u}x + \frac{n-1}{u}, \ 0 < x < 1\}. \tag{4.1} \]

The ray of each point in \(C_{(b,i)} \) through the origin intersects with \(s \). Thus for the proof of (1), it suffices to prove that \(s \subset C \).

We now introduce a sequence of braided links \(\{\text{br}(b_p)\} \) from an \(i \)-increasing braid \(b \in B_n \) such that \(M_{b_p} \simeq M_b \) for each \(p \geq 1 \). (We use the
Figure 11. Case: b is i-increasing. (1) Associated disk D with conditions ♦1,2,3. (2) $\text{br}(b_1)$. Circles \circ indicate points of intersection between D and components of $\text{br}(b - b(i))$. See also Figure 12.

Figure 12. Braided links for (1) 1-increasing $\sigma_1^2 \sigma_2^{-1}$, (2) 2-increasing ($\sigma_1^2 \sigma_2^{-1}$)$_1$ and (3) 3-increasing ($\sigma_1^2 \sigma_2^{-1}$)$_2$.

1-increasing braid $\sigma_1^2 \sigma_2^{-1} \in B_3$ to illustrate the idea.) Let D be an associated disk of the pair (b, i). We take a disk twist

$$T_D : \mathcal{E}(\text{cl}(b(i))) \to \mathcal{E}(\text{cl}(b(i)))$$

so that the point of intersection $D \cap A$ becomes the center of the twisting about D, i.e. $T_D(D \cap A) = D \cap A$. We may assume that $T_D(A) = A$ as a set. Figure 11 illustrates the image of the segment h' under T_D. The condition ♦3 ensures that T_D equals the identity map outside a neighborhood of U_i in $\mathcal{E}(\text{cl}(b(i)))$. Then by ♦1,2, it follows that

$$T_D(\text{br}(b - b(i)) \cup \text{cl}(b(i)))$$

is a braided link of some $(i + u)$-increasing braid with $(n + u)$ strands. We define $b_1 \in B_{n+u}$ to be such a braid. The trivial knot $T_D(A)(= A)$ becomes
a braid axis of b_1. By definition of the disk twist, we have $M_{b_1} \simeq M_b$. See Figure 12 for $\text{br}((\sigma_1^2 \sigma_2^{-1})_1)$.

As discussed below, there is some ambiguity in defining b_1. As we will see, the ambiguity is irrelevant for the study of pseudo-Anosov monodromies defined on fibers of fibrations on the mapping torus. Suppose that both D and D' are the associated disks of the pair (b, i) with conditions $\Diamond 1, 2, 3$. We consider the disk twists T_D and $T_{D'}$ with the above condition, i.e. both $D \cap A$ and $D' \cap A$ become the center of the twisting about D and D' respectively. Observe that the resulting two links obtained from D and D' are equivalent:

$$T_D(\text{br}(b - b(i))) \cup \text{cl}(b(i)) \sim T_{D'}(\text{br}(b - b(i))) \cup \text{cl}(b(i)).$$

They are braided links, say $\text{br}(b_1)$ and $\text{br}(b'_1)$ of some braids $b_1, b'_1 \in B_{n+u}$ respectively with the same axis $T_D(A) = A = T_{D'}(A)$. This means that a more stronger claim holds:

$$(\text{br}(b_1), A) \sim (\text{br}(b'_1), A).$$

Thus b_1 and b'_1 are conjugate in B_{n+u} by Theorem 2.1. In particular both b_1 and b'_1 are pseudo-Anosov (since the initial braid b is pseudo-Anosov and M_b is hyperbolic) and they have the same dilatation.

To define b_p for $p \geq 1$, we consider the pth power

$$T_D^p : \mathcal{E}(\text{cl}(b(i))) \to \mathcal{E}(\text{cl}(b(i)))$$

using the above T_D. As in the case of $p = 1$,

$$T_D^p(\text{br}(b - b(i))) \cup \text{cl}(b(i))$$

is a braided link of some $i + pu$-increasing braid with $(n + pu)$ strands. We define $b_p \in B_{n + pu}$ to be such a braid. Then $M_{b_p} \simeq M_b$. As in the case of $p = 1$, such a braid b_p is well-defined up to conjugate. We say that b_p is obtained from b by the disk twist. Clearly $u(b_p, i + pu) = u(b, i)$ for $p \geq 1$. See Figure 12.

Let us set

$$g_p := h_{D,p} : M_b \to M_{b_p},$$

where $h_{D,p}$ is the homeomorphism in (2.1). We consider the isomorphism

$$g_{p*} : H_2(M_b, \partial M_b) \to H_2(M_{b_p}, \partial M_{b_p}).$$

Lemma 4.1. For each integer $p \geq 1$, g_{p*} sends $(0, 1) \in C_1(b,i)$ to $(0, 1) \in C_1(b_{p,i+pu})$, and sends $(1, p) \in C_1(b,i)$ to $(1, 0) \in C_1(b_{p,i+pu})$. In particular for integers $x, y \geq 1$ with $y = xp + r$ for $0 \leq r < p$, g_{p*} sends $(x, y) \in C_1(b,i)$ to $(x, r) \in C_1(b_{p,i+pu})$.

Proof. We consider the oriented sum $F_{(x,y)} := xF_b + yE_{(b,i)}$. This is an oriented surface embedded in M_b, and is obtained from the cut and past construction of parallel x copies of F_b and parallel y copies of $E_{(b,i)}$. The orientation of $F_{(x,y)}$ agrees with those of F_b and $E_{(b,i)}$. We have $[F_{(x,y)}] = (x, y) \in C_1(b,i)$. Then g_p sends $E_{(b,i)}$ to $E_{(b_{p,i+pu})}$, and sends $F_{(1,p)}$ to F_{b_p}.

Thus g_p sends $(0,1)$ to $(0,1)$, and sends $(1,p)$ to $(1,0)$. This completes the proof. □

By the proof of Lemma 4.1, g_1 sends $F_{(1,1)} = F_b + E_{(b,i)}$ to the fiber F_{b_1} of a fibration on M_b associated with $(1,1) \in C_{(b,i)}$. Since the fibers $F_{(1,1)\ast}$ and F_b are norm-minimizing, $E_{(b,i)}$ is also norm-minimizing.

Proof of Theorem 3.2(1). We have $\|F_b\| = n-1$ and $\|[F_{b_1}]\| = n+pu-1$ since F_b and F_{b_1} are fibers, and $\|[E_{(b,i)}]\| = u$ since $E_{(b,i)}$ is norm-minimizing. By Lemma 4.1, $[F_{b_1}] = (1,p) \in C_{(b,i)}$. Consider the rational class

$$c_p := \frac{n-1}{n+pu-1}[F_{bp}] = \left(\frac{n-1}{n+pu-1}, \frac{p(n-1)}{n+pu-1} \right).$$

The classes c_p that are all projectively fibered, and they lie on the 1-dimensional linear simplex s given by (4.1). Note that the closure of s contains $[F_b]$. Moreover, the Thurston norm of all c_p equals that of $[F_b]$ (and it is $n-1$). This is only possible if the simplex s is projectively contained in a single fibered face. The corresponding fibered cone has to contain $[F_b]$ from the above discussion, and hence it is \mathcal{C}. Thus $s \subset \mathcal{C}$. This completes the proof. □

Remark 4.2. From the proof of Theorem 3.2(1), one sees the following: If $[E_{(b,i)}] \notin \mathcal{C}_{(b,i)}$ is a fibered class, then $[E_{(b,i)}] \notin \mathcal{C}$. Otherwise $[E_{(b,i)}] \notin \partial \mathcal{C}$. See Figure 9(2)/(3).

4.2 Proof of Theorem 3.2(2).

We start with a simple observation: $\Delta^2 \in B_n$ is j-increasing for each $1 \leq j \leq n$, and $u(\Delta^2,j) = n-1$ holds. The following lemma is immediate.

Lemma 4.3. If $b \in B_n$ is i-increasing, then $b\Delta^2 \in B_n$ is i-increasing with $u(b\Delta^2,i) = u(b,i) + n - 1$.

We explain the idea of Theorem 3.2(2). Let D be the associated disk of the pair (b,i). We have two types of the disk twist. One is $T_{\Delta^2}^D : \mathcal{E}(A) \to \mathcal{E}(A)$ which appears in the proof of Theorem B in Section 3 and the other is $T_D^{\partial A} : \mathcal{E}(\text{cl}(b(i))) \to \mathcal{E}(\text{cl}(b(i)))$. If k and p are positive, then we obtain the i-increasing $b\Delta^{2k}$ from the former type $T_{\Delta^2}^D$, and another increasing braid b_p from the latter type $T_D^{\partial A}$. Since both resulting braids are increasing, we can further apply two types of the disk twist for the resulting braid. This is a key of the proof. Choosing two types of the disk twist alternatively, we get a sequence of increasing and pseudo-Anosov braids (since the initial braid b is pseudo-Anosov). We shall see that the desired monodromies associated with primitive classes in $C_{(b,i)}$ are given by these braids.

Let p_1, \ldots, p_j be integers such that $p_1 \geq 0$ and $p_2, \ldots, p_j \geq 1$. Given an i-increasing braid $b \in B_n$ with $u(b,i) = u$, we define an integer $i[p_1, \ldots, p_j] \geq 1$ and an $i[p_1, \ldots, p_j]$-increasing braid $b[p_1, \ldots, p_j]$ inductively as follows.
If \(j = 1 \) and \(p_1 = 0 \), then \(i[0] = i \) and \(b[0] = b \). If \(j = 1 \) and \(p_1 = p \geq 1 \), then \(i[p] = i + pu \) and \(b[p] = b_p \).

If \(j > 1 \) is even, then
\[
\begin{align*}
i[p_1, \ldots, p_{j-1}, p_j] & = i[p_1, \ldots, p_{j-1}], \\
b[p_1, \ldots, p_{j-1}, p_j] & = (b[p_1, \ldots, p_{j-1}]) \Delta^{2p}.
\end{align*}
\]

The right-hand side is \(i[p_1, \ldots, p_{j-1}] \)-increasing by Lemma 4.3.

If \(j > 1 \) is odd, then
\[
\begin{align*}
i[p_1, \ldots, p_{j-1}, p_j] & = i[p_1, \ldots, p_{j-1}] + p_j u(b[p_1, \ldots, p_{j-1}], i[p_1, \ldots, p_{j-1}]), \\
b[p_1, \ldots, p_{j-1}, p_j] & = (b[p_1, \ldots, p_{j-1}]) p_j.
\end{align*}
\]

We say that \(b[p_1, \ldots, p_j] \) has length \(j \).

Example 4.4.

1. \(b[p] = b_p \) by definition.
2. Let \(\beta = b^2 \Delta \). Then \(b[0, 1] = \beta \) and \(b[0, 1, p] = \beta_p \).
3. We have \(b[0, p] = b^2 \Delta p \) and \(b[0, p, 1] = (b^2 \Delta p)_1 \), where \((b^2 \Delta p)_1 \) is obtained from \(i \)-increasing \(b^2 \Delta p \) by the disk twist.

For each \(k \geq 1 \), let \(f_k : M_b \to M_{b^2 \Delta 2^k} \) be the homeomorphism which in the proof of Theorem B. Consider the isomorphism \(f_{k*} : H_2(M_b, \partial M_b) \to H_2(M_{b^2 \Delta 2^k}, \partial M_{b^2 \Delta 2^k}) \). We have the following property.

Lemma 4.5. For each integer \(k \geq 1 \), \(f_{k*} \) sends \((1, 0) \in C_{(b,i)} \) to \((1, 0) \in C_{(b^2 \Delta 2^k,i)} \), and sends \((k, 1) \in C_{(b,i)} \) to \((0, 1) \in C_{(b^2 \Delta 2^k,i)} \). In particular for integers \(x, y \geq 1 \) with \(x = yk + r \) for \(0 \leq r < k \), then \(f_{k*} \) sends \((x, y) \in C_{(b,i)} \) to \((r, y) \in C_{(b^2 \Delta 2^k,i)} \).

Proof. The homeomorphism \(f_k \) sends \(F_b \) to \(F_{b^2 \Delta 2^k} \), and sends \(F_{(k,1)} = kF_b + E_{(b,i)} \) to \(E_{(b^2 \Delta 2^k,i)} \). This implies that the claim holds.

Proof of Theorem 3.2(2). Let \((x, y) \in C_{(b,i)} \) be a primitive integral class. (Hence \(x, y \) are positive integers with \(\gcd(x, y) = 1 \).) We consider the continued fraction of \(y/x \) by the Euclidean algorithm
\[
\frac{y}{x} = p_1 + \frac{1}{p_2 + \frac{1}{p_3 + \cdots + \frac{1}{p_{j-1} + \frac{1}{p_j}}}} := p_1 + \frac{1}{p_2 + \frac{1}{p_3 + \cdots + \frac{1}{p_{j-1} + \frac{1}{p_j}}}}
\]

with length \(j \) and \(p_j \geq 2 \) and \(p_1 = 0 \) if \(0 < y < x \). There is another expression
\[
\frac{y}{x} = p_1 + \frac{1}{p_2 + \frac{1}{p_3 + \cdots + \frac{1}{p_{j-1} + \frac{1}{p_j}}}} = \frac{1}{(p_j - 1) + \frac{1}{\cdots + \frac{1}{p_j}}}
\]
with length $j + 1$. We choose one of the two expressions with odd length ℓ:

$$\frac{y}{x} = \frac{1}{p_1} + \frac{1}{p_2 + p_3 + \cdots + p_{\ell-1} + p_\ell}.$$

This encodes the fiber $F(x,y)$ and its monodromy $\phi_{(x,y)}$. In fact Lemmas 4.1, 4.5 ensure that

$$(g_{p_1} f_{p_{\ell-1}} g_{p_{\ell-2}} \cdots f_{p_2} g_{p_1}) : H_2(M_b, \partial M_b) \to H_2(M_{b[p_1,\ldots,p_\ell]}, \partial M_{b[p_1,\ldots,p_\ell]})$$

sends $(x,y) = [xF_b + yE_{b(i)}]$ to $(1,0)$ which is the integral class of the F-surface of $b[p_1,\ldots,p_\ell]$. $(g_{p_1} = id : M_b \to M_b$ if $p_1 = 0.)$ Thus $F(x,y)$ has genus 0. Moreover this means that one can take $F_{b[p_1,\ldots,p_\ell]}$ as a representative of $(x,y) \in C_{b(i)}$ and the monodromy $\phi(x,y) : F_{(x,y)} \to F_{(x,y)}$ is determined by $b[p_1,\ldots,p_\ell]$. This completes the proof. \square

We denote by $b_{(x,y)}$ the braid $b[p_1,\ldots,p_\ell]$ which determines $\phi_{(x,y)}$. Here is an example: If $(x,y) = (5,14)$, then $\frac{14}{5} = 2 + \frac{1}{1 + \frac{1}{5}}$ and $\phi_{(5,14)}$ is determined by $b_{(5,14)} = b[2,1,4]$. If $(x,y) = (14,5)$, then $\frac{5}{14} = 0 + \frac{1}{2 + \frac{1}{3 + \frac{1}{5}}}$ and $\phi_{(14,5)}$ is determined by $b_{(14,5)} = b[0,2,1,3,1]$.

4.3. Proof of Theorem 3.2(3). We begin with the following lemma.

Lemma 4.6 (Standard form). If $b \in B_n$ is i-increasing with $u(b,i) = u$, then b is conjugate to an n-increasing braid b' of the form

$$b' = (w_1\sigma_{n-1}^2) \cdots (w_u\sigma_{n-1}^2),$$

where each w_k is a word of $\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}$, but not $\sigma_{n-1}^{\pm 1}$, possibly $w_k = \emptyset$ for some k.

Figure 13(1) shows the form of b' in Lemma 4.6 in case $u = 2$.

Proof. We regard b as a braid in $\mathbb{D} \times [0,1]$. By $\diamondsuit 1$, $b(i)$ is an interval in $\mathbb{D} \times [0,1]$. If $i = n$, then b is n-increasing and it is not hard to see that a representative of b is of the desired form in Lemma 4.6. Suppose that b is i-increasing for $1 \leq i < n$. We set $\sigma = \sigma_{n-1}\sigma_{n-2} \cdots \sigma_{i}$ if $1 \leq i < n - 1$ and $\sigma = \sigma_{n-1}$ if $i = n - 1$. We consider the n-braid $b' = \sigma b \sigma^{-1}$ which is n-increasing with $u(b',n) = u$. We pull $b'(n)$ tight in $\mathbb{D} \times [0,1]$ and make it straight. Then a representative of b' is of the desired form. \square

Proof of Theorem 3.2(3). Since each i-increasing braid is conjugate to an n-increasing braid of a standard form in Lemma 4.6, we may assume that $b \in B_n$ is an n-increasing braid of the form $b = (w_1\sigma_{n-1}^2) \cdots (w_u\sigma_{n-1}^2)$. Since $b \in B_n$ is the periodic braid such that $\rho = \sigma_1\sigma_2 \cdots \sigma_{n-2}\sigma_{n-1}^2$ we have $\sigma_{n-1}^2 = (\sigma_1 \cdots \sigma_{n-2})^{-1}\rho$. Then b is expressed as follows.

$$b = (\nu_1 \rho) \cdots (\nu_u \rho),$$

where $\nu_i = w_i(\sigma_1 \cdots \sigma_{n-2})^{-1}$ is written by a word of $\sigma_1^{\pm 1}, \cdots, \sigma_{n-2}^{\pm 1}$, but not $\sigma_{n-1}^{\pm 1}$. Each ν_j in b is a reducible braid and ρ in b is the periodic braid.
Let $\omega_j : F_b \to F_b$ denote a reducible representative whose mapping class is determined by ν_j, and let $\psi : F_b \to F_b$ denote a periodic representative whose mapping class determined by ρ. The monodromy ϕ_b defined on F_b is written by $\phi_b = (\omega_1 \psi) \cdots (\omega_d \psi)$.

Recall that \mathbb{D}_{n-1} is the disk \mathbb{D} with marked points A_1, \cdots, A_{n-1}. Let S_0 be an n-holed sphere obtained from \mathbb{D}_{n-1} by removing the interiors of small $(n-1)$ disks with centers A_1, \cdots, A_{n-1}. Each ν_j as an $(n-1)$-braid determines a homeomorphism $\tilde{\omega}_j : S_0 \to S_0$. We may assume that $\tilde{\omega}_j$ fixes one of the boundary components corresponding to $\partial \mathbb{D}$ pointwise. It is clear that we have an embedding $h : S_0 \hookrightarrow F_b$ such that each ω_j in ϕ_b is reducible supported on the subsurface $h(S_0)$ and the restriction of ω_j to $h(S_0)$ is given by $h \circ \tilde{\omega}_j \circ h^{-1}$.

By the proof of Theorem 3.2(2), $\phi_{(x,y)} : F_{(x,y)} \to F_{(x,y)}$ associated with each primitive class $(x,y) \in C_{(b,i)}$ is determined by the braid of the form $b[p_1, \ldots, p_{\ell}]$. We now prove by the induction on length ℓ that

$$b[p_1, \ldots, p_{\ell}] = (\nu_1 \rho) \cdots (\nu_{\ell-1} \rho)(\nu_\ell \rho)^{m-1} = (\nu_1 \rho) \cdots (\nu_{\ell-1} \rho)(\nu_\ell \rho)^m$$

for some $m \geq 1$ depending on (x,y). Here each ν_j in $b[p_1, \ldots, p_{\ell}]$ is a reducible braid which is an extension of ν_j in b and ρ is the periodic braid with the degree of $b[p_1, \ldots, p_{\ell}]$. If this holds, then $\phi_{(x,y)}$ has a desired property as in Theorem 3.2(3). Suppose that $\ell = 1$. If $p_1 = 0$, then $b[0] = b$ and we are done. If $p_1 \geq 1$, then $b[p_1] = b[p_1]$. Using the above expression of b we observe that $b[p_1]$ is written by

$$b[p_1] = (\nu_1 \rho) \cdots (\nu_p \rho) \in B_{n+p_1 u}$$

(see Figure 13). We are done.

For $\ell \geq 2$, suppose that $b[p_1, \ldots, p_{\ell-1}] = (\nu_1 \rho_d) \cdots (\nu_{\ell-1} \rho_d)(\nu_\ell \rho_d^m)$ for some m, where d is the degree of $b[p_1, \ldots, p_{\ell-1}]$. Consider $b[p_1, \ldots, p_{\ell}]$ with

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure13.png}
\caption{The figure illustrates how an initial braid b generates $\{b_p\}$. (1) $b = w_1 \sigma_2^2 w_2 \sigma_3^2 = (\nu_1 \rho)(\nu_2 \rho) \in B_4$, where $\nu_j = w_j(\sigma_1 \sigma_2)^{-1}$. (2) $b_1 = (\nu_1 \rho)(\nu_2 \rho) \in B_6$. (3) $b_2 = (\nu_1 \rho)(\nu_2 \rho) \in B_8$.}
\end{figure}
length ℓ. If ℓ is even, then by induction hypothesis
\[b[p_1, \ldots, p_\ell] = (b[p_1, \ldots, p_{\ell-1}])\Delta_d^{2\ell} = (\nu_1\rho_d) \cdots (\nu_u-1\rho_d)(\nu_u\rho_d^m)\Delta_d^{2\ell}. \]
Since $\Delta_d^2 = \rho_d^{d-1}$ we have $(\nu_u\rho_d^m)\Delta_d^{\ell} = \nu_u\rho_d^{m+p(\ell-1)}$. Thus $b[p_1, \ldots, p_\ell]$ has a desired expression and we are done. If ℓ is odd, then by induction hypothesis again
\[b[p_1, \ldots, p_\ell] = (b[p_1, \ldots, p_{\ell-1}])_{p_i} = ((\nu_1\rho_d) \cdots (\nu_u-1\rho_d)(\nu_u\rho_d^m))_{p_i}. \]
As in the case of $\ell = 1$, the braid in the right-hand side is expressed as
\[(\nu_1\rho_d) \cdots (\nu_u-1\rho_d)(\nu_u\rho_d^m)_{p_i} = (\nu_1\rho_t) \cdots (\nu_u-1\rho_t)(\nu_u\rho_t^m), \]
where \dagger is the degree of $b[p_1, \ldots, p_\ell]$. This completes the proof.\hfill\Box

5. Sequences of pseudo-Anosov braids with small normalized entropies

In this section we prove Theorem A. We begin with an observation. Let
\[\Omega \subset \{ a \in \mathcal{C} \mid \|a\| = 1 \} \]
be a compact set in $H_2(M_b, \partial M_b; \mathbb{R})$ and let $\mathcal{C}_\Omega \subset \mathcal{C}$ denote the cone over Ω through the origin. By Theorem 2.3(2) there is a constant $P = P(\Omega) > 0$ depending on Ω such that $\text{Ent}(a) < P$ for any $a \in \mathcal{C}_\Omega$. This observation provides us many sequences of pseudo-Anosov braids with small normalized entropies from a single pseudo-Anosov braid b.

Theorem 5.1. Suppose that b is a pseudo-Anosov braid whose permutation has a fixed point. We fix any $0 < \ell < \infty$. Let $\{(x_p, y_p)\}$ be a sequence of primitive integral classes in $C_{(b, i)}$ such that $y_p/x_p < \ell$ and $\|(x_p, y_p)\| \asymp p$. Then the sequence of pseudo-Anosov braids $\{b_{(x_p, y_p)}\}$ has a small normalized entropy.

Proof. If $\{(x_p, y_p)\}$ is the sequence under the assumption, then we have $d(b_{(x_p, y_p)}) \asymp \|(x_p, y_p)\| \asymp p$. (Recall that $d(\cdot)$ denotes the degree of the braid, i.e., the number of the strands.) Since $(1, 0) \in C_{(b, i)} \subset \mathcal{C}$ and the slope of y_p/x_p is bounded by ℓ from above, the set of projective classes (x_p, y_p) is contained in some compact set in $\{ a \in \mathcal{C} \mid \|a\| = 1 \}$ (Figure 9). Thus there is a constant $P = P(\ell) > 1$ such that $\text{Ent}(b_{(x_p, y_p)}) < P$ for any p. This completes the proof.\hfill\Box

Let us discuss three sequences coming from Example 4.4. They are $\{b_p\}$, $\{\beta_p\}$ and $\{(b\Delta^{2p})_1\}$ varying p. It is not hard to see that $d(b_p)$, $d(\beta_p)$, $d((b\Delta^{2p})_1) \asymp p$.

Theorem 5.2. For an i-increasing and pseudo-Anosov $b \in B_n$, we have the following on the sequences of pseudo-Anosov braids.

1. $\{b_p\}$ has a small normalized entropy if and only if $[E_{(b, i)}]$ is a fibered class.
(2) For $\beta = b\Delta^2 \in B_n$, $\{\beta_p\}$ has a small normalized entropy and $\text{Ent}(\beta_p) \to \text{Ent}((1,1))$ as $p \to \infty$.

(3) $\{(b\Delta^{2p})_1\}$ has a small normalized entropy and $\text{Ent}((b\Delta^{2p})_1) \to \text{Ent}(b)$ as $p \to \infty$.

Proof of Theorem 5.2. For $a = (x, y) \in C_{(b,i)}$, let $a = (x, y)$ denote its projective class. We have $[F_{\beta_p}] = (1, p) \to [E_{(b,i)}] = (0,1)$ as $p \to \infty$. If $[E_{(b,i)}] \in \mathcal{C}$ by Remark 4.2 and $\text{Ent}(b) \to \text{Ent}([E_{(b,i)}])$ as $p \to \infty$ by Theorem 2.3(2). If $[E_{(b,i)}]$ is a non-projective class, then $[E_{(b,i)}] \in \partial \mathcal{C}$ by Remark 4.2 and $\text{Ent}(b) \to \infty$ as $p \to \infty$ by Theorem 2.3(3). We finish the proof of (1). We turn to (2). Since $[F_{\beta_p}] = (p+1, p) \in C_{(b,i)}$, its projective class goes to $(1,1)$ as $p \to \infty$. Since $(1,1) \in C_{(b,i)} \subset \mathcal{C}$ by Theorem 3.2(1), $\text{Ent}(\beta_p) \to \text{Ent}((1,1))$ as $p \to \infty$ by Theorem 2.3(2). This completes the proof of (2). Finally we prove (3). The fibered class of F-surface of $(b\Delta^{2p})_1$ is given by $(p+1, 1) \in C_{(b,i)}$. Its projective class goes to $[F_b] = (1,0)$ as $p \to \infty$. Thus $\text{Ent}((b\Delta^{2p})_1) \to \text{Ent}(b)$ as $p \to \infty$. This completes the proof. \[\square\]

We use Theorem 5.2(1)(2) in Section 8. For an application using (3), see [19].

Proof of Theorem A. Suppose that $b \in B_n$ is pseudo-Anosov with $\pi_b(i) = i$. Let $\beta(k)$ denote $b\Delta^{2k} \in B_n$ for $k \geq 1$. Clearly $\beta(k)$ is pseudo-Anosov with the same dilatation as b (for any k) and $\beta(k)$ is positive for k large. We fix such large k. By Lemma 3.1 $\beta(k)$ is i-increasing. If we let $z_p = (\beta(k)\Delta^{2p})_1$, then $M_{z_p} \simeq M_{\beta(k)} \simeq M_b$ holds for $p \geq 1$. By Theorem 5.2(3), $\{z_p\}$ has a small normalized entropy and $\text{Ent}(z_p) \to \text{Ent}(\beta(k)) = \text{Ent}(b)$ as $p \to \infty$. \[\square\]

Let b^*_p denote the braid obtained from $(i + pu)$-increasing b_p by removing the strand of the index $i + pu$. Taking its spherical element we have $S(b^*_p)$. A mild generalization of the sequence $\{b_p\}$ is the ones $\{b^*_p\}$ and $\{S(b^*_p)\}$ varying p. Although b^*_p, $S(b^*_p)$ may not be pseudo-Anosov, they are frequently pseudo-Anosov. To be more precise, we need to consider the number of prongs of singularities in the stable foliation F_{b_p} for b_p as we explained in Section 2.3. This is the motivation of the study in Section 6.

6. Stable foliation for the monodromy

Let b be pseudo-Anosov and i-monotonic with the sign $\epsilon(b,i) = \epsilon$. For any primitive integral class $(x, y) \in C_{(b,i)}$, the oriented sum $F_{(x,y)} = xF_b + yE_{(b,i)}$ is connected. Let $T_{(b,A)}$ and $T_{(b,i)}$ denote the tori $\partial N(A)$ and $\partial N(\text{cl}(b(i)))$ respectively. Let us set

$$\partial_{(b,A)}F_{(x,y)} = \partial F_{(x,y)} \cap T_{(b,A)} \quad \text{and} \quad \partial_{(b,x)}F_{(x,y)} = \partial F_{(x,y)} \cap T_{(b,i)},$$

each of which is a single simple closed curve on the torus (since $\text{gcd}(x, y) = 1$). Recall that we chose the orientation of the axis for the i-monotonic b
in Section 3. We use the meridian and longitude basis \{m_A, \ell_A\} for \(T_{(b,A)}\) to represent a homology class of a disjoint union of simple closed curves on \(T_{(b,A)}\). We also use the meridian and the longitude basis \{m_i, \ell_i\} for \(T_{(b,i)}\).

Observe that the homology classes \([\partial_{(b,A)}F_{(x,y)}]\) and \([\partial_{(b,i)}F_{(x,y)}]\) are given by the pairs of integers

\[\begin{align*}
[\partial_{(b,A)}F_{(x,y)}] &= (\epsilon y, x) \\
[\partial_{(b,i)}F_{(x,y)}] &= (\epsilon x, y).
\end{align*}\]

They are called boundary slopes of \(F_{(x,y)}\). See Figure 14.

Figure 14. Case: \(b\) is \(i\)-increasing. (1) Meridian and longitude basis. (2) Two boundary slopes \(\partial_{(b,A)}F_{(1,1)}\) (in green) on \(T_{(b,A)}\) and \(\partial_{(b,i)}F_{(1,1)}\) (in red) on \(T_{(b,i)}\) when \((x,y) = (1,1)\).

Let \(\phi_b : F_b \to F_b\) be the pseudo-Anosov monodromy of a fiber \(F_b\) of the fibration on \(M_b \to S^1\). The stable foliation \(F_b\) of \(\phi_b\) has singularities on each boundary component of \(F_b\). Now we consider the suspension flow \(\phi_{b,t}\) on the mapping torus \(M_b\). We obtain a disjoint union of simple closed curves \(c_A = c_{(b,A)}\) on \(T_{(b,A)}\) (possibly a single simple closed curve) which is a union of closed orbits for singularities in \(\partial_{(b,A)}F_b\) under the flow. Similarly we have a disjoint union of simple closed curves \(c_i = c_{(b,i)}\) on \(T_{(b,i)}\) (possibly a single simple closed curve again) which is a union of closed orbits for singularities in \(\partial_{(b,i)}F_b\). (Figure 17 depicts these closed curves for some pseudo-Anosov 3-braid.) A useful tool is train track maps which encode those data \(\phi_b, F_b\). They also enable us to compute homology classes \([c_A]\) and \([c_i]\).

The following lemma is a consequence of Theorem 2.4(2) by Fried.

Lemma 6.1. Let \(\phi_{(x,y)} : F_{(x,y)} \to F_{(x,y)}\) be the monodromy of a fibration on \(M_b \to S^1\) associated with a primitive integral class \((x,y) \in C_{(b,i)}\). Then the stable foliation \(F_{(x,y)}\) for \(\phi_{(x,y)}\) is \(i([c_A], [\partial_{(b,A)}F_{(x,y)}])\)-pronged at \(\partial_{(b,A)}F_{(x,y)}\), and is \(i([c_i], [\partial_{(b,i)}F_{(x,y)}])\)-pronged at \(\partial_{(b,i)}F_{(x,y)}\), where \(i(\cdot, \cdot)\) means the geometric intersection number between homology classes of closed curves.

Remark 6.2. Every closed orbit of the suspension flow \(\phi_{b,t}\) on the mapping torus \(M_b\) travels around \(S^1\) direction at least once. This implies that
[c_A] has a non-zero first coordinate of the meridian and longitude basis for \(T(b,A) \), i.e., we have \([c_A] = (k, \ell) \in \mathbb{Z}^2\) with \(k \neq 0\), since the meridian for \(T(b,A) \) corresponds to the flow direction. Similarly, \([c_i]\) has a non-zero second coordinate of the meridian and longitude basis for \(T(b,i) \), that is we have \([c_i] = (k', \ell') \in \mathbb{Z}^2\) with \(\ell' \neq 0\), since the longitude for \(T(b,i) \) corresponds to the flow direction in this case.

Recall that given a braid \(b \in B_n \), we denote by \(S(b) \in SB_n \), the spherical \(n\)-braid with the same word as \(b \). For an \(i\)-increasing braid \(b \) of pseudo-Anosov type, consider the braid \((b\Delta^2)^1 = b[0,p,1] \) in Example 4.4(3). This is an \(i[0,p,1]\)-increasing braid. Then we have its spherical braid \(S((b\Delta^2)^1) \).

We now define other braids obtained from \((b\Delta^2)^1 \). Let \((b\Delta^2)^1\) denote the braid obtained from \((b\Delta^2)^1\) by removing the strand of the index \(i[0,p,1]\). Let \(S((b\Delta^2)^1) \) and \(S((b\Delta^2)^1) \) be the spherical braids corresponding to \((b\Delta^2)^1\) and \((b\Delta^2)^1\) respectively. Then we have the following result.

Lemma 6.3. Suppose that \(b \) is an \(i\)-increasing braid of pseudo-Anosov type. For \(p \) large, the braid \((b\Delta^2)^1\) and the spherical braids \(S((b\Delta^2)^1) \), \(S((b\Delta^2)^1) \) are all pseudo-Anosov with the same dilatation as \((b\Delta^2)^1\).

Before proving Lemma 6.3, we recall a formula of the geometric intersection number \(i([c], [c']) \) between two homology classes of simple closed curves \(c, c' \) on a torus. Let \((p, q)\) and \((p', q')\) be primitive elements of \(\mathbb{Z}^2 \) which represent \([c]\) and \([c']\) respectively. Then

\[
i([c], [c']) = |pq' - p'q|.
\]

Proof of Lemma 6.3. The fibered class of \(F\)-surface of \((b\Delta^2)^1\) is \((p + 1, 1) \in C(b,i)\). We have \([\partial(b,A)F_{(p+1,1)}] = (-1, p + 1)\) and \([\partial(b,i)F_{(p+1,1)}] = (-p+1, 1)\), see (6.1). By Remark 6.2, one can write \([c_A] = (k, \ell)\) with \(k \neq 0\) and \([c_i] = (k', \ell')\) with \(\ell' \neq 0\). Then \(i([c_A], [\partial(b,A)F_{(p+1,1)}]) = |k(p + 1) + \ell|\) and \(i([c_A], [\partial(b,i)F_{(p+1,1)}]) = |k' + \ell'(p + 1)|\). Since \(k \neq 0\) and \(\ell' \neq 0\), these intersection numbers are increasing with respect to \(p \) and they are clearly greater than 1 when \(p \) is large. Then Lemma 6.1 says that when \(p \) is large, the stable foliation \(F_{(p+1,1)} \) for the monodromy \(\phi_{(p+1,1)} \) is not 1-pronged at each component of \(\partial(b,A)F_{(p+1,1)} \cup \partial(b,i)F_{(p+1,1)} \). By the discussion in Section 2.4, we are done. \(\Box \)

7. Properties of \(F\)-surfaces and \(E\)-surfaces

The aim of this section is to study properties of \(E\), \(F\)-surfaces and to present the technique used in the last section.

Lemma 7.1. For an \(i\)-increasing braid \(b \in B_n \) with \(u(b,i) = u \), we set \(\beta = b\Delta^2 \in B_n \). Then there is an \(n\)-increasing braid \(\gamma \in B_{n+u} \) such that

\[
(br(\beta), cl(\beta(i)), A_\beta) \sim (br(\gamma), A_\gamma, cl(\gamma(n))).
\]

In particular \(M_\beta \simeq M_\gamma \simeq M_\gamma \) and \(E(\beta,i) = F_\gamma \), \(F_\beta = E(\gamma,\gamma) \) up to isotopy in \(M_\beta \). Moreover if \(b \) is pseudo-Anosov, then \(\gamma \) is also pseudo-Anosov.
A similar claim holds for \(i \)-decreasing braids.

Proof. By Lemma 4.6 we may assume that \(b \in B_n \) is an \(n \)-increasing braid of a standard form \(b = (w_1 \sigma_{n-1}^2 \cdots w_u \sigma_{n-1}^2) \) containing \(u \) subwords \(\sigma_{n-1}^2 \).

Using the identity
\[
\Delta^2 = \Delta_{n-1}^2 \sigma_{n-1} \cdots \sigma_2 \sigma_1 \sigma_1 \sigma_2 \cdots \sigma_{n-1} \in B_n,
\]
This expression says that M_{γ} is representative of β for the deformation as in (5)(6) of Figure 15. We can take the following F-surface for β and its braided axis, namely a braided link, see Figure 15(3)(4)(5). As a result,

$$\text{br}(\beta), \text{cl}(\gamma(n)), A_{\beta}) \sim \text{br}(\gamma), A_\gamma, \text{cl}(\gamma(n)),$$

This expression says that $M_{\beta} \simeq M_{\gamma}$ and the E_4 F-surfaces for β are equal to the F_4 E-surfaces for γ. Since $M_b \simeq M_{\beta}$ we are done. \hfill \Box

Here we introduce a simple representative of $\gamma \in B_{n+u}$ in Lemma 7.1. By the deformation as in (5)(6) of Figure 15, we can take the following representative of γ.

$$\gamma = \kappa_0 \kappa_1 \cdots \kappa_{u+1} \Delta^2_{n-1}, \text{ where}$$

$$\kappa_0 = \sigma_n^{-1} \sigma_{n-1} \cdots \sigma_{n-u+1},$$

$$\kappa_j = w_j \sigma_{n-u-j}^{-1} \sigma_{n+u-j-1} \sigma_{n+u-j-2} \cdots \sigma_{n-1}^{-1} \text{ if } 1 \leq j \leq u-1,$$

$$\kappa_u = w_u \sigma_{n-1},$$

$$\kappa_{u+1} = \sigma_n^{-1} \text{ if } u = 1,$$

$$\kappa_{u+1} = \sigma_{n-u+1}^{-1} \sigma_{n-u+2} \cdots \sigma_n^{-1} \text{ if } u \geq 2.$$

For example if $(n, u) = (3, 2)$, then

$$\gamma = \kappa_0 \kappa_1 \kappa_2 \kappa_3 \Delta^2_2 = \sigma_2 \sigma_1^2 \sigma_2 \sigma_3 \sigma_4 w_1 \sigma_2 \sigma_3 \sigma_2^{-1} w_2 \sigma_2 \sigma_4^{-1} \sigma_3^{-1} \sigma_1^2.$$

(7.1)

If $(n, u) = (3, 3)$, then $\gamma = \kappa_0 \kappa_1 \kappa_2 \kappa_3 \kappa_4 \Delta^2_2$, that is

$$\gamma = \sigma_2 \sigma_1^2 \sigma_2 \sigma_3 \sigma_4 \sigma_5 w_1 \sigma_2 \sigma_3 \sigma_2^{-1} \sigma_4^{-1} \sigma_3^{-1} \sigma_2^{-1} \sigma_4 \sigma_5^{-1}.$$

(7.2)

Lemma 7.1 is used in the following situation. Suppose that $\alpha \in B_{n+u}$ is a j-increasing braid and our task is to prove that α is pseudo-Anosov and its E-surface $E_{(\alpha, j)}$ is a fiber of a fibration on $M_\alpha \to S^1$. (The conditions are needed to apply Theorem 5.2(1) for α.) To do this, we need to find an i-increasing and pseudo-Anosov braid $b \in B_n$ with $u = u(b, i)$ and need to check the resulting n-increasing braid $\gamma \in B_{n+u}$ in Lemma 7.1 satisfies the property

$$(\text{br}(\gamma), A_{\gamma}, \text{cl}(\gamma(n))) \sim (\text{br}(\alpha), A_\alpha, \text{cl}(\alpha(j))).$$

i.e. γ is conjugate to α preserving the corresponding strand. If this equivalence holds, then by Lemma 7.1 together with the above equivalence \sim, our task is done. As a result $\{\alpha_p\}$ has a small normalized entropy by Theorem 5.2(1).
8. Application

In the last section we prove Theorems C, D and E. We first recall a study of pseudo-Anosov 3-braids [14, 24]. Let w be a word in σ_1^{-1} and σ_2. If both σ_1^{-1} and σ_2 occur at least once in w, then we say that w is a pA word. It is known that the 3-braid represented by a pA word is pseudo-Anosov. Conversely a 3-braid b is pseudo-Anosov, then there is a pA word w such that the braid represented by w is conjugate to b up to a power of the full twist.

The stable foliation \mathcal{F}_b is 1-pronged at each boundary component of F_b for each pseudo-Anosov 3-braid b. Figure 17(3) exhibits a train track automaton. A train track map for the 3-braid represented by a pA word w is obtained from the closed loop corresponding to w in the automaton. For more details, see Ham-Song [13].

8.1. Palindromic/Skew-palindromic braids. We define a map

$$rev : B_n \rightarrow B_n$$

$$\sigma_{i_1}^{\mu_1} \sigma_{i_2}^{\mu_2} \cdots \sigma_{i_k}^{\mu_k} \mapsto \sigma_{i_k}^{\mu_k} \cdots \sigma_{i_2}^{\mu_2} \sigma_{i_1}^{\mu_1}, \quad \mu_j = \pm 1,$$

which is an anti-homomorphism. A braid $b \in B_n$ is palindromic if $rev(b) = b$. Clearly $b \cdot rev(b)$ is palindromic for any $b \in B_n$. Let us consider another anti-homomorphism

$$skew : B_n \rightarrow B_n$$

$$\sigma_{i_1}^{\mu_1} \sigma_{i_2}^{\mu_2} \cdots \sigma_{i_k}^{\mu_k} \mapsto \sigma_{n-i_k}^{\mu_k} \cdots \sigma_{n-i_2}^{\mu_2} \sigma_{n-i_1}^{\mu_1}, \quad \mu_j = \pm 1.$$

A braid $b \in B_n$ is skew-palindromic if $skew(b) = b$. Clearly $b \cdot skew(b)$ is skew-palindromic for any $b \in B_n$.

We now prove Theorems C and D which indicate the asymptotic behaviors of minimal entropies among these subsets are quite distinct.

Proof of Theorem C. For the surjective homomorphism $\pi : B_n \rightarrow S_n$ we write $\pi_j = \pi(\sigma_j)$. Suppose that an n-braid $b = \sigma_{i_1}^{\mu_1} \sigma_{i_2}^{\mu_2} \cdots \sigma_{i_k}^{\mu_k}$ is palindromic. Since $rev(b) = b$ we have

$$(\pi_{rev(b)} = \pi_{i_k} \cdots \pi_{i_2} \pi_{i_1} = \pi_{i_1} \pi_{i_2} \cdots \pi_{i_k} (= \pi_b).$$

Multiply the both side by $\pi_{i_1} \pi_{i_2} \cdots \pi_{i_k}$ from the left:

$$(\pi_{i_1} \pi_{i_2} \cdots \pi_{i_k}) \cdot (\pi_{i_k} \cdots \pi_{i_2} \pi_{i_1}) = (\pi_{i_1} \pi_{i_2} \cdots \pi_{i_k}) \cdot (\pi_{i_1} \pi_{i_2} \cdots \pi_{i_k}) = \pi_{i_k}^2.$$

Since $\pi_{i_k}^2 = id$ the left-hand side equals id. Hence $id = \pi_{i_k}^2$ which means that the square b^2 is pure. A theorem by Song [28] states that for a pseudo-Anosov pure element $b' \in B_n$, its dilatation has a uniform lower bound $2 + \sqrt{5} \leq \lambda(b')$. In particular if $b' = b^2$, then $2 + \sqrt{5} \leq \lambda(b^2) = (\lambda(b))^2$. This completes the proof.
Proof of Theorem D. We separate the proof into two cases, depending on the parity of the braid degree. We first prove \(\log \delta(PA_{2n}) \approx 1/n \). Let us take \(\xi = \sigma_1^2 \sigma_2 \sigma_3 \sigma_4 \in B_5 \) (Figure 16). The braid \(\xi \) is 3-increasing with \(u(\xi, 3) = 2 \). We consider the disk twist about \(D(\xi, 3) \). We obtain the braid \(\xi_p \) which is \((3 + 2p) \)-increasing for each \(p \geq 1 \). Observe that \(\xi_p \) is a skew-palindromic braid with even degree for each \(p \geq 1 \):

\[
\xi_p = (\sigma_1 \cdots \sigma_{1+2p})(\sigma_3 \cdots \sigma_{3+2p}) \in B_{4+2p}.
\]

(For the definition of \(\xi_p \), see Section 5.) By the lower bound of dilatations by Penner, it is enough to prove that the sequence \(\{\xi_p\} \) has a small normalized entropy. We prove this in the following two steps. In Step 1 we prove that \(\{\xi_p\} \) has a small normalized entropy. In Step 2 we prove that the stable foliation \(F_{\xi_p} \) is not 1-pronged at \(\partial(\xi_p, 3+2p)F_{\xi_p} \) for \(p \geq 1 \). This tells us that \(\xi_p \)

Figure 16. (1) \(\text{br}(\xi) \). (2) Skew-palindromic \(\xi^* \in B_{4+2p} \).
is pseudo-Anosov with the same dilatation as \(\xi_p \). By Step 1 it follows that \(\{\xi^*_p\} \) has a small normalized entropy.

Step 1. The sequence \(\{\xi_p\} \) has a small normalized entropy.

By Theorem 5.2(1) it suffices to prove that \(\xi \) is pseudo-Anosov and \([E_{(\xi,3)}] \) is a fibered class. Consider a pseudo-Anosov braid \(b = \sigma_1^{-1}\sigma_2^{3}\sigma_1^{-1}\sigma_2^{3} \in B_3 \). It is 3-increasing with \(u(b,3) = 2 \). For \(\beta = b\Delta^2 \) we have \(M_b \simeq M_{\beta} \). By Lemma 7.1 \((\text{br}(\beta), \text{cl}(\beta(3)), \xi, A)) \sim (\text{br}(\gamma), \xi, \gamma(3)) \), where \(\gamma \in B_3 \) is the braid in (7.1) substituting \(\sigma_1^{-1} \) for \(w_1 \) and \(\sigma_1^{-1} \) for \(w_2 \). It is not hard to check that \(1, \gamma \) is conjugate to \(\xi \) in \(B_3 \) and their permutations have a common fixed point 3. Hence

\[
(\text{br}(\beta), \text{cl}(\beta(3)), A) \sim (\text{br}(\xi), A, \text{cl}(\xi(3))).
\]

In particular \(E_{(\xi,3)} = F_\beta \) which means that \(E_{(\xi,3)} \) is a fiber of a fibration on the hyperbolic mapping torus \(M_\beta \simeq M_{\xi} \) over \(S^1 \). Thus \(\xi \) is pseudo-Anosov.

Step 2. \(F_{\xi_p} \) is \((p + 1) \)-pronged at \(\partial_{(\xi_p,3+2p)}F_{\xi_p} \) for \(p \geq 1 \).

We read the singularity data of \(F_{\xi_p} \) from the monodromy \(\phi_{\beta} : F_{\beta} \rightarrow F_{\beta} \) of the fibration on \(M_{\beta} \rightarrow S^1 \). First consider the suspension flow \(\phi_{\beta}^1 \) on the mapping torus \(M_\beta \). Since \(F_{\beta} \) is 1-pronged at each component of \(F_{\beta} \), we have simple closed curves \(c_A \subset T_{(b,a)} \) and \(c_3 \subset T_{(b,3)} \) such that \(\{c_A\} = (1,0), \{c_3\} = (2,1) \in Z^2 \) (Figure 17(1)(2)).

Next we turn to \(\beta = b\Delta^2 \in B_3 \) and the suspension flow \(\phi_{\beta}^1 \) on \(M_{\beta} \simeq M_{\xi} \). We have simple closed curves \(c_{(\beta,3)} \subset T_{(\beta,3)} \) and \(c_{(3,3)} \subset T_{(3,3)} \). Since \(\beta \) is the product of \(b \) and \(\Delta^2 \), we get \(\{c_{(\beta,3)}\} = (1,0) + (0,1) = (1,1) \). The first term \((1,0) \) comes from \(\{c_A\} \) and the second one \((0,1) \) comes from \(\Delta^2 \). Similarly we have \(\{c_{(3,3)}\} = (2,1) + (1,0) = (3,1) \). By (8.1) we have \(F_{\beta} = E_{(\xi,3)} \) and \(E_{(3,3)} = F_{\xi} \). We also have \(T_{(\beta,3)} = T_{(\xi,3)} \) and \(T_{(3,3)} = T_{(\xi,A)} \).

Since

\[
p[F_{\beta}] + [E_{(3,3)}] = [F_{\xi}] + p[E_{(\xi,3)}] = [F_{\xi} + pE_{(\xi,3)}] = (1, p) \in C_{(\xi,3)},
\]

the stable foliation \(F_{(1,p)} \) associated with an integral class \((1,p) \in C_{(\xi,3)} \) is the stable foliation associated with \((p,1) \in C_{(\beta,3)} \). By (6.1) for \((x,y) = (p,1) \)

\[
[\partial_{(\beta,A)}(F_{\xi} + pE_{(\xi,3)})] = (-1,p),
\]

From \(i[\{c_{(\beta,A)}\}, \{\partial_{(3,3)}(F_{\xi} + pE_{(\xi,3)})\}] = p + 1 \) together with Lemma 6.1, one sees that \(F_{(1,p)} \) associated with \((1,p) \in C_{(\xi,3)} \) is \((p+1) \)-pronged at \(\partial_{(\beta,A)}F_{(1,p)}(= \partial_{(\xi,3)}F_{(1,p)}) \), and is \((p+3) \)-pronged at \(\partial_{(3,3)}F_{(1,p)}(= \partial_{(\xi,A)}F_{(1,p)}) \).

\[1\] There is a solution for the conjugacy problem on \(B_n [6] \). The software *Braiding [12]* can be used to determine whether two braids are conjugate.
Since \(g_p : M_{\xi} \to M_{\xi_p} \) sends \(F_{(1,p)} \) to \(F_{\xi_p} \), the stable foliation \(F_{(1,p)} \) associated with \((1,p) \in C_{(\xi,3)} \) is identified with \(F_{\xi_p} \) via \(g_p \). The boundary components \(\partial_{\xi(A)} F_{(1,p)} \) and \(\partial_{\xi(A)} F_{\xi_p} \) correspond to \(\partial_{\xi(1,p)} F_{\xi_p} \) and \(\partial_{\xi_p,3+2p} F_{\xi_p} \) respectively via \(g_p \). Thus \(F_{\xi_p} \) is \((p+1)\)-pronged at \(\partial_{\xi_p,3+2p} F_{\xi_p} \). This completes the proof of Step 2.

Next we prove \(\log \delta(PA_{2n+1}) \asymp 1/n \) following the above arguments in Steps 1,2. Take an initial braid

\[
\eta = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_3 \sigma_4 \sigma_1 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \in B_8.
\]

It is 4-increasing with \(u(\eta,4) = 2 \). Consider \(\eta_p \in B_{8+2p} \) obtained from \(\eta \) by the disk twist. Then \(\eta_p^* \) is a skew-palindromic braid with odd degree for each \(p \geq 1 \):

\[
\eta_p^* = (\sigma_1 \sigma_2 \cdots \sigma_4 \cdot \sigma_6 + 2)(\sigma_3 \sigma_4 \cdots \sigma_6 + 2p) \in B_{7+2p}.
\]

For our purpose it suffices to prove that \(\{\eta_p^*\} \) has a small normalized entropy. Following Step 1 we first prove that \(\eta \) is pseudo-Anosov and \([E_{(\eta,4)}]\) is a fibered class. Consider a pseudo-Anosov braid \(b = \sigma^{-1} \sigma_2^6 \Delta^2 \in B_3 \) which is 3-increasing with \(u(b,3) = 5 \). For \(\beta = b \Delta^2 \) Lemma 7.1 tells us that \((\text{br}(\beta), \text{cl}(\beta(3)), A_{\beta}) \sim (\text{br}(\gamma), A_{\gamma}, \text{cl}(\gamma(3)))\), where \(\gamma = \kappa_0 \kappa_1 \cdots \kappa_6 \Delta^2 \in B_8 \).

One sees that \(\gamma \) is conjugate to \(\eta \) in \(B_8 \). Since the permutation \(\pi_\eta \) has a unique fixed point it follows that \((\text{br}(\beta), \text{cl}(\beta(3)), A_{\beta}) \sim (\text{br}(\eta), A_{\eta}, \text{cl}(\eta(4)))\).

This expression says that \(E_{(\eta,4)} = F_\beta \) is a fiber of a fibration on the hyperbolic \(M_b \simeq M_\eta \) over \(S^1 \). Hence \(\eta \) is pseudo-Anosov. We conclude that \(\{\eta_p\} \) has a small normalized entropy.

Following Step 2 one sees that \(F_{\eta_p} \) is \((p+2)\)-pronged at \(\partial_{(\eta_p,4+2p)} F_{\eta_p} \) for \(p \geq 1 \). Thus \(\eta_p^* \) is pseudo-Anosov with the same dilatation as \(\eta_p \). This completes the proof.

8.2. Spin mapping class groups. In this section we prove Theorem E. We first recall a connection between \(\mathcal{H}(\Sigma_g) \) and \(\text{Mod}(\Sigma_{0,2g+2}) \). Let \(t_j \in \text{Mod}(\Sigma_g) \) for \(1 \leq j \leq 2g + 1 \) be the right-handed Dehn twist about the simple closed curve \(C_j \) as in Figure 18. Birman-Hilden [3] proved that \(\mathcal{H}(\Sigma_g) \) is generated by \(t_1, t_2, \ldots, t_{2g+1} \). In fact they prove that

\[
\begin{align*}
Q : \mathcal{H}(\Sigma_g) & \to \text{Mod}(\Sigma_{0,2g+2}) \\
 t_j & \mapsto t_j
\end{align*}
\]

Figure 18. Simple closed curve \(C_j \) on \(\Sigma_g \).
Proof. We prove the lemma by the induction on \(p \). When \(p = 1 \)

\[t_2 t_3 (t_4 t_5 \cdots t_{5+2p})^2 t_{5+2p} \in \text{Mod}_g[q_1] \text{ for any } g \geq p + 2. \]
Assume that \(t_2t_3(t_4t_5 \cdots t_{5+2(p-1)})^2 t_{5+2(p-1)} \in \text{Mod}_g[q_1] \) for \(g \geq p - 1 + 2 \). By the braid relations, \(t_2t_3(t_4t_5 \cdots t_{4+2(p-1)}t_{5+2(p-1)}t_{4+2p}^2) t_{5+2p} \) is equal to
\[
t_2t_3(t_4t_5 \cdots t_{5+2(p-1)})^2 t_{5+2(p-1)} \cdot t_{5+2(p-1)}^{-2} \cdot t_{5+2(p-1)}^{-2} \cdot t_{4+2p} \cdot t_{5+2p}^{-2} \cdot t_{5+2p}^{-2}.
\]

Note that \(t_j t_{j+1} t_{j-1} t_j = (t_j t_{j+1}^{-1})(t_j t_{j-1}^{-1}) t_j^2 \). Then the assumption together with Lemma 8.1(1) implies that \(t_2t_3(t_4t_5 \cdots t_{5+2p}) t_{5+2p} \in \text{Mod}_g[q_1] \) for \(g \geq p + 2 \).

Let us turn to (2). When \(p = 1 \)
\[
(t_2t_3t_4t_5t_6t_7)^2 = t_2t_3t_4^{-1} \cdot t_4^2 \cdot t_4t_5t_4^{-1} \cdot t_4^2 \cdot t_6t_7t_6^{-1} \cdot t_6^2 \cdot t_7^2 \cdot t_7^2,
\]
which is an element of \(\text{Mod}_g[q_0] \) for \(g \geq 3 \).

Assume that \((t_2t_3 \cdots t_{5+2(p-1)})^2 t_{5+2(p-1)} \in \text{Mod}_g[q_0] \) for any \(g \geq p - 1 + 2 \). By the braid relations again, we have
\[
(t_2t_3 \cdots t_{4+2(p-1)}t_{5+2(p-1)}t_{4+2p}^{-1})^2 t_{5+2p}^{-2} = (t_2t_3 \cdots t_{5+2(p-1)})^2 t_{5+2(p-1)}^{-4} \cdot t_{4+2p} \cdot t_{5+2p}^{-2} \cdot t_{5+2p}^{-2}.
\]

The assumption together with Lemma 8.1(2) says that \((t_2t_3 \cdots t_{5+2})^2 t_{5+2p} \in \text{Mod}_g[q_0] \) for \(g \geq p + 2 \). This completes the proof. \(\square \)

The shift map \(sh : B_n \to B_{n+1} \) is an injective homomorphism sending \(\sigma_j \) to \(\sigma_{j+1} \) for \(1 \leq j \leq n - 1 \). Suppose that \(b \in B_n \) is pseudo-Anosov. Then \(S(sh(b)) \in SB_{n+1} \) is pseudo-Anosov with the same dilatation as \(b \) since \(\tilde{\Gamma}(S(sh(b))) \) is conjugate to \(f_b = c(\Gamma(b)) \) in \(\text{Mod}(\Sigma_{o,n+1}) \). (See Section 2.3 for definitions \(\Gamma, \tilde{\Gamma} \).) We finally prove Theorem E.

Proof of Theorem E(1). Consider \(o = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_3^2 \sigma_4 \sigma_5 \sigma_3 \sigma_5 \in B_6 \). It is a 4-increasing braid with \(u(o,4) = 2 \) (Figure 19). The braid \(o_p \) is obtained from \(o \) by disk twist for each \(p \geq 1 \). Then
\[
S(sh(o_p^*)) = \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_3^2 \sigma_4 \sigma_5 \sigma_3 \sigma_5 \in B_6.
\]

By Lemma 8.2(1) \(t_2t_3(t_4t_5 \cdots t_{5+2})^2 t_{5+2} \in \text{Mod}_{p+2}[q_1] \) for \(p \geq 1 \), and it is pseudo-Anosov if \(S(sh(o_p^*)) \) is pseudo-Anosov. In this case they have the same dilatation. Thus by the relation between \(o_p^* \) and \(S(sh(o_p^*)) \) it is enough to prove that \(\{ o_p^* \} \) has a small normalized entropy. We first claim that \(\{ o_p \} \) has a small normalized entropy. By Theorem 5.2(1) it suffices to prove that \(o \) is a pseudo-Anosov and \([E(o,4)] \) is a fibered class. Consider a 3-braid \(b = \sigma_1^2 \sigma_2^2 \cdot \sigma_3^2 \cdot \sigma_4^2 \) which is 3-increasing with \(u(b,3) = 3 \). Let \(\beta \) denote \(b\Delta^2 \).

By Lemma 7.1 \((br(\beta), cl(\beta(3)), A_\beta) \sim (br(\gamma), A_\gamma, cl(\gamma(3))) \), where \(\gamma \in B_6 \) is the braid in (7.2) substituting \(\sigma_1^2, \emptyset, \emptyset \) for \(w_1, w_2, w_3 \) respectively. In this case \(\gamma \) is conjugate to \(o \) in \(B_6 \). Since the permutation \(\pi_o \) has a unique fixed point 4, it follows that \((br(\beta), cl(\beta(3)), A_\beta) \sim (br(o), A_o, cl(o(4))) \). This tells us that \(M_\beta \simeq M_o \) and \([E(o,4)] = [F_\beta] \) is a fibered class. On the other hand \(\beta \)
is conjugate to $\sigma_1^4 \sigma_2^{-2} \Delta^4$ in B_3 which means that β is pseudo-Anosov. Thus $M_\beta \simeq M_o$ is hyperbolic and o is pseudo-Anosov.

Next we prove that o_p^* is pseudo-Anosov with the same dilatation as o_p for $p \geq 1$. By the same argument as in the proof of Theorem D one sees that F_{o_p} is $(p+2)$-pronged at $\partial(o_p,4+2p)F_{o_p}$. Thus o_p^* has the desired property for $p \geq 1$. We finish the proof of (1).

We turn to (2). Let us consider $v = (\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5)^2 \sigma_1 \sigma_2 \sigma_3^3 \in B_6$ which is 3-increasing with $u(v,3) = 2$. Let $v_p \in B_{6+2p}$ be the braid obtained from v by the disk twist. Then v_p is $(3+2p)$-increasing and

$$v_p^* = (\sigma_1 \sigma_2 \cdots \sigma_{4+2p})^2 \sigma_{4+2p}^3 \in B_{5+2p},$$

$$S(sh(v_p^*)) = (\sigma_2 \sigma_3 \cdots \sigma_{5+2p})^2 \sigma_{5+2p}^3 \in SB_{6+2p}.$$

By Lemma 8.2(2) it is enough to prove that $\{v_p^*\}$ has a small normalized entropy. To do this we first prove that $\{v_p\}$ has a small normalized entropy. Consider a pseudo-Anosov 3-braid

$$b = \sigma_1^2 \sigma_2^{-2} \Delta^4 = \sigma_1^3 \sigma_2^3 \sigma_1 \Delta^2 = \sigma_1^3 \sigma_2^2 \cdot \sigma_1 \sigma_2^2$$

which is 3-increasing with $u(b,3) = 3$. Lemma 7.1 tells us that for $\beta = b \Delta^2$ we have $(br(\beta), cl(\beta(3)), A_\beta) \sim (br(\gamma), A_\gamma, cl(\gamma(3)))$, where $\gamma \in B_6$ is the braid in (7.2) substituting σ_1^2 for w_1, σ_1^2 for w_2 and σ_1 for w_3. One sees that γ is conjugate to v in B_6. Thus $(br(\beta), cl(\beta(3)), A_\beta) \sim (br(v), A_v, cl(v(3)))$. This implies that $[E_{(v,3)}] = [F_{\beta}]$ is a fibered class of the hyperbolic $M_\beta \simeq M_v$, and hence v is pseudo-Anosov. By Theorem 5.2(1), $\{v_p\}$ has a small normalized entropy.

One sees that F_{v_p} is $(p+3)$-pronged at $\partial(v_p,3+2p)F_{v_p}$. Thus v_p^* is pseudo-Anosov with the same dilatation as v_p for $p \geq 1$. This completes the proof.

□

References

A CONSTRUCTION OF PSEUDO-ANOSOV BRAIDS

(Susumu Hirose) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE, NODA, CHIBA, 278-8510, JAPAN
hirose_susumu@ma.noda.tus.ac.jp

(Eiko Kin) DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY TOYONAKA, OSACA 560-0043, JAPAN
kin@math.sci.osaka-u.ac.jp

This paper is available via http://nyjm.albany.edu/j/2020/26-26.html.