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Heegner cycles and congruences between
anticyclotomic p-adic L-functions

over CM-extensions

Daniel Delbourgo and Antonio Lei

Abstract. Let E be a CM-field, and suppose that f ,g are two prim-
itive Hilbert cusp forms over E+ of weight 2 satisfying a congruence
modulo λr. Under appropriate hypotheses, we show that the complex
L-values of f and g twisted by a ring class character over E, and di-
vided by the motivic periods, also satisfy a congruence relation mod λr

(after removing some Euler factors). We treat both the even and odd
cases for the sign in the functional equation – this generalizes classi-
cal work of Vatsal [23] on congruences between elliptic modular forms
twisted by Dirichlet characters. In the odd case, we also show that the
p-adic logarithms of Heegner points attached to f and g satisfy a con-
gruence relation modulo λr, thus extending recent work of Kriz and Li
[17] concerning elliptic modular forms.
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1. Introduction and results for elliptic curves

Fix an odd prime p, and suppose A1 and A2 are two elliptic curves defined
over Q. Provided that Re(s) > 3/2, their Hasse-Weil L-functions can be
expressed in the form of Dirichlet series

L(A1, s) =
∞∑
m=1

am(A1) ·m−s and L(A2, s) =

∞∑
m=1

am(A2) ·m−s.
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Furthermore, both A1 and A2 are known to be modular by the deep work
in [4] hence these L-functions have an analytic continuation to the whole
complex plane.

Definition 1.1. We say the elliptic curves A1 and A2 are congruent mod
pr if one has a system of p-adic congruences

am(A1) ≡ am(A2) ( mod pr) for each m ∈ N with gcd(m,N1N2) = 1,

where N1 denotes the conductor of A1/Q, and N2 denotes the conductor of
A2/Q.

In the p-ordinary case, Vatsal proved that the Mazur-Tate-Teitelbaum
[19] p-adic L-functions LMTT

p (A1) and LMTT
p (A2) are congruent modulo

pr ·Zp
[[

Γcyc
]]

, where Γcyc = Gal(Qcyc/Q) denotes the Galois group of the cy-

clotomic Zp-extension. Since these p-adic L-functions LMTT
p (Ai) interpolate

Dirichlet twists of the Hasse-Weil L-function L(Ai, ψ, s) at s = 1, one can
view Vatsal’s result [23] as a statement about congruences between critical
L-values divided by the real Néron periods Ω+

Ai . It is therefore natural to
ask if this result extends to number fields other than Q?

To be more specific, let E be a CM-field that is also a solvable extension
of Q, and consider the base-change of A1 and A2 to E. Throughout this
article, we assume that the Leopoldt defect for E is zero. For a character
χ : E×\A×E → C× of finite order, it is reasonable to expect a congruence
between the twisted L-values

Ep(A1/E, χ) · L(A1/E, χ, 1)

(Ω+
A1

Ω−A1
)[E:Q]/2

and Ep(A2/E, χ) · L(A2/E, χ, 1)

(Ω+
A2

Ω−A2
)[E:Q]/2

(1.1)
modulo pr, for a suitable choice of factor Ep(Ai/E, χ) and Néron periods
Ω±Ai ∈ C×.

For example, if E is an imaginary quadratic field over which the prime
p splits then Choi and Kim [6] have established a congruence for the two-
variable p-adic L-function over E at cusp forms of different weight. Alterna-
tively, if E = Q(µpn) and r = 1, then various types of congruence have been
proved in [3, 9, 10, 22]. With the exception of [6], all these aforementioned
congruences above are purely cyclotomic in their nature, so in this paper
we shall deal exclusively with the anticyclotomic case.

Throughout we assume that A1 and A2 have good ordinary reduction at
p, which means p - ap(A1) · ap(A2) · N1 · N2 (although we expect that a
version of our results should exist if one allows p to divide N1 · N2, whilst
still ensuring that p - ap(A1) · ap(A2)). We shall further suppose that the
prime p splits inside E. Let ΓE = Gal(E∞/E) be the Galois group of
the compositum, E∞ say, of all the Zp-extensions of E, which can then be
decomposed into ΓE = Γcyc

E × Γanti
E where Γcyc

E (resp. Γanti
E ) is the Galois

group of the cyclotomic (resp. full anti-cyclotomic) extension in E∞.
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Building on earlier results in [15, 20], for each base Hecke character χ0

the work of Disegni [11, Thm 4.3.4] allows the construction of a p-adic L-
function Lp

(
Ai, χ0

)
∈ Zp

[[
ΓE
]]

[1/p
]

interpolating the special values given in

Equation (1.1) at specialisations χ = χ0 ·χ†, as the character χ† ranges over

Hom
(
ΓE ,Q

×
p

)
tors

. For a fixed topological generator γ0 of Γcyc
E
∼= 1 + pZp,

one can therefore expand each multi-variable p-adic L-function Lp
(
Ai, χ0

)
into a Taylor series of the form

L(0)
p

(
Ai, χ0

)
+ L(1)

p

(
Ai, χ0

)
· (γ0 − 1) + L(2)

p

(
Ai, χ0

)
· (γ0 − 1)2

2
+ · · ·

for either choice of i ∈ {1, 2}. It is therefore natural to ask whether:

Question. For every non-negative integer j, are the individual coeffi-

cients L
(j)
p

(
A1, χ0

)
and L

(j)
p

(
A2, χ0

)
congruent to each other modulo pr ·

Zp
[[

Γanti
E

]]
?

To make a precise statement, one divides the problem into three disjoint
cases. For the rest of the Introduction, we assume that the base Hecke
character χ0 is trivial on F×\A×F , where F = E+ denotes the maximal
totally real subfield of E. We also assume that the primes of F above p are
unramified in the extension E/F . Let ηE/F be the quadratic character of
E/F , and write Si for the set of F -places

Si =
{
ν : ν

∣∣∞ or ηE/F,ν
(
cond(Ai/F )

)
= −1

}
.

Definition 1.2. (a) If the global root numbers satisfy ε
(
1/2,Ai/E, χ0

)
=

+1 for each i ∈ {1, 2} and if #S1 ≡ #S2 ≡ 0 (mod 2), then we call this the
even case.

(b) If the global root numbers satisfy ε
(
1/2,Ai/E, χ0

)
= −1 for each

i ∈ {1, 2} and if #S1 ≡ #S2 ≡ 1 (mod 2), then we naturally refer to this as
the odd case.

(c) If ε
(
1/2,A1/E, χ0

)
= −ε

(
1/2,A2/E, χ0

)
or if #S1 ≡ #S2+1 (mod 2),

then we shall call this the mixed parity case.

In the first two cases (a) and (b), we extend Vatsal’s main result [23] as
follows.

Theorem 1.3. In the even case, if the conductor of the Hecke character
χ0 is coprime to the OE-ideal

∏2
i=1 cond(Ai/E), then

L
(0)
p,Σ′
(
A1, χ0

)
≡ L

(0)
p,Σ′
(
A2, χ0

)
mod pr+µ0 · Zp

[[
Γanti
E

]]
where µ0 ∈ Z is the largest value for which each L

(0)
p

(
Ai, χ0

)
∈ pµ0 ·

OCp
[[

Γanti
E

]]
.
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Note that in the above result, the subscript ‘Σ′ ’ indicates that these L-
functions have been stripped of their Euler factors at the finite primes con-
tained in the set

Σ′ =

{
ν ∈ Spec(OF ) such that ν divides disc(E/F ) ·

2∏
i=1

cond(Ai/F )

}
.

Theorem 1.4. In the odd case, if the conductor of the Hecke character χ0

is coprime to
∏2
i=1 cond(Ai/E) and all the primes of F above p split in E,

then

(i) L
(0)
p,Σ′
(
A1, χ0

)
= L

(0)
p,Σ′
(
A2, χ0

)
= 0, and

(ii)
E0,Σ′(A1)

E1,Σ′(A1)
· L(1)

p,Σ′
(
A1, χ0

)
is congruent to

E0,Σ′(A2)

E1,Σ′(A2)
· L(1)

p,Σ′
(
A2, χ0

)
modulo pr+µ1 · Zp

[[
Γanti
E

]]
,

where µ1 ∈ Z is the largest value for which each L
(1)
p

(
Ai, χ0

)
∈ pµ1 ·

OCp
[[

Γanti
E

]]
, and Ek,Σ′(Ai) is an Iwasawa function interpolating the prod-

uct of Euler factors
∏
ν∈Σ′ Lν(Ai/E, χ, k) at each k ∈ Z.

Recall that a quaternion algebra B is called coherent if its ramification
set ΣB has even cardinality, and B is called incoherent if the set ΣB has
odd cardinality. In the case (c) of mixed parity, we can say nothing about
mod pr congruences as the curves A1,A2 cannot be parameterised by the
same quaternion algebra B/F , otherwise B would have to be simultaneously
coherent and incoherent!

There is also a third situation in which one can derive p-adic congruences.
Recall that if E is an imaginary quadratic field, the work of Bertolini, Dar-
mon and Prasanna [1] produces a p-adic L-function L(Ai) ∈ Zp

[[
Γanti
E

]]
[1/p]

interpolating critical values of L
(
Ai/E, χw, s

)
at character twists χw of arith-

metic weight w ∈ N. Liu, Zhang and Zhang have extended this to general
CM-fields E, constructing a p-adic L-function on Γanti

E interpolating the
complex Rankin-Selberg L-function of each Ai, twisted by characters χw
of positive weight (see [18, Theorem 3.2.10]). The corresponding p-adic
L-functions L(A1) and L(A2) exist as elements of(

Lie A+
i ⊗FM Lie A−i

)
⊗FM D

(
Ai,MF lt

p

)
in the specific notation of op. cit, where D

(
Ai,MF lt

p

)
is a certain (un-

bounded) distribution algebra, and FM = End(A1)⊗Q F = End(A2)⊗Q F .

Aside from the case where E is an imaginary quadratic field, it is not
known precisely when L(Ai) arise from p-bounded measures on Γanti

E . How-
ever, if Ai has good ordinary reduction at p, one might reasonably expect
L(Ai) to be an Iwasawa function for each i ∈ {1, 2}.

In [17], Kriz and Li studied values of the Bertolini-Darmon-Prasanna
p-adic L-function via the p-adic logarithms of Heegner points attached to
each Ai. In particular, they showed that up to appropriate Euler factors,



500 DANIEL DELBOURGO AND ANTONIO LEI

these logarithms satisfy a congruence relation via Coleman integration. We
generalize their method to show that the p-adic logarithms of Heegner points
(over ring class fields for a general CM-field E) attached to A1 and A2 satisfy
a similar congruence relation. This allows us to compare special values of
L(Ai), and deduce the following result.

Theorem 1.5. Suppose we are in the odd case, that the primes of F above p
split in E, and assuming that both L(A1),L(A2) are Iwasawa functions,
then

LΣ′(A1) ≡ LΣ′(A2) mod pr · L\A1,A2

[[
Γanti
E

]]
where L\A1,A2

is the OCp-submodule generated by the values χ
(
L(A1)

)
and

χ
(
L(A2)

)
for χ = χ0 · χ†, as the character χ† ranges over the elements of

Hom
(
Γanti
E ,Q×p

)
.

For the remainder of the article, we will work in a more general setting
than elliptic curves and solvable CM-fields E. We consider modular abelian
varieties A? of GL2-type defined over a totally real field F , parameterised
by a common definite quaternion algebra B/F .

Written below is a brief but non-exhaustive summary of our terminology.

• F is a totally real field, E will be a CM-extension of F , and DE/F

(resp. DE) is the relative (resp. absolute) discriminant of E;
• ηE/F is the quadratic character over F associated to the extension
E/F ;

• the symbol p will indicate a distinguished prime ideal of OF lying
over p, and we write P for any prime OE-ideal above it (p needs not
split in E);

• we fix embeddings Q ↪→ C and Q ↪→ Qp, and an isomorphism C ∼−→
Cp under which the OE-ideal P is sent into the maximal ideal of
OCp ;
• χ always denotes a unitary Hecke character over E (usually a fi-

nite order character), which we identify with a Galois character

Gal
(
Eab/E

) χ→ C×;
• for an integral domain R, we shall write Rχ for the ring extension

of R which is obtained by adjoining all the values of the character χ
above;
• if M is a module equipped with a Gal(E/E)-action, M(χ) = M ⊗ χ

denotes the same underlying module M but with its Galois action
twisted by χ;
• Ecyc indicates the cyclotomic Zp-extension of E, so that the cyclo-

tomic character κcy maps Γcyc
E := Gal

(
Ecyc/E

)
onto an open sub-

group of 1 + pZp;
• f and g denote primitive Hilbert cusp forms over F of parallel weight

two, Nebentypus character ω, and levels Nf C OF and Ng C OF
respectively;
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• associated to both f and g are their modular abelian varieties of
GL2-type, Af and Ag, which are defined over the same totally real
number field F ;
• K = Qp

(
C(n, f), C(n,g)

∣∣ nCOF ) is the finite extension of Qp gen-
erated by the Fourier coefficients of f ,g, and λ denotes a local pa-
rameter in OK;

• for an abelian group M , its (finite) adelisation is given by M̂ =

M ⊗Z Ẑ where Ẑ := lim←−m Z/mZ ∼=
∏

primes l Zl is the profinite
completion of Z.

For example, if E is a solvable extension of Q and A1,A2 are two elliptic
curves that are congruent modulo λr = pr, one can take f = BCF

Q(f1) and

g = BCF
Q(f2) as their base-changes with each fi ∈ S2(Γ0(Ni)), so that

Af
∼= A1/F and Ag

∼= A2/F .

We shall now describe a generalisation of Definition 1.1 to modular abelian

varieties over F . Let Ñ denote the OF -ideal lcm
(
Nf , Ng,Q2

)
where Q =∏

ν|NfNg
ν. For a prime q ∈ Spec(OF ), T (q) denotes the q-th Hecke operator

if q is coprime to the level of the HMF, whilst U(q) is the q-th Hecke operator
if q divides the level of the HMF (see for example [20, Chapter 4, §1.3]). We
will also require the diamond operators

〈
m
〉
, as well as the degeneracy maps

V(m) which act on the Fourier expansions by sending C(n,h) 7→ C(nm−1,h)
for either choice of form h ∈ {f ,g}.

Definition 1.6. The Ñ -depletion of f is the Hilbert cusp form f̃ given by

f

∣∣∣∣∣ ∏
q|Ng, q-Nf

(
1− T (q) ◦ V(q) +NF/Q(q)

〈
q
〉
◦ V(q2)

) ∏
q||Nf

(1− U(q) ◦ V(q)) .

Similarly, the Ñ -depletion g̃ of g is defined by the formula

g

∣∣∣∣∣ ∏
q|Nf , q-Ng

(
1− T (q) ◦ V(q) +NF/Q(q)

〈
q
〉
◦ V(q2)

) ∏
q||Ng

(1− U(q) ◦ V(q)) .

In particular, f̃ , g̃ ∈ S2

(
Ñ , ω

)
with L(f̃ , s) = LNfNg(f , s) and L(g̃, s) =

LNfNg(g, s).

Hypothesis. (f ≡ g (λr)) There is an identity of depleted Hilbert cusp
forms

f̃ = g̃ + λr ·
∑
j

cj · hj

with each scalar term cj ∈ OK, and where the hj ’s denote normalised eigen-

forms of parallel weight two, level dividing into Ñ , and with Nebentypus
character ω.

To reassure the reader, if A1 and A2 are two elliptic curves as before
that are congruent modulo pr, then their base-changes f = BCF

Q(f1) and



502 DANIEL DELBOURGO AND ANTONIO LEI

g = BCF
Q(f2) automatically satisfy Hypothesis (f ≡ g (λr)) upon choosing

the uniformizer λ = p. Indeed to verify this claim, we first observe that

f̃1 =
∑

gcd(m,N1N2)=1

am(A1) · qm and f̃2 =
∑

gcd(m,N1N2)=1

am(A2) · qm

satisfy f̃1−f̃2 = pr ·f \ for some f \ ∈ S2

(
Γ0

(
lcm
(
N1, N2,

∏
l|N1N2

l2
)))
∩Z[[q]].

However, this latter module has an integral basis consisting of elements of
the type hj

∣∣V(d) where hj is a newform of level Cj , and d ≥ 1 ranges over

integers such that dCj divides the common level lcm
(
N1, N2,

∏
l|N1N2

l2
)
;

one can therefore express

f̃1 = f̃2 + pr ·
∑
j,d

c
(d)
j · hj

∣∣V(d) where the scalars c
(d)
j ∈ Z.

After base-changing each of the cusp forms f̃1, f̃2 and the hj |V(d)’s from

Q to F , we respectively obtain the HMFs f̃ , g̃ and the hj ’s in Hypothesis
(f ≡ g (λr)).

The proof of our main results (Theorems 1.3, 1.4 and 1.5) makes heavy
use of three recent spectacular but rather technical formulae, due to various
authors. To treat the even case, we use a version of the Waldspurger for-
mula from [5, 26].To treat the odd case, we apply the p-adic Gross-Zagier
formula in [11, 12]. Lastly, to prove congruences for the Liu-Zhang-Zhang
p-adic L-functions, we use the connection between its special values and the
logarithms of Heegner cycles [1, 18]. The demonstrations themselves are
written up in Sections 2, 3, and 4, respectively.

2. The even case: Waldspurger’s formula

Let B be a totally definite quaternion algebra defined over the totally real
field F . We suppose that πf and πg are two cuspidal automorphic representa-
tions of B×AF , associated to the Hilbert modular forms f and g respectively

under the Jacquet-Langlands correspondence on GL2/F , with a common
central character ω on A×F,fin. Let us also consider a fixed finite order Hecke

character χ defined on E×\A×E , corresponding to a weight one theta-series

automorphic representation πχ of B×AF .

Hypothesis. (Even) The product ω · χ
∣∣
A×F

is trivial, the three finite sets

SNf
=
{
ν : ν|∞ or ηE/F,ν(Nf ) = −1

}
SNg =

{
ν : ν|∞ or ηE/F,ν(Ng) = −1

}
S
Ñ

=
{
ν : ν|∞ or ηE/F,ν(Ñ) = −1

}
each have even cardinality, and for all places ν of F

ε
(
1/2, πf ,ν , πχ,ν

)
= ε

(
1/2, πg,ν , πχ,ν

)
= χν(−1) · ηE/F,ν(−1) · ξ

(
Bν
)
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where the sign ξ
(
Bν
)

= −1 if Bν is a division algebra, and ξ
(
Bν
)

= +1
otherwise.

Here we have written ε
(
1/2, π?,ν , πχ,ν

)
for the local root number associ-

ated to the complex tensor product L-series L
(
s, π? × πχ

)
, for each choice

of ? ∈ {f ,g}. The above hypothesis then implies that both the
global root numbers ε

(
1/2, πf , πχ

)
and ε

(
1/2, πg, πχ

)
in the Rankin

L-functions are equal to +1, and there is an F -embedding of E into B
that identifies E× with a sub-torus in B×.

Proposition 2.1. If the Hypotheses (f ≡ g (λr)) and (Even) both hold,
and if fχ := cond(χ) is coprime to NfNg · OE, there is a congruence of
p-integral elements√

|DE | · ||cχ||2·
LΣ(1/2, πf × πχ)

Ω
aut,(0)
∞,K (f)

≡

√
|DE | · ||cχ||2 ·

LΣ(1/2, πg × πχ)

Ω
aut,(0)
∞,K (g)

mod λrOK,χ

where cχ is the largest OF -ideal so that χ is trivial on
∏
ν-cχ O

×
E,ν×

∏
ν|c
(
1+

cOE,ν
)
, ||cχ|| denotes the norm NF/Q(cχ), the finite set Σ consists of the

places of F dividing Nf ·Ng ·DE/F ·cχ ·∞, and Ω
aut,(0)
∞,K (?) is the automorphic

period (see Equation ( 2.1)) associated to each ? ∈ {f ,g}.

Proof. The key ingredient is the generalised Waldspurger formula in [5,

26]. In particular, we shall take as our common level structure Ñ :=
lcm
(
Nf , Ng,Q2

)
where Q =

∏
ν|NfNg

ν C OF . Firstly, one defines a finite

subset of Spec(OF ) by

Σ1 :=
{
ν
∣∣Ñ where ηE/F (ν) = −1 and ordν(cχ) < ordν

(
Ñ
)}

and next constructs a pair of OF -ideals via

c1 :=
∏
ν|cχ,
ν 6∈ Σ1

νordν(cχ) and N1 :=
∏
ν|Ñ,
ν 6∈ Σ1

νordν(Ñ).

Now let R be an admissible OF -order for the pairs (πf , χ) and (πg, χ) in the

sense of [5, Sect 1], so that in addition R has discriminant Ñ and R∩ E =
OF + c1OE . We shall also fix a compact open subgroup U =

∏
ν Uν ⊂ B×AF

such that Uν = R×ν at all finite places ν of F , and moreover if the place ν|N1

then Bν must be split. The (zero-dimensional) Shimura variety X = XU (B)
is then defined by

XU (B) := B×
∖
B̂×
/
Û

and let g1, . . . , gn ∈ B̂× be a complete set of representatives for X, so that
[gi] ∈ X.
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If Z[X] denotes the free Z-module consisting of formal sums
∑

i ai[gi],
then there is a height pairing

[
−,−

]
X

: Z[X] × Z[X] → C[X] from [14],

sending each pair
(∑

i ai[gi],
∑

i bi[gi]
)

to the element
∑

i aibiwi with wi =

#
(
B× ∩ giR̂×g−1

i

)/
O×F . There exists a canonical direct sum decomposition

Z[X] =
⊕
c∈C+

Z
[
Xc

]
where Xc is the preimage of c ∈ C+ := F×+

∖
F̂×
/
Ô×F under the natural

surjection XU (B) = B×
∖
B̂×
/
Û � F×+

∖
F̂×
/
Ô×F . One may also consider

the submodules Z
[
Xc

]0 ⊂ Z
[
Xc

]
containing degree zero classes, and set

Z[X]0 :=
⊕

c∈C+
Z
[
Xc

]0
.

For each choice of ? ∈ {f ,g}, let V (π?, χ) indicate the space of ‘test

vectors’ in the sense of [5, Defn 3.6]. Because we are working at level Ñ
rather than level N?, it is no longer true in general that V (π?, χ) is one-
dimensional over C; in fact

dimC
(
V (π?, χ)

)
=
∏
ν|Ñ

(
1 + ordν

(
Ñ
)
− ordν

(
N?

))

(of course, if Ñ = Nf = Ng then both V (πf , χ) and V (πg, χ) correspond to
C-lines). There are injections V (π?, χ) ↪→ Z[X]0 ⊗ C obtained from Φ 7→∑

i Φ
(
[gi]
)
w−1
i [gi], which respect the natural action of the Hecke algebra on

both C-vector spaces.

Remarks. (a) Considering the Ñ -depletions f̃ , g̃ ∈ S2

(
Ñ , ω

)
in Definition

1.6, the images of C · f̃ and C · g̃ inside Z[X]0 ⊗ C define unique dimension
one subspaces.

(b) The action of the Hecke operators T (n) on C · f̃ (resp. C · g̃) coincide

with their action on C · f (resp. C · g) if n is coprime to Ñ , whilst the

U(q)-operators annihilate both of the depleted lines C · f̃ and C · g̃ whenever

gcd
(
q, Ñ

)
6= OF .

(c) In the notation of [5, Thm 1.9], we can take as test vectors any f ′1, f
′
2 ∈

C·̃f (resp. f ′1, f
′
2 ∈ C·g̃) viewed inside Z[X]0⊗C, and then apply the variation

of Waldspurger’s formula to f ′1 ∈ V (π?, χ), f ′2 ∈ V (π∨? , χ
−1) for ? = f (resp.

? = g).

We now relate the Rankin L-function to twisted CM-cycles living in
OK,χ[X]0. Recall the fixed embedding E ↪→ B induces a group homo-
morphism Pic(Ocχ) → X sending t 7→ xt where Ocχ denotes the order
OF + cχOE , with cχ C OF indicating the largest OF -ideal such that χ be-
comes trivial on

∏
ν-cχ O

×
E,ν ×

∏
ν|cχ

(
1 + cχOE,ν

)
. One defines a pair of
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(Ñ -depleted) CM-cycles by

P̃χ(f) :=
∑

t∈Pic(Ocχ )

χ−1(t) · f̃(xt) and P̃χ(g) :=
∑

t∈Pic(Ocχ )

χ−1(t) · g̃(xt)

which à priori lie inside OK,χ[X]. However, if χ is a non-trivial character

then
∑

t∈Pic(Ocχ ) χ
−1(t) = 0, so clearly P̃χ(f), P̃χ(g) ∈ OK,χ[X]0 both have

degree zero1.

We initially focus on the HMF f , and its depleted CM-cycle P̃χ(f) ∈
OK,χ[X]0. Viewing f as a holomorphic function φf : H[F :Q] → C, let us
denote by 〈φf , φf 〉Pet the Petersson self-product of φf , computed using the
invariant measure induced on

PGL2(F )
∖
H[F :Q] × PGL2(AF,fin)

/
U0

(
Ñ
)

from the standard hyperbolic volume dxdy/y2 on the extended upper half-
plane. Applying Waldspurger’s formula in the format of [5, Thm 1.9] and
[26, Thm 7.1],

LΣ′
(
1/2, πf × πχ

)
=2−#ΣD ·

(8π2)[F :Q] · 1
2Vol

(
X
U0(Ñ)

)
· 〈φf , φf 〉Pet

u2
√
|DE | · ||cχ||2

·
[
P̃χ(f), P̃χ(f)

]
X
,

where Σ′ consists of those primes dividing gcd
(
Nf ·Ng, cχ ·DE/F

)
· ∞ such

that if ν||Ñ then ν - DE/F , whilst ΣD denotes the set of primes of F dividing

gcd
(
Ñ ,DE/F

)
.

Furthermore, we claim that u := #Ker
(
Pic(OF )→ Pic(Ocχ)

)
×[O×cχ : O×F ]

is always a p-adic unit. To see why this is so, observe that Ker
(
Pic(OF )→

Pic(Ocχ)
)

is either 1 or 2 by [24, Theorem 10.3]. Writing WE for the roots

of unity of E, then [WEO×F : O×F ] is coprime to p as the primes of F above

p are unramified in E. Moreover [O×E : WEO×F ] is either 1 or 2 by [24,

Theorem 4.12], consequently both [O×E : O×F ] and hence [O×cχ : O×F ] are
coprime to p.

It is also easy to check that there is an inclusion of sets of finite places
Σ′ ↪→ Σ. If we now attach a (complex) automorphic period to f over K by
setting

Ω
aut,(0)
∞,K (f) := (8π2)[F :Q] ·Vol

(
X
U0(Ñ)

)
· 〈φf , φf 〉Pet (2.1)

then rearranging Waldspurger’s formula yields the equality[
P̃χ(f), P̃χ(f)

]
X

= u2 · 2#ΣD+1 ×
√
|DE | · ||cχ||2 ·

LΣ′(1/2, πf × πχ)

Ω
aut,(0)
∞,K (f)

.

1If χ is trivial then one takes instead
[
P̃χ(f) − deg(P̃χ) · ξ

]
,
[
P̃χ(g) − deg(P̃χ) · ξ

]
∈

Pic(X) ⊗ C, where ξ denotes the absolute Hodge class [26, Eqn (6.8)] which has degree
one on each component.



506 DANIEL DELBOURGO AND ANTONIO LEI

An entirely similar argument, applied to g and P̃χ(g) ∈ OK,χ[X]0, estab-
lishes that[

P̃χ(g), P̃χ(g)
]
X

= u2 · 2#ΣD+1 ×
√
|DE | · ||cχ||2 ·

LΣ′(1/2, πg × πχ)

Ω
aut,(0)
∞,K (g)

.

Crucially, for each eigenform h lying in the (f ,g)-isotypic component, the

depleted cycles P̃χ(h) belongs to the dual lattice
(
OK,χ[X]0

)∨
under the

pairing [−,−]X. Using the OK,χ-bilinearity of this pairing, it therefore suf-
fices to show that

P̃χ(f) = P̃χ(g) + λr ·Q for some Q ∈ OK,χ[X]0

because if this is indeed the case, then as a direct corollary,[
P̃χ(f), P̃χ(f)

]
X

=
[
P̃χ(g), P̃χ(g)

]
X

+λr×
(

2 ·
[
P̃χ(g), Q

]
X

+ λr ·
[
Q,Q

]
X

)
,

so that
[
P̃χ(f), P̃χ(f)

]
X
≡
[
P̃χ(g), P̃χ(g)

]
X

mod λr.

We now exploit the relation between f̃ and g̃ given in Hypothesis (f ≡
g (λr)), observing that this relation is preserved when we apply the Jacquet-
Langlands correspondence and shift to the quaternion algebra B. One
thereby deduces that

P̃χ(f) =
∑

t∈Pic(Ocχ )

χ−1(t) · f̃(xt)

=
∑

t∈Pic(Ocχ )

χ−1(t) ·

g̃(xt) + λr ·
∑
j

cj · hj(xt)


= P̃χ(g) + λr ·

∑
j

cj ·
∑

t∈Pic(Ocχ )

χ−1(t) · hj(xt),

and setting Q =
∑

j cj ·
∑

t χ
−1(t) · hj(xt) ∈ OK,χ[X]0, the result follows at

once. �

Let E∞ denote the maximal Zp-power extension of E unramified outside

p, so ΓE := Gal(E∞/E) ∼= Z1+[F :Q]+δ
p where δ ≥ 0 is the defect in Leopoldt’s

conjecture. If we choose a base character χ0 such that ω ·χ0

∣∣
A×F

is trivial, it

follows that the family of characters
{
χ0 ·χ†

∣∣ χ† : Γanti
E → µp∞

}
also satisfies

Hypothesis (Even). Henceforth we define ρ0 := IndFE(χ0) : GF → GL2(Oχ)

which is a two-dimensional Artin representation, as are ρχ := IndFE(χ) for

every character χ = χ0 · χ† as above. For the rest of this section, we
shall assume that all the primes of F lying above p split in the
CM-extension E.

Remarks. (a) Building on earlier work of Hida and Panchishkin [15, 20] for
the cyclotomic deformation, Disegni [12] has attached p-adic L-functions to
GL2 ×GL2 interpolating the Rankin product L-functions L(s, πf × πχ) and
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L(s, πg × πχ) at the critical point s = 1/2: since we are taking the unita-

rizations, let us identify these L-values (respectively) with L
(
f⊗ IndFE(χ), s

)
and L

(
g ⊗ IndFE(χ), s

)
at s = 1.

(b) Let Γanti
E denote the Galois group of the anticyclotomic extension

of E inside E∞, which by definition is the (−1)-eigenspace of the com-
plex conjugation c ∈ Gal(E/F ) inside ΓE . For a topological generator
γ0 of Γcyc

E and the particular choice ? = f say, one expands the
(
1 +

[F : Q]
)
-variable Disegni-Hida-Panchishkin p-adic L-function Lp,Σ

(
f , ρ0

)
∈

OK
[[

ΓE
]
][1/λ

]
into a Taylor series of the form

Lp,Σ
(
f , ρ0

)
= L

(0)
p,Σ

(
f , ρ0

)
+L

(1)
p,Σ

(
f , ρ0

)
·(γ0−1)+

1

2
L

(2)
p,Σ

(
f , ρ0

)
·(γ0−1)2 + · · ·

where L
(i)
p,Σ

(
f , ρ0

)
∈ OK

[[
Γanti
E

]]
[1/λ

]
under the decomposition ΓE = Γcyc

E ×
Γanti
E . Here the subscript ‘Σ’ above indicates that the p-adic L-function

Lp,Σ
(
f , ρ0

)
has been completely stripped2 of its Euler factors at those finite

places ν ∈ Σ, ν - p.

(c) Note also the condition (Even) implies either L
(0)
p,Σ

(
f , ρ0

)
6= 0, or

instead that L
(0)
p,Σ

(
f , ρ0

)
= L

(1)
p,Σ

(
f , ρ0

)
= 0, because the global root number

ε
(
1/2, πf , πχ

)
is equal to +1 under our assumptions.

If χ = χ0 · χ† where χ† is anticyclotomic, then

χ†
(
Lp,Σ

(
f , ρ0

))
= χ†

(
L

(0)
p,Σ(f , ρ0)

)
as χ†(γ0 − 1) = 0. The exact interpolation rule from [11, Thm 4.3.4] states
that

χ†
(
Lp,Σ

(
f , ρ0

))
=
χ
(
d

(p)
F

)
·G
(
χ
)
·
√
NF/Q

(
DE/F · NE/F (fχ)

)
· χ(DE/F )∏

p|p αp(f)ordp(NE/F (fχ))

×
∏
p|p

∏
P|p

(
1− χ(P)

αp(f)

)
×

LΣ\{p|p}
(
f ⊗ IndFE(χ), 1

)
Ω

aut,(0)
∞,K (f)

.

(2.2)

An analogous formula holds for the value of Lp,Σ
(
g, ρ0

)
at each twist χ =

χ0 · χ†.

Theorem 2.2. Assuming Hypothesis (f ≡ g (λr)), and that Hypothesis
(Even) for the base character χ0 holds true with the conductor of χ0 coprime

2We have deliberately removed the Euler factors from Lp,Σ
(
f , ρ0

)
at the finite places

in Σ, so that we can obtain a congruence modulo λr; it follows that the p-adic L-functions
we are considering correspond to Σ-imprimitive versions of the Disegni-Hida-Panchishkin
construction.
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to NfNg · OE, there is a congruence of p-adic L-functions

L
(0)
p,Σ

(
f , ρ0

)
≡ L

(0)
p,Σ

(
g, ρ0

)
mod λr · OK

[[
Γanti
E

]]
.

If either λr - ε(ρ0,0)·LΣ(f ,ρ0)

Ω
aut,(0)
∞,K (f)

or λr - ε(ρ0,0)·LΣ(g,ρ0)

Ω
aut,(0)
∞,K (g)

with ε(ρ0, s) the ε-factor

for ρ0, then both sides of this anticyclotomic congruence must be non-trivial
modulo λr.

Proof. To establish this p-adic congruence, clearly it is sufficient to prove

that χ†
(
L

(0)
p,Σ

(
f , ρ0

))
and χ†

(
L

(0)
p,Σ

(
g, ρ0

))
are congruent modulo λr, at χ =

χ0 · χ† where χ† ranges over finite order characters on the anticyclotomic

component Γanti
E . Because

∣∣G(χ)
∣∣−1

p
=
∣∣NE/Q(fχ)

∣∣−1/2

p
=
∣∣||cχ||∣∣−1/2

p
, the ratio

of algebraic numbers

rχ :=
χ
(
d

(p)
F

)
·G
(
χ
)
·
√
NF/Q

(
DE/F · NE/F (fχ)

)
· χ(DE/F )√

|DE | · ||cχ||2

is a p-adic unit, independent of choosing ? ∈ {f ,g} but dependent on χ
obviously. From the interpolation in Equation (2.2), and after replacing
the Hecke character χ by its dual χ, one can reinterpret the congruence in
Proposition 2.1 as the statement:∏

p|p αp(f)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(f)

) × r−1
χ · χ†

(
L

(0)
p,Σ

(
f , ρ0

))

≡
∏

p|p αp(g)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(g)

) × r−1
χ · χ†

(
L

(0)
p,Σ

(
g, ρ0

))
mod λr · OK,χ.

However, for ? ∈ {f ,g}, we can identify αp(?) with the eigenvalue of Frobp

acting on the maximal unramified quotient of Tap(A?) as a GFp-module, in

which case αp(f) ≡ αp(g) mod λr · OK,χ since Tap(Af )
/
λr ∼= Tap(Ag)

/
λr

as GFp-modules. Consequently, the reciprocals of these extra terms satisfy∏p|p αp(f)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(f)

)
−1

≡

∏p|p αp(g)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(g)

)
−1

mod λr · OK,χ,

which completes the proof of the main congruence.

Finally, identifying G
(
χ0

)
·
√
NF/Q

(
DE/F · NE/F (fχ0)

)
with the factor

ε(ρ0, 0), the non-triviality of either χ†
(
L

(0)
p,Σ

(
f , ρ0

))
or χ†

(
L

(0)
p,Σ

(
g, ρ0

))
mod
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λr at χ† = 1, directly implies L
(0)
p,Σ

(
f , ρ0

)
≡ L

(0)
p,Σ

(
g, ρ0

)
6≡ 0 mod λr ·

OK
[[

Γanti
E

]]
. �

3. The odd case: p-adic Gross-Zagier formula

We now treat the opposite situation, where

ε
(
1/2, πf , πχ

)
= ε
(
1/2, πg, πχ

)
= −1.

In particular L
(0)
p,Σ

(
?, ρ0

)
is identically zero, whence

Lp,Σ
(
?, ρ0

)
γ0 − 1

= L
(1)
p,Σ

(
?, ρ0

)
+

1

2
L

(2)
p,Σ

(
?, ρ0

)
· (γ0 − 1) + O

(
(γ0 − 1)2

)
so that χ†

(
L

(1)
p,Σ

(
?, ρ0

))
=
(

logp κcy(γ0)
)−1 · χ†

(
dκs−1

cy Lp,Σ(?,ρ0)
ds

) ∣∣∣∣
s=1

for ? ∈

{f ,g}. Therefore, our goal is to establish a congruence modulo λr·logp κcy(γ0)

between χ†
(

dκs−1
cy Lp,Σ(f ,ρ0)

ds

)∣∣∣∣
s=1

and χ†
(

dκs−1
cy Lp,Σ(g,ρ0)

ds

)∣∣∣∣
s=1

under Hypoth-

esis (f ≡ g (λr)). Again B denotes a totally definite quaternion algebra
over F , with the property that the automorphic representations πf and πg
are both parameterised by B×AF . Likewise χ : E×\A×E → C× will be a fixed
Hecke character of finite order, as before.

Hypothesis. (Odd) The product ω · χ
∣∣
A×F

is trivial, the three finite sets

SNf
=
{
ν : ν|∞ or ηE/F,ν(Nf ) = −1

}
SNg =

{
ν : ν|∞ or ηE/F,ν(Ng) = −1

}
S
Ñ

=
{
ν : ν|∞ or ηE/F,ν(Ñ) = −1

}
each have odd cardinality, and for all places ν of F

ε
(
1/2, πf ,ν , πχ,ν

)
= ε

(
1/2, πg,ν , πχ,ν

)
= χν(−1) · ηE/F,ν(−1) · ξ

(
Bν
)
.

The above hypothesis implies that both the global root numbers
ε
(
1/2, πf , πχ

)
and ε

(
1/2, πg, πχ

)
in the Rankin L-functions are equal to

−1, and that the quaternion algebra B is incoherent. Henceforth,
we shall further assume that all primes of F above p split inside
the extension E.

As explained in [12, Sect 1.1], one can interpret the modular parameteri-
zations of the abelian varieties Af and Ag in terms of Shimura curves. For a
compact open subgroup U of B×AF , the complex points of the algebraic curve
XU are given by

XU (C) = B\H± × B̂×/U.
In fact, there exists an infinite tower of Shimura curves

{
XU

}
U

indexed by

the compact open subgroups U ⊂ B×AF , and we shall set X(B) := lim←−U XU .
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The canonical Hodge class ξU ∈ Pic
(
XU

)
⊗ Q which has degree one on

each component induces an embedding XU

ιξU
↪→ JacXU . Because the HMFs

f and g are parameterised by B×AF , the End0(A?)-vector spaces

lim−→
U

Hom0
ξU

(
JacXU , Af

)
and lim−→

U

Hom0
ξU

(
JacXU , Ag

)
are both non-empty; let πA? ∈ lim−→U

Hom0
(
JacXU , A?

)
be the smooth irre-

ducible representation of B×AF corresponding to π?, for each choice of cusp

form ? ∈ {f ,g}. Taking Uf = U0(Nf ), Ug = U0(Ng) and Ũ = U0

(
Ñ
)
, there

exists a factorisation

X(B)
∼→ lim←−

U

XU

ιξ
−→ lim←−

U

JacXU � JacX
Ũ

� JacXUf
� Af

� JacXUg � Ag
(3.1)

and the top sequence of maps yields πAf
◦ ιξ, whilst the bottom maps yield

πAg ◦ ιξ.
Before we state our main result below, for each choice of HMF ? ∈ {f ,g}

let us introduce the ratio of Euler factors

E
Ñ

(?, χ) :=
∏
q|Ñ

Lq(?⊗ IndFE(χ), s− 1)

Lq(?⊗ IndFE(χ), s)

∣∣∣∣∣
s=1

.

Whilst the denominator can never vanish, the numerator can sometimes
vanish (for example, if q||N? and C(q, ?) = χ(Q) for some place Q of E lying
above q). Furthermore, these algebraic values can be interpolated by the
ratio of two elements of OK,χ

[[
Γanti
E

]]
, denoted by E

0,Ñ
(?) and E

1,Ñ
(?), so

that
χ†
(
E

0,Ñ
(?)
)

χ†
(
E

1,Ñ
(?)
) =

∏
q|Ñ

Lq(?⊗ IndFE(χ), 0)

Lq(?⊗ IndFE(χ), 1)

for all characters χ = χ0 · χ† in the standard formulation above.

Theorem 3.1. Assume Hypothesis (f ≡ g (λr)), and that Hypothesis
(Odd) for the base character χ0 holds true with the conductor of χ0 co-
prime to NfNg · OE. Then one has the twin relations

(i) L
(0)
p,Σ

(
f , ρ0

)
= L

(0)
p,Σ

(
g, ρ0

)
= 0 , and

(ii)
E

0,Ñ
(f)

E
1,Ñ

(f)
L

(1)
p,Σ

(
f , ρ0

)
≡
E

0,Ñ
(g)

E
1,Ñ

(g)
L

(1)
p,Σ

(
g, ρ0

)
mod λr−r0+δE ·logp κcy(γ0).

Here r0 := 2 ·
∑

P|p ordλ

(
#Ã?

(
OE/P

))
with ? ∈ {f ,g}3, while δE ∈ Q×

depends on the CM-extension E/F but does not depend on either f ,g, nor
on the prime p.

3Note that Ãf

(
OE/P

)
[λr] ∼= Ãg

(
OE/P

)
[λr] since we are assuming (f ≡ g (λr)) holds

here.
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Before supplying the proof, we first need to establish some preliminary

results. For a CM-point x ∈ XE× , we begin by considering the Heegner
points

P(f , χ) :=
∑

t∈Pic(Ocχ )

χ(t) · πAf

(
ιξ(t · x)

)
and

P(g, χ) :=
∑

t∈Pic(Ocχ )

χ(t) · πAg

(
ιξ(t · x)

)
,

which lie inside
(
Af (E

ab) ⊗ χ
)Gal(Eab/E)

and
(
Ag(Eab) ⊗ χ

)Gal(Eab/E)
re-

spectively. In general, we do not expect their pre-images in JacX
Ũ

to be

congruent modulo λr so instead work with their Ñ -depletions, for which we
do expect congruences.

Fix a choice of cusp form ? ∈ {f ,g}. At each OF -ideal a such that

Ñ ⊂ a · N?, we write V(a) : JacXU? → JacX
Ũ

for the degeneration map
induced on jacobians. Clearly, V(a) induces a p-integral map on the ordinary
components

‘V(a)’ : Tap (JacXU?)
ord → Tap

(
JacX

Ũ

)ord

where Tap(J) := lim←−m J [pm] and Tap(J)ord := Tap(J)
∣∣∣ limn→∞ U(pOF )n!.

For every finite place q ∈ Spec(OF ), there are associated Hecke correspon-
dences T (q) and

〈
q
〉

(resp. U(q)) if q + N? = OF (resp. if q + N? 6= OF )
[25, Section 1.4]. Using these correspondences, one constructs a depletion
map on Jacobian varieties

depŨU? : JacXU? → JacX
Ũ

sending a point PU? ∈ JacXU? to its Ñ -depleted version (cf. Definition 1.6)

PU?

∣∣∣∣∣ ∏
q|Ñ, q-N?

(
1− T (q) ◦ V(q) +NF/Q(q) ·

〈
q
〉
◦ V(q2)

)
·
∏
q|N?

(
1−U(q)◦V(q)

)
.

In particular, under the composition πJacXU?
◦ ιξ : X(B)→ JacXU? one may

define P̃(?, χ) to be

depŨU?

( ∑
t∈Pic(Ocχ )

χ(t) · πJacXU?

(
ιξ(t · x)

))
∈
(
JacX

Ũ
(Eab)⊗ χ

)Gal(Eab/E)
.

Our strategy in proving Theorem 3.1 is to initially establish that:

(I) the pair of Heegner points P̃(f , χ) and P̃(g, χ) are congruent modulo
λr;

(II) their projections to
(
A? ⊗ χ(E)

)
Q equal P(?, χ), up to some Euler

factors;

(III) their p-adic heights equal χ†
(

dκs−1
cy Lp,Σ(?,ρ0)

ds

)∣∣∣∣
s=1

.
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Let us begin with the middle task (II), and then deal with (I) and (III)
afterwards.

Lemma 3.2. For each ? ∈ {f ,g}, if we factorise πA? into prŨA? ◦ πJacX
Ũ

where prŨA? : JacX
Ũ
� A?, then inside A? ⊗ χ(E) we have the identities:

prŨAf

(
P̃(f , χ)

)
=
∏
q|Ñ

(
1− C(q, f)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
· P(f , χ),

prŨAg

(
P̃(g, χ)

)
=
∏
q|Ñ

(
1− C(q,g)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
· P(g, χ).

N.B. Here for each q|Ñ , we have fixed a choice of prime OE-ideal Q lying
above q.

Proof. To simplify the exposition, we will focus exclusively on the HMF
? = f . Throughout we write c for cχ, and fix a lift of the level structure

Ñ C OE such that OE/Ñ ∼= OF /Ñ ; without loss of generality, we may

represent t ∈ Pic(Oc) with ideals coprime to Ñ.
Following Katz [16, Section 1], for a ring R ⊂ C one can view the R-points

of X
Ũ

as a triple (A,C,$) where A is a C-polarized Hilbert-Blumenthal
abelian variety over R, the finite group C denotes a cyclic R-subscheme of

A
[
Ñ
]
, $ is a nowhere vanishing differential form on A, and C runs through

a set of coset representatives for the narrow class group of F . We denote
the natural action of t ∈ Pic(Oc) on the R-points of X

Ũ
by (A,C,$) 7→

t ∗ (A,C,$).

At a prime OF -ideal q such that Q
∣∣Ñ lies over it and for a class t ∈

Pic(Oc), the map V(qr) sends a point t ∗ (A,C,$) to the point
(
Q
−r
t
)
∗(

A,C∩A[ÑQ−r], $
)
. Consequently, for either choice of exponent r ∈ {1, 2},

the image V(qr)
(∑

t∈Pic(Oc)
χ(t) ·

(
t ∗ (A,C,$)

))
is equal to∑

t∈Pic(Oc)

χ(t) · (Q −rt) ∗
(
A,C[ÑQ−r], $

)
=

∑
t∈Pic(Oc)

χ
(
tQ

r) · (t ∗ (A,C[ÑQ−r], $
))

= χ
(
Q
)r · ∑

t∈Pic(Oc)

χ(t) ·
(
t ∗ (A,C,$)

)
since

{
Q
r
t
}
t∈Pic(Oc)

also yields a complete set of representative classes for

Pic(Oc). It follows that

PUf
(f , χ)

∣∣∣V(qr) = χ
(
Q
)r · P

Ũ
(f , χ) at each r ∈ {1, 2}. (3.2)

On the other hand, the projection prUf
Af

: JacXUf
� Af is obtained via

quotienting by the elements T (q)− C(q, f) and
〈
q
〉
− ω(q) if q +Nf = OF ,
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and by U(q)−C(q, f) if q+Nf 6= OF . As an immediate corollary, one obtains
the corresponding relations

P(f , χ)
∣∣∣T (q) or U(q) = C(q, f) ·P(f , χ) and P(f , χ)

∣∣∣〈q〉 = ω(q) ·P(f , χ).

(3.3)
Combining the various identities in (3.2) and (3.3) together, one thereby
deduces

prŨAf

(
P̃(f , χ)

)
= prŨAf

◦ depŨUf

( ∑
t∈Pic(Oc)

χ(t) · πJacXUf

(
ιξ(t · x)

))

= prŨAf

( ∑
t∈Pic(Oc)

χ(t) · πJacXUf

(
ιξ(t · x)

)∣∣∣∣∣ ∏
q|N?

(
1− U(q) ◦ V(q)

)
·
∏

q|Ñ, q-N?

(
1− T (q) ◦ V(q) +NF/Q(q) ·

〈
q
〉
◦ V(q2)

))

=
∑

t∈Pic(Oc)

χ(t) · πAf

(
ιξ(t · x)

)
×
∏
q|Ñ

(
1− C(q, f)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
.

Not surprisingly, the argument for the other HMF ? = g is almost identical.
�

We shall now establish statements (I) and (III) mentioned in our strategy
above. For a compact open subgroup U of B×AF , there are group homomor-
phisms(

JacXU ⊗ χ
)
(E)

−⊗1−→
(
JacXU ⊗ χ

)
(E)⊗̂Zp

∂−→
H1
f

(
E ⊗Qp,Tap

(
JacXU

)
⊗ χ

)
,

where

H1
f

(
E ⊗Qp,T

)
:= Ker

(
H1
(
E ⊗Qp,T

) −⊗1−→ H1
(
E ⊗Qp,T⊗Zp Bcris

))
,

and the right-hand arrow ∂ is the Kummer map – see [2, Section 3] for
further details. We shall label the composition of this whole sequence as
‘∂U ’.

Now set U := Ũ = U0

(
Ñ
)
: the depleted points P̃(f , χ) and P̃(g, χ) each

belong to
(
JacX

Ũ
⊗ χ

)
(E), so we can apply the mapping ∂

Ũ
to them. In

fact ∂
Ũ

(
P̃(f , χ)

)
and ∂

Ũ

(
P̃(g, χ)

)
lie inside H1

f

(
E⊗Qp,Tap

(
JacX

Ũ

)ord⊗χ
)
,

since f and g are both p-ordinary Hilbert cusp forms.
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Remark. Disegni’s normalisation of the p-adic L-function in [12, Theorem
A] is slightly different to that of Lp,Σ

(
?, ρ0

)
, for each ? ∈ {f ,g} and set of

places Σ. Note that his interpolation formula is almost the same as that

in Equation (2.2), except that the automorphic period Ω
aut,(0)
∞,K (?) is instead

replaced by

Ω
aut,(1)
∞,K (?) :=

2 · L(1, ηE/F ) · L
(
1, ad(?)

)
π2[F :Q] · |DF |1/2

.

We will write

LDis
p,Σ

(
?, ρ0

)
=

Ω
aut,(0)
∞,K (?)

Ω
aut,(1)
∞,K (?)

× Lp,Σ
(
?, ρ0

)
,

while LDis
p,∅
(
?, ρ0

)
=

Ω
aut,(0)
∞,K (?)

Ω
aut,(1)
∞,K (?)

× Lp,∅
(
?, ρ0

)
denotes the primitive p-adic L-

function in Theorem A of op. cit., which has not yet had its Euler factors
at q ∈ Σ removed.

Lemma 3.3. Recall under Hypothesis (Odd) that L
Dis,(0)
p,Σ

(
?, ρ0

)
is always

zero.

(a) Assuming that Hypothesis (f ≡ g (λr)) holds true as well, there exists

a crystalline 1-cocycle Q(f ,g, χ) ∈ H1
f

(
E ⊗Qp,Tap

(
JacX

Ũ

)ord⊗ χ
)

such

that

∂
Ũ

(
P̃(f , χ)

)
= ∂

Ũ

(
P̃(g, χ)

)
+ λr ·Q(f ,g, χ).

(b) For either choice of HMF ? ∈ {f ,g} and at the Hecke character χ =
χ0 · χ†,

χ†

(
dκs−1

cy LDis
p,Σ(?, ρ0)

ds

)∣∣∣∣∣
s=1

=
χ
(
d

(p)
F

)
G
(
χ
)√
NF/Q

(
DE/FNE/F (fχ)

)
χ(DE/F )∏

p|p αp(?)
ordp(NE/F (fχ))

× E
Ñ

(?, χ)−1

·
∏
p|p

∏
P|p

(
1− χ(P)

αp(?)

)
× 2

cE

((
∂
Ũ

(
P̃(?, χ)

)
, ∂

Ũ

(
P̃(?, χ−1)

)))
Ũ ,E

where the scalar cE := ζF (2)

(π/2)[F :Q]|DE |1/2L(1,ηE/F )
6= 0 is independent of ? and

χ, and((
−,−

))
Ũ ,E

:

H1
f

(
E ⊗Qp,Tap

(
JacX

Ũ

)ord

(χ)

)
×H1

f

(
E ⊗Qp,Tap

(
JacX

Ũ

)ord

(χ−1)

)
→ Qp

denotes the p-adic height pairing of Perrin-Riou et al (e.g. see [21, Section
1.2]).
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Before giving the demonstration of this result, it is important to point
out that for a p-ordinary GF -lattice T, the p-adic height pairing is between
H1
f

(
E⊗Qp,T

)
andH1

f

(
E⊗Qp,T

∗(1)
)
. In particular, if T = Tap

(
JacX

Ũ

)
⊗χ

then its Kummer dual is isomorphic to Tap
(
JacX

Ũ

)
⊗χ−1 because Jacobian

varieties are auto-dual; therefore, cutting out the ordinary parts, the height
pairing reduces to the above.

Proof. We begin with the first assertion. Let us write

hord
Ũ

= hord
(
U0(Ñ);OK

)
for the Hecke algebra acting on the ordinary part of the jacobian of X

U0(Ñ)
,

taking coefficients in OK. In particular for ? ∈ {f ,g}, the composition of

the projection map from JacX
Ũ

to A? with the homomorphism depŨU? from

A? back up to JacX
Ũ

is obtained by tensoring (over hord
Ũ

) by the integral

domain hord
Ũ

/
I?, where the ideal

I? :=
[
T (q)− C(q, ?), 〈q〉 − ω(q) if q + Ñ = OF , and U(q) if q + Ñ 6= OF

]
.

In other words, ∂
Ũ

(
P̃(?, χ)

)
∈ H1

f

(
E⊗Qp,Tap

(
JacX

Ũ

)ord⊗χ
)

will coincide

exactly with the image of
∑

t∈Pic(Oc)
χ(t) · πJacX

Ũ

(
ιξ(t · x)

)
⊗ 1 under ∂

Ũ
in

the specialisation H1
f

(
E ⊗Qp,Tap

(
JacX

Ũ

)ord⊗ χ
)
⊗hord

Ũ

hord
Ũ

/
I?.

To establish the congruence between ∂
Ũ

(
P̃(f , χ)

)
and ∂

Ũ

(
P̃(g, χ)

)
mod-

ulo λr, we introduce the ideals ‘I?,λr ’ generated over hord
Ũ

by I? and the

element λr ∈ OK. For the HMF ? = f , this alternative description for the

image of ∂
Ũ

(
P̃(f , χ)

)
above means that ∂

Ũ

(
P̃(f , χ)

)
mod λr is equal to∑

t∈Pic(Oc)

χ(t)·∂
Ũ
◦ πJacX

Ũ

(
ιξ(t · x)

)
⊗ 1

∈ H1
f

(
E ⊗Qp,Tap

(
JacX

Ũ

)ord

(χ)

)
⊗hord

Ũ

hord
Ũ

/
If ,λr .

Likewise for the HMF ? = g, the 1-cocycle ∂
Ũ

(
P̃(g, χ)

)
mod λr equals∑

t∈Pic(Oc)

χ(t)·∂
Ũ
◦ πJacX

Ũ

(
ιξ(t · x)

)
⊗ 1

∈ H1
f

(
E ⊗Qp,Tap

(
JacX

Ũ

)ord

(χ)

)
⊗hord

Ũ

hord
Ũ

/
Ig,λr .

But, Hypothesis (f ≡ g (λr)) implies that C(q, f) ≡ C(q,g) mod λr at all

primes q C OF satisfying q + Ñ = OF , in which case If ,λr and Ig,λr are

the same. Thus, ∂
Ũ

(
P̃(f , χ)

)
and ∂

Ũ

(
P̃(g, χ)

)
must be congruent mod λr,

which proves (a).
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To show that assertion (b) is true, a simple direct calculation reveals that((
∂
Ũ

(
P̃(?, χ)

)
, ∂
Ũ

(
P̃(?, χ−1)

)))
Ũ

=
((

prŨA? ◦ ∂Ũ
(
P̃(?, χ)

)
, prŨA? ◦ ∂Ũ

(
P̃(?, χ−1)

)))
U?

=
((
∂U?◦ prŨA?

(
P̃(?, χ)

)
, ∂U?◦ prŨA?

(
P̃(?, χ)

)))
U?

and then applying Lemma 3.2:

∂U?◦ prŨA?
(
P̃(?, χ)

)
=
∏
q|Ñ

(
1− C(q, ?)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
· ∂U?

(
P(?, χ)

)
, and

∂U?◦ prŨA?
(
P̃(?, χ)

)
=
∏
q|Ñ

(
1− C(q, ?)χ(Qc) + χ2(Qc)ω(q) · NF/Q(q)

)
· ∂U?

(
P(?, χ)

)
.

The product of these two sets of Euler factors above yields the (degree four)

factor L
(Ñ)

(
?, χ, 0

)
=
∏

q|Ñ Lq

(
? ⊗IndFE(χ),NF/Q(q)−s

)∣∣∣
s=0

, which therefore

implies((
∂
Ũ

(
P̃(?, χ)

)
, ∂
Ũ

(
P̃(?, χ−1)

)))
Ũ

= L
(Ñ)

(
?, χ, 0

)
×
((
P(?, χ),P(?, χ−1)

))
A?
.

Writing out in full the p-adic Gross-Zagier formula from [12, Theorem B],((
P(?, χ),P(?, χ−1)

))
A?

=
cE
2
· Zop(χ)−1 × χ†

(
dκs−1

cy LDis
p,∅(?, ρ0)

ds

)∣∣∣∣∣
s=1

,

where

Zop(χ)

=
χ
(
d

(p)
F

)
G
(
χ
)√
NF/Q

(
DE/FNE/F (fχ)

)
χ(DE/F )∏

p|p αp(?)
ordp(NE/F (fχ))

·
∏
p|p

∏
P|p

(
1− χ(P)

αp(?)

)
.

As an immediate consequence, one deduces that((
∂
Ũ

(
P̃(?, χ)

)
, ∂
Ũ

(
P̃(?, χ−1)

)))
Ũ

=
cE · L(Ñ)

(
?, χ, 0

)
2 · Zop(χ)

· χ†
(

dκs−1
cy LDis

p,∅(?, ρ0)

ds

)∣∣∣∣∣
s=1

.

If we switch between Σ and the empty set ∅, the interpolation rule in Equa-
tion (2.2) yields the identity

χ†

(
dκs−1

cy LDis
p,∅(?, ρ0)

ds

)∣∣∣∣∣
s=1

= χ†

(
dκs−1

cy LDis
p,Σ(?, ρ0)

ds

)∣∣∣∣∣
s=1

× L
(Ñ)

(
?, χ, 1

)−1

where L
(Ñ)

(
?, χ, 1

)
=
∏

q|Ñ Lq

(
? ⊗IndFE(χ),NF/Q(q)−s

)∣∣∣
s=1

.
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Lastly, observing that
L

(Ñ)
(?,χ,0)

L
(Ñ)

(?,χ,1) = E
Ñ

(?, χ), the proof of (b) is complete.

�

We are now ready to give the demonstration of the main result in this
section. We will also indicate how Theorems 2.2 and 3.1 imply (as special
cases) the results stated in the Introduction, for the congruent elliptic curves
A1 and A2 over Q.

Proof of Theorem 3.1. Statement (i) follows immediately from the sim-
ple observation that if the base character χ0 satisfies Hypothesis (Odd),
then so does χ = χ0 · χ† for any choice of anticyclotomic (and finite order)
character χ† on ΓE .

To show statement (ii), recall from [21, p167] that the p-adic height takes

values in logp(γ0) ·
∏

P|p #Ã?(OE/P)−2 · Zp ⊂ Qp, and is naturally a Zp-
bilinear pairing. Applying Lemma 3.3(a) to P̃(?, χ) and P̃(?, χ−1), one

immediately deduces that
((
∂
Ũ

(
P̃(f , χ)

)
, ∂
Ũ

(
P̃(f , χ−1)

)))
Ũ ,E

is equal to((
∂
Ũ

(
P̃(g, χ)

)
, ∂
Ũ

(
P̃(g, χ−1)

)))
Ũ ,E

+ λr ·
(((
∂
Ũ

(
P̃(g, χ)

)
, Q
(
f ,g, χ−1

)))
Ũ ,E

+
((
Q
(
f ,g, χ

)
, ∂
Ũ

(
P̃(g, χ−1)

)))
Ũ ,E

+ λr ·
((
Q
(
f ,g, χ

)
, Q
(
f ,g, χ−1

)))
Ũ ,E

)
which means that

((
∂
Ũ

(
P̃(?, χ)

)
, ∂
Ũ

(
P̃(?, χ−1)

)))
Ũ ,E

modulo logp(γ0) · λr−r0
must be independent of the choice of HMF ? ∈ {f ,g}.

Now by applying Lemma 3.3(b), one obtains the following congruence for
the period-modified p-adic L-functions:

E
Ñ

(f , χ) · χ†
(

dκs−1
cy LDis

p,Σ(f , ρ0)

ds

)∣∣∣∣∣
s=1

≡

E
Ñ

(g, χ) · χ†
(

dκs−1
cy LDis

p,Σ(g, ρ0)

ds

)∣∣∣∣∣
s=1

mod
2

cE
· logp(γ0) · λr−r0 · OK,χ

since for each choice of HMF ? ∈ {f ,g}, the p-adic multiplier term

Zop(?, χ) =

χ
(
d

(p)
F

)
G
(
χ
)√
NF/Q

(
DE/FNE/F (fχ)

)
χ(DE/F )∏

p|p αp(?)
ordp(NE/F (fχ))

∏
p|p

∏
P|p

(
1− χ(P)

αp(?)

)

is an algebraic number satisfying the congruence Zop(f , χ) ≡ Zop(g, χ) modulo

λr. However, Lp,Σ
(
?, ρ0

)
=

Ω
aut,(1)
∞,K (?)

Ω
aut,(0)
∞,K (?)

× LDis
p,Σ

(
?, ρ0

)
, so defining δE :=
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2

cE
·

Ω
aut,(1)
∞,K (?)

Ω
aut,(0)
∞,K (?)

which does not depend on the choice4 of cusp form ?, one

thereby concludes

E
Ñ

(f , χ) · χ†
(

dκs−1
cy Lp,Σ(f , ρ0)

ds

)∣∣∣∣∣
s=1

≡

E
Ñ

(g, χ) · χ†
(

dκs−1
cy Lp,Σ(g, ρ0)

ds

)∣∣∣∣∣
s=1

mod δE · logp(γ0) · λr−r0 · OK,χ

thus completing the proof of Theorem 3.1(ii). �

Remarks. (a) We should point out that the special values of the derivatives of
the p-adic L-functions Lp,Σ(f , ρ0) and Lp,Σ(g, ρ0) lie inside δE ·logp(γ0)·λ−r0 ,
so we should get a non-trivial congruence. If we want to swap the automor-
phic periods with motivic periods, we consequently obtain a congruence
modulo λr · Lf ,g where the lattice Lf ,g ⊂ Cp is generated by the values of
the motivic p-adic L-functions.

(b) Suppose we are in the situation of the Introduction, so that A1 and
A2 are congruent elliptic curves modulo pr. In the odd case, applying The-
orem 3.1 to the base-change f of A1 and base-change g of A2, yields a

congruence mod pr ·L(1)
A1,A2

where L(1)
A1,A2

contains the special values of each

L
(1)
p (Ai/E, χ) (see Theorem 1.4).

(c) Likewise in the even case, applying Theorem 2.2 to the base-change
cusp forms f and g as in (b), this time we obtain a congruence modulo

pr · L(0)
A1,A2

where L(0)
A1,A2

contains the values of L
(0)
p (Ai/E, χ) for each i ∈

{1, 2} (see Theorem 1.3).

4. Logarithm maps and Coleman integration

In this section, we continue to assume Hypotheses (f ≡ g (λr)) and (Odd)
hold. We also assume that p splits in E. Generalizing the work of Bertolini-
Darmon-Prasanna [1], Liu, Zhang and Zhang have constructed a p-adic L-
function on Γanti

E interpolating the complex Rankin-Selberg L-function of ?
twisted by characters on Γanti

E of positive weight, for each ? ∈ {f ,g} (see in
particular [18, Theorem 3.2.10]). At every finite order character χ, the value
of this p-adic L-function is related to the logarithm of the corresponding χ-
twisted Heegner point P(?, χ) attached to either HMF ? ∈ {f ,g}, as given
by Theorem 3.3.2 in op. cit.

4For the record, the explicit form of the factor δE ∈ Q× can be calculated via the
formula

δE =
4|DE |1/2 · ζF (2)−1L(1, ηE/F )2 · L

(
1, ad(?)

)
·
〈
?̃, ?̃
〉
R×

|DF |1/2 · (16π3)[F :Q] ·Vol
(
XU0(Ñ)

)
· 〈φ?, φ?〉Pet

.



HEEGNER CYCLES AND ANTICYCLOTOMIC CONGRUENCES 519

Following the strategy of [17], we shall show that these special values
satisfy a congruence relation under (f ≡ g (λr)) via Coleman integration.
However, at present, we do not know whether the p-adic L-function of Liu-
Zhang-Zhang is an Iwasawa function, so it is unclear to us whether an ana-
logue of Theorem 2.2 holds.

We first recall the notion of Coleman primitives from [7]. Let K be a local
field contained in Cp, X a quasiprojective scheme over K and U ⊂ Xrig an
affinoid domain with good reduction. We assume ω is a closed rigid analytic
1-form on U . Suppose that there exists a Frobenius endomorphism φ on U
(that is, it becomes a power of the Frobenius map on the reduction of U), a
locally analytic function Fω on U , and a polynomial P (X) ∈ Cp[X] whose
zeroes are not roots of unity, satisfying the twin conditions:

• dFω = ω;
• P (φ∗)Fω is rigid analytic.

Then Fω is called a Coleman primitive of ω. Furthermore, it is indepen-
dent of the polynomial P (X), and is uniquely determined up to an additive
constant.

We will require the following technical result of Liu-Zhang-Zhang.

Proposition 4.1 ([18], Proposition A.0.1). Let K, U and X be given as
above. Assume A is an abelian variety over K which either has totally
degenerate reduction or potentially good reduction. Then for a morphism
f : X → A and a differential form ω ∈ Ω1(A/K), the restriction to U of
the pullback f∗ω admits f∗ logω

∣∣
U

as a Coleman primitive, where logω :
A(Cp)→ Cp denotes the p-adic logarithmic attached to ω.

We next briefly review the definition of p-adic HMFs. Let R be a ring
which is complete and separated in its p-adic topology, and C is a fractional
ideal of OF . Then a p-adic C-HMF over R is a rule h, which assigns to
every isomorphism class of triples (A,C,$) a value in R, and satisfies some
standard automorphy conditions (we refer the reader to [16, §1.9] and [13,
Chapter 5, §6] for the precise details). Here A is a C-polarized HBAV over
R equipped with real multiplications by F , C denotes a level structure on
A, and $ is a nowhere vanishing differential on A.

In particular, such p-adic C-Hilbert modular forms have q-expansions in-
dexed by totally positive elements in ab where C = a

b . Recall that we are
in the odd case, so again B/F denotes the incoherent quaternion algebra

from Section 3, and for each compact open subgroup U ⊂ B×AF the algebraic

curve XU has as its complex points XU (C) = B\H± × B̂×/U . The space
of p-adic modular forms over XU is then given by the direct sum of p-adic
C-HMFs, as C runs through a complete set of coset representatives for the
narrow class group of F .

Let h be a parallel weight-two p-adic HMF over OK on X
Ũ

in the sense
of [16]. Because it has weight 2, we may identify h with a differential
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ωh ∈ H0(X
Ũ
,Ω1

X
Ũ

). Let ι̃ : X
Ũ
→ JacX

Ũ
be the Abel-Jacobi map: we

shall write ω#
h ∈ Ω1

JacX
Ũ

for the differential satisfying ι̃∗ω#
h = ωh.

Let Θ be the Atkin-Serre differential operator of [18, Definition 2.4.7] –
this corresponds to the composition of θ(σ) as σ runs through all embeddings
F ↪→ Q, where θ(σ) is defined as in [16, Corollary 2.6.25]. The Θ-operator
shifts the weight of a HMF by exactly 2, i.e. the weight of Θ(h) equals
(kσ + 2)σ:F ↪→Q if the weight of h is (kσ)σ:F ↪→Q. On q-expansions it has

the effect C(q,Θ(h)) = NF/Q(q)C(q,h) for all q (see [16, (2.6.27)]). If h
is of parallel weight two, let Fh denote the Coleman primitive of ωh ∈
H0(X

Ũ
,Ω1

X
Ũ

) as given by Proposition 4.1. In particular, dFh = ωh. On

comparing q-expansions, we see that and ΘFh = h. Note that Fh is a
HMF of parallel weight zero since h is of parallel weight two. Applying
Proposition 4.1 above, we obtain the following important consequence.

Corollary 4.2. If P ∈ X
Ũ

(Cp), then

Fh (P) = log
ω#
h

(P) .

Proof. We simply take f , X, A and ω in Proposition 4.1 to be ι̃, X
Ũ

, JacX
Ũ

and ω#
h respectively, and the rest follows immediately. �

We shall regard f and g as p-adic HMFs on XUf
and XUg respectively,

as well as on X
Ũ

of course. If one makes a choice of HMF ? ∈ {f ,g}, then
recall from Definition 1.6 the notation ?̃ refers to the depleted form on XU?

obtained from ?. For a p-adic HMF h and an OF -ideal I, we denote the
I-depletion of h by h(I).

Lemma 4.3. The Hypothesis (f ≡ g (λr)) implies that

F
f̃ (p) = Fg̃(p) + λr ·

∑
j

cj · Fh
(p)
j

.

Proof. We follow [17, proof of Theorem 3.9]. Since the operator Θ is OK-
linear, one immediately deduces that

Θnf̃ (p) = Θng̃(p) + λr ·
∑
j

cj ·Θnh
(p)
j (4.1)

for all integers n ≥ 1. Note that Θn : qm 7→ mnqm within the q-expansion
of h(p), and recall from [13, Corollary 5.1] that the q-expansion map over C
is injective. Because we have p-depleted our HMFs and the map n 7→ mn is
continuous in the p-adic topology whenever p - m, the HMFs Θnh(p) varies
p-adically continuously in n. If we define

Θ−1h(p) := lim
n→−1

Θnh(p)

where the limit is taken under the p-adic topology, then Θ−1h(p) = Fh(p)

on comparing q-expansions. Thus, our result follows on letting n → −1 in
(4.1). �
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Theorem 4.4. Under the Hypothesis (f ≡ g (λr)) , we have the congruence

∏
q|pÑ

(
1− C(q, f)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· logAf

(P(f , χ)) ≡

∏
q|pÑ

(
1− C(q,g)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· logAg

(P(g, χ)) mod λr · OK,χ.

Proof. The Hypothesis (f ≡ g (λr)) together with Lemma 4.3 tell us that

F
(pÑ)
f and F

(pÑ)
g must be congruent mod λr, as weight-zero p-adic HMFs

on X
Ũ

. In particular,

F
(pÑ)
f (P) ≡ F (pÑ)

g (P) mod λr · OCp (4.2)

for every P ∈ X
Ũ

(Cp).
Let x = (A,C,$) ∈ X

Ũ
be any CM-point, and consider t ∈ Pic(Oχ) as in

§3. If h is a weight-zero p-adic HMF on X
Ũ

with central character ω, recall
that

h(q) =

(
1− T (q)V(q) +

〈q〉V(q)

NF/Q(q)

)
h if q ∈ Spec(OF ) with q +Nh = OF ;

otherwise, it is given by
(
1−U(q)◦V(q)

)
h if q+Nh 6= OF . Our calculations

on the images of x under these operators, which are described in the proof
of Lemma 3.2, directly imply that∑

t∈Pic(Ocχ )

χ(t)h(pÑ)(t ∗ x) (4.3)

=
∏
q|pÑ

(
1− C(q,h)χ(Q) +

χ2(Q)ω(q)

NF/Q(q)

)
×

∑
t∈Pic(Ocχ )

χ(t)h(t ∗ x)

(see also [17, Lemma 3.6] for the same result for p-adic elliptic modular
forms).

Recall once more that Θ : qm 7→ mqm on q-expansions, so for either

? ∈ {f ,g} we have C(q, F?) = C(q,?)
NF/Q(q) at each q|pÑ . Hence, we may rewrite

Equation (4.3) as:∑
t∈Pic(Ocχ )

χ(t)F
(pÑ)
? (t ∗ x)

=
∏
q|pÑ

(
1− C(q, ?)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
×

∑
t∈Pic(Ocχ )

χ(t)F? (t ∗ x)
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and upon combining this with (4.2), one therefore deduces∏
q|pÑ

(
1− C(q, f)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

) ∑
t∈Pic(Ocχ )

χ(t)Ff (t ∗ x)

≡
∏
q|pÑ

(
1− C(q,g)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

) ∑
t∈Pic(Ocχ )

χ(t)Fg (t ∗ x)

mod λr · OK,χ.
Finally, Corollary 4.2 informs us that∏

q|pÑ

(
1− C(q, f)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· log

ω#
f

(P(f , χ))

≡
∏
q|pÑ

(
1− C(q,g)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· log

ω#
g

(P(g, χ))

mod λr · OK,χ.
However, log

ω#
?

= logA? by their definition, so the proof is now complete. �

Remarks. (a) For those readers familiar with the notation of Liu-Zhang-
Zhang in [18, Theorem 3.3.2], their p-adic Waldspurger formula states that

logA+
?

(P(?, χ)) · logA−?

(
P(?, χ−1)

)
= (Euler factor at p) · χ

(
L(A?)

)
· αχ

(
f?,+, f?,−

)
where L(A?) denotes the p-adic L-function attached to ? in [18, Theorem
3.2.10], and αχ

(
f?,+, f?,−

)
is a distinguished generator for the K-line

HomA∞×E

(
Π+
? ⊗ χ,K

)
⊗K HomA∞×E

(
Π−? ⊗ χ−1,K

)
.

(b) Applying Theorem 4.4 directly to logA?
(
P(?, χ±1)

)
, a simple calcula-

tion reveals that

E
1,pÑ

(f)× logAf
(P(f , χ)) · logAf

(
P(f , χ−1)

)
≡ E

1,pÑ
(g)× logAg

(P(g, χ)) · logAg

(
P(g, χ−1)

)
mod λr · OK.

(c) Under the strong assumption that L(Af ) and L(Ag) correspond to
bounded Iwasawa functions (which is so far only known over F = Q),
as a corollary (b) yields a congruence modulo λr linking together the Σ-
imprimitive p-adic L-functions LΣ(Af ) and LΣ(Ag), for suitably chosen iso-
morphisms φ? between the local field K and the lines

HomA∞×E

(
Π+
? ⊗ χ,K

)
⊗K HomA∞×E

(
Π−? ⊗ χ−1,K

)
⊗FM

(
Lie(A+

? )⊗FM Lie(A−? )
)
.

(d) If A1 and A2 are congruent elliptic curves mod pr as in §1, one
thereby obtains a congruence between LΣ(A1) and LΣ(A2) modulo pr ·
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L\A1,A2

[[
Γanti
E

]]
, again assuming that L(Ai) for i = 1, 2 correspond to bounded

Iwasawa functions, and where L\A1,A2
is the OCp-submodule generated by the

values χ
(
L(A1)

)
and χ

(
L(A2)

)
as χ† ranges over Hom

(
Γanti
E ,Q×p

)
– we refer

the reader to Theorem 1.5 for the precise statement.
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