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On strengthenings of superstrong
cardinals

Jinglun Cai and Konstantinos Tsaprounis

Abstract. We consider some natural strengthenings of the well-known
notion of superstrong cardinal, looking at their corresponding C(n)-
versions as well, studying their properties and their connections with
other usual large cardinals. In particular, we introduce the notions of
C(n)-ultrastrongness and of C(n)-global superstrongness. As it turns out,
the former is closely related to C(n)-extendibility, a rather robust large
cardinal assumption that has found applications in other mathematical
areas, while for the latter, among other things, we show that appro-
priate Laver functions exist, making it the second known example of a
C(n)-hierarchy that has this feature.
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1. Introduction

The hierarchy of large cardinal axioms constitutes a very important set-
theoretic theme, not only due to its proper interest and complexity, or to its
extensive usage in “measuring” the consistency strength of ZFC-independent
statements, but also because it has found many applications in diverse math-
ematical areas.
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During the last decades, the intensive study of the various large cardinal
axioms has produced a remarkably dense picture of properties and con-
nections between them, while the list of large cardinals constantly keeps
expanding, with new notions that are yet to be explored.

One family of such notions are the so-called C(n)-cardinals, which are
strengthenings of the usual large cardinal postulates. These were origi-
nally introduced by Bagaria (cf. [1]); they were subsequently studied fur-
ther, among others (see, for instance, [10]), by the second author (cf. [12]
and [15]).

Among the various C(n)-cardinals, one dominant and important exam-
ple is that of C(n)-extendibility, for which Bagaria established a level-by-
level correspondence with Vopěnka’s Principle (VP), where the latter is a
well-known and quite fruitful mathematical assumption of high consistency
strength. Both Bagaria’s initial work and that of the second author that fol-
lowed it have underlined the fact that C(n)-extendibility exhibits robustness
and amenability to standard set-theoretic techniques, while it also has strong
reflective properties and desirable related features. Perhaps not surprisingly
then, the C(n)-extendible cardinals have recently found applications in other
mathematical fields, like category theory (see [2]), homotopy theory (see [3]),
and model theory (see [4]), thus becoming a large cardinal assumption of
wider mathematical interest and significance.

In this present note, we take up the well-known large cardinal notion of
superstrongness, which was initially introduced by Gaifman in the 1970’s,
and we consider natural strengthenings of it. As it turns out, one of these
strengthenings, which we call ultrastrongness, is equivalent to the usual no-
tion of extendibility, thus providing (yet) another characterization of the
latter. In fact, the situation further simplifies a reformulation of extendible
cardinals that was proved in [12]. In parallel, we also consider the corre-

sponding C(n)-versions of our newly introduced notions, studying them in
terms of their properties and of their consistency strength, showing that
they enjoy resemblances and close connections with the central example of
C(n)-extendibility.

1.1. Notation. The notation that we use is standard; we refer the reader
to [7] or [8] for further details, as well as for a comprehensive presentation
of the theory of large cardinals.

Following [1], for every (meta-theoretic) natural number n, we let C(n)

denote the closed proper class of ordinals that are Σn-correct in the uni-
verse V , that is, the class of ordinals α such that Vα is a Σn-elementary
substructure of V . Note that C(0) is just the class of all ordinals while C(1)

is precisely the class of uncountable cardinals α for which Vα = Hα. We
recall that, for every n > 1, the statement “α ∈ C(n)” is Πn-expressible (see
Section 1 in [1] for details).

If j is a non-trivial elementary embedding, typically being of the form
j : V −→ M with M ⊆ V a transitive class model of ZFC, we write cp(j)
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for its critical point, i.e., the least ordinal moved by j. Given an embedding j
with cp(j) = κ, we write j(n)(κ) for the n-th iterate of j at κ, i.e., j(0)(κ) = κ

and, for every n > 0, j(n)(κ) = j(j(n−1)(κ)). We now briefly recall the
definitions of some relevant large cardinal notions.

A cardinal κ is called λ-strong, for some λ > κ, if there is an elementary
embedding j : V −→ M such that cp(j) = κ, j(κ) > λ and Vλ ⊆ M ;
moreover, κ is called strong if it is λ-strong for all λ > κ. A cardinal κ is
called superstrong if there is some elementary embedding j : V −→M such
that cp(j) = κ and Vj(κ) ⊆M .

A cardinal κ is called λ-supercompact, for some λ > κ, if there is an
elementary embedding j : V −→ M such that cp(j) = κ, j(κ) > λ and
λM ⊆ M ; moreover, κ is called supercompact if it is λ-supercompact for
all λ > κ. A cardinal κ is called λ-extendible, for some λ > κ, if there is
some θ and an elementary embedding j : Vλ −→ Vθ such that cp(j) = κ
and j(κ) > λ; moreover, κ is called extendible if it is λ-extendible for all
λ > κ.1 A cardinal κ is called huge if there is some elementary embedding
j : V −→ M such that cp(j) = κ and j(κ)M ⊆ M . We remind the reader

that every strong as well as every supercompact cardinal belongs to C(2)

(i.e., it is Σ2-correct in V ), while every extendible cardinal belongs to C(3)

(i.e., it is Σ3-correct in V ).
Finally, for the sake of completeness, let us also include the definitions

of C(n)-superstrongness, of C(n)-extendibility and of C(n)-hugeness, as these
were introduced by Bagaria. For every n > 1:

Definition 1.1 ([1]). We say that a cardinal κ is C(n)-superstrong if there
exists an elementary embedding j : V −→M with M transitive, cp(j) = κ,

Vj(κ) ⊆M and j(κ) ∈ C(n).

As already observed by Bagaria (see the comment after Definition 2.1 in

[1]), for every n > 1, if the cardinal κ is C(n)-superstrong, then κ ∈ C(n):

to see this, let j be any C(n)-superstrongness embedding for κ and just
notice that Vκ ≺ Vj(κ). Additionally, a cardinal κ is superstrong if and

only if it is C(1)-superstrong: this follows from the fact that, for any j that
is a superstrongness embedding for κ, we have that Vj(κ) ⊆ M and, thus,

j(κ) ∈ C(1) (see Proposition 2.2 in [1]). Furthermore, the C(n)-superstrong
cardinals form a proper hierarchy (see Proposition 2.3 in [1]). Finally, for

every n > 1, the statement “κ is C(n)-superstrong” is Σn+1-expressible (see
the comments after Proposition 2.2 in [1]).

Definition 1.2 ([1]). We say that a cardinal κ is λ-C(n)-extendible, for
some λ > κ, if there is some θ and an elementary embedding j : Vλ −→ Vθ
with cp(j) = κ, j(κ) > λ and j(κ) ∈ C(n). Moreover, we say that κ is

C(n)-extendible, if it is λ-C(n)-extendible, for all λ > κ.

1We remark that it is not necessary to require that “j(κ) > λ” in the definition of
(full) extendibility, as this clause follows automatically (see Proposition 23.15 in [8]).
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As above, we have that a cardinal is extendible if and only if it is C(1)-
extendible (see Proposition 3.3 in [1]). Moreover, for n > 1, the statement

“κ is λ-C(n)-extendible” is Σn+1-expressible; thus, for n > 1, the statement
“κ is C(n)-extendible” is Πn+2-expressible (these are explained in Section 3
of [1]). Among other things, Bagaria showed that, for every n > 1, if κ is

C(n)-extendible, then κ ∈ C(n+2) (see Proposition 3.4 in [1]), from which it
follows that the hierarchy is proper, i.e., the consistency strength (strictly)
grows with n (see Proposition 3.5 in [1]).2

Definition 1.3 ([1]). We say that a cardinal κ is C(n)-huge if there exists
an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
j(κ)M ⊆M and j(κ) ∈ C(n).

1.2. Reformulating extendible cardinals. Towards providing some mo-
tivation for our present study, we briefly review some related earlier work,
mainly from [12]. Recall that, traditionally, extendibility is defined locally
by set embeddings between rank initial segments of the universe. However,
an alternative characterization in terms of class embeddings has also been
established. For this, the second author introduced the following notion:

Definition 1.4 ([12]). We say that a cardinal κ is jointly λ-supercompact
and θ-superstrong, for some λ, θ > κ, if there is an elementary embedding
j : V −→ M with M transitive, cp(j) = κ, j(κ) > λ, λM ⊆ M and
Vj(θ) ⊆ M . In this case, we say that j is jointly λ-supercompact and θ-
superstrong for κ.

For a fixed θ > κ, we say that κ is jointly supercompact and θ-
superstrong, if it is jointly λ-supercompact and θ-superstrong, for every
λ > κ; moreover, we say that κ is jointly supercompact and super-
strong, if κ is jointly λ-supercompact and λ-superstrong, for every λ > κ.

In other words, this definition “blends”, simultaneously, two separate re-
quirements for the elementary embedding j: on the one hand, the term
“λ-supercompact” refers to the clause λM ⊆ M while, on the other, the
term “θ-superstrong” refers to the clause Vj(θ) ⊆ M . Observe that, in
this terminology, “κ-superstrong” means just ordinary superstrongness, i.e.,
Vj(κ) ⊆M .

We note that if κ is the least supercompact, then it is not jointly λ-
supercompact and κ-superstrong, for any λ (see Fact 2.4 in [15]). Actually,
the following holds:

Theorem 1.5 ([12]). A cardinal κ is extendible if and only if it is jointly
supercompact and κ-superstrong if and only if it is jointly supercompact and
superstrong.

2We refer the reader directly to [1] for the initial (general) study of the various C(n)-
cardinals. For further explorations in this context, see the subsequent [12] and [15].
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This follows from Corollary 2.31 in [12] (and its subsequent remarks). In fact,

it is shown there that such a characterization is valid for C(n)-extendibility
as well.

The above reformulation of extendibility has been used, for instance, in
[13], in order to motivate the introduction and to derive the consistency
of the so-called unbounded resurrection axioms. Moreover, it has been em-
ployed in order to further develop the general theory of C(n)-extendible
cardinals in the more recent [15]: as an example, it is shown there that ev-

ery C(n)-extendible cardinal carries an appropriate Laver function and that
such cardinals are compatible with forcing globally the GCH in the universe,
both of which are desirable features, in general.

In the context of our present work, one important aspect of the afore-
mentioned characterization is the following: if one strengthens the notion
of supercompactness by requiring that the witnessing embeddings are, in
addition, sufficiently superstrong above their target j(κ), then one arrives
at the notion of extendibility.3

We now wish to isolate this requirement of “sufficient superstrongness
above the target” and study it in its own right, in the next section.

2. Ultrastrong cardinals

Let us start by giving the official definition.

Definition 2.1. We say that a cardinal κ is λ-superstrong, for some λ > κ,
if there exists an elementary embedding j : V −→ M with M transitive,
cp(j) = κ and Vj(λ) ⊆ M . In such a case, we say that j is λ-superstrong
for κ. Moreover, we say that κ is ultrastrong, if it is λ-superstrong, for all
λ > κ.

It is clear that every ultrastrong cardinal is superstrong. In addition, it is
easily seen, as in the case of the usual superstrong cardinals, that for any λ-
superstrong embedding j for κ we have that j(κ) ∈ C(1), because Vj(κ) ⊆M .

Similarly, if λ ∈ C(1) as well, then j(λ) ∈ C(1) too. Moreover, one can readily
check that the statement “κ is λ-superstrong” is Σ2-expressible, via the
existence of an appropriate extender; thus, the statement “κ is ultrastrong”
is Π3-expressible.

The attentive reader may be wondering why the (usual) clause “j(κ) > λ”
is missing from the above definition. The reason is that it follows automati-
cally, exactly as in the case of extendible cardinals (see Proposition 23.15 in
[8]). In fact, as we now show, extendibility is equivalent to ultrastrongness.

Proposition 2.2. A cardinal is extendible if and only if it is ultrastrong.

3Let us also mention that, in a separate work, this additional requirement of “suffi-
cient superstrongness above the target j(κ)” has been “blended” with the notion of huge
cardinals, producing ultrahugeness; see [14].
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Proof. The forward direction follows directly from Corollary 2.29 in [12].
For the converse, assume that the cardinal κ is ultrastrong and fix some

λ > κ. Let j : V −→ M be an embedding that is λ-superstrong for κ, i.e.,
M is transitive, cp(j) = κ and Vj(λ) ⊆ M . Then, the restricted embedding
j � Vλ : Vλ −→ Vj(λ) witnesses the λ-extendibility of κ, as desired. �

The previous proposition further enligthens us, in the following sense. As
stated in Theorem 1.5 above, by the work in [12], we know that the notion of
extendibility can be captured by embeddings that are, simultaneously, “λ-
supercompact” and “λ-superstrong”. However, by the last result, it turns
out after all that the clause regarding “λ-supercompactness” is superfluous
in this characterization: one only needs to check the superstrongness require-
ment in order to verify extendibility. Put differently, the clause regarding
“λ-supercompactness” already follows from the assumption of sufficient su-
perstrongness.

Consequently, ultrastrong cardinals enjoy the same properties as the ex-
tendibles; for instance, every ultrastrong cardinal is Σ3-correct and carries
an appropriate Laver function (for the latter, see Theorem 1.7 in [13]). By
the way, and as a curiosity, let us also observe the following.

Fact 2.3. If κ is ultrastrong, then, for any λ > κ, there exists an embedding
j : V −→ M that is λ-superstrong for κ, such that j(κ) is a superstrong
cardinal.

Proof. Fix some λ > κ and let δ > λ be any Σ2-correct ordinal; then, notice
that Vδ |= “κ is superstrong”, since the property of being superstrong is Σ2-
expressible (via the existence of one single extender). Let j : V −→M be an
embedding that is δ-superstrong for κ, i.e., M is transitive, cp(j) = κ and
Vj(δ) ⊆ M . By elementarity, we have that Vj(δ) |= “j(κ) is superstrong”.

But note that j(δ) ∈ C(1) (since Vj(δ) ⊆ M) and, thus, j(κ) is indeed a
superstrong cardinal in V . �

In particular, we have (re)confirmed the (known) fact that if κ is ex-
tendible, then there are unboundedly many superstrong cardinals in the
universe.

With the equivalence of Proposition 2.2 in mind, we now turn to the
more general setting of C(n)-ultrastrong cardinals, where some interesting
subtleties emerge.

2.1. C(n)-ultrastrong cardinals. As expected, we begin by giving the
relevant definition, in the spirit of [1]. For every n > 1:

Definition 2.4. We say that a cardinal κ is λ-C(n)-superstrong, for some
λ > κ, if there exists an elementary embedding j : V −→ M with M
transitive, cp(j) = κ, Vj(λ) ⊆ M and j(κ) ∈ C(n). In such a case, we say

that the embedding j is λ-C(n)-superstrong for κ. Moreover, we say that κ
is C(n)-ultrastrong, if it is λ-C(n)-superstrong, for all λ > κ.
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As already remarked, every ultrastrong cardinal is C(1)-ultrastrong. Ad-
ditionally, it is easy to check that, for each n > 1, the statement “κ is
λ-C(n)-superstrong” is Σn+1-expressible, via the existence of an appropriate
extender; thus, the statement “κ is C(n)-ultrastrong” is Πn+2-expressible.

Furthermore, for each n > 1, exactly as for C(n)-superstrongness, we have
that if κ is C(n)-ultrastrong, then κ ∈ C(n). Evidently, for n = 1, if κ is C(1)-
ultrastrong (that is, extendible), then κ ∈ C(3). It remains open whether
this property generalizes for n > 1, i.e., we may ask:

Question 2.5. Suppose that n > 1 and that κ is a C(n)-ultrastrong cardinal.
Does it follow that κ ∈ C(n+2)?

Regarding this question, let us point out that the (obvious) argument, us-
ing a meta-theoretic induction (appropriately adapting the proof of Propo-
sition 3.2 of the next section), does not seem to go through. The reason is
that it remains unclear whether the clause “j(κ) > λ” can be added, auto-

matically, in the general C(n)-version of ultrastrongness (for n > 1), as is
the case when n = 1. See also Question 2.9 and the relevant discussion in
(sub)section 2.1.1 below.

An immediate application of Corollary 2.29 in [12] gives the following

(upper) bound on C(n)-ultrastrongness (but see also Theorem 2.10 below).
For every n > 1:

Proposition 2.6. If κ is C(n)-extendible, then κ is C(n)-ultrastrong.

We now show that not only the consistency strength of the hierarchy
of C(n)-ultrastrong cardinals grows with the number n but, also, that this
hierarchy is closely tied to that of C(n)-extendible cardinals. For every n > 1:

Proposition 2.7. If κ is C(n+1)-ultrastrong, then there is a normal measure
U on κ such that {α < κ : Vκ |= “α is C(n)-extendible ”} ∈ U .

Proof. Suppose that κ is C(n+1)-ultrastrong and let j : V −→ M be a
λ-C(n+1)-superstrongness embedding for κ, for some (any) λ > κ with λ ∈
C(n+2); that is, M is transitive, cp(j) = κ, Vj(λ) ⊆ M and j(κ) ∈ C(n+1).
We consider two cases.

First, let us assume that j(κ) 6 λ. In this case, for any γ < j(κ),

note that the restricted embedding j � Vγ : Vγ −→ Vj(γ) is a γ-C(n)-

extendibility embedding for κ. Since being γ-C(n)-extendible is a Σn+1-
expressible statement and j(κ) ∈ C(n+1), it follows that, for every γ < j(κ),

the γ-C(n)-extendibility of κ is reflected in Vj(κ), i.e., we actually have that

Vj(κ) |= “κ is C(n)-extendible”.
Alternatively, suppose that j(κ) > λ. In this case, let us observe that

Vj(κ) |= λ ∈ C(n+2), because Πn+2-statements reflect downwards to Σn+1-
correct ordinals. Moreover, via a similar argument as in the previous case,
one gets that κ is C(n)-extendible in Vλ now: notice that, for every γ < λ,
the γ-C(n)-extendibility of κ, which is again witnessed by the map j � Vγ ,
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reflects inside Vλ. In turn, the (full) C(n)-extendibility of κ reflects from
Vλ up to Vj(κ), due to the correctness of the ordinal λ in the latter model

(given that being C(n)-extendible is Πn+2-expressible); in other words, we

again have that κ is C(n)-extendible in Vj(κ).

In either case, we have that Vj(κ) |= “κ is C(n)-extendible”. The conclu-
sion now follows from a standard reflection argument, via the usual normal
measure U on κ that is derived from j. �

In particular, from the existence of a C(n+1)-ultrastrong cardinal we get
a (ZFC) model with a proper class of C(n)-extendible cardinals.

One important fact that we should underline here is that, as it follows from
Propositions 2.6 and 2.7, it turns out that the hierarchy of C(n)-ultrastrong
cardinals is (consistency-wise) intertwined with the hierarchy of the C(n)-
extendibles, highlighting even more the close connection between the two
notions.

Moreover, if we assume the existence of a C(n+2)-ultrastrong cardinal κ,
then we get the existence of many (actual) C(n)-extendibles below κ. For
every n > 1:

Corollary 2.8. If κ is C(n+2)-ultrastrong, then there is a normal measure
U on κ such that {α < κ : α is C(n)-extendible } ∈ U .

Proof. Since the property of being C(n)-extendible is Πn+2-expressible, the
desired conclusion follows from the previous proposition and the fact that
every C(n+2)-ultrastrong cardinal is itself a member of C(n+2), as noted after
Definition 2.4. �

The following question (annoyingly) remains open, for n > 1:

Question 2.9. Is it consistent to have a C(n)-ultrastrong cardinal that is
not C(n)-extendible?

2.1.1. Variants of C(n)-ultrastrongness. There are two plausible (and

natural) ways to further strengthen the notion of C(n)-ultrastrongness: one is
to require that the witnessing embeddings satisfy the usual clause “j(κ) > λ”

as well, while another one is to consider the corresponding “C(n)+” version of
ultrastrongness (similarly to that of C(n)+-extendibility, which was defined
in Section 4 of [1]; we prompt the reader to recall, at this point, the relevant
definition from [1]).

In this final part of Section 2, we show that both of these variants, along
with a further modification of the second one, are in fact all equivalent to
C(n)-extendibility. For every n > 1:

Theorem 2.10. Given any cardinal κ, the following are equivalent:

(i) κ is C(n)-extendible.
(ii) For all λ > κ, there exists an elementary embedding j : V −→ M

with M transitive, cp(j) = κ, j(κ) > λ, Vj(λ) ⊆M and j(κ) ∈ C(n).
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(iii) For all λ > κ with λ ∈ C(n), there exists an elementary embed-
ding j : V −→ M with M transitive, cp(j) = κ, Vj(λ) ⊆ M and

{j(κ), j(λ)} ⊆ C(n).

(iv) For all λ > κ with λ ∈ C(n), there are γ ∈ C(n+1) and θ ∈ C(n),
with κ 6 γ and {γ, λ} ⊆ θ, and there is an elementary embedding
j : V −→M with M transitive, cp(j) = κ, Vj(θ) ⊆M , λ < j(γ) and

{j(κ), j(γ)} ⊆ C(n).

(v) κ is C(n)+-extendible.

Proof. Let us first mention that the equivalence between (i) and (v) is not
a novelty, since it has already been established by the second author in [15]
(see Corollary 3.5 there), as well as, independently, by Gitman and Hamkins

in [6]: their Theorem 15 in fact gives more equivalent formulations of C(n)-

extendibility.4 At any rate, we include the case of C(n)+-extendibility in the
enunciation of our theorem for the sake of completeness. We now proceed
with the rest of the equivalences.

Fix some (meta-theoretic) n > 1. We initially deal with the equivalence
between (i) and (ii), which is similar to that between ultrastrong and (ordi-
nary) extendible cardinals. First of all, note that the implication (i) =⇒ (ii)
follows directly from Corollary 2.29 in [12].

For the converse, assume that κ satisfies (ii), fix some λ > κ and let
j : V −→ M be an elementary embedding with M transitive, cp(j) = κ,

j(κ) > λ, Vj(λ) ⊆ M and j(κ) ∈ C(n). Then, the restricted embedding

j � Vλ : Vλ −→ Vj(λ) witnesses the λ-C(n)-extendibility of κ, as desired.
We now turn to the equivalence between (i) and (iii). We start by observ-

ing that the implication (i) =⇒ (iii) follows from the equivalence between

(i) and (v) and the fact that every C(n)+-extendible cardinal satisfies (iii);
the latter implication is verified using (the proof of) Theorem 2.28 in [12].

Next, for the implication (iii) =⇒ (i), we argue as follows. Suppose that
κ satisfies (iii) and fix some λ > κ. We further fix some γ > λ such that

γ ∈ C(n), cf(γ) > ω and the following condition holds: whenever β < γ and
there exists a δ and an elementary embedding e : Vλ −→ Vδ with cp(e) = κ
and e(κ) = β, then there exists such an embedding e with δ < γ. Recalling

that C(n) is a closed proper class of ordinals, we note that we may find such
a γ by a straightforward closure argument, e.g., iterating (at most) ω1-many
times above λ.

By our assumption, we fix some η ∈ C(n) and an embedding j : Vγ −→ Vη
with cp(j) = κ and j(κ) ∈ C(n).5 Of course, we may assume that j(κ) < γ,

4Among them, of particular interest are those involving their concept of “A-
extendibility”, which indeed constitutes a more general setting that is certainly worth
exploring further.

5 In fact, given that κ satisfies (iii) and that κ < γ with γ ∈ C(n), we first fix some

j′ : V −→M with M transitive, cp(j′) = κ, Vj′(γ) ⊆M and {j′(κ), j′(γ)} ⊆ C(n). Then,

setting j = j′ � Vγ and η = j′(γ) gives the stated (set) embedding j : Vγ −→ Vη.
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since otherwise we are done. In light of Kunen’s celebrated “inconsistency
theorem” (see, for instance, Theorem 23.12 and Corollary 23.14 in [8]), given

that cf(γ) > ω, there must exist some m ∈ ω such that j(m)(κ) < γ 6
j(m+1)(κ).6 At this point, we note that, for each i 6 m + 1, we have that

j(i)(κ) ∈ C(n). To see this, proceed inductively: for i = 0 (or i = 1) it is clear,

since {κ, j(κ)} ⊆ C(n). Now, assume that j(i)(κ) ∈ C(n), for some i 6 m.

Then, since γ ∈ C(n) and j(i)(κ) < γ, we have that Vγ |= j(i)(κ) ∈ C(n) and,

hence, by elementarity, Vη |= j(i+1)(κ) ∈ C(n), which is correctly computed

because η ∈ C(n) as well.
We now let P (i) be the statement: there exists a δ and an elementary

embedding e : Vλ −→ Vδ with cp(e) = κ and e(κ) = j(i+1)(κ). We observe
that it suffices to establish that P (m) holds. For this, once again we proceed
inductively: for i = 0, it is clear that P (0) holds, since this is witnessed by
the embedding e = j � Vλ (with δ = j(λ)). Now, assume that P (i) holds,
for some i < m.

By P (i) and the choice of γ, since j(i+1)(κ) < γ, there must exist some
δ < γ and an elementary embedding e : Vλ −→ Vδ with cp(e) = κ and

e(κ) = j(i+1)(κ) ∈ C(n). This embedding is witnessed inside Vγ (because

e ∈ Vγ and γ ∈ C(n) as well) and, therefore, by elementarity, we have
that, in Vη, there exists an embedding ē : Vj(λ) −→ Vj(δ) with cp(ē) = j(κ)

and ē(j(κ)) = j(i+2)(κ) ∈ C(n). Thus, we may now consider the composed
embedding h = ē ◦ (j � Vλ) : Vλ −→ Vj(δ), with cp(h) = κ and h(κ) =

j(i+2)(κ) ∈ C(n). This shows that P (i+ 1) holds, as desired.
Finally, we establish the equivalence between (iii) and (iv), which is

enough in order to conclude the theorem. For the implication (iii) =⇒ (iv),

given some λ > κ with λ ∈ C(n), let γ ∈ C(n+1) and θ ∈ C(n) be some
(any) Σn+1-correct and Σn-correct cardinals, respectively, with λ < γ < θ.
Now, by the assumption that κ satisfies (iii), there is an elementary em-
bedding j : V −→ M with M transitive, cp(j) = κ, Vj(θ) ⊆ M and

{j(κ), j(θ)} ⊆ C(n). Note that λ < j(γ) and that, by elementarity and

the correctness of θ, we have that Vj(θ) |= j(γ) ∈ C(n). But the latter

must hold in V , since j(θ) ∈ C(n). In other words, this same embedding j
witnesses the fact that κ satisfies (iv), for this choice of λ.

Conversely, for the implication (iv) =⇒ (iii), fix some λ > κ such that

λ ∈ C(n). By the assumption that κ satisfies (iv), let γ ∈ C(n+1) and

θ ∈ C(n) with κ 6 γ and {γ, λ} ⊆ θ, and let j : V −→ M be an elementary
embedding with M transitive, cp(j) = κ, Vj(θ) ⊆ M , λ < j(γ) and so

that {j(κ), j(γ)} ⊆ C(n). Recalling that Πn+1-expressible statements reflect
downwards to Σn-correct cardinals, by elementarity, it actually follows that
Vj(θ) |= j(κ), j(λ) ∈ C(n) ∧ j(γ) ∈ C(n+1).

6Observe that m 6= 0, because {κ, j(κ)} ⊆ γ.
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Now, if we let E be the (κ, j(λ))-extender that is derived from j, then
we have that E ∈ Vj(θ). Hence, as witnessed by this extender, we get
that the statement “there exists an extender E whose associated embedding
jE : V −→ME is such that cp(jE) = κ, VjE(λ) ⊆ME and {jE(κ), jE(λ)} ⊆
C(n)” holds in Vj(θ). But notice that this is a Σn+1-expressible statement,
in the parameters κ and λ. Hence, it reflects from Vj(θ) down to Vj(γ), given

that Vj(θ) |= j(γ) ∈ C(n+1). Finally, and since j(γ) ∈ C(n), this statement
reflects from Vj(γ) up to V , establishing this last implication and, effectively,
concluding the proof. �

Note that, regarding the variant appearing in item (iii) of the previous
theorem, the (additional) idea behind it — in accordance with the initial
introduction of such a variant by Bagaria in [1] — is to ensure that the (Σn-)
correctness of the chosen λ is carried over to its target j(λ); this would be, in

Bagaria’s terminology, the corresponding “C(n)+” version of ultrastrongness.
On the other hand, regarding the variant appearing in item (iv), the idea
behind it is to (try to) “weaken” this condition: we do not require, a priori,
that the correctness of the chosen λ is carried over to its own target but,
rather, that there are some “sufficiently correct ordinals around the chosen
λ” whose correctness is, at least to some extent, carried over to their targets.
As it turns out, this “some extent” is already enough.

In our view, the moral of the previous theorem is that there are two main
paths that we can follow in order to arrive at C(n)-extendibility from C(n)-
ultrastrongness: we can either require the additional clause “j(κ) > λ”,

or we can consider (what would be) the corresponding “C(n)+” version,
as mentioned above.7 Of course, as underlined in Question 2.9, it is open
whether these extra assumptions are actually proper strengthenings of C(n)-
ultrastrongness.8 In this context, it is worthwhile noting the following, which
may be considered as an indication that the hierarchies of C(n)- ultrastrong-
ness and of C(n)-extendibility perhaps coincide. For n > 1:

Proposition 2.11. Suppose that the cardinal κ is C(n)-ultrastrong but not
C(n)-extendible. Then, κ is C(n)-huge.

Proof. Our assumption means that the cardinal κ does not satisfy property
(ii) of Theorem 2.10. That is, there exists some λ0 > κ such that there is
no elementary embedding e : V −→ N with N is transitive, cp(e) = κ,

e(κ) > λ0, Ve(λ0) ⊆ N and e(κ) ∈ C(n). However, given that κ is C(n)-

ultrastrong, there must exist some µ 6 λ0 with µ ∈ C(n) and a proper class
C of ordinals such that, for all λ ∈ C, there exists an elementary embedding
j : V −→ M with M is transitive, cp(j) = κ, Vj(λ) ⊆ M and j(κ) = µ.

7Regarding requiring the additional clause “j(κ) > λ”, see also some relevant remarks
made by Gitman and Hamkins, in their discussion right after Theorem 9 in [6].

8If the notions of C(n)-extendibility and C(n)-ultrastrongness are indeed different, then
one might try some forcing construction in order to “separate” them.
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In other words, by a pigeonhole argument, for proper class many λ’s we
must have a corresponding embedding j that is λ-C(n)-superstrong for κ
and whose target j(κ) is a fixed C(n)-cardinal µ 6 λ0.

Now pick any λ ∈ C with λ > µ and let j : V −→ M be an elementary
embedding with M transitive, cp(j) = κ, Vj(λ) ⊆ M and j(κ) = µ. Note
that Vj(2)(κ) ⊆ Vj(λ) ⊆ M . Hence, by the usual ultrafilter characterization

(see Theorem 24.8 and the discussion before Proposition 26.12, in [8]), it

follows that κ is huge. Indeed, since j(κ) = µ ∈ C(n), we actually have that

κ is C(n)-huge, as claimed. �

At any rate, Theorem 2.10 gives us (yet) more equivalent characteriza-

tions of C(n)-extendibility (adding to the ones obtained by Gitman and
Hamkins in [6]), indicating that it constitutes a rather robust large cardinal

hierarchy. Moreover, given that the C(n)-extendible cardinals have recently
found applications in other mathematical contexts, this is something cer-
tainly worth remembering, which moreover concludes our current treatment
of (C(n)-)ultrastrong cardinals. Let us now turn to another strengthening
of superstrongness, in the next section.

3. Globally superstrong cardinals

From our discussion so far, it turns out that the (global) requirement of
“λ-superstrongness” (i.e., Vj(λ) ⊆ M) is “too much to ask”, when trying to
strengthen (usual) superstrongness: it already implies extendibility, which
is a much stronger large cardinal assumption.

We now relax this requirement by asking only for “κ-superstrongness”
(i.e., Vj(κ) ⊆ M); however, we ask that it occurs unboundedly often in
the ordinals. This can be viewed as a “globalization” of ordinary super-
strongness: recall that superstrong cardinals are witnessed “locally” by the
existence of one single elementary embedding (or, equivalently, of one sin-
gle appropriate extender). It is only natural to consider the corresponding
“global” notion, as made precise in the following definition.

Definition 3.1. We say that a cardinal κ is superstrong above λ, for
some λ > κ, if there exists an elementary embedding j : V −→ M with M
transitive, cp(j) = κ, j(κ) > λ and Vj(κ) ⊆ M . In such a case, we say that
the embedding j is superstrong above λ for κ. Moreover, we say that κ is
globally superstrong, if it is superstrong above λ, for all λ > κ.

Clearly, every globally superstrong cardinal is superstrong (and, also,
strong). On the other hand, global superstrongness is a weakening of the
previously defined notion of ultrastrongness: intuitively, here we require only
the usual κ-superstrongness (i.e., Vj(κ) ⊆ M) for the embeddings in ques-
tion. More accurately, since ultrastrongness is equivalent to extendibility, it
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is straightforward to verify that ultrastrongness directly entails global su-
perstrongness (appealing to Theorem 1.5); in fact, the former is a strictly
stronger assumption than the latter (see Proposition 3.9 below).

It is easy to see that the statement “κ is superstrong above λ” is Σ2-
expressible, via the existence of an appropriate extender. Hence, the state-
ment “κ is globally superstrong” is Π3-expressible which (modulo the con-
sistency of this notion) is an optimal complexity bound since, as we now
show, every globally superstrong cardinal is Σ3-correct.

Proposition 3.2. If κ is globally superstrong, then κ ∈ C(3).

Proof. It is clear that every globally superstrong cardinal is strong and,
thus, a member of C(2). So, fix a Σ3-formula ϕ(v) ≡ (∃x)ψ(x, v), where ψ
is Π2, and fix some a ∈ Vκ. It is enough to check that if ϕ(a) holds, then
Vκ |= ϕ(a).

For this, fix some x0 ∈ V such that ψ(x0, a) holds. We may assume
that rank(x0) > κ. Let λ > rank(x0) and fix some elementary embedding
j : V −→M that is superstrong above λ for κ; that is, cp(j) = κ, j(κ) > λ
and Vj(κ) ⊆ M . By choice of λ, we have that x0 ∈ Vj(κ) ⊆ M . Now,

since ψ(x0, a) is Π2, with {a, x0} ⊆ Vj(κ) and j(κ) ∈ C(1), it follows that
Vj(κ) |= ψ(x0, a), i.e., Vj(κ) |= (∃x)ψ(x, a). Thus, by elementarity and the
fact that j(a) = a, we get that Vκ |= ϕ(a), as desired. �

Regarding consistency lower bounds, we now show that globally super-
strong cardinals transcend ordinary (super)strongs, in the following sense.

Proposition 3.3. Suppose that κ is globally superstrong. Then, there exists
a normal measure U on κ such that {α < κ : α is (super)strong } ∈ U .

Proof. Let κ be globally superstrong, fix some λ > κ and let j0 : V −→M0

be an elementary embedding that is superstrong above λ for κ, i.e., cp(j0) =
κ, j0(κ) > λ and Vj0(κ) ⊆ M0. Now, let γ = j0(κ) and let j : V −→ M be
some (other) elementary embedding that is superstrong above γ for κ, i.e.,
cp(j) = κ, j(κ) > γ and Vj(κ) ⊆ M . We shall use this particular j and the
(usual) normal measure U on κ derived from it, in order to treat both cases,
i.e., “superstrong” and “strong”, simultaneously. By the standard reflection
arguments, it is enough to verify that M |= “κ is superstrong” and that
M |= “κ is strong”, correspondingly.

For “superstrongness”, let Eγ be the (κ, γ)-extender derived from j0 and
note that Eγ ∈ Vj(κ) ⊆ M . Then, it is easy to see that Eγ witnesses the
superstrongness of κ inside M , as desired.

For “strongness”, fix some α < j(κ) and let Eα be the (κ, |Vα|+)-extender

derived from j. Since j(κ) ∈ C(1), we have that all such derived extenders,
for all α < j(κ), belong to Vj(κ) and, thus, to M . Therefore, for each
ordinal α < j(κ), we get that M |= “κ is α-strong”, as witnessed by the
corresponding Eα. Now, by Proposition 3.2, it follows that M |= j(κ) ∈
C(3). Hence, all these Σ2-expressible statements of the form “κ is α-strong”
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(for α < j(κ)) are reflected from M down to Vj(κ), where they collectively
become the universal statement “κ is strong”. The latter statement then
goes up from Vj(κ) to M , again because j(κ) is Σ3-correct in M . �

For a consistency upper bound, we have already mentioned that every
extendible (i.e., every ultrastrong) cardinal is globally superstrong; in fact,
more is true: see Proposition 3.9 below. A (much) better consistency upper
bound will be given later on in this section (see Theorem 3.8), in the context

of the corresponding C(n)-version to which we now turn.

3.1. C(n)-globally superstrong cardinals. We begin by giving the rel-
evant definition. For every n > 1:

Definition 3.4. We say that a cardinal κ is C(n)-superstrong above λ, for
some λ > κ, if there exists an elementary embedding j : V −→ M with M
transitive, cp(j) = κ, j(κ) > λ, Vj(κ) ⊆ M and j(κ) ∈ C(n). In such a case,

we say that the embedding j is C(n)-superstrong above λ for κ. Moreover,
we say that κ is C(n)-globally superstrong, if it is C(n)-superstrong above
λ, for all λ > κ.

Once again, as in the case of the usual superstrong cardinals, every glob-
ally superstrong cardinal is C(1)-globally superstrong. It is easy to see that,
for each n > 1, the statement “κ is C(n)-superstrong above λ” is Σn+1-
expressible, via the existence of an appropriate extender. Hence, the state-
ment “κ is C(n)-globally superstrong” is Πn+2-expressible. As before, mod-
ulo the consistency of such notions, this is an optimal complexity bound: a
straightforward adaptation of Proposition 3.2 (performing a meta-theoretic
induction on n) shows that, for every n > 1:

Proposition 3.5. If κ is C(n)-globally superstrong, then κ ∈ C(n+2).

It follows from the last proposition that the C(n)-globally superstrong
cardinals, if consistent, form a proper hierarchy: for each n > 1, the least
C(n)-globally superstrong cardinal is below the least C(n+1)-globally super-
strong cardinal, assuming that both of them exist.

En passant, let us now give one useful observation in the general context of
C(n)-superstrong embeddings. As a matter of notation, we write Lim(C(n))

for the collection of limit points of the (closed and unbounded) class C(n).
For every n > 1:

Fact 3.6. Suppose that the embedding j : V −→M is C(n)-superstrong for
κ. Then, j(κ) ∈ Lim(C(n)).

Proof. As we have already remarked, every C(n)-superstrong cardinal be-
longs to C(n) itself. Given an embedding j : V −→ M that is C(n)-
superstrong for κ, it is then clear that Vj(κ) |= κ ∈ C(n) and, therefore,

M |= κ ∈ C(n) since, by elementarity, j(κ) is Σn-correct in M . By reflec-

tion, it follows that there are unboundedly many α < κ such that α ∈ C(n).
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Therefore, by elementarity, there are unboundedly many α < j(κ) such that

M |= α ∈ C(n). But note that, for each α < j(κ), we have that α ∈ C(n)

if and only if Vj(κ) |= α ∈ C(n) if and only if M |= α ∈ C(n). Hence, we

conclude that j(κ) ∈ Lim(C(n)), as desired. �

As a consequence of (the proof of) Proposition 3.3, easily adapting the
case of “superstrongness”, we get the following consistency lower bound.
For every n > 1:

Proposition 3.7. Suppose that κ is C(n)-globally superstrong. Then, there
is a normal measure U on κ such that {α < κ : α is C(n)-superstrong } ∈ U .

Next, we establish a consistency upper bound for the case of C(n)-globally
superstrong cardinals which, in particular, takes care of the globally super-
strong ones as well.

Theorem 3.8. If κ is κ+1-extendible, then there is a normal measure U on
κ such that {α < κ : (∀n ∈ ω)Vκ |= “α is C(n)-globally superstrong ”} ∈ U .

Proof. Let j0 : Vκ+1 −→ Vj0(κ)+1 be an embedding witnessing the κ + 1-
extendibility of κ and let E be the (κ, j0(κ))-extender derived from j0. Then,
if j : V −→ M is the corresponding extender embedding, we have that
cp(j) = κ, j(κ) = j0(κ) (which is an inaccessible cardinal) and Vj(κ) =
Vj0(κ) ⊆M .

We now perform an elementary chain construction below the inaccessible
j(κ), as follows. Let us first fix an initial limit ordinal β0 ∈ (κ, j(κ)). Then,
we let:

X0 = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ Vβ0} ≺M.

Given any ξ+1 < j(κ) and given βξ and Xξ, we let βξ+1 = sup(Xξ ∩ j(κ))+ω
and

Xξ+1 = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ Vβξ+1
} ≺M.

If ξ < j(κ) is limit and we have already defined βα and Xα for each α < ξ, we
let βξ = supα<ξ βα and Xξ =

⋃
α<ξXα ≺ M . This concludes the definition

of the elementary chain.
For any limit ordinal length γ < j(κ), we consider βγ = supα<γ βα and

the corresponding Xγ =
⋃
α<γ Xα, that is:

Xγ = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ Vβγ} ≺M.

We note that from the inaccessibility of j(κ) it follows that βγ < j(κ), for
all γ < j(κ). We now consider the Mostowski collapse πγ : Xγ

∼= Mγ and
we let jγ = πγ ◦ j : V −→ Mγ be the composed embedding. As expected,
this produces a commutative diagram of elementary embeddings (where the
third arrow of the diagram is the map kγ = π−1

γ ). Now, by results in [12]
(cf. Proposition 2.13), we have that jγ , which is a factor embedding of j, is
superstrong for κ with target jγ(κ) = βγ .
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In other words, for any initial limit ordinal β0 ∈ (κ, j(κ)), this construc-
tion produces a collection of targets jγ(κ) > β0 of superstrongness embed-
dings for κ, for various limit lengths γ < j(κ). It is easily checked that this
collection is actually a full club in j(κ) (see, e.g., Corollary 2.14 in [12]).
Moreover, all these factor embeddings jγ are witnessed by extenders inside
Vj(κ), with the latter being a (ZFC) model that faithfully verifies that all
such extenders are superstrong for κ.

But now, for each n ∈ ω, we can intersect the aforementioned club of
superstrong targets with (C(n))Vj(κ) , which is the (club) subset of j(κ) con-
sisting of the ordinals that are Σn-correct in the sense of the model Vj(κ).
That is, we can find unboundedly many ordinals below j(κ) that are targets
of superstrong embeddings for κ and that, moreover, belong to the class
C(n) as this is computed in Vj(κ). This shows that, for each n ∈ ω, we have

that Vj(κ) |= “κ is C(n)-globally superstrong”. The desired result now fol-
lows from a standard reflection argument, using the usual normal measure
U on κ derived from j. �

Thus, the assumption of κ + 1-extendibility is an adequate consistency
upper bound for C(n)-global superstrongness, in a strong sense: we get the
consistency of the latter notion for all natural numbers simultaneously. Of
course, the question of whether this (upper) bound is optimal remains open.

Nevertheless, it should certainly be remarked that there is substantial
difference, in terms of consistency strength, between the notion of C(n)-
ultrastrongness and that of C(n)-global superstrongness: modulo their con-
sistency, the former notion is much stronger than the latter; this follows
from the previous theorem and our discussion and results in Section 2.

We now take care of a small issue that we left pending after Proposition
3.3, regarding the relationship between ultrastrong (i.e., extendible) and
globally superstrong cardinals.

Proposition 3.9. Suppose that κ is extendible. Then, there is a normal
measure U on κ such that {α < κ : α is globally superstrong } ∈ U . In
particular, the least globally superstrong cardinal is below the least extendible,
assuming that both of them exist.

Proof. Having fixed an embedding j : V −→ M with cp(j) = κ and
Vj(κ)+1 ⊆ M , which we can obtain from the extendibility of κ, we employ
an argument similar to the one given in the proof of Theorem 3.8 (disre-

garding the “C(n)” part). We omit the details. We merely note that, in the
current situation, the cardinal κ, being fully extendible, is Σ3-correct and,
hence, for every α < κ, we have that α is globally superstrong if and only if
Vκ |= “α is globally superstrong”. �

Via a straightforward adaptation of the previous result in the context of
the corresponding C(n)-versions, recalling that every C(n)-extendible cardi-
nal belongs to C(n+2), we also get that, for every n > 1:
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Proposition 3.10. Suppose that κ is a C(n)-extendible cardinal. Then,
there exists a normal measure U on κ such that:

{α < κ : α is C(n)-globally superstrong } ∈ U

The following question remains open. For every n > 1:

Question 3.11. Does the implication stated in the previous proposition
remain valid if we replace C(n)-extendibility by C(n)-ultrastrongness in the
assumption?

Evidently, this question makes sense only if the two notions do not co-
incide (cf. Question 2.9). In such a case, observe that, in light of Theorem
3.8, an affirmative answer to Question 2.5 would indeed answer affirmatively
Question 3.11 as well.

3.2. C(n)-global superstrongness Laver functions. It is a matter of
fact that Laver functions are an extremely flexible and useful tool in the
context of large cardinals, with several of the usual large cardinal notions
having this desirable feature (that is, they carry their own versions of such
functions).

Historically, the initial example was given by Laver himself, who showed
that supercompact cardinals have this property (see [9]). In the subsequent
years, the list has been expanded substantially; here, we show that globally
superstrong cardinals share this feature as well. Before anything else, we
have to define the exact sort of “Laver function” that we have in mind. For
every n > 1:

Definition 3.12. Let κ be C(n)-globally superstrong. A function `
...κ −→ Vκ

is called a C(n)-global superstrongness Laver function for κ if, for every
cardinal λ > κ and for every x ∈ Hλ+ , there exists an (extender) elementary

embedding j : V −→M that is C(n)-superstrong above λ for κ, and is such
that j(`)(κ) = x.

Let us recall that the “three-dot” notation `
... κ −→ Vκ means that

dom(`) ⊆ κ (i.e., a partial function). We now show that, for every n > 1:

Theorem 3.13. If the cardinal κ is C(n)-globally superstrong, then κ carries
a C(n)-global superstrongness Laver function.

Proof. Fix n > 1, suppose that κ is C(n)-globally superstrong and fix a
well-ordering Cκ of Vκ. Aiming for a contradiction, let us assume that there
does not exist any C(n)-global superstrongness Laver function for κ.

In a recursive manner, we define a partial function `
...κ −→ Vκ, as follows.

Given α < κ and ` � α, we define `(α) only if `“α ⊆ Vα and the following
condition is satisfied: there is some λ > α and some x ∈ Hλ+ such that,
for every extender embedding j : V −→ M that is C(n)-superstrong above
λ for α, we have that j(` � α)(α) 6= x. We note that this condition is
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Σn+2-expressible, in the parameters α and ` � α;9 thus, given that κ is C(n)-
globally superstrong and, hence, a member of C(n+2), if this condition is
satisfied, then it reflects down to Vκ. In that case, we let λα < κ be the
least such cardinal λ > α and we define `(α) to be the Cκ-minimal witness
x ∈ Hλ+α

; otherwise, we leave the function ` undefined. This concludes the
definition of `

... κ −→ Vκ.
By our assumption, there exists a least (cardinal) λ∗ > κ and some x∗ ∈

Hλ∗+ such that for every extender embedding j that is C(n)-superstrong
above λ∗ for κ, we have that j(`)(κ) 6= x∗. We fix a Πn+1-expressible
formula, say ϕ(λ∗, x∗), that asserts this fact (in the parameters κ and `).

Further, we fix some θ > λ∗ with θ ∈ C(n+1) and an elementary embedding
j : V −→ M that is C(n)-superstrong above θ for κ; i.e., M is transitive,
cp(j) = κ, j(κ) > θ, Vj(κ) ⊆ M and j(κ) ∈ C(n). Note that, trivially,

j is also C(n)-superstrong above λ∗ for κ.10 Further, observe that, in the
model M , we also have that θ ∈ C(n+1).11 It now follows that, in M , the
cardinal λ∗ is the least µ for which ϕ holds for some x ∈ Hµ+ , since this
is correctly reflected inside Vθ; in other words, M believes that λ∗ = λκ in
the above notation. Thus, by elementarity, there exists some y ∈ Hλ∗+ such
that j(`)(κ) = y, as computed in M . By definition of the function j(`), we
have that M |= ϕ(λ∗, y); this will lead us to a contradiction.

For the final part of the argument, we have to find an appropriate extender
E, inside M , that witnesses the C(n)-superstrongness above λ∗ for κ and
whose corresponding embedding jE is such that jE(`)(κ) = y. But note
that, for every Σn-correct cardinal α ∈ (λ∗, θ),12 the statement “there is

some extender E that is C(n)-superstrong above α for κ and whose support
contains Vα” is Σn+1-expressible in the parameters κ and α. This statement
is clearly true in V , as witnessed by the (κ, j(κ))-extender derived from
j. Hence, it reflects down to Vθ and, then, from there, it reflects upwards
to M (again, since θ is Σn+1-correct in M). Given any such extender E
in M , note that all four: κ, λ∗, Hλ∗+ and y belong to Vα (i.e., are in the
support of E) and are thus fixed by the usual third factor embedding kE
(that commutes with j and jE). It follows that M correctly computes the
value jE(`)(κ) = j(`)(κ) = y, which is the contradiction that concludes the
proof. �

9See the similar Claim 4.3 in [15], for more details on this complexity computation.
10Observe that, here, the fact that we pick the embedding j with target above some

Σn+1-correct ordinal above λ∗, in this case θ, in particular means that j(κ) is far from

being the least target among the possible embeddings that are C(n)-superstrong above λ∗

for κ. This is because the statement “there is some extender E that is C(n)-superstrong
above λ∗ for κ” is Σn+1-expressible. This statement holds in V (as witnessed by j itself)
and, thus, it must reflect (correctly) down to Vθ.

11For this, just observe that Vj(κ) |= θ ∈ C(n+1) and that, by elementarity, the cardinal

j(κ) is Σn+2-correct in M .
12Of which there are many, since θ ∈ C(n+1).
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The C(n)-globally superstrong cardinals are, thus, the second known ex-
ample of a C(n)-hierarchy that has its own, appropriate, Laver functions.
The first example was shown to be the case of C(n)-extendibility (see The-
orem 4.2 in [15]).

Towards concluding, let us say a few words regarding the interaction of
C(n)-globally superstrong (and of C(n)-ultrastrong) cardinals with forcing
techniques. First of all, as usual in the context of large cardinals, we get the
preservation of these notions under small forcing. For every n > 1:

Proposition 3.14. Suppose that κ is a C(n)-globally superstrong (resp.

C(n)-ultrastrong) cardinal and let P be a poset with |P| < κ. Then, in the

forcing extension V P, the cardinal κ remains C(n)-globally superstrong (resp.

C(n)-ultrastrong).

Proof. The proposition follows from standard arguments, as when dealing
with ordinary superstrong cardinals, which we omit. The only detail that we
should mention, in the current setting, is that one needs to employ Lemma
4.2 (i) from [12], in order to get the preservation of Σn-correct ordinals
under small forcing. �

Furthermore, Friedman showed that every superstrong cardinal is pre-
served by the canonical class poset P that forces the global GCH in the
universe (see [5] for definitions, details, etc.; in particular, the relevant re-
sult appears as Theorem 2 there). Indeed, he showed that if κ is superstrong,
then every ground model superstrongness embedding j for κ lifts in the forc-
ing extension V P in order to witness, there, the superstrongness of κ (with
the same target j(κ)). As an immediate consequence of this result, we get:

Proposition 3.15. Every globally superstrong cardinal is preserved by the
canonical forcing for global GCH.

We should remark that a similar result holds for ultrastrong (i.e., ex-
tendible) cardinals as well: see [11].

This concludes our current treatment of globally superstrong cardinals.
Just before the end, let us point out that both some earlier work (cf. [12], [13],
[14], [15]) and the current note suggest that the elementary chain method (as
exemplified in the proof of Theorem 3.8 above) ties nicely with embeddings
that are sufficiently superstrong above their target; such a construction is
typically performed below some inaccessible cardinal bound (e.g., in the case
of extendible cardinals, this bound could be taken to be the target j(κ)).
This is a quite general observation that has some value as to what sort of
methods can be used in the context of particular large cardinal notions. We
expect further exploitation of it in the future.

With an eye to subsequent research investigations, let us end by mention-
ing some open themes that, we believe, are worth looking into. As far as
the C(n)-ultrastrong cardinals are concerned, in our view, the main issue re-
volves around their exact relationship with the C(n)-extendibles, something
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that has already been highlighted in Questions 2.5 and 2.9 of Section 2, but
also in Question 3.11 of the current section.

Let us close by stating a few more questions. For every n > 1:

Question 3.16. Do C(n)-ultrastrong cardinals carry (appropriate) Laver
functions?

Question 3.17. Are C(n)-globally superstrong (resp. C(n)-ultrastrong) car-
dinals preserved by the canonical forcing for global GCH?

The next two questions also make sense for n = 1. The first one is more
of a general inquiry than a precise statement. For any n > 1:

Question 3.18. What forcing posets preserve the C(n)-global superstrong-
ness (resp. C(n)-ultrastrongness) of a given cardinal κ?

Question 3.19. Let κ be C(n+1)-globally superstrong. Is there a forcing
that destroys the C(n+1)-global superstrongness of κ while preserving its
C(n)-global superstrongness?

This last question, appropriately modified, is also open in the context
of C(n)-supercompact, of C(n)-ultrastrong and of C(n)-extendible cardinals,
respectively.13 Regrettably, in all these cases, we have no clue as to what
the corresponding answer might be.
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