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Abelian Hopf Galois structures from
almost trivial commutative

nilpotent algebras

Lindsay N. Childs

Abstract. Let L/K be a Galois extension of fields with Galois group
G an elementary abelian p-group of rank n for p an odd prime. It is
known that nilpotent Fp-algebra structures A on G yield regular sub-
groups of the holomorph Hol(G), hence Hopf Galois structures on L/K.
In this paper we illustrate the richness of Hopf Galois structures on
L/K by examining the case where A is abelian of Fp-dimension n where
dim(A2) = 1. We determine the number of Hopf Galois structures that
arise in these cases, describe those structures explicitly, and estimate the
extent of failure of surjectivity of the Galois correspondence for those
structures.
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1. Introduction

In 1969, Chase and Sweedler [5] defined the notion of a Hopf Galois exten-
sion of fields by abstracting the formal properties of a classical Galois exten-
sion of fields. In 1987, Greither and Pareigis [13] discovered that a classical
Galois extension L/K of fields with Galois group G could also be a Hopf
Galois extension for a K-Hopf algebra H other than H = KG, the group
ring of the Galois group, acting in the obvious way on L. They showed that
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determining the number of Hopf Galois structures on L/K depends solely on
the Galois group G. More precisely, the Hopf Galois structures correspond
to regular subgroups N of the permutation group of G that are normalized
by the image λ(G) of the left regular representation of G in Perm(G). In
many examples the subgroup N of Perm(G) need not be isomorphic to G,
so we define the type of the Hopf Galois extension of L/K corresponding to
N to be the isomorphism class of the group N .

Since the appearance of [13] there has been a fairly steady sequence of
papers studying the number of Hopf Galois structures on a Galois extension
of fields L/K with Galois group G. These range from Byott’s uniqueness
paper [2] and his theorem [3] that if G is a non-abelian simple group then
L/K has exactly two Hopf Galois structures, to papers that for suitable
Galois groups G describe large numbers of Hopf Galois structures on L/K,
e.g. [7], or describe Hopf Galois structures of all possible types, e. g. [1].

Counting Hopf Galois structures on a field extension with Galois group G
is often made easier by translating the problem of finding regular subgroups
of Perm(G) that are isomorphic to a given group N and are normalized by
λ(G) to a problem of finding regular subgroups of Hol(N) that are isomor-
phic to G. This translation from Perm(G) to Hol(N) was first codified in
[2], and has been the approach of choice for most papers devoted to counting
Hopf Galois structures.

In [4] and subsequently in [12] Caranti, et. al. showed that for a finite
abelian p-group, any commutative regular subgroup of Hol(G) can be ob-
tained as the circle, or adjoint, group of a commutative nilpotent algebra
structure (G,+, ·) on the additive group G. Meanwhile, Rump [15] defined a
left brace and showed that if (A,+, ·) is a radical ring, then (A, ◦,+) is a left
brace, and Guarneri and Vendramin [14] extended the concept to that of a
skew left brace by relaxing the commutativity assumption on the operation
+. In particular, they characterized skew braces as follows:

Theorem 1.1. Let (B, ◦, ?) be a set with two group operations ◦ and ?. Let
λ◦, λ? : B → Perm(B) be the two left regular representation maps, defined
by λ◦(b)(x) = b ◦ x, λ?(b)(x) = b ? x. Let Hol(B, ?) ⊂ Perm(B) be the
normalizer of λ?(B) in Perm(B). Then B is a skew left brace if and only if
λ◦(B) ⊂ Hol(B, ?).

Subsequently, Byott and Vendramin [16] showed that (B, ◦, ?) is a skew
left brace if and only if there exists a Galois extension L/K with Galois
group G and a Hopf Galois structure of type N so that G ∼= (B, ◦) and
N ∼= (B, ?). Their observation follows from the fact from Greither-Pareigis
that if N = (B, ?) is normalized by λ◦(B) = λ(G) in Perm(G), then N
corresponds to a Hopf Galois structure on L/K, and conversely, if L/K
is G-Galois and has a Hopf Galois structure corresponding to the regular
subgroup N of Perm(G) normalized by λ◦(G) in Perm(G), then N defines
a new group structure (G, ?) ∼= N on G which makes (G, ◦, ?) into a skew
brace.
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To illustrate the richness of Hopf Galois structures, especially on Galois
extensions with Galois group an elementary abelian p-group, insights can
be gained by just looking at those arising from nilpotent Fp-algebras. In
this paper we look at Hopf Galois structures corresponding to a class of
commutative nilpotent Fp-algebras A of Fp-dimension n that are “almost”
trivial. Thus we assume that A has the property that dimFp(A2) = 1 and

A3 = 0. If A2 = 0, then the Hopf Galois structure on a Galois extension
with Galois group G ∼= (A,+) is unique, namely that given by the Galois
group, so our examples of nilpotent algebras are about as close to being
trivial as possible.

We determine the isomorphism types of commutative nilpotent Fp-algebras
A of dimension n with A3 = 0 and dim(A2) = 1, and determine the number
of regular subgroups of Hol(G) associated to each isomorphism type. For
n = 4 this approach yields more than p9 regular subgroups. We describe
the Hopf Galois structure on L/K corresponding to each regular subgroup
arising from a given isomorphism type of algebra. We also explicitly de-
scribe the Hopf algebra action on L/K, and estimate the extent of failure
of the Galois correspondence for the Hopf Galois structure to map onto the
intermediate fields between K and L.

Throughout, let L/K be a Galois extension of fields with Galois group
Γ, an elementary abelian p-group of order pn, p an odd prime. For a finite
abelian p-group G with operation +, a ring structure A = (G,+, ·) on G
will be called nilpotent if A is associative and nilpotent: Am = 0 for some
m > 1.

This research was inspired by discussions with Tim Kohl. Many thanks
to him for sharing his enthusiasm with me. My thanks also to the referee
for some insightful comments.

2. Hopf Galois structures from nilpotent algebras

Let A = (A,+, ·) be a nilpotent Fp-algebra of Fp-dimension n. The circle
operation ◦ on A, defined by a ◦ b = a + b + a · b for a, b in A, is clearly
associative with identity element 0. Since A is nilpotent, the circle inverse
a of a is

a = −a+ a2 − a3 + . . . ,

where ar = a · a · . . . · a (r factors), and so (A, ◦) is a group, the adjoint
group of A. It is well known since [15] that then (A, ◦,+) is a left brace
with additive group (A,+), that is, for all a, b, c in A

a ◦ (b+ c) = a ◦ b− a+ a ◦ c.
Let An = {a1 · a2 · . . . · an : a1, . . . , an in A}. Then we have

Proposition 2.1. Let (A,+) be an abelian p-group of finite order pn, and
let (A,+, ·) be a nilpotent ring structure on (A,+). Let (A, ◦) be the adjoint
group on A and let λ+, λ◦ be the corresponding left regular representations
of A into Perm(A). Then the following are equivalent:
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(i) λ◦(A) is normalized by λ+(A).
(ii) A3 = 0.
(iii) (A, ◦,+) is a left skew brace with (A, ◦) acting as the additive group.

In [9] a skew brace satisfying (iii) was called a bi-skew brace.
The equivalence of (i) and (iii) follows by the Guarneri-Vendramin charac-

terization, Theorem 1.1 above. The equivalence of (ii) and (iii) is Proposition
4.1 of [9], a routine computation working modulo A4. As the referee kindly
pointed out, the equivalence of (i) and (ii) for finite dimensional nilpotent
algebras over a field was observed immediately following Lemma 3 in [4].

We identify the corresponding Hopf Galois structures:

Corollary 2.2. Let L/K be a Galois extension with Galois group (A,+) =
G, an abelian p-group of order pn. Let A = (A,+, ·) be a commutative
nilpotent ring structure on (A,+) and suppose A3 = 0. Then T = λ◦(A) ⊂
Perm(A) yields a Hopf Galois structure on L/K by a K-Hopf algebra H,
where

i) H is the fixed ring of LT under the action of G:

H = LTG =

{∑
x∈G

bxλ◦(x) : bx−x·z = bzx for all z in G

}
;

ii) H acts on L by (∑
x∈G

bxλ◦(x)

)
(a) =

∑
x∈G

bxa
−x+x2

for b, a in L.

Proof. Let {ez : z ∈ G} be the dual basis to the basis G = (A,+) of the
group ring L[G]. The action of T = λ◦(A) on GL =

∑
z∈G Lez is by

λ◦(x)(ez) = ex◦z

for x in G. This yields an action of the group ring LT on GL making GL
an LT -Hopf Galois extension of L. Since λ+(G) acts on T by

λ+(z)λ◦(x)λ+(−z) = λ◦(x− x · z),

the corresponding K-Hopf algebra is

H = LTG =

{∑
x∈G

bxλ◦(x) : bx−x·z = bzx for all z in G

}
where for a in L and y in G, ay is the image of a under the Galois action of
y on L, and H acts on GL by(∑

x∈G
bxλ◦(x)

)∑
y∈G

ayey

 =
∑

x,y∈G
bxayex◦y.
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Now L embeds in GL by

a 7→
∑
y∈G

ayey.

So the action of H on L is by(∑
x∈G

bxλ◦(x)

)
(a) =

∑
x,y∈G,x◦y=0

bxa
y.

Since x3 = 0, x ◦ (−x+x2) = 0, and so the action of H on L can be written(∑
x∈G

bxλ◦(x)

)
(a) =

∑
x∈G

bxa
−x+x2

.

�

There is no a priori reason why (A, ◦) and hence T = λ◦(A) should be
isomorphic to G, so that H has type G. But if A is commutative, it is true:
we note the following variant of Theorem 1 of [12]:

Proposition 2.3. Let p > 3 be an odd prime and G = (G,+) be a finite
abelian p-group of order pn. Let A = (G,+, ·) be a commutative nilpotent
ring structure on (G,+) and suppose A3 = 0. Then the regular subgroup
N = (G, ◦) of Hol(G) ⊂ Perm(G) is isomorphic to (G,+).

The statement of Theorem 1 of [12] replaces the condition A3 = 0 in
Proposition 2.3 by the condition that the p-rank m of G should satisfy
m + 1 < p. The proof of Proposition 2.3 is essentially the same as that of
Theorem 1 of [12]. The only change is that the condition A3 = 0 implies
that ap = 0 for all a in A, which slightly simplifies the proof in [12]] by
eliminating the need to apply a condition on the p-rank of G to insure that
ap does not interfere with the induction argument.

3. Working in the affine group

For the remainder of the paper we restrict G to be an elementary abelian
p-group of p-rank n > 1, and we consider only commutative nilpotent ring
structures A on (G,+) with A3 = 0. From [7], it is known that the number
of isomorphism types of such structures is bounded from below by pb where
b = O(n3).

Each such ring is an Fp-algebra. Let dimFpA/A
2 = r and dimFpA

2 = n−r.
Given an Fp-basis (x1, . . . , xr) of A/A2 and a basis (y1, . . . yn−r) of A2, the

multiplicative structure of A with those bases is given by a set Φ(k) = (φ
(k)
ij )

of r × r symmetric matrices with coefficients in Fp, by the equations

xixj =

n−r∑
k=1

φ
(k)
i,j yk.
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The group structure (G, ◦) on G arising from (A,+, ·) depends on the matri-

ces {Φ(k)}, and hence so does the regular subgroup T = λ◦(G) of Perm(G).
It is convenient to view Hol(G) as the affine group Affn(Fp) and realize

the regular subgroup T inside Affn(Fp).
Let Affn(Fp) be the subset of GLn+1(Fp) consisting of matrices of the

form (
B v
0 1

)
,

where B is an n× n matrix, v is a column vector in Fn
p , 0 is a n-row vector

of zeros and 1 is a 1×1 identity matrix. Then Affn(Fp) may be identified as
the holomorph Hol(Fn

p ) = λ(Fn
p ) · Aut(Fn

p ) of the additive group Fn
p , where

the matrices (
P 0
0 1

)
with P in GLn(Fp) form the subgroup Aut(Fn

p ) of Hol(Fn
p ), and matrices(

I x
0 1

)
for x in Fn

p form the subgroup λ(Fn
p ).

The group T = λ◦(A) embeds as a regular subgroup of Affn(Fp) as follows:
The map λ◦ from Fn

p to Fn
p is given by λ◦(x)(y) = x ◦ y = x + y + x · y.

Write λ◦(x)(y) = x + y + Lx(y), where Lx(y) = x · y. Then Lx is a linear
function from Fn

p to Fn
p , so has a matrix relative to the standard basis of

Fn
p that we also call Lx. Then λ◦(x) in Affn(Fp) becomes the n+ 1× n+ 1

matrix

Tx =

(
I + Lx x

0 1

)
,

because for any y in Fn
p , we have

Tx

(
y
1

)
=

(
y + Lx(y) + x

1

)
=

(
y + x · y + x

1

)
=

(
λ◦(x)(y)

1

)
.

4. The case r = n − 1

We now look at the class of examples where dim(A) = n,dim(A2) =
1, A3 = 0. Then A has the Fp-basis (x1, . . . , xn−1, xn) with xixj = φi,jxn,
so A is determined by that basis and the single n × n structure matrix
Φ = (φij). Since A3 = 0, φni = φin = 0 for all i. In this section we
determine the regular subgroups of Affn(Fp) associated to A.

Since A is commutative, the structure matrix Φ is symmetric. Then (c.f.
[17], Section 3.4.6) there is an invertible matrix P so that PΦP T = D =
diag(Ds, 0) is diagonal, where Ds = diag(1, . . . , 1, s) is k×k for some k ≤ n,
where s is either 1 or any chosen non-square in Fp.
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So set z = Px. Then zn = xn and with respect to the basis (z1, . . . , zn−1, zn),
A has the structure matrix D with zizj = dijzn and

D = diag(d1, . . . , dn) = diag(1, 1, . . . , 1, s, 0, . . . 0)

with s = dk.
So by that change of basis of A, we can realize the group T conveniently

in

Hol(G) ∼= Affn(Fp) =

(
GLn(Fp) Fn

p

0 1

)
.

by picking the basis (z1, . . . , zn) for A so that Φ = D.
Let {e1, . . . , en} be the standard basis of Fn

p corresponding to the basis
{z1, . . . zn} of A = (A,+). Then λ◦(zi) = Ti is the element

Ti =

(
Li ei
0 1

)
,

which acts on A = {r =
∑n

i=1 riei : r ∈ Fn
p} embedded as elements

(
r
1

)
in

Fn+1
p by (

Li ei
0 1

)(
ej
1

)
=

(
ei ◦ ej

1

)
=

(
ei + ej

1

)
for i 6= j(

Li ei
0 1

)(
ei
1

)
=

(
ei ◦ ei

1

)
=

(
ei + ei + dien

1

)
.

5. The number of Hopf Galois structures associated to A

In this section we determine the number of Hopf Galois structures on a
Galois extension L/K of fields with Galois group G = (Fn

p ,+) that corre-
spond to certain isomorphism types of nilpotent algebra structures on G.

To do so, we have

Proposition 5.1. Let A be a nilpotent Fp-algebra structure on (Fn
p ,+).

Then the number of Hopf Galois structures on L/K corresponding to the
isomorphism type of A is equal to

|GLn(Fp)|/|Sta(T )|
where T = λ◦(A) is the regular subgroup of Affn(Fp) corresponding to A and

Sta(T ) = {P ∈ GLn(Fp) :

(
P 0
0 1

)
T = T

(
P 0
0 1

)
.

This follows by [4], which showed that two nilpotent Fp-algebras on (Fn
p ,+)

are isomorphic if and only if the corresponding regular subgroups of Affn(Fp)

are conjugate by an element of Aut(G) =

(
GLn(Fp) 0

0 1

)
in Affn(Fp).

We note that given a regular subgroup T of Affn(Fp) normalized by
λ+(A), corresponding to A with A3 = 0, then all of the regular subgroups
in the orbit of T under conjugation by Aut(G) correspond to algebras A1
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isomorphic to A, hence have A3
1 = 0. Thus all are normalized by λ(G).

Hence by Galois descent, all of those regular subgroups give rise to Hopf
Galois structures on a Galois extension L/K with Galois group G.

The commutative nilpotent Fp-algebra A with A2 = 0 yields the classical
Galois structure on a Galois extension with Galois group G. For then Φ =
D = 0, and the corresponding regular subgroup T of Affn(Fp) is λ+(A),
which is stable under conjugation by every element of Aut(G), hence yields
only the classical Galois structure on L/K.

Since p is odd, we may assume that Φ = diag(Ds, 0). Let

vs = (r1, r2, . . . , rk−1, srk)T ,

v = (r1, r2, . . . , rk−1, rk)T ,

w = (rk+1, . . . , rn−1)
T

(column vectors of elements of Fp). Then it is convenient to write elements
of T = λ◦(A) as block matrices of the form

T = {λ◦(r) =


I 0 0 v
0 I 0 w
vTs 0 1 rn
0 0 0 1

 : r ∈ Fn
p}

where the diagonal entries are identity matrices of size k × k, (n− 1− k)×
(n− 1− k), 1× 1 and 1× 1, respectively.

To determine the number of Hopf Galois structures corresponding to reg-
ular subgroups in the orbit of T , we need to find the stabilizer of T under
conjugation by the elements of Aut(G) = GLn(Fp).

To determine the stabilizer of T , we seek the set of (n + 1) × (n + 1)
matrices

Q =

(
P 0
0 1

)
in Aut(G) ⊂ Affn(G) so that QTQ−1 = T , where P in GLn(Fp) has the
form

P =

P11 P12 P13

P21 P22 P23

P31 P32 P33


with blocks of the same size as λ◦(r). Let λ◦(r

′) be another element of T .
We compute Pλ◦(r) and λ◦(r

′)P and set Pλ◦(r) = λ◦(r
′)P .

Equating the (11) terms yields that P13 = 0.
Equating the (21) terms yields that P23 = 0.
Equating the (32) terms yields that P12 = 0.
Then equating the (31) terms yields

v′Ts P11 = P33vs
T .

Equating the (14) terms yields

P11v = v′.
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Equating the (24) terms yields

w′ = P21v + P22w.

Equating the (34) terms yields

t′ = P31v + P32w + P33t.

The (24) and (34) equations define w′ and t′. Setting P33 = q, a non-zero
element of Fp, then from (14) and (31) we have

P T
11v
′
s = qvs and P11v = v′.

Recalling that Ds = diag(1, . . . 1, s), a k × k matrix, then Dsv = vs, Dsv
′ =

v′s. So

P T
11Dsv

′ = qDsv,

hence

P T
11DsP11v = qDsv.

Thus P is in the stabilizer of T if

P =


P11 0 0 0
P21 P22 0 0
P31 P32 P33 0
0 0 0 1


where
P33 = q is in GL1(Fp);
P32 is 1× (n− 1− k) and arbitrary;
P31 is 1× k and arbitrary;
P22 is in GLn−1−k(Fp);
P21 is (n− 1− k)× k and is arbitrary; and
P11 is in GLk(Fp) and satisfies P T

11DsP11 = qDs.
As noted above, we may assume that A has a basis for which A has the

structure matrix D =

(
Ds 0
0 0

)
where Ds = diag(1, 1, . . . , s) is k×k, k < n.

To determine the possible P11 we have three cases:
(1) k is odd;
(2) k is even and s = 1
(3) k is even and s is a non-square in Fp.
Each case involves a different orthogonal group. The notation for the

orthogonal groups over Fp is from [17], Section 3.7.

Proposition 5.2. For Case 1), let k = 2m+ 1. For all q 6= 0 in Fp, there
exists a k×k matrix C so that CTC = qI if and only if q is a square. Fixing
C, then for any s in Fp, P T

11DsP11 = qDs if and only if P11 = CU for U in
GO2m+1(Fp).

For Case 2), let k = 2m and s = 1. For all q 6= 0 in Fp, there exists a
k × k matrix C so that CTC = qI. Fixing C, then P T

11P11 = qI if and only
if P11 = CU for U in GO+

2m(Fp).
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For Case 3), let k = 2m and s be a non-square in Fp. For all q 6= 0 in
Fp, there exists a k × k matrix C so that CTDsC = qDs. Fixing C, then
P T
11DsP11 = qDs if and only if P11 = CU for U in GO−2m(Fp).

Proof. In Case 1) with k odd, if there exists C so that CTC = qI, then
taking determinants gives det(C)2 = qk, hence q must be a square.

For the rest, it suffices to find the matrix C in each case.
For Case 1), let q = t2, then C = tI satisfies CTC = qI.

For Case 2), let q = f2+g2, letQ =

(
f g
−g f

)
and let C = diag(Q,Q, . . . , Q).

Then CTC = qI.
For Case 3), let q = f2 + g2 and Q as in Case 2). For s a non-square

in Fp, find w and x in Fp so that w2 + sx2 = q. (If q is a square, let
x = 0, w2 = q; if q is a non-square, let w = 0 and find x so that sx2 = q,

possible because the squares have index 2 in F×p .) Then R =

(
w sx
x −w

)
satisfies RT

(
1 0
0 s

)
R =

(
q 0
0 sq

)
. Let C = diag(Q,Q, . . . , Q,R). Then

CTDsC = qDs. �

Corollary 5.3. Let A be a commutative nilpotent Fp-algebra of dimension
n with A3 = 0 and dim(A2) = 1. Suppose the structure matrix of A is
Φ = diag(Ds, 0) where Ds is k × k and

1) k = 2m+ 1
2) k = 2m, s = 1
3 k = 2m, s is a non-square in Fp.
Then the number of distinct regular subgroups of Affn(Fp) associated to

A, and hence the number of Hopf Galois structures on L/K associated to
the isomorphism type of A, is

1)
|GLn(Fp)|

(p−12 ) · |GO2m+1| · |GLn−1−k| · pk(n−1−k)+(n−1)

2)
|GLn(Fp)|

(p− 1) · |GO+
2m| · |GLn−1−k| · pk(n−1−k)+(n−1)

3)
|GLn(Fp)|

(p− 1) · |GO−2m| · |GLn−1−k| · pk(n−1−k)+(n−1)

The orders of the k× k orthogonal groups are polynomials in p of degree
(k2 − k)/2 (c.f. [17], p. 72), and the order of GLn(Fp) is a polynomial of
degree n2. Hence we have

Corollary 5.4. Let A be a commutative nilpotent Fp-algebra of dimension
n with A3 = 0, dim(A2) = 1 and structure matrix of rank k. Let L/K be a
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Galois extension with Galois group G ∼= (A,+). Then the number of Hopf
Galois structures on L/K of type (A, ◦) is a polynomial function of p of
degree

n2 − (k2 − k)/2− (n− k)(n− 1)− 1 =
(2n− k)(k + 1)

2
− 1.

The number of Hopf Galois structures increases with k and is maximal
when k = n− 1.

6. The cases n = 2, 3, 4

We compare the counts of Hopf Galois structures in the last section to
the number of Hopf Galois structures found by formal group methods in [6]
for n = 2, 3.

The case n = 2. Let n = 2, k = 1. Then Φ = (1). For P to stabilize T ,

P =

(
P11 0
P21 P22

)
,

and the number of choices for each submatrix in P is(
|GO1| 1

p p−1
2

)
.

Since GO1 = {(1), (−1)}, the size of the stabilizer of the regular subgroup
is

2 · p · p− 1

2
= p(p− 1).

The order of GL2(Fp) is (p2−1)(p2−p). So there are p2−1 distinct regular
subgroups in the orbit of the regular subgroup corresponding to Φ.

Since every nilpotent algebra structure A on (F2
p,+) has A3 = 0, we have

counted all Hopf Galois structures on a Galois extension with Galois group
C2
p .

The case n = 3.
Subcase: k = 1: The matrix P is in the stabilizer of the regular subgroup

T corresponding to Φ = diag(1, 0) if

P =

P11 0 0
P21 P22 0
P31 P32 P33

 ,

all submatrices being 1× 1. So the number of choices for each entry is|GO1| 1 1
p |GL1| 1

p p p−1
2

 .

Then |GO1| = 2 and |GL1| = p− 1, so the size of the stabilizer Sta(T ) is

p3(p− 1)2,
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and the orbit has cardinality

|GL3(Fp)|/|Sta(T )| = (p− 1)3(p+ 1).

Subcase: k = 2, s = 1, Φ = diag(1, 1): The matrix P is in the stabilizer if

P =

(
P11 0
P21 P22

)
,

where P11 is in GO+
2 . The number of choices for each submatrix is(

|GO+
2 | 1

p2 p− 1

)
,

and |GO+
2 | = 2(p− 1), so the size of the stabilizer is

2(p− 1)2p2.

Subcase: k = 2, s a non-square, Φ = diag(1, s): The matrix P is in the
stabilizer if

P =

(
P11 0
P21 P22

)
,

where P11 is in GO−2 . The number of choices for each submatrix is(
|GO−2 | 1
p2 p− 1

)
,

and |GO−2 | = 2(p+ 1), so the size of the stabilizer is

2(p2 − 1)p2.

The number of regular subgroups corresponding to each case is |GL3|
divided by the order of the stabilizer:

For k = 1, the number of regular subgroups is

(p3 − 1)(p+ 1).

For k = 2, s = 1, the number of regular subgroups is

(p3 − 1)p(p+ 1)/2.

For k = 2, s a non-square, the number of regular subgroups is

(p3 − 1)p(p− 1)/2.

These agree with the counts found in [6].
The only isomorphism type of nilpotent algebras A = (F3

p,+, ·) for which

A3 6= 0 is the algebra with dim(A/A2) = 1.
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The case n = 4. This case has not previously been looked at.
For n = 4 there are four subcases:

k = 1. Here

P =

P11 0 0
P21 P22 0
P31 P32 P33

 ,

where P22 is 2× 2. The number of choices for each submatrix is|GO1| 1 1
p2 |GL2| 1

p p2 p−1
2

 .

So the size of the stabilizer is

2p5(p2 − 1)(p2 − p)
(
p− 1

2

)
.

k = 2, s = 1: Here P11 is 2× 2. The number of choices for each matrix is|GO+
2 | 1 1

p2 |GL1| 1
p2 p p− 1

 .

So the size of the stabilizer is

2p5(p− 1)3.

k = 2, s a non-square. It is the same as the last case except P11 is in
GO−2 , so the size of the stabilizer is

2p5(p− 1)2(p+ 1).

k = 3. Here

P =

(
P11 0
P21 P22

)
where P11 is in GO3, which has order 2p(p2 − 1), and P22 = (q) where q is
a square. So the order of the stabilizer is

2p(p2 − 1)p3
p− 1

2
.

The number of regular subgroups in each case is the order of GL4(Fp)
divided by the orders of the respective stabilizers:

Case number of regular subgroups
k = 1 (p2 + 1)(p+ 1)(p3 − 1)

k = 2, s = 1 p(p2 + 1)(p3 − 1)(p+ 1)2/2
k = 2, s a non-square p(p4 − 1)(p3 − 1)/2

k = 3 p2(p4 − 1)(p3 − 1)
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The total number of Hopf Galois structure exceeds p9. Note that the
degrees of the polynomials in each case agree with Corollary 5.4.

The Hopf Galois structure. Given a Galois extension L/K with Galois
group G ∼= Fn

p , if the commutative nilpotent algebra A with dim(A2) =

1, A3 = 0 has diagonal structure matrix Φ = diag(d1, . . . , dk, 0, . . . , ), then
the regular subgroup T corresponding to D acts on GL by

λ◦(r)(et) = er◦t = ew

where

w = r + t+

(
k∑

i=1

ritidi

)
xn,

and λ(G) conjugates T by

λ(t)λ◦(r)λ(−t) = λ◦(r − r · t) = λ◦

(
r −

k∑
i=1

ritidi)xn

)
.

7. The Galois correspondence ratio

Let A be a commutative Fp-algebra of dimension n with A3 = 0, yielding
the skew brace (A,+, ◦). In [8] (generalized in [9] and [10]) we showed that
for a Galois extension L/K with Galois group (A,+) and an H-Hopf Galois
structure of type (A, ◦), the image of the Galois correspondence for the Hopf
Galois structure is in bijective correspondence with the ideals of A. Thus
the Galois correspondence ratio for the Hopf Galois structure is

GC(L/K, (A,+), H) =
|{ ideals of A}|

|{ subgroups of (A,+)}|
.

We have

Proposition 7.1. Let A be as in Corollary 5.3 with a non-zero structure
matrix Ds of rank k ≥ 1. Let L/K be a Galois extension with Galois
group G ∼= (A,+) and a Hopf Galois structure associated to the skew brace
(A,+, ◦). Then

GC(L/K, (A,+), H) = O

(
1

p(n−1)/2

)
for n odd;

= O

(
1

pn/2

)
for n even.

Proof. The denominator of GC(L/K, (A,+), H) is equal to the number of
subspaces of Fn

p , a known quantity. So to estimate this ratio, we need to
estimate the number of ideals of A.

The algebra A = (A,n, k) has basis (x1, x2, . . . , xn) where x2i = xn for
i = 1, 2, . . . , k − 1, x2k = s 6= 0 and x2i = 0 for k < i ≤ n. Viewing A as
a vector space with basis x1, . . . xn, we know (c.f [11], Section 1) that the
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number of subspaces of Fn
p of dimension k is ≥ pk(n−k) and has order of

magnitude = pk(n−k).
We can count the total number of subspaces of A by viewing the subspaces

of A as row spaces of n × n matrices with entries in Fp and counting the
number of parameters of all possible reduced row echelon forms of those
n × n matrices. So let R = (c1, c2, . . . , cr) denote the general reduced row
echelon form of rank r with r non-zero rows and pivots in columns numbered
c1, c2, . . . , cr. Then the number nR of Fp-parameters in the matrix R =
(c1, c2, . . . , cr), (counting row by row from the top) is equal to

(c2−c1−1)+2(c3−c2−1)+ . . .+ . . .+(r−1)(cr−cr−1−1)+r(n+1−cr−1).

So the dimension of the subspace defined by the matrix R is

mR = pnR

= pc2−c1−1 · p2(c3−c2−1) · · · · · p(r−1)(cr−cr−1−1) · pr(n+1−cr−1).

The largest mR can be is if (c1, c2, . . . , cr) = (1, 2, . . . , r), so that the product

reduces to the single term pr = pr(n+1−r−1). Thus for n even, the number
s(Fn

p )of subspaces of Fn
p is a polynomial in p with a unique highest degree

term, when r = n/2, namely pn
2/4. For n odd, s(Fn

p ) is a polynomial in p
with two equal highest degree terms, when r = (n− 1)/2 or r = (n+ 1)/2,

namely p(n
2−1)/4. Thus the leading term of s(Fn

p ) for n odd is = 2p(n
2−1)/4.

Now we estimate the number of ideals of A, assuming that in A, x21 = dxn
with d 6= 0. The key fact is that if a matrix R represents a subspace which
is an ideal and contains an element x = x1 + a2x2 + . . . + anx

n, then it
also contains x1x = dxn. So R must contain a row (0, 0, . . . , 0, 1). Thus the
matrices

R = (1, 2, 3, . . . , r)

which give the largest number of parameters do not represent ideals, while
the matrices

RI = (1, 2, 3, . . . , r, n)

do represent ideals, but have r fewer parameters than R does. Also R′ =
(2, 3, . . . r) represents an ideal if x22 = 0, but R′ has n− r fewer parameters
than R. In particular, for n odd, the matrix RI giving the most parameters
is

RI =

(
1, 2, 3, . . . ,

n− 1

2
, n

)
,

namely, (n2 − 1)/4 parameters, and for n even, the matrix RI giving the
most parameters is

RI =

(
1, 2, 3, . . . ,

n− 1

2
, n

)
,

namely n2/4.
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Thus in the case of an A closest to the trivial algebra A = (Fn
p ,+), the

ratio

#{ideals of A}/#{subspaces of A} = O(1/(p(n−1)/2)) or O(1/pn/2)

for n odd, resp. even. �

If A has x2i = sixn for si 6= 0 for i = 1, . . . , d, the number of subspaces
that are ideals decreases as d increases, to the point where if d = n−1, then
the ideals of A are the subspaces of A that contain xn. Then the number of
non-zero ideals of A is equal to the number of subspaces of Fn−1

p .
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