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On the convexity and circularity
of the numerical range of

nilpotent quaternionic matrices

Lúıs Carvalho, Cristina Diogo and Sérgio Mendes

Abstract. We provide a sufficient condition for the numerical range of
a nilpotent matrix N to be circular in terms of the existence of cycles
in an undirected graph associated with N . We prove that if we add to
this matrix N a diagonal real matrix D, the matrix D + N has convex
numerical range. For 3 × 3 nilpotent matrices, we strength further our
results and obtain necessary and sufficient conditions for circularity and
convexity of the numerical range.

Contents

1. Introduction 1385

2. Preliminaries and notation 1387

3. Circularity of the numerical range 1389

4. A class of matrices with convex numerical range 1394

5. Convexity and circularity of 3× 3 nilpotent matrices 1399

References 1403

1. Introduction

Let H denote the Hamilton quaternions and let A be a n × n matrix
with quaternionic entries. The quaternionic numerical range of A, denoted
W (A), was introduced in 1951 in Kippenhahn’s seminal article [Ki] as an
analogue of the long established complex numerical range (see [R] for an
account on quaternionic numerical ranges). Specifically, W (A) is the subset
of H whose elements have the form x∗Ax, where x runs over the unit sphere
of Hn. Due to the failure of Toeplitz-Hausdorff theorem in the quaternionic
setting, the convexity of W (A) has been studied by several authors. In [Ki],
Kippenhahn introduced the Bild of A, denoted B(A), as the intersection of
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W (A) with the complex plane and studied its convexity. The Bild is indeed
a planar substitute of W (A) in the sense that every element of W (A) is
equivalent to an element in W (A) ∩ C.

The first remarkable result on convexity is due to Au-Yeung who proved
in 1984 that W (A) is convex if, and only if, the projection of W (A) over R
(resp., C) equals the real (resp., the complex) elements in W (A), see [AY1,
theorems 2 and 3]. In that same paper, the author gives necessary and
sufficient conditions on the eigenvalues of a normal matrix A for W (A) to be
convex. The convexity of the Bild, already an issue in [Ki], was established
for normal matrices in 1994 by So, Thompson and Zhang. They proved in
[STZ, p. 192] that the closed upper half plane part of the Bild (the upper
Bild B+(A)) of a normal matrix A is the convex hull of eigenvalues and cone
vertices. Later on, the proof was simplified by Au-Yeung [AY2].

The general case was settled by So and Thompson in 1996. In [ST, theo-
rem 15.2] they proved that for any matrix A, the intersection of W (A) with
the closed upper half plane is always convex.

Another problem that attracted much attention in the complex setting is
the shape of the numerical range. In [ST, theorem 17.1], So and Thompson
characterized the numerical range of 2 × 2 quaternionic matrices, the ana-
logue of the elliptical range theorem. However, compared with the complex
case, the shape of the numerical range of quaternionic matrices seems to
have been more neglected.

In this article we study the convexity and shape of the numerical range for
nilpotent quaternionic matrices. To be more specific, we determine under
what conditions W (A) has circular shape or, at least, is convex. In section
2 of this article we recall some definitions and fix notation. In section 3 we
deal with the circularity of the numerical range. Theorem 3.1 shows that if
the numerical range of a nilpotent matrix is a disk, its center must be located
at the origin. This is the quaternionic analogue of [MM, proposition 1]. We
conclude this section with theorem 3.5 which says that a sufficient condition
for the numerical range of a nilpotent matrix A to be a disk is that the
associated graph of A is a tree. This condition is not necessary as example
3.8 shows. In section 4 we extend the results of the previous section. Every
matrix A ∈Mn(H) is, up to unitary equivalence, upper triangular and every
upper triangular matrix decomposes as a sum of a diagonal with a nilpotent
matrix. The main result of this section is theorem 4.2, where it is proved
that when the diagonal part is real and the nilpotent part is a tree then the
numerical range is a union of disks. To reach this result we apply Berge’s
maximum theorem, a technique not much seen in the literature. Corollary
4.3 proves that this class of matrices have convex numerical range. We end
the section providing an example of one of these matrices where the union of
disks that compose its numerical range is in fact an ellipse. In section 5, we
focus on 3×3 nilpotent matrices concerning convexity and circularity of the
numerical range. Theorem 5.1 says that a necessary and sufficient condition
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for the numerical range of A ∈M3(H) to be a disk with center at the origin
is that A is cycle-free. On the other hand, theorem 5.3 gives a necessary and
sufficient condition for the same class of matrices to have convex numerical
range. Specifically, W (A) is convex if, and only if, a∗13a12a23 ∈ R. The link
with our work is now provided by theorem 1 of Chien and Tam [CT] in the
complex setting.

2. Preliminaries and notation

In this section we present some well known facts about quaternions and
fix some notation. The quaternionic skew-field H is an algebra of rank 4
over R with basis {1, i, j, k}. The product in H is given by i2 = j2 = k2 =
ijk = −1. Denote the pure quaternions by P = spanR {i, j, k}. For any
q = a0 + a1i+ a2j + a3k ∈ H let πR(q) = a0 and πP(q) = a1i+ a2j + a3k be
the real and imaginary parts of q, respectively. The conjugate of q is given by
q∗ = πR(q)− πP(q) and the norm is defined by |q|2 = qq∗. Two quaternions
q1, q2 ∈ H are called similar if there exists a unitary quaternion s such that
s∗q2s = q1. Similarity is an equivalence relation and we denote by [q] the
equivalence class containing q. A necessary and sufficient condition for the
similarity of q1 and q2 is that πR(q1) = πR(q2) and |πP(q1)| = |πP(q2)| [R,
theorem 2.2.6].

Let F denote R, C or H. Let Fn be the n-dimensional F-space. For x ∈ Fn,
x∗ denote the conjugate transpose of x. The disk with center a ∈ Fn and
radius r ≥ 0 is the set DFn(a, r) = {x ∈ Fn : |x− a| ≤ r} and its boundary
is the sphere SFn(a, r). In particular, if a = 0 and r = 1, we simply write
DFn and SFn . The group of unitary quaternions is denoted by SH. Notice
that we are considering the singleton {a} to be the disk with center a and
radius r = 0. Any x ∈ H can be written as x = βz, with β = |x| and
z ∈ SH1. We introduce the following notation:

Rn,+ = {(β1, ..., βn) ∈ Rn : βi ≥ 0, 1 ≤ i ≤ n}
S+
Rn = SRn ∩ Rn,+.

Let Mn(F) be the set of all n × n matrices with entries over F. Let A ∈
Mn(H). The set

W (A) = {x∗Ax : x ∈ SHn}
is called the numerical range of A in H. As usual, the complex numerical
range of a complex matrix is defined by

WC(A) = {x∗Ax : x ∈ SCn}.

It is well known that if q ∈ W (A) then [q] ⊆ W (A) [R, page 38]. There-
fore, it is enough to study the subset of complex elements in each similarity

1If x 6= 0, z is uniquely defined. However, if x = 0 that is not the case and we take
z = 1.
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class. This set is known as B(A), the Bild of A

B(A) = W (A) ∩ C.
Although the Bild may not be convex, the upper Bild B+(A) = W (A)∩C+

is always convex, see [ST].
Taking into account that R can be seen as a real subspace of H, what we

denoted by πR is, in fact, the projection of H over R, πR : H → R. The
projection of W (A) over R is

πR(W (A)) = {πR(w) : w ∈W (A)}.
In the next section we will define a relation between the circularity of

the numerical range of A and the lack of cycles of an associated undirected
graph. To be more specific, given a matrix A = [aij ] ∈Mn(H) we may define
the underlying undirected graph GA with n vertices as the graph with an
edge between i and j whenever aij 6= 0 or aji 6= 0. That is, if δ : H→ {0, 1}
is the indicator function, δ(q) = 1 if q 6= 0 and δ(q) = 0 otherwise, let Aδ be
the symmetric matrix given by

Aδ =
[
δ(max{aij , aji})

]n
i,j=1

.

Then Aδ is precisely the adjacency matrix of the undirected graph GA. We
say that the graph GA has a path between the vertices i, j ∈ {1, . . . , n}, if
there is a sequence of vertices (i1, i2, . . . , ip) such that:

i1 = i, ip = j, (Aδ)ik,ik+1
= 1, for k = 1, . . . , p− 1.

In terms of the elements akm of the matrix A this condition is equivalent
to aikik+1

6= 0, for all k ∈ {1, . . . , p − 1} and to ai1i2ai2i3 . . . aip−1ip 6= 0.
The graph GA is connected if there is a path between any pair of vertices
i, j ∈ {1, . . . , n}, otherwise it is disconnected. We say that the matrix A
is connected (resp., disconnected) whenever GA is connected (resp., discon-
nected) . The graph GA has a cycle (or the matrix A has a cycle) if there
is a vertex i ∈ {1, . . . , n} and a path connecting i to itself. Loops are seen
as cycles. The graph GA is cycle-free (or the matrix A is cycle-free) if there
are no cycles in GA.

If the graph GA is connected and cycle-free then it is a tree, and in this
case the number of edges is n− 1 [Di, corollary 1.5.3]. It follows that there
exists one vertex with only one edge and, if we eliminate this vertex and
its edge, we get a graph with n − 1 vertices and n − 2 edges, which is also
a tree. If A is a nilpotent matrix and the graph GA is a tree, then there
exists a permutation matrix P such that P>AP is upper triangular. More
generally, two matrices A,A′ ∈Mn(H) are unitarily equivalent if there exists
a unitary U ∈ Mn(H) such that A′ = U∗AU , in which case we write A′ ∼
A. The relation ∼ is an equivalence relation. By Schur’s triangularization
theorem [R, theorem 5.3.6], every matrix A ∈Mn(H) is unitarily equivalent
to an upper triangular matrix whose diagonal is complex. By [R, theorem
3.5.4], the numerical range is invariant for the equivalence classes [A]∼, with
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A ∈ Mn(H). Therefore, it is enough to consider upper triangular matrices
A ∈Mn(H) with complex diagonal entries.

For the rest of this article we will assume that A ∈ Mn(H) is upper
triangular.

3. Circularity of the numerical range

Our first result shows that the numerical range of a nilpotent matrix is
either circular with center at the origin or it is not a disk. In other words,
when circular, the disk must be centered at the origin.

Given A ∈Mn(H) there exists an associated complex matrix

χ(A) =

[
A1 A2

−Ā2 Ā1

]
∈M2n(C),

where A1, A2 ∈Mn(C) and A = A1 +A2j.

Theorem 3.1. Let A ∈ Mn(H) be nilpotent. If W (A) is a disk, then its
center is at the origin.

Proof. Since χ(AB) = χ(A)χ(B),[Zh, theorem 4.2], A is nilpotent if and
only if χ(A) is nilpotent. When W (A) is circular, it is convex, and according
to [AY1, theorem 2] and [AY2, p. 280], W (A) ∩ C = WC

(
χ(A)

)
. Thus

WC
(
χ(A)

)
is a disk in C. According to [MM, proposition 1] a nilpotent

complex matrix whose numerical range is a disk must have center at the
origin. Thus W (A) ∩ C = WC(χ(A)) = DC(0, r), where r is the radius. We
conclude, rebuilding the numerical range by taking the equivalence classes
of the elements of the Bild, that W (A) is a disk centered at the origin, i.e.
W (A) = DH(0, r). �

In theorem 3.5 we will prove that if the graph associated with the nilpotent
matrix A ∈ Mn(H) has no cycles then the numerical range of A is a disk.
When the graph GA is disconnected, we can partition the set of vertices
into connected components, where each component has no edge to the other
components. Then, in terms of the original matrix A, we can (through a
reordering of the vertices if necessary, i.e. through P>AP where P is a
permutation of {1, . . . , n}) write A as a block matrix. Now, each block of
matrix A is connected. In addition, if A is cycle-free, then each block is
cycle-free.

The fact that the quaternionic numerical range is not always convex mo-
tivates the following definition.

Definition 3.2. Let A1, . . . ,An be subsets of H. The inter-convex hull of
the Ai’s is the set

iconv{A1, . . . ,An} =
{∑

i

α2
i ai : α ∈ SRn , ai ∈ Ai, i = 1, . . . , n

}
.

We can easily prove that:
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Proposition 3.3. Let A1 ⊕ . . .⊕Ak ∈Mn(H). Then

W (A1 ⊕ . . .⊕Ak) = iconv
{
W (A1), . . . ,W (Ak)

}
.

In particular, if W (Ai) is convex, for i = 1, . . . , k, then

W (A1 ⊕ . . .⊕Ak) = conv
{
W (A1), . . . ,W (Ak)

}
,

where conv denotes the convex hull.

Then, to figure out the numerical range of a nilpotent matrix A without
cycles, we just need to consider the numerical range of each block Ai, a
nilpotent matrix without cycles and connected (that is, a tree). Thus, to
establish the relation between the circularity of the numerical range of A
and the existence of cycles, we will focus only on connected matrices. We
start by an auxiliary and technical result.

Lemma 3.4. Let A = [aij ]
n
i,j=1 ∈ Mn(H) be a nilpotent and tree matrix

and β = (β1, . . . , βn) ∈ S+
Rn. Then

⋃
zk∈SH
1≤k≤n

{
n∑

i,j=1

βiβjz
∗
i aijzj

}
=

n∑
i,j

SH
(

0, βiβj |aij |
)
.

Proof. The proof is done by induction in n. If n = 1, then A is the zero
matrix and the result is obvious.

Now assume that⋃
zk∈SH

1≤k≤n−1

{
n−1∑
i,j=1

βiβjz
∗
i aijzj

}
=

n−1∑
i,j

SH
(

0, βiβj |aij |
)
.

In the tree GA associated with A, pick any vertex that has only one edge. If
necessary change its label to n. In this case, since GA is a tree, we have that
ani = 0, for any i ∈ {1, . . . , n} and, for some p ∈ {1, . . . , n − 1}, apn 6= 0,
ain = 0 if i ∈ {1, . . . , n− 1}\{p}. We then have⋃

zk∈SH
1≤k≤n

{ n∑
i,j=1

βiβjz
∗
i aijzj

}

=
⋃

zk∈SH
1≤k≤n

{ n−1∑
i,j=1

βiβjz
∗
i aijzj +

∑
max{i,j}=n

βiβjz
∗
i aijzj

}

=
⋃

zk∈SH
1≤k≤n−1

⋃
zn∈SH

{ n−1∑
i,j=1

βiβjz
∗
i aijzj + βpβnz

∗
papnzn

}
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=
⋃

zk∈SH
1≤k≤n−1

{ n−1∑
i,j=1

βiβjz
∗
i aijzj + SH

(
0, βpβn|apn|

)}

=
⋃

zk∈SH
1≤k≤n−1

{ n−1∑
i,j=1

βiβjz
∗
i aijzj

}
+ SH

(
0, βpβn|apn|

)

=
⋃

zk∈SH
1≤k≤n−1

{ n−1∑
i,j=1

βiβjz
∗
i aijzj

}
+
n−1∑
i=1

SH
(

0, βiβn|ain|
)

In the second and the last equality we used that the only non-zero ain, for
i ∈ {1, . . . , n}, is apn and that all ani are zero.

By the induction hypothesis, the last equality can be written as⋃
zk∈SH
1≤k≤n

{ n∑
i,j=1

βiβjz
∗
i aijzj

}
=

n−1∑
i,j

SH
(

0, βiβj |aij |
)

+

n−1∑
i=1

SH
(

0, βiβn|ain|
)

=
n∑
i,j

SH
(

0, βiβj |aij |
)
,

again using that anj = 0 for j ∈ {1, . . . , n}.
Notice that the previous calculation was carried out under the assumption

that the (n − 1) × (n − 1) matrix had no cycles. In fact, since the initial
n×n matrix A is a tree, as we mentioned before, if we eliminate a one edge
vertex together with its edge, we end up with a new graph that is also a
tree. �

Theorem 3.5. Let A ∈Mn(H) be a nilpotent and tree matrix. Then, W (A)
is a circular disk with center at the origin and radius maxβ∈S+Rn

∑n
i,j βiβj |aij |.

Proof. We have:

W (A) =
⋃

x∈SHn

{
n∑

i,j=1

x∗i aijxj

}
.

Each summand x∗i aijxj may be written as

βiβjz
∗
i aijzj

with βi, βj ≥ 0 and zi, zj ∈ SH. It follows that

W (A) =
⋃

β∈S+Rn

⋃
zk∈SH
1≤k≤n

{
n∑

i,j=1

βiβjz
∗
i aijzj

}
.
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From lemma 3.4, we have

W (A) =
⋃

β∈S+Rn

{
n∑

i,j=1

SH(0, βiβj |aij |)

}
. (3.1)

Therefore, it remains to prove that⋃
β∈S+Rn

{
n∑

i,j=1

SH(0, βiβj |aij |)

}
= DH

(
0, max
β∈S+Rn

n∑
i,j

βiβj |aij |

)
.

This is achieved by proving a double inclusion. If y =
∑n

i,j=1 βiβjrij for a

given β ∈ S+
Rn , where rij ∈ SH(0, |aij |), then

|y| ≤
n∑

i,j=1

βiβj |aij | ≤ max
β∈S+Rn

n∑
i,j

βiβj |aij |.

For the converse inclusion, first observe that the function f : S+
Rn → R

defined by

f(β) =

n∑
i,j=1

βiβj |aij |

is a continuous function on a compact set, so it has a maximum at, say,
β∗ ∈ S+

Rn . Since f is continuous, f(1, 0, . . . , 0) = 0 and S+
Rn is connected,

for every r0 ∈ [0, f(β∗)] there exists β0 ∈ S+
Rn such that f(β0) = r0, that is,

for any path connecting (1, 0, . . . , 0) to β∗, the values of f run surjectively
over the interval [0, f(β∗)]. Take y ∈ DH(0, f(β∗)). Then, |y| ≤ f(β∗) and
|y| = f(β), for some β ∈ S+

Rn . If y = 0, then we can take β = (1, 0, . . . , 0)

and the inclusion follows. Now, suppose y 6= 0. Let yij = βiβj |aij |
y

|y|
. It

follows that
n∑

i,j=1

yij = f(β)
y

|y|
= y

and yij ∈ SH(0, βiβj |aij |). Therefore,

y ∈
n∑

i,j=1

SH(0, βiβj |aij |).

�

This result can be applied to more general matrices as shown in the next
example.

Example 3.6. Let A =

 0 2j 0
0 0 0
0 0 1

 and write A as a direct sum

A = A1 ⊕A2 =

[
0 2j
0 0

]
⊕
[

1
]
.
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By theorem 3.5 we have

W (A1) = DH(0, 1) and W (A2) = {1}.

From proposition 3.3 it follows that

W (A) = conv {W (A1),W (A2)} = DH(0, 1).

The previous result, theorem 3.5, can be extended to disconnected matri-
ces.

Corollary 3.7. Let A ∈Mn(H) be a nilpotent and cycle-free matrix. Then,
W (A) is a disk with center at the origin.

Proof. There exist a permutation matrix P such that P>AP = A1 ⊕ . . .⊕
Ak, where each Ai is a tree, square matrix. By proposition 3.3 we have

W (A) = W (P>AP ) = W (A1 ⊕ ...⊕Ak)
= iconv {W (A1), ...,W (Ak)

= conv {W (A1), ...,W (Ak)}.

The result follows from the convexity of W (Ai), see theorem 3.5. �

We will now give an example that shows the implication of the previous
result cannot be strengthened to an equivalence. We will provide a nilpo-
tent (real) matrix A with cycles that have a circular numerical range. The
existence of such matrix is supported on two results. Firstly, in theorem
3.7 of [CDM] it was shown that the quaternionic numerical range of a real
matrix A is the equivalence classes of the complex numerical range of the
matrix A, that is

W (A) =
[
WC(A)

]
, for A ∈Mn(R).

And secondly, theorem 1 of [CT] provide necessary and sufficient conditions
for a 4 × 4 nilpotent complex matrix to have a circular complex numerical
range.

Example 3.8. Let A ∈M4(R) be

A =


0 1 −1 0
0 0 1 1
0 0 0 1
0 0 0 0

 .
This matrix satisfies both conditions of [CT] for the numerical range to be
circular, therefore the complex numerical range of A is WC(A) = DC(0, r).

Since A is real, by [CDM], W (A) =
[
DC(0, r)

]
= DH(0, r).
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4. A class of matrices with convex numerical range

So far we have dealt with nilpotent matrices. In this section we will en-
large our domain and consider matrices that have real entries in the diagonal.
It is know that when A = αI+N ∈Mn(H), for α ∈ R, the numerical range
is W (αI + N) = α + W (N), see [R, proposition 3.5.4]. Therefore, if the
numerical range of N is convex, so is the numerical range of A. We expand
this result on convexity for the case where A can be written as the sum of
real diagonal matrix D and a nilpotent cycle-free matrix N , i.e. T = N+D.

Let D = diag(d1, . . . , dn) ∈Mn(R) and define

d = min{di : 1 ≤ i ≤ n} and d = max{di, 1 ≤ i ≤ n}.
We will find out in theorem 4.2 that the numerical range of A can be de-
composed into a union of disks DH(d, r(d)), one for each d ∈ [d, d], that
is,

W (A) =
⋃

d∈
[
d,d
]DH(d, r(d)).

To prove the above decomposition, we will need to show that the radius of
each disk r(d) varies continuously with the center d.

Lemma 4.1. Let A ∈Mn(H) be a matrix with real entries in the diagonal.
Let

f : Rn,+ −→ R+ g : Rn,+ −→
[
d, d
]

β 7→
∑
i 6=j

βiβj |aij | β 7→
∑
i

diβ
2
i .

Then, the function r :
[
d, d
]
→ R+ defined by

r(d) = max{f(β) : g(β) = d and β ∈ S+
Rn} (4.1)

is continuous.

Proof. Define a correspondence Γ :
[
d, d
]
⇒ S+

Rn to be the intersection of
fibers

Γ(d) = g−1(d) ∩ h−1(0),

where h : Rn,+ → R is h(β) = ‖β‖ − 1. We may rewrite function r using
the correspondence Γ as follows:

r(d) = max{f(β) : β ∈ Γ(d)}.
According to Berge’s maximum theorem, see [Be, p.116], r is continuous
provided that f and Γ are continuous and, for each d ∈

[
d, d
]
, Γ(d) 6= ∅.

Clearly, f is continuous, and since for each d ∈
[
d, d
]
, there is a convex

linear combination of d and d equal to d, Γ(d) is nonempty.
We will now prove that Γ is continuous by showing that it is sequentially

upper and lower semi-continuous. To prove upper semi-continuity, take any
convergent sequence {δk}k such that δk → d. We now prove that every
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sequence βk ∈ Γ(δk) has a convergent subsequence
{
βkp
}
p

where βkp →
β ∈ Γ(d). In fact, since βk is a sequence in the compact set S+

Rn , it has a
subsequence that converges to some β. And since h and g are continuous
it follows that δkp = g(βkp) → g(β) = d and 0 = h(βkp) → h(β). Thus

β ∈ g−1(d) ∩ h−1(0) = Γ(d).
A correspondence is lower semi-continuous if, for any convergent sequence

{δk}k ⊆
[
d, d
]
, such that δk → d, and any β ∈ Γ(d), there is a convergent se-

quence {βk}k, such that βk ∈ Γ(δk) and βk → β. IfD = αI, for some α ∈ R,
then d = d and there is nothing to prove since the correspondence’s domain is
a singleton and the correspondence is trivially lower semi-continuous. When
d < d we need to find for each δk a vector βk satisfying βk ∈ Γ(δk), and, the
whole sequence

{
βk
}
k
, must be such that βk → β. When δk = d we choose

βk = β. When d < δk, to find βk we proceed in the following manner. The
vector β is such that g(β) = d, and with it define the sets:

P (β) =
{
j ∈ {1, . . . , n} : β2

j > 0
}
,

D(β) =
{
j ∈ {1, . . . , n} : dj > d

}
,

d(β) =
{
j ∈ {1, . . . , n} : dj ≤ d

}
.

Since d < δk ≤ d, D(β) 6= ∅. On the other hand, we also have that
P (β) ∩ d(β) 6= ∅, because g(β) = d is a weighted average of the di over the
indices i ∈ P (β), thus we cannot have them all with strictly higher value
than d. We will choose one element from each of these sets, without loss of
generality, the element 1 from D(β) and the element 2 from P (β) ∩ d(β).
Clearly d1 > d2. Let 0 < r2 = β2

1+β2
2 ≤ 1 and let the function g̃ : [0, 2π]→ R

be
g̃(θ) =

∑
i≥3

diβ
2
i + r2 sin2(θ)d1 + r2 cos2(θ)d2.

When θ0 = arcsin
(

β1√
β2
1+β2

2

)
then β2

1 = r2 sin2(θ0) and β2
2 = r2 cos2(θ0),

and g̃(θ0) = g(β). We have, for d1 > d2,

g̃
(
0
)

=
∑
i≥3

diβ
2
i + r2d2 = d+ β2

1(d2 − d1) ≡ d̃ ≤ d, (β2
1 ≥ 0),

g̃
(π

2

)
=
∑
i≥3

diβ
2
i + r2d1 = d+ β2

2(d1 − d2) ≡ d̂ > d, (β2
2 > 0).

The function g̃ is continuous and increasing in the interval (0, π2 ), since

g̃′(θ) = 2 sin(θ) cos(θ)r2(d1 − d2) > 0. Therefore g̃ is a homeomorphism (in

fact a diffeomorphism) between [0, π2 ] and the interval [d̃, d̂]. In order to find

a vector βk such that g(βk) = δk, k must be sufficiently large for δk ∈ [d̃, d̂].
Since, on one hand δk → d and, in this case, d < δk and, on the other hand,
d̃ ≤ d < d̂, there is a K ∈ N such that δk ∈ [d̃, d̂], for any k > K. Then, for
k ≤ K, we can take any βk ∈ Γ(δk). For k > K, we start by finding θk such
that g̃(θk) = δk. Now, let β1,k = r sin(θk), β2,k = r cos(θk) and βi,k = βi,
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for i ∈ {3, . . . , n}, that is, β1,k = r sin(g̃−1(δk)), β2,k = r cos(g̃−1(δk)) and
the remaining terms constant. We can easily verify that g(βk) = g̃(θk) =
δk. When {δk}k converges to d, clearly {θk}k converges to θ since g̃−1 is
continuous. Therefore {βk}k converges to β, as trigonometric functions are
continuous.

When d ≤ δk < d we proceed in a similar way, and conclude that if the
set {δk : δk < d} is infinite then for each element of this subsequence there
is a βk ∈ Γ(δk) and these βk converge to β.

In conclusion, for any convergent sequence {δk}k we can find a sequence
βk ∈ SH such that g(βk) = δk → d = g(β). �

We are now able to show that W (A) decompose as unions of disks.

Theorem 4.2. Let A = D+N ∈Mn(H), with D a diagonal matrix of real
entries and N a nilpotent and tree matrix. Then, we have

W (A) =
⋃

d∈
[
d,d
]DH(d, r(d)),

where r(d) is given by ( 4.1).

Proof. We begin by proving that W (A) ⊆
⋃
d∈
[
d,d
]DH(d, r(d)). We have:

W (A) =
⋃

x∈SHn

x∗Ax =
⋃

x∈SHn

{∑
i

di|xi|2 +
∑
i<j

x∗i aijxj

}
=
⋃

β∈S+Rn

⋃
zk∈SH
1≤k≤n

{∑
i

diβ
2
i +

∑
i<j

βiβjz
∗
i aijzj

}

=
⋃

β∈S+Rn

{∑
i

diβ
2
i +

⋃
zk∈SH
1≤k≤n

∑
i<j

βiβjz
∗
i aijzj

}

=
⋃

β∈S+Rn

{∑
i

diβ
2
i +

∑
i<j

βiβjSH(0, |aij |)
}

(4.2)

⊆
⋃

β∈S+Rn

{∑
i

diβ
2
i +

∑
i<j

βiβjDH(0, |aij |)
}

=
⋃

d∈
[
d,d
] d+ DH(0, r(d)) (4.3)

=
⋃

d∈
[
d,d
]DH(d, r(d)).

Equality (4.2) follows from lemma 3.4 applied to matrix N . Equality (4.3)
follows from dividing the set S+

Rn into the fibers of the function g(β) =
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i diβ

2
i , i.e.

S+
Rn =

⋃
d

Γ(d).

For each fiber g−1(d) ∩ S+
Rn = g−1(d) ∩ h−1(0) = Γ(d), with d ≤ d ≤ d, h

and Γ(d) defined as in lemma 4.1, we have⋃
β∈Γ(d)

{∑
i

diβ
2
i +

∑
i<j

DH(0, βiβj |aij |)
}

=
⋃

β∈Γ(d)

{
d+

∑
i<j

DH(0, βiβj |aij |)
}

= d+
⋃

β∈Γ(d)

∑
i<j

DH(0, βiβj |aij |)

= d+
⋃

β∈Γ(d)

DH

(
0,
∑
i<j

βiβj |aij |
)

= d+ DH

(
0, max
β∈Γ(d)

∑
i<j

βiβj |aij |

)
= DH(d, r(d)).

Now, to prove the converse inclusion we need to consider three different
cases.

Case 1: y ∈ SH(d, r(d)). We defined in (4.1)

r(d) = max{f(β) :
∑
i

β2
i di = d,β ∈ S+

Rn}

and, in (4.2), we saw that

W (A) =
⋃

β∈S+Rn

{∑
i

β2
i di +

∑
i<j

βiβjSH(0, |aij |)
}
.

Choose β∗ ∈ g−1(d) ∩ S+
Rn such that r(d) = f(β∗). To conclude that y ∈

W (A) we will find yij ∈ β∗i β∗j SH(0, |aij |) such that y − d =
∑

i<j yij . This
is precisely what we did at the end of theorem 3.5, taking this time yij =

β∗i β
∗
j |aij |

y − d
|y − d|

. And we just follow the same reasoning we did there, noting

that f(β∗) = r(d) = |y − d|.
Case 2.1: y ∈ DH(d, r(d))\SH(d, r(d)), with d = d or d = d.
Suppose y ∈ DH(d, r(d)) and |y − d| < r(d). Notice that for β be such

that
∑
β2
i di = d, then β2

k > 0 only for those k’s for which dk = d. Assume,
without loss of generality, that those k’s are the first p elements in the
diagonal of A, that is,

{k ∈ {1, . . . , n} : dk = d} = {1, . . . , p}.

Define

A = {β ∈ S+
Rn :

∑
β2
i di = d} = S+

Rp × {0}n−p.
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Then, A is a connected set and we can take a path form the element where
f vanishes (for example some vector β of the canonical basis) to the element
where f is maximum and equal to r(d), as we did in theorem 3.5. Since f is
continuous, the intermediate value theorem ensures that, in such path, all
the values in between 0 and r(d) are taken by some element in the path. We
can conclude that there exists an element γ ∈ A such that f(γ) = |y − d|
and that y ∈ S(d, f(γ)). By (4.2), y ∈ W (A). For d = d the procedure is
analogous.

Case 2.2: y ∈ DH(d, r(d))\SH(d, r(d)), with d < d < d. Assume that
y 6∈ DH(d, r(d)), otherwise recur to the previous cases. Then |y − d| > r(d).
Let ρ be a function defined over the interval [d, d] by ρ(t) = |y − t| − r(t).
The function ρ is continuous since the norm is continuous and, by lemma
4.1, r is continuous. Since ρ(d) > 0 and ρ(d) < 0, continuity of ρ implies the

existence of an element d̃ such that |y − d̃| = r(d̃), and so y ∈ SH(d̃, r(d̃)).
This concludes the proof since, by (4.2), y ∈W (A). �

The next result identify a class of upper triangular matrices that has
convex numerical range.

Corollary 4.3. Let A = D + N ∈ Mn(H), with D a diagonal matrix with
real entries, N nilpotent and cycle-free matrix. Then, W (A) is convex.

Proof. We start assuming that N is a tree. In this case, from theorem 4.2,
for any w ∈ W (A) =

⋃
d∈
[
d,d
]DH(d, r(d)), there is a d ∈

[
d, d
]

such that

w ∈ DH(d, r(d)), which implies |πR(w)−d| ≤ r(d). Thus d−r(d) ≤ πR(w) ≤
d+ r(d) and we end up concluding that

πR(W (A)) ⊂W (A) ∩ R =
[

min
d∈[d,d]

(
d− r(d)

)
, max
d∈[d,d]

(
d− r(d)

)]
and since πR(W (A)) ⊃W (A)∩R, we conclude that πR(W (A)) = W (A)∩R.
By [AY1, theorem 3] the numerical range is convex.

In the case where N is not a tree, then there exists a permutation matrix
P such that P>NP = N1⊕ . . .⊕Nk, where each Ni is a tree, square matrix.
Since P>DP is still a real diagonal matrix, we have

W (A) = W (D +N)

= W (P>(D +N)P ) = W ((D1 +N1)⊕ ...⊕ (Dk +Nk))

= iconv {W (D1 +N1), ...,W (Dk +Nk)}
= conv {W (D1 +N1), ...,W (Dk +Nk)}. (4.4)

The result follows from proposition 3.3 and the first part of this corollary. �

Example 4.4. Let A =

d1 a12 a13

0 d2 0
0 0 d2

 , where d1, d2 ∈ R, d1 6= d2, and

a12, a13 ∈ H. Since A can be written as A = d1I + (d2 − d1)Ã, with Ã =
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0 1 0
0 0 1

 , we have W (A) = d1 + (d2− d1)W (Ã), which means that it

is enough to study W (Ã).

By theorem 4.2, we have that W (Ã) =
⋃
d∈[0,1] DH(d, r(d)), with r(d) =√

kd(1− d) and k = |q12|2 + |q13|2. Since W (Ã) ∩ C =
⋃
d∈[0,1] DC(d, r(d)),

we will prove that this union of disks is an ellipse:⋃
d∈[0,1]

DC(d,
√
kd(1− d) =

{
(x, y) ∈ R2 :

(x− 1
2)2

k+1
4

+
y2

k
4

≤ 1
}
≡ E .

To show that E ⊆
⋃
d∈[0,1] DC(d,

√
kd(1− d)), notice that for (a, b) ∈ E ,

(a, b) ∈ DC(d0,
√
kd0(1− d0)) with d0 = 2a+k

2(k+1) ∈ [0, 1].

Conversely, let (a, b) ∈ DC(d,
√
kd(1− d)). We want to show now that

(a− 1
2

)2

k+1
4

+ b2
k
4

≤ 1 , i.e, k
k+1(a− 1

2)2 +b2− k
4 ≤ 0. Since b2 = kd(1−d)−(a−d)2,

we have that

k

k + 1

(
a−1

2

)2
+b2−k

4
= − 1

k + 1
((k+1)d−a)2+

k

k + 1
((k+1)d−a)− k2

4(k + 1)
.

This is a second degree polynomial in (k+1)d−a, with down concavity and
always non-positive, so we conclude that (a, b) ∈ E .

5. Convexity and circularity of 3 × 3 nilpotent matrices

Our main goal in this section is to establish necessary and sufficient con-
ditions for quaternionic 3× 3 nilpotent matrices to have circular or convex
numerical range. We start by finding out that this condition for circularity
is related to the product of all non-zero elements of the matrix. In parti-
cular, it relates the numerical range’s circularity with the product a∗13a12a23

vanishing or not. Theorem 5.3 gives a condition for the convexity of the nu-
merical range in terms of the values assumed by exactly the same product.
Consequently, the numerical range is convex if and only if a∗13a12a23 ∈ R.

Theorem 5.1. Let A ∈ M3(H) be a nilpotent matrix. Then, W (A) is a
disk with center at the origin, if and only if, A is cycle-free.

Proof. Sufficiency was proved in corollary 3.7. For necessity we will show
that if A has a cycle then W (A) is not a disk. We just need to observe that
there are some elements q ∈ SH for which aq ∈W (A), with

a = max{β1β2|a12|+ β1β3|a13|+ β2β3|a23|},

and some others q̃ ∈ SH for which aq̃ /∈ W (A). If w ∈ W (A) then, by the
triangle inequality, |w| ≤ a, and the equality holds if, and only if, all the
terms of x∗Ax are collinear. We have that aq ∈ W (A) if, and only if, any
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term of x∗Ax is in the real span of q, for some q ∈ SH, that is, writing
aij = |aij |wij with wij ∈ SH,

β1β2|a12|z∗1w12z2 = β1β2|a12|q
β1β3|a13|z∗1w13z3 = β1β3|a13|q
β2β3|a23|z∗2w23z3 = β2β3|a23|q

If a13a12a23 6= 0 (i.e, A has cycles) the system has solution only when q =
z∗3w

∗
13w12w23z3, for some z3 ∈ SH. That is, only for those q ∈

[
w∗13w12w23

]
can we reach the maximum aq ∈W (A). But then W (A) is not circular since
for q̃ /∈

[
w∗13w12w23

]
, aq̃ /∈ W (A) but aq ∈ W (A) for all q ∈

[
w∗13w12w23

]
.

We conclude that when A has cycles the numerical range is not circular. �

We will now obtain a similar result for the convexity of the numerical
range of a matrix A in M3(H), that is, W (A) is convex, if and only if,
a∗13a12a23 ∈ R. The argument uses two known results: [AY1, Theorem 3],
which says that W (A) is convex if, and only if, W (A)∩R = πR

(
W (A)

)
, and

that W (A) ∩ R is a closed interval, see [AY1, Corollary 1]. Since the nu-
merical range is connected [R, Theorem 3.10.7] we know that πR

(
W (A)

)
=

[m,M ] with

m = minπR(W (A)),

M = maxπR(W (A)).

Thus we can conclude that the numerical range is convex if, and only if,
W (A) ∩ R = [m,M ]. That is, W (A) is convex if, and only if, there are v
and v̂ in SH3 , such that

v∗Av = M and v̂∗Av̂ = m. (5.1)

Necessarily, there are y, ŷ ∈ SH3 , such that M = πR(y∗Ay) and m =
πR(ŷ∗Aŷ). The following lemma is preparatory to reach the conclusion in
(5.1).

Lemma 5.2. Let A ∈M3(H) be a nilpotent matrix satisfying the following
condition:

the two quaternions a12, a13a
∗
23 are R− linearly independent. (5.2)

Suppose that πR(y∗Ay) = M . Then,

y∗1(a12y2 + a13y3), y∗2(a∗12y1 + a23y3), (y∗1a13 + y∗2a23)y3 ∈ R \ {0}

Proof. To prove that ω = y∗1(a12y2 + a13y3) ∈ R we start by writing

M =πR(y∗1(a12y2 + a13y3) + y∗2a23y3)

=πR(ω + y∗2a23y3).

There exists z ∈ SH such that

z∗ω = |ω| ∈ R
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Taking now ỹ = (y1z, y2, y3) ∈ SH3 , we have:

M = πR(y∗Ay) ≥πR(ỹ∗Aỹ).

Then,

M = πR(ω + y∗2a23y3) ≥πR(z∗ω + y∗2a23y3)

and by R-linearity of πR we have

πR(ω) ≥πR(z∗ω) = |ω|.

We conclude that ω = |ω| and so ω ∈ R.
Now we prove that y∗1(a12y2 + a13y3) 6= 0 by assuming that y∗1(a12y2 +

a13y3) = 0 and then finding a vector t ∈ SH3 with t∗At > πR
(
y∗Ay

)
,

reaching a contradiction with y being the maximizer of πR
(
x∗Ax

)
for x ∈

SH3 . Condition (5.2) implies that a23 6= 0 and a ≡ a12 + a13
a∗23

|a23|
6= 0. If

y∗1(a12y2 + a13y3) = 0 then

πR
(
y∗Ay

)
= y∗2a23y3 =

|a23|
2

The previous equality comes from the maximum of f(α1, α2) = α1α2 , sub-

ject to α2
1 + α2

2 = 1, being
1

2
. Let t1 = β1 ∈ R, t2 = β2

a∗

|a|
and t3 =

a∗23

|a23|
t2,

with β2 =

√
2

2
− ε and β2

1 + 2β2
2 = 1.

t∗At− |a23|
2

= β1β2|a|+ β2
2 |a23| −

|a23|
2

=
√

1− 2β2
2β2|a|+

(
β2

2 −
1

2

)
|a23|

=

√
2
√

2ε− 2ε2
(√2

2
− ε
)
|a| −

(√
2− ε

)
ε|a23|

= ε

{√
2
√

2

ε
− 2(

√
2

2
− ε
)
|a| −

(√
2− ε

)
|a23|

}
Clearly

1

ε

(
t∗At − |a23|

2

)
> 0 for very small and positive ε. Thus, t∗At >

πR
(
y∗Ay

)
, and we found a contradiction.

The second case, y∗2(a∗12y1 + a23y3) ∈ R \ {0}, follows from writing M as
follows

M =πR(y∗1a12y2 + y∗1a13y3 + y∗2a23y3)

=πR(y∗1a12y2) + πR(y∗1a13y3) + πR(y∗2a23y3)

=πR(y∗2a
∗
12y1) + πR(y∗1a13y3) + πR(y∗2a23y3)

=πR
(
y∗2(a∗12y1 + a23y3)

)
+ πR(y∗1a13y3).
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Now we proceed as in the first case to find out that y∗2(a∗12y1 + a23y3) ∈ R.

To prove that y∗2(a∗12y1 + a23y3) 6= 0 we let this time a ≡ a23 + a∗12

a13

|a13|
.

From (5.2) we have that a13 6= 0 and a 6= 0. We will find a contradiction, in
the same way as in the first case, assuming that y∗2(a∗12y1 + a23y3) = 0. In

this case it must be that πR
(
y∗Ay

)
=
|a13|

2
, and we will find a t ∈ SH3 with

t∗At >
|a13|

2
. Such t has t1 =

a13

|a13|
t3, t2 = β2, t3 = β3

a∗

|a|
, with β3 =

√
2

2
− ε

and β2
2 + 2β2

3 = 1. The rest of the proof proceeds just like the first case.
The proof for case 3 mimics the previous two.

�

Now we will state and prove a necessary and sufficient condition for a
nilpotent 3× 3 matrix to have convex numerical range.

Theorem 5.3. Let A ∈ M3(H) be a nilpotent matrix. Then, W (A) is
convex if, and only if, a∗13a12a23 ∈ R.

Proof. First, consider that a∗13a12a23 ∈ R. The case where a∗13a12a23 =
0 was dealt in theorem 5.1, the numerical range is circular and therefore
convex. For the other cases, the matrix A is unitary equivalent to a real
matrix, i.e there exists an unitary matrix U ∈ Mn(H), such that U∗AU ∈
Mn(R). By [CDM, theorem 3.6], we know that the numerical range of any
real matrix is convex, thus W (A) = W (U∗AU) is convex. For the unitary
matrix U , take the diagonal matrix diag(ρ, z∗12ρ, z

∗
13ρ), where ρ ∈ SH and

zij ∈ SH are such that aij = |aij |zij . Its now a matter of simple calculations,
using that z∗13z12z23 = ±1, to check that U∗AU ∈Mn(R).

Now we consider the converse implication, that is, if W (A) is convex then
a∗13a12a23 ∈ R. If a12, a13a

∗
23 are R-linearly dependent we easily see that

a13a
∗
23a
∗
12 ∈ R and, since πR(ab) = πR(ba), then a∗13a12a23 ∈ R. Therefore,

we can assume that a12, a13a
∗
23 are R-linearly independent and, by lemma

5.2, conclude that

y∗1(a12y2 + a13y3), y∗2(a∗12y1 + a23y3), (y∗1a13 + y∗2a23)y3 ∈ R \ {0}. (5.3)

Hence, for some α1, α2, α3 ∈ R \ {0} we can write y1 = α1(a12y2 + a13y3)
y2 = α2(a∗12y1 + a23y3)
y3 = α3(a∗13y1 + a∗23y2)

(5.4)

Substituting y1 in the second equation, we get

(1− α1α2|a12|2)y2 = α2(α1a
∗
12a13 + a23)y3. (5.5)

Suppose 1− α1α2|a12|2 6= 0. We have

y2 = r2(α1a
∗
12a13 + a23)y3, where r2 =

α2

1− α1α2|a12|2
.
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Therefore, for y = (y1, y2, y3) ∈ SH3 such that M = πR(y∗Ay),

y∗Ay = y∗1(a12y2 + a13y3) + y∗2a23y3

= y∗1(a12y2 + a13y3) + r2|a23|2|y3|2 + r2α1y
∗
3a
∗
13a12a23y3. (5.6)

Notice that the first two terms of (5.6) are real. Since W (A) is convex, by
[AY1, theorem 3], M = y∗Ay ∈ W (A) ∩ R. Thus, the term y∗3a

∗
13a12a23y3

is also real. This only happens if a∗13a12a23 ∈ R (since y∗3a
∗
13a12a23y3 =

|y3|2
y∗3
|y3|a

∗
13a12a23

y3
|y3| and

y∗3
|y3|a

∗
13a12a23

y3
|y3| ∼ a∗13a12a23) or y3 = 0. The case

y3 = 0 can be ruled out because then (y∗1a13 + y∗2a23)y3 = 0 and this contra-
dicts (5.3).

If 1− α1α2|a12|2 = 0 and since y3 6= 0, from (5.5) α1a
∗
12a13 + a23 = 0. It

follows that a∗13a12a23 ∈ R. �

We finish with a simple example.

Example 5.4. Let A =

0 i j
0 0 k
0 0 0

. Since (−j)ik = −1, W (A) is convex

and noncircular.
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