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Boundary-value problems and associated
eigenvalue problems for systems

describing vibrations of a rotation shell

Mariam Arabyan

Abstract. In this paper, we consider boundary-value and eigenvalue
problems for a system of differential equations with variable coefficients,
some of which fail to be integrable in any neighborhood of zero. These
problems describe vibrations of an inhomogeneous elastic shell.

We introduce certain functional weighted spaces which make it pos-
sible to study and consequently to prove the existence and uniqueness
of solutions of the boundary-value problem and the existence of solu-
tions of the eigenvalue problem. The properties of the functions of these
weighted spaces are also studied, and some embedding theorems are
proved.
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1. Introduction

Weighted spaces and their embedding theorems play a prominent role in
the theory of degenerate elliptic equations. For such equations it is possible
to give an exact formulation of boundary-value problems and to obtain nec-
essary and sufficient conditions for the solvability of several boundary-value
problems [9, 10, 11]. Functional weighted spaces play an important role in
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proving the existence and uniqueness of solutions of boundary-value prob-
lems and the existence of solutions of the eigenvalue problem, as well as in
establishing the stability of the solution in the sense of the energy integral
as the boundary values are varied [1, 3, 6, 9, 10, 11, 12, 13, 14, 15].

With this paper we try to establish the advantages of using the weighted
Sobolev and weighted Lebesgue spaces in the boundary-value and eigenvalue
problems. Here we consider boundary-value and eigenvalue problems for a
system of differential equations with variable coefficients, some of which
fail to be integrable in any neighborhood of zero. The motivation for the
study of the shell vibration problem arises primarily from the association
of this problem with different optimal control problems. The innovation of
this paper is the introduction of certain functional weighted spaces and in
studying their properties in order to prove existence and uniqueness results
for the above mentioned boundary-value and eigenvalue problems.

It is worth mentioning that the main result of the paper is the key to
derive the continuous dependence of the eigenvalues and eigenfunctions on
the control perturbations as well as to prove the existence of solutions of the
optimal control problems (see, e.g., [2]).

2. Basic notions and problem formulation

Let us start with an eigenvalue problem of the thin shell theory in the
following formulation. Under certain assumptions, the transverse vibrations
of the rotation shell (see Fig. 1) are described by the following system of
differential equations [7, 8, 16, 17]

(Lu)1 ≡
(
rDW ′′

)′′
+

((
νD′ − D

r

)
W ′
)′

+ (f ′ϕ)′ = λrhρW, (2.1)

(Lu)2 ≡
(
arϕ′

)′ − (a
r

+ νa′
)
ϕ− f ′W ′ = 0, (2.2)

where W and ϕ are the unknowns, and u = (W,ϕ).
Below we will verify that each equation here contains a coefficient which

is nonintegrable in any neighborhood of 0.
Let us mention that in the case when the coefficients of the system of dif-

ferential equations (2.1)–(2.2) are integrable then the existence and unique-
ness of the solution of the system are solved in the general theory (see, e.g.
[5]).

Now let us describe the quantities in the system of differential equations
(2.1)–(2.2):

The variable r ∈ [0, b] indicates the current radius;
W (r) is the amplitude of the middle surface point displacements;
ϕ(r) characterizes the tangential displacement;
f(r) defines the shape of the middle surface of the rotation shell;
ρ(r) > 0 is the specific weight of the shell material;
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h(r) is the given thickness of the shell satisfying the condition

0 < h0 ≤ h(r) ≤ h1. (2.3)

Finally, D(r) is the bending stiffness, D(r) ≥ D0 > 0, determined by

D(r) = Eh3(r)/
(
12
(
1− ν2

))
, a(r) = 1/(Eh(r)), (2.4)

where b = const, b > 0, E > 0 is Young’s modulus and ν, −1 < ν < 0.5, is
Poisson’s ratio of the shell material.

Notice that in the differential equation (2.2) the coefficient of the unknown
ϕ is nonintegrable in [0, b] due to the term a

r there. Here we take into account
also the relations (2.3) and (2.4).

Notice also that in the same way in the differential equation (2.1) the

coefficient of W ′, i.e., the expression
(
νD′ − D

r

)′
, as well as the coefficient

of W ′′, i.e., the expression νD′ − D
r is nonintegrable. Here we use the well

known fact that 1
rα is nonintegrable in [0, b] if and only if α ≥ 1.

6z

θ

y
x

s
+

6

?

r

b

f(r)

Fig. 1. The rotation shell

The eigenvalue problem is the system of equations (2.1), (2.2) together
with the following boundary conditions for a rigidly supported shell:

W ′
∣∣
r=0

=
1

r

[(
rDW ′′

)′
+

(
νD′ − D

r

)
W ′
]∣∣∣∣
r=0

= 0,

W |r=b = −D
(
W ′′ + ν

W ′

r

)∣∣∣∣
r=b

= 0, (2.5)

a(νϕ− rϕ′)
∣∣
r=0

= a(νϕ− rϕ′)
∣∣
r=b

= 0.

The eigenvalue problem (2.1)–(2.5) can be associated with different optimal
control problems [2, 4, 18].

In order to study the eigenvalue problem, we need to study the following
problem:

(Lu)1 = f1 (2.6)

(Lu)2 = f2 (2.7)

and boundary conditions (2.5).



BOUNDARY-VALUE AND EIGENVALUE PROBLEMS 1353

The first question that arises in the study of the problems (2.1)-(2.5) and
(2.5)-(2.7) is how we can treat their solution. In fact, some of the system
coefficients fail to be integrable in any neighborhood of zero. Therefore,
a thorough analysis is required. For this purpose, we introduce specific
weighted spaces in the next section.

3. Weighted spaces and embedding theorems

As is customary, we denote by L1,loc[0, b] the space of functions that are
Lebesgue integrable on any segment contained strictly inside the segment
[0, b], and by L2[0, b] the space of functions, the square of which is integrable
on [0, b]. We denote by v′ the generalized derivative of v. Let us introduce
the following weighted Hilbert spaces with the indicated inner products:

〈u, v〉H2
r

=

b∫
0

(
ru′′v′′ +

u′v′

r
+ uv

)
dr,

〈u, v〉H1
r

=

b∫
0

(
ru′v′ +

uv

r

)
dr

and associated norms:

‖u‖H2
r

=
(
〈u, u〉H2

r

)1/2
, ‖u‖H1

r
=
(
〈u, u〉H1

r

)1/2
.

It should be noted that H2
r [0, b] consists of functions for which

√
r v′′, v

′
√
r
,

v ∈ L2[0, b], v, v
′, v′′ ∈ L1,loc[0, b], while H1

r [0, b] consists of functions for
which v√

r
,
√
r v′ ∈ L2[0, b], v, v

′ ∈ L1,loc[0, b].

Lemma 3.1. The spaces H2
r [0, b] and H1

r [0, b] are Hilbert spaces.

Proof. First, we prove the completeness of H2
r [0, b]. Consider a Cauchy

sequence {vn}∞n=1 ⊂ H2
r [0, b].

From this we have

b∫
0

(vn − vm)2 dr → 0 and

b∫
0

(
v′n√
r
− v′m√

r

)2

dr → 0 as n,m ∈ ∞. (3.1)

Furthermore, from the completeness of the space L2[0, b] it follows that
there exist functions v, u ∈ L2[0, b] such that

b∫
0

(v − vn)2 dr → 0 and

b∫
0

(
u− v′n√

r

)2

dr → 0 as n→∞. (3.2)
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Next, let us set v∗ =
√
ru. We have that

b∫
0

v2∗
r
dr =

b∫
0

u2dr < +∞,

i.e., v∗√
r
∈ L2[0, b]. But then from (3.1) it follows that

b∫
0

(v∗ − v′n)2

r
dr → 0 for n→∞. (3.3)

Now, let us show that v∗ = v′. Since vn ∈ H2
r [0, b], vn, v

′
n ∈ L1,loc[0, b].

Therefore, we have

b∫
0

vnϕ
′ dr = −

b∫
0

v′nϕdr for all ϕ ∈ C∞0 [0, b]. (3.4)

It is easy to see that∣∣∣∣∣∣
b∫

0

(
v′n − v∗

)
ϕdr

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫
ε

(
v′n − v∗

)
ϕdr

∣∣∣∣∣∣ 6
6 b1/2

 b∫
ε

(v′n − v∗)
2

r
dr

1/2 b∫
ε

ϕ2 dr

1/2

→ 0 for n→∞

and all ϕ ∈ C∞0 [0, b]. (3.5)

Similarly, from (3.1) we obtain that∣∣∣∣∣∣
b∫

0

(vn − v)ϕ′ dr

∣∣∣∣∣∣→ 0 for n→∞ for all ϕ ∈ C∞0 [0, b]. (3.6)

By using the relations (3.5), (3.6), and by taking into account the equality
(3.4) we get

b∫
0

vϕ′ dr = −
b∫

0

v∗ϕdr.

Hence, v∗ = v′.
Next, by taking into account the relations (3.2) and (3.3) we conclude

that
b∫

0

(
(v − vn)2 +

(v′ − v′n)2

r

)
dr → 0 as n→∞. (3.7)
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It can be proved in a similar fashion that

b∫
0

r
(
v′′ − v′′n

)2
dr → 0 for n→∞.

This, together with the relation (3.7), establishes the completeness of the
space H2

r [0, b].
In the same manner we can prove that H1

r [0, b] is a Hilbert space. �

It should be noted that in addition to being complete these weighted
spaces have a number of other remarkable properties.

Theorem 3.1. We have the following embeddings

H2
r [0, b] ⊂ H2[δ, b], H1

r [0, b] ⊂ H1[δ, b]

and estimates

‖u‖H2[δ,b] 6 C1 ‖u‖H2
r [0,b]

, (3.8)

‖v‖H1[δ,b] 6 C1 ‖v‖H1
r [0,b]

, (3.9)

where u ∈ H2
r [0, b], v ∈ H1

r [0, b] and C1 = (max{1/δ, b, 1})1/2, δ > 0.

Proof. Let us establish the estimate (3.8) which yields the embedding

H2
r [0, b] ⊂ H2[δ, b].

It is easy to see that

(u′)2

r
6

1

δ
u′ 2 and

(
ru′′
)2
6 bu′′ 2 for all r ∈ [δ, b].

From this and the finiteness of
b∫
δ

(
u2 +

1

δ
u′ 2 + bu′′ 2

)
dr

we find that u ∈ H2[δ, b] and that the estimate (3.8) holds. The esti-
mate (3.9) and therefore, the embedding H1

r [0, b] ⊂ H1[δ, b] can be proved
similarly. �

Theorem 3.2. Each function u ∈ H2
r [0, b] can be associated with a func-

tion on [0, b] that is continuously differentiable. Likewise each function
v ∈ H1

r [0, b] determines a continuous function on [0, b]. Further the esti-
mates

max
[0,b]

(
|u′(r)|+ |u(r)|

)
6 C2 ‖u‖H2

r
, u′(0) = 0 and (3.10)

max
[0,b]
|v(r)| 6

√
5 ‖v‖H1

r
, v(0) = 0, (3.11)

are satisfied, where C2 =
√

5 +
(
max(b+ 4

b , b
2 + 1)

)1/2
.
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Proof. Consider an arbitrary function u ∈ H2
r [0, b]. Theorem 3.1 implies

that u ∈ H2[δ, b]. Hence, the function u(r) can be associated with a contin-
uously differentiable function on [δ, b].

Evidently, we have that

∣∣u′ 2(r)− u′ 2(b)∣∣ =

∣∣∣∣∣∣
b∫
r

(
u′ 2
)′
dξ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫
r

2u′u′′ dξ

∣∣∣∣∣∣ 6
6

b∫
r

(
u′ 2

ξ
+ ξu′′2

)
dξ 6 ‖u‖2H2

r [0,b]
.

(3.12)

Further, note that 2u′u′′ ∈ L1,loc[0, b], which implies that
b∫
r

2u′u′′ dξ is

absolutely continuous. Hence, the limit lim
r→0

b∫
r

2u′u′′ dξ = lim
r→0

(u′ 2(r)−u′ 2(b))

exists.
Since u ∈ C1[δ, b], we conclude that the limit lim

r→0
u′ 2(r) exists. This implies

that the function u′ 2(r) is continuous on [0, b]. Furthermore, for any τ, r ∈[
b
2 , b
]

we get

u′ 2(r) 6 2u′ 2(τ) + 2

 r∫
τ

u′′dξ

2

6 2b
u′ 2(τ)

τ
+ 2

b∫
b
2

ξu′′2dξ.

This implies that

u′ 2(r) 6 4

b∫
b
2

(
u′ 2

ξ
+ ξu′′2

)
dξ

and therefore from the estimate (3.12) we obtain

max
[0,b]

∣∣u′ 2(r)∣∣ 6 ‖u‖2H2
r [0,b]

+ u′ 2(b) 6 5 ‖u‖2H2
r [0,b]

.

In the same way, we derive

max
[0,b]

∣∣u2(r)∣∣ 6 max(b+
4

b
, b2 + 1)

b∫
0

(
u2 +

u′ 2

ξ

)
dξ.

Thus the inequality in the relation (3.10) holds with

C2 =
√

5 +

(
max{b+

4

b
, b2 + 1}

)1/2

.

Next, we prove that u′(0) = 0. Assume to the contrary that u′(0) 6= 0. In
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view of continuity of u′ 2 we have lim
r→0

u′ 2(r) = a2 6= 0. This implies that for

any ε > 0 there exists δ > 0 such that for all r, 0 6 r 6 δ, u′ 2(r) > a2 − ε.
Set ε = a2

2 , then

δ∫
0

u′ 2(r)

r
dr >

a2

2

ε∫
0

dr

r
= +∞,

which is a contradiction. Thus proves that u′(0) = 0.
The second part of Theorem 3.2 can be proved similarly. �

We denote by K[0, b] the space of functions in C∞[0, b] whose deriva-
tives vanish in a neighborhood of 0, and we denote by M [0, b] the space of
functions in C∞[0, b] that vanish in a neighborhood of 0.

Lemma 3.2. The space K[0, b] is dense in H2
r [0, b] and the space M [0, b] is

dense in H1
r [0, b].

Proof. If v ∈ H2
r [0, b], then v′ ∈ H1

r [0, b]. By Theorem 3.2, v′(0) = 0 and
by Theorem 3.1 for any δ > 0 we have that u = v′ ∈ H1[δ/2, b]. But then,
in view of the density of the space C∞[δ/2, b] in H1[δ/2, b], there exists a
sequence {un}∞n=1 ⊂ C∞[δ/2, b] such that

‖u− un‖H1[δ/2,b] → 0 for n→∞. (3.13)

The functions un are defined on [δ/2, b]. We extend them to functions wn(r)
defined on all of [0, b] as follows (see Fig. 2):

wn(r) =


0, 0 6 r 6 δ

un(2δ)
r − δ
δ

, δ 6 r 6 2δ

un(r), 2δ 6 r 6 b

-

6wn(r)

0 δ/2 δ 2δ b

un(r)

r

.

��
�
��

�
��

Fig. 2. Graph of wn

Note that wn ∈ H1[0, b], but wn /∈ C∞[0, b]. For the validity of the first
statement of Lemma 3.2 we only need to replace the functions wn with
functions belonging to C∞[0, b]. In view of what was proved above, there
exists a sequence {znm}

∞
m=1 ⊂ C∞[0, b] such that

‖wn − znm‖H1[0,b] → 0 for m→∞ (3.14)
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for a fixed n, where

znm(r) = 0 ∀r : 0 6 r 6 δ/2. (3.15)

It is easy to see that znm ∈ H1
r [0, b] and the following inequality holds:

‖u− znm‖
2
H1
r [0,b]

= ‖u− znm‖
2
H1
r [0,δ/2]

+ ‖u− znm‖
2
H1
r [δ/2,b]

6

6 ‖u− znm‖
2
H1
r [0,δ/2]

+ 3 ‖u− un‖2H1
r [δ/2,b]

+

+ 3 ‖un − wn‖2H1
r [δ/2,b]

+ 3 ‖wn − znm‖
2
H1
r [δ/2,b]

. (3.16)

We have that

‖un − wn‖2H1
r [δ/2,b]

6 2 ‖un‖2H1
r [δ/2,2δ]

+ 2

∥∥∥∥un(2δ)
r − δ
δ

∥∥∥∥2
H1
r [δ,2δ]

6

6 4 ‖u‖2H1
r [δ/2,2δ]

+ 4 ‖u− un‖2H1
r [δ/2,δ]

+

+ 10
(
u2(2δ) + (u(2δ)− un(2δ))2

)
. (3.17)

By the well-known embedding theorem (H1[0, b] ⊂ C[0, b]), we have

|u(2δ)− un(2δ)| 6 max
[δ,2δ]
|u(r)− un(r)| 6

6

(
max

(
δ,

1

δ

))1/2

‖u− un‖H1[δ,2δ] =
1

δ1/2
‖u− un‖H1[δ,2δ] ,

for sufficiently samll δ.
By taking into account the relations (3.15)-(3.17), this yields

‖u− znm‖
2
H1
r [0,b]

6 12 ‖u‖2H1
r [0,2δ]

+ 15 ‖u− un‖2H1
r [δ/2,b]

+

+ 30

(
u2(2δ) +

1

δ
‖u− un‖2H1[δ,2δ]

)
+ 3 ‖wn − znm‖

2
H1
r [δ/2,b]

. (3.18)

Next we prove that for any ε > 0 there exists δ0 > 0 such that for any
δ, 0 < δ 6 δ0, we have

‖u‖2H1
r [0,2δ]

< ε and u2(2δ) < ε. (3.19)

Indeed, the first inequality follows from the absolute continuity of the Lebesgue
integral and the second inequality follows from the continuity of u and the
equality u(0) = 0 proved above.

Let us fix a δ1, 0 < δ1 6 δ0. By using the relation (3.13), let us choose
N0(δ1, ε) such that for any n, n > N0, the following estimate holds:

‖u− un‖2H1[δ1/2,b]
< εδ1. (3.20)

Next we fix an n1, n1 > N0. By the relation (3.14) we can choose M0 =
M0(n1, δ1, ε) such that for any m,m >M0, we have

‖wn − znm‖
2
H1[0,b] < ε. (3.21)
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By using this and the relations (3.18)-(3.20) we get

‖u− znm‖H1
r [0,b]

→ 0 for m→∞.

Since v′ ∈ H1
r [0, b], therefore, in view of what was proved above we have

that there exists a sequence zm ∈ C∞[0, b] such that,∥∥v′ − zm∥∥H1
r [0,b]

→ 0 for m→∞. (3.22)

We define

ym(r) =

r∫
0

zm(ξ) dξ + v(0) (3.23)

and prove that they are the desired ones.
Obviously,

y′m(r) = zm(r) ∀r ∈ [0, b]. (3.24)

This means that ym ∈ C∞[0, b]. From the relation (3.23) we obtain

|v(r)− ym(r)| =

∣∣∣∣∣∣
r∫

0

(
v′ − zm

)
(ξ) dξ

∣∣∣∣∣∣ 6 b
 b∫

0

(v′ − zm)2

r
dr

1/2

.

This, in view of (3.22) and (3.24), implies

‖v − ym‖H2
r [0,b]

→ 0 for m→∞.

The first statement of Lemma 3.2 is proved. The second statement can be
proved similarly. �

In order to investigate the smoothness properties of a generalized solution
of boundary-value or spectral problems, we need to introduce the following
weighted spaces H̃2

r [0, b], H3
r [0, b] with the inner products:

〈u, v〉H̃2
r

=

b∫
0

(
ru′′v′′ + u′v′ +

uv

r2

)
dr,

〈u, v〉H3
r

=

b∫
0

(
ru′′′v′′′ + u′′v′′ +

u′v′

r2
+ uv

)
dr,

respectively. Set ‖v‖H̃2
r

=
(
〈v, v〉H̃2

r

)1/2
, ‖v‖H3

r
=
(
〈v, v〉H3

r

)1/2
.

Thus we have

H̃2
r [0, b] =

{
v : v, v′, v′′ ∈ L1,loc[0, b], ‖v‖2H̃2

r
< +∞

}
,

H3
r [0, b] =

{
v : v, v′, v′′, v′′′ ∈ L1,loc[0, b], ‖v‖2H3

r
< +∞

}
.

In the same way as in Lemma 3.1, we can prove the following

Lemma 3.3. The spaces H̃2
r [0, b], H3

r [0, b] are complete.
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Below, in the next three lemmas we present some embedding properties
of the functions from the weighted spaces H2

r [0, b], H̃2
r [0, b], H3

r [0, b].

Lemma 3.4. The ball S =
{
u(r) : u(r) ∈ H2

r [0, b], ‖u‖H2
r
≤ R

}
is precom-

pact in the space L2[0, b].

Proof. It is easily seen that for any function u ∈ S we have that

I(h) :=

b∫
0

(u(r + h)− u(r))2 dr =

b∫
0

 r+h∫
r

u′(ξ) dξ

2

dr ≤

≤
b∫

0

 r+h∫
r

ξ dξ ·
r+h∫
r

(u′(ξ))2

ξ
dξ

 dr ≤ hb2R2.

Therefore I(h) → 0 as h → 0. Notice that we have
b∫
0

u2 dr ≤ R2 for any

u ∈ S. Hence, equicontinuity and uniform boundedness of the set S are
established. Therefore, by the Riesz-Frechet-Kolmogorov theorem, the ball
S is precompact. �

Similarly we can prove the following lemmas.

Lemma 3.5. The ball S =
{
u(r) : u(r) ∈ H1

r [0, b], ‖u‖H1
r
≤ R

}
is precom-

pact in the space L2[0, b].

Lemma 3.6. The ball S̃ =
{
u(r) : u(r) ∈ H̃2

r [0, b], ‖u‖H̃2
r
≤ R

}
is precom-

pact in the space H1
r [0, b] and the ball S =

{
u(r) : u(r) ∈ H3

r [0, b], ‖u‖H3
r
≤ R

}
is precompact in the space H2

r [0, b], respectively.

4. On the existence and uniqueness of generalized solution
of the boundary-value problem

Next, let us turn to the problem (2.6)–(2.7) with boundary conditions
(2.5).
Let p(r) = f ′(r) and V be the following linear subspace of the product space
H2
r ×H1

r :

V =
{
v : v = (v1, v2) ∈ H2

r ×H1
r , v1(b) = 0

}
.

For the norm in V we define:

‖v‖V =
(
‖v1‖2H2

r
+ ‖v2‖2H1

r

)1/2
.
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Let us consider the following bilinear form in the space V :

B(u, v) =

b∫
0

[
rDu′′1v

′′
1 + (D − νD′r)u

′
1v
′
1

r
− pu2v′1+

+ aru′2v
′
2 + (a+ νa′r)

u2v2
r

+ pu′1v2

]
dr − aνu2v2|b0 + νDu′1v

′
1

∣∣b
0
,

generated by the differential operator (2.6)–(2.7) and boundary conditions
(2.5).

Now we are in a position to present the first of one main results:

Theorem 4.1. Given functions D(r), D(r) − νD′(r)r, a′(r), h(r), ρ(r) ∈
L∞[0, b], D(r) ∈ L1[0, b] such that D(r) > D0 > 0, D(r)− νD′(r)r > D10 >
0, a(r) > a0 > 0, h(r) > h0 > 0, ρ(r) > ρ0 > 0. Then for any function
f = (f1, f2), f1, f2 ∈ L2[0, b] the problem

B(u, v) = (f1, v1)L2
− (f2, v2)L2

∀v ∈ V (4.1)

has a unique solution u ∈ V . Moreover ‖u‖V satisfies

‖u‖V 6 α
−1
(
‖f1‖2L2

+ ‖f2‖2L2

)1/2
. (4.2)

Furthermore, the solution u satisfies the following boundary conditions

u1(b) = u′1(0) = u2(0) = 0, (4.3)

in the classical sense.

Proof. In view of the completeness of the spaces H2
r , H1

r and the estimate
(3.10) we obtain the closedness of V .

Now, let us prove that the bilinear form B(u, v) is V -elliptic, i.e.,

B(v, v) > α ‖v‖2V ∀v ∈ V, (4.4)

where α = min
(
D0,

D10
2 , D10

b3
, (1− ε)a0, 1− ν2

ε

)
and ν2 < ε < 1.

It is easy to see that

B(v, v) =

b∫
0

[
rDv′′ 21 + (D − νD′r)v

′ 2
1

r
+ arv′ 22 + (a+ νa′r)

v22
r

]
dr−

− aνv22
∣∣b
0

+ νDv′ 21
∣∣b
0
.

(4.5)
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By simplifying some members of B(v, v) we obtain

b∫
0

[
arv′ 22 + (a+ νa′r)

v22
r

]
dr − aνv22

∣∣b
0

=

=

b∫
0

[
arv′ 22 + (a+ νa′r)

v22
r
− a′νv22 − 2aνv2v

′
2

]
dr >

>

b∫
0

[
(1− ε)arv′ 22 + a

(
1− ν2

ε

)
v22
r

]
dr. (4.6)

Since v1(r) = −
b∫
r
v′1(ξ) dξ we have

b∫
0

v21dr 6

b∫
0

 b∫
0

ξ dξ

b∫
0

v′ 21
ξ
dξ

 dr 6
b3

2

b∫
0

v′ 21
r
dr. (4.7)

By taking ν such that ν2 < ε < 1 in relations (4.5)–(4.7) we obtain(4.4).
It is easy to prove the boundedness of B(u, v) and of the linear functional

(f1, v1)L2 − (f2, v2)L2 on V , i.e.,

|B(u, v)| 6 N ‖u‖V ‖v‖V , |(f1, v1)L2 − (f2, v2)L2 | 6 L ‖v‖V ,

where N and L are constants.
Therefore, by the well-known Lax-Milgram Lemma [5] there exists a unique
solution of the problem (4.1). Thus the estimate (4.2) is true.

The last statement (4.3) of Theorem 4.1 follows from the statements (3.10)
and (3.11) of Theorem 3.2.

Thus Theorem 4.1 is proved. �

5. On the existence of solutions of the eigenvalue problem

Let us consider the following eigenvalue problem

B(u, v) = λ(rhρu1, v1)L2 ∀v ∈ V. (5.1)

Consider an arbitrary function ψ ∈ L2[0, b]. Then on setting f =
(√

rhρψ
0

)
in (4.1) we get the following relation

B(u, v) = (
√
rhρψ, v1)L2 ∀v ∈ V. (5.2)

From this and Theorem 4.1 we have that u ∈ V is determined uniquely.
Thus, the operator G : ψ ∈ L2[0, b] → u = Gψ ∈ V is well defined and in
view of (4.2), the following estimate holds:

‖u‖H2
r×H1

r
= ‖Gψ‖H2

r×H1
r
≤ α−1

∥∥∥√rhρψ∥∥∥
L2

. (5.3)
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Next, we prove that the operator F1ψ =
√
rhρ(Gψ)1, as an operator map-

ping L2[0, b] → L2[0, b], is compact and self-adjoint. Let us substitute

u =
(
v1
0

)
and v =

(
0
−v2

)
in (5.2). By adding the resulting equation we

get

B1(Gψ, v) = (
√
rhρψ, v1)L2 ∀v ∈ V, (5.4)

where B1(u, v) is a symmetric, bilinear form already. Thus, the solution of
the problem (5.2) is the solution of the equation (5.4). The converse is also
true: the solution of (5.4) is the solution of (5.2).

The operator F1 defined on L2[0, b] can be represented as

F1ψ =
√
rhρ · I · (Gψ)1,

where I is an embedding operator from H2
r [0, b] to L2[0, b]. With the help

of Lemma 3.4 we obtain that the operator I is compact. Next, from the
estimate (5.3) we get that the operator (G)1 is bounded. Thus, the operator
I · (G)1 is compact. From the symmetry and boundedness of the operator
F1, we get that it is self-adjoint.

Let us consider the following eigenvalue problem:

F1ψ = µψ. (5.5)

We have the following

Lemma 5.1. There exist eigenvalues µ1, µ2, ..., µk, ..., µk → 0, µk > 0, of
the operator F1. Moreover, each eigenvalue has a finite multiplicity and the
corresponding sequence of eigenfunctions ψk makes up a complete orthonor-
mal system in L2[0, b].

Proof. Since the operator F1 is compact and self-adjoint we need to prove
only that F1ψ = 0 implies ψ = 0. Indeed, from

√
rhρ(Gψ)1 = 0 we get that

(Gψ)1 = 0. Then, by substituting in (5.2) v = u = Gψ, we obtain

b∫
0

(
aru′22 +

(
a+ νa′r

) u22
r

)
dr − aνu22|b0 = 0.

Then by using the estimate (4.4) for v = (0, u2), we get α ‖u2‖2H1
r
≤ 0, i.e.,

u2 = 0. Since, we have that u1 = (Gψ)1 = 0, we get u = (u1, u2) ≡ 0.
Therefore, from (5.3) we obtain that

(√
rhρψ, v1

)
L2

= 0 for any v ∈ V .

Now, let us prove that ψ = 0. Indeed, by taking into account that v′1(0) =
v1(b) = 0, we get

0 =

b∫
0

√
rhρψv1 dr =

b∫
0

 r∫
0

√
ξhρψ dξ

′ v1 dr =

=
b∫
0

(
r∫
b

z∫
0

√
ξhρψ dξ dz

)
v′′1 dr.

(5.6)
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It is easily seen that
(
v1
0

)
∈ V , where v′′1 =

r∫
0

z∫
0

√
ξhρψ dξ dz. By substituting

this in (5.6), we obtain the following
b∫
0

(
r∫
0

z∫
0

√
ξhρψ dξ dz

)2

dr = 0, i.e.,
√
rhρψ = 0 for any r ∈ [0, b]. Therefore, ψ = 0. �

Denote by L2,rhρ the weighted space with the following norm ‖u‖ =(
b∫
0

u2rhρ dr

) 1
2

. Clearly L2 ⊂ L2,rhρ.

Now we are in a position to present the second main result of this paper.

Theorem 5.1. Given the framework of Theorem 4.1, the following state-
ments hold

(a) There exists a sequence of positive eigenvalues {λ1, λ2, ..., λk, ...} of
the problem (5.1), with λk → +∞ for k →∞.

(b) To each eigenvalue λk there corresponds only finite number of linear
independent eigenfunctions from V .

(c) The system {u1k}∞k=1 of the first components of the eigenfunctions
forms a complete orthonormal system with the weight rhρ.

(d) For any function u ∈ L2,rhρ the following Fourier decomposition takes
place in the L2,rhρ norm:

u =

∞∑
k=1

aku1k

Proof. Suppose that µ is an eigenvalue of F1 and ψ is a corresponding
eigenfunction, i.e., F1ψ = µψ. Then λ = 1

µ is an eigenvalue and u = Gψ is

a corresponding eigenfunction of the problem (5.1).
Indeed, we have that

B(u, v) = B(Gψ, v) = (
√
rhρψ, v1)L2 =

1

µ
(rhρ(Gψ)1, v1)L2 =

= λ(rhρu1, v1)L2 ∀v ∈ V.

In the same way, we can prove that if λ is an eigenvalue and u is a corre-
sponding eigenfunction of the problem (5.1), then µ = 1

λ is an eigenvalue

and ψ =
√
rhρu1 is a corresponding eigenfunction of F1.

Thus, by taking into account Lemma 5.1, to complete the proof it remains
to verify the positiveness of eigenvalues λk. Indeed,

α ‖u‖2V ≤ B(u, u) = λ (rhρu1, u1)L2
.

�
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6. Conclusion

We introduced certain functional weighted spaces generated by an eigen-
value problem describing vibrations of an elastic shell. We studied the
properties of these spaces and proved a series of embedding results. As
an application the existence and uniqueness of the generalized solution of
the boundary-value problem (2.5)–(2.7) and the existence of generalized so-
lutions of the eigenvalue problem (2.1)–(2.5) have been established.
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