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On quantitative estimates for
quasiintegral points in orbits of
semigroups of rational maps

Jorge Mello

Abstract. We give quantitative bounds for the number of quasi-integral
points in orbits of semigroups of rational maps under some conditions,
generalizing previous work of Hsia and Silverman (2011) for orbits gen-
erated by the iterations of one rational map.
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1. Introduction

Let K be a number field, S a finite set of places of K, and ε > 0. An
element x ∈ K is said to be quasi-(S, ε)-integral if∑

v∈S

[Kv : Qv]

[K : Q]
log(max{|x|v, 1}) ≥ εh([x, 1]),

where h is the absolute logarithmic height in P1(Q) and [x, 1] ∈ P1(Q).
Let F = {φ1, ..., φk} ⊂ K(z) be a finite set of rational functions of degree

at least 2, let P ∈ K and let

OF (P ) = {φin ◦ ... ◦ φi1(P )|n ∈ N, ij = 1, ..., k}
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denote the forward orbit of P under the semigroup of functions generated
by F . When k = 1 and φ2

1 = φ1 ◦ φ1 /∈ k[z], Hsia and Silverman proved [4]
that the number of quasi-(S, ε)- integral points in the orbit of a point P with

infinite orbit is bounded by a constant depending only on φ1, ĥφ1(P ), ε, S,
and [K : Q] ( see Section 2 for the correspondent definitions). We also
note that these results, according to (Remark 1, [4]), have some applica-
tions as the existence of quantitative estimates for the size of Zsigmondy
sets for such orbits and their primitive divisors, as well for quantitative ver-
sions of a dynamical local-global principle in orbits on the projective line.
This research was also used to prove finiteness of multiplicatively dependent
iterated values by rational functions in [1].

In this present paper we generalize this bound for cases of dynamical
systems with several rational functions, obtaining, among other results, the
following integrality result for orbits, that recovers Theorem 2.1 of [8] of
Silverman using a different approach and with a different hypothesis.

Theorem A Let F = {φ1, ..., φk} ⊂ K(x) be a set of rational maps of
respective degrees 2 ≤ d1 ≤ ... ≤ dk that are not totally ramified at the F-
orbit of ∞ or that the F-orbit of ∞ has no repeated points. Then there is a
constant γ = γ(S,F , [K : Q]) such that for all points P ∈ P1(K) that are not
Φ-preperiodic for any sequence Φ of terms in F , the number of S-integers
in the F−orbit of P is bounded by

#{Q ∈ OF (P );x(Q) ∈ RS} ≤
kM − 1

k − 1
,

where x(Q) is the x-coordinate of Q and

M =

γ + log+
d1

 h(F)

inf
Φ
ĥΦ(P )

+ 1.

In Sections 2 and 3 we remind important facts about height functions,
distance and dynamics on the projective line. In Section 4 we state a quan-
titative version of Roth’s theorem and some facts about the index of ramifi-
cation. The main results are proved in Section 5, namely, Theorem 5.2 and
its Corollaries.

2. Canonical heights

We always assume that K is a fixed number field and K(z) is the field
of rational functions over K for the rest of the paper. We identify K ∪
{∞} = P1(K) by fixing an affine coordinate z on P1, so α ∈ K is equal to
[α, 1] ∈ P1(K), and the point at infinity is [1, 0]. In this way, we assume z
is the first left coordinate for points in P1, and with respect to this affine
coordinate, we identify rational self-maps of P1 with rational functions in
K(z).

If P = [x0, ..., xN ] ∈ PN (K), the naive logarithmic height is given by
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h(P ) =
∑

v∈MK

[Kv : Qv]

[K : Q]
log(maxi |xi|v),

where, MK is the set of places of K, M∞K is the set of archimedean (infinite)
places of K, M0

K is the set of nonarchimedean (finite) places of K, and for
each v ∈ MK , |.|v denotes the corresponding absolute value on K whose
restriction to Q gives the usual v-adic absolute value on Q. Also, we write
Kv for the completion of K with respect to |.|v, and we let Cv denote the
completion of an algebraic closure of Kv. To simplify notation, we let dv =
[Kv : Qv]/[K : Q]. Initially, let us recall some theorems on height functions.

Lemma 2.1. (Theorem B.3.2, [3]) There is a way to attach to any projective
variety X over Q̄ and any line bundle L on X a function

hL : X(Q̄)→ R
with the following properties:

(i) hL⊗M = hL + hM +O(1) for any line bundles L and M on X, where
O(1) is a bounded function for P in X(Q̄).

(ii) If X = PN and L = OPN (1), then hOPN (1) = h+O(1).

(iii) If f : Y → X is a morphism of projective varieties and L is a line
bundle on
X, then hf∗L = hL ◦ f +O(1).

Moreover, the height functions hL are determined up to O(1) by the above
three properties.

Recalling that a line bundle in called very ample if it has enough global
sections to set up an embedding of the variety into some projective space,
and that is called ample if one of its positive powers is very ample, we have

Lemma 2.2. (Theorem B.3.2, [3]) Assume L is an ample line bundle of X.
Let hX,L be a height function corresponding to L.

(1) (Northcott’s finiteness property) For any real number c and positive
integer D, the set

{x ∈ X(Q̄)|[Q(x) : Q] ≤ D,hL(x) ≤ c}
is finite.

(2) (positivity) There is a constant c′ such that hL(x) ≥ c′ for all x ∈
X(Q̄).

Given a projective variety X over a number field K and L a line bundle
on X, a height function hX,L corresponding to L is fixed. Let H be a set

of morphisms f : X → X over K such that f∗L ∼= L⊗df for some integer
df ≥ 2. For f ∈ H, we set

c(f) := supx∈X(K̄)

∣∣∣∣ 1

df
hL(f(x))− hL(x)

∣∣∣∣.
For f = (fi)

∞
i=1 a sequence with fi ∈ H, i.e, f ∈

∏∞
i=1H, we set

c(f) := supi≥1 c(fi) ∈ R ∪ {+∞}.
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When c(f) < +∞, the sequence is said to be bounded. The property of being
bounded is independent of the choice of height functions corresponding to
L.

Let B be the set of all bounded sequences in H, and for c > 0, we define

Bc := {f = (fi)
∞
i=1 ∈ B|c(f) ≤ c}.

It is easy to see that if H is a finite set of self-maps on a projective space,
then any sequence of maps arising from H belongs to Bc for some c.

In fact, for H = {g1, ...gk}, we set

J = {1, ...k},W :=
∞∏
i=1

J, and fw := (gwi)
∞
i=1 for w = (wi) ∈W. (1)

If c := max{c(g1), ..., c(gk)}, then {fw |w ∈W} ⊂ Bc.
We also let S :

∏∞
i=1H →

∏∞
i=1H be the shift map which sends f = (fi)

∞
i=1

to

S(f) = (fi+1)∞i=1.

Then S maps B into B and Bc into Bc for any c.
For f = (fi)

∞
i=1 ∈

∏∞
i=1H and x ∈ X(K̄), denoting

f (n) := fn(fn−1(...(f1(x))),

the set

{x, f(1)(x), f(2)(x), f(3)(x), ...} = {x, f1(x), f2(f1(x)), f3(f2(f1(x))), ...}
is called the forward orbit of x under f , denoted by Of (x). The point x is
said to be f -preperiodic if Of (x) is finite. If f = f1 = f2 = ...., then the
forward orbit is the forward orbit under f in the usual sense.

Lemma 2.3. (Theorem 3.3, [5]) Let X be a projective variety over K, and
L a line bundle on X. Let hL be a height function corresponding to L, and
f = (fi)

∞
i=1 a bounded sequence over K such that f∗i L

∼= L⊗dfi for integers
dfi ≥ 2

(1) There is a unique way to attach to the sequence f = (fi)
∞
i=1 ∈ B a

canonical height function

ĥf : X(K̄)→ R
such that

(i) supx∈X(K̄) |ĥf (x)− hL(x)| ≤ 2c(f).

(ii) ĥS(f) ◦ f1 = df1 ĥf . In particular, ĥSn(f) ◦ fn ◦ ... ◦ f1 = dfn ...df1 ĥL,f .

(2) Assume L is ample. Then ĥf satisfies the following properties:

(iii) ĥf (x) ≥ 0 for all x ∈ X(K̄).

(iv) ĥf = 0 if and only if x is f -preperiodic.

We call ĥf a canonical height function (normalized) for f .

Lemma 2.4. (Corollary 3.4, [5]) Assume L is an ample line bundle on X.
(1) Let c be a nonnegative number, and D a positive integer. Then the

set
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f∈Bc

{x ∈ X(K̄)|[K(x) : K] ≤ D,x is f -preperiodic }

is finite.
(2) Let H = {g1, ...gk}, and we set J and W as in (2.1). Then for any

positive integer D, the set

{x ∈ X(K̄)|[K(x) : K] ≤ D,x is fw-preperiodic for some w ∈W}
is finite.

Under similar conditions of the previous lemma, namely, X is a projective

variety over K, L is a line bundle on X, H = {g1, ...gk}, g∗jL ∼= L⊗dgj , we
have

g∗1L⊗ ...⊗ g∗kL ∼= L⊗(dg1+...+dgk ).

Thus (X, g1, ..., gk) becomes a particular case of what we call a dynamical
eigensystem for L of degree dg1 + ...+ dgk . For this, Kawaguchi also proved
that

Lemma 2.5. (Theorem 1.2.1, [6]) There exists the canonical height function

ĥH : X(K̄)→ R
for (X, g1, ..., gk, L) characterized by the following two properties :

(i) ĥH = hL +O(1);

(ii)
∑k

j=1 ĥH ◦ gj = (dg1 + ...+ dgk)ĥH.

Lemma 2.6. (Proposition 4.1, [5]) Give J = {1, ..., k} the discrete topology
(each subset is an open set), and let ν be the measure on J that assigns

mass
dgj

dg1 + ...+ dgk
to j ∈ J . Let µ :=

∏∞
i=1 ν be the product measure on

W . Then we have, for x ∈ X(K̄), H = {g1, ...gk}, that

ĥH(x) =

∫
W
ĥfw(x)dµ(w).

In particular,

|ĥH(x)− hL(x)| ≤ 2c and |ĥH(x)− ĥfw(x)| ≤ 4c

for all x ∈ X(K̄), w ∈W , where c = max{c(g1), ..., c(gk)}.

Proof. The only thing different from the original statement of [5] is the last
part. The first inequality above is the first inequality after (4.1) in the proof
of Proposition 4.1 [5]. The second is derived from the first and from Lemma
2.3. �

3. Distance and dynamics on the projective line

For each v ∈MK , we let ρv denote the chordal metric defined on P1(Cv),
where we recall that for [x1, y1], [x2, y2] ∈ P1(Cv),

ρv([x1, y1], [x2, y2]) =
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|x1y2 − x2y1|v√

|x1|2v + |y1|2v
√
|x2|2v + |y2|2v

if v ∈M∞K ,

|x1y2 − x2y1|v
max{|x1|v, |y1|v}max{|x2|v, |y2|v}

if v ∈M0
K .

Definition 3.1. The logarithmic chordal metric function

λv : P1(Cv)× P1(Cv)→ R ∪ {∞}
is defined by

λv([x1, y1], [x2, y2]) = − log ρv([x1, y1], [x2, y2]).

It is a matter of fact that λv is a particular choice of an arithmetic distance
function as defined by Hsia and Silverman [4], which is a local height function
λP1×P1,∆, where ∆ is the diagonal of P1×P1. The logarithmic chordal metric
and the usual metric can relate in the following way.

Lemma 3.2. (Lemma 3, [4]) Let v ∈ MK and let λv be the logarithmic
chordal metric on P1(Cv). Define lv = 2 if v is archimedean, and lv = 1 if v
is nonarchimedean. Then for x, y ∈ Cv the inequality λv(x, y) > λv(y,∞) +
log lv implies

λv(y,∞) ≤ λv(x, y) + log |x− y|v ≤ 2λv(y,∞) + log lv.

Now, let F = {φ1, ..., φk} be such that each φj : P1 → P1 is a rational
map of degree dj ≥ 2 defined over K. We set J,W , and w as in (2.1). In
this situation we let

Φ
(n)
w = φwn ◦ ... ◦ φw1

with Φ
(0)
w =Id, and also Fn := {Φ(n)

w |w ∈W}.
For a point P ∈ P1, the F-orbit of P is defined as

OF (P ) = {φ(P )|φ ∈
⋃
n≥1

Fn} = {Φ(n)
w (P )|n ≥ 0, w ∈W} =

⋃
w∈W

OΦw(P ).

The point P is called preperiodic for F if OF (P ) is finite.
We recall that for P = [x0, x1] ∈ P1(K) the height of P is

h(P ) =
∑

v∈MK
dv log(max{|x1|v, |x1|v}.

And using the definition of λv, we see that

h(P ) =
∑

v∈MK
dvλv(P,∞) +O(1).

For a polynomial f =
∑
aiz

i and an absolute value v ∈ MK , we define
|f |v = maxi{|ai|v} and

h(f) =
∑

v∈MK
dv log |f |v.

Given a rational function φ(z) = f(z)/g(z) ∈ K(z) of degree d written in
normalized form, let us write f(z) =

∑
i≤d aiz

i, g(z) =
∑

i≤d biz
i with ad

and bd different from zero, and f and g relatively prime in K[z].
For v ∈ MK , we set |φ|v = max{|f |v, |g|v}, and then the height of φ is

defined by

h(φ) :=
∑

v∈MK
dv log |φ|v.
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For F = {φ1, ..., φk}, we define

h(F) := maxi h(φi).

Also, for any φ(z), ψ(z) rational functions in K(z), it is a fact, by Propo-
sition 5 (c), [4], that

h(φ ◦ ψ) ≤ h(φ) + (deg φ)h(ψ) + (deg φ)(degψ) log 8.

Using this one can conclude the following preliminar estimate:

Proposition 3.3. Let F = {φ1, ..., φk} be a finite set of rational functions
with deg φi = di ≥ 2, and d := maxi di. Then for all n ≥ 1 and φ ∈ Fn, we
have

h(φ) ≤
(
dn − 1

d− 1

)
h(F) + d2

(
dn−1 − 1

d− 1

)
log 8.

Proof. For n = 1 the result is easily true. We assume the it is true for n.
Let φ = φin+1 ◦ φin ◦ ... ◦ φi1 ∈ Fn+1. Then by the previous proposition and
the induction hypothesis

h(φ) ≤ h(φin+1 ◦ φin ◦ ... ◦ φi2) + dnh(φi1) + dn+1 log 8

≤
(
dn − 1

d− 1

)
h(F) + d2

(
dn−1 − 1

d− 1

)
log 8 + dnh(F) + dn+1 log 8

≤
(
dn+1 − 1

d− 1

)
h(F) + d2

(
dn − 1

d− 1

)
log 8,

and we conclude thus the proof. �

Lemma 3.4. (Proposition 6, [4]) For a rational map φ : P1 → P1 of degree
d ≥ 2 defined over K and L = OP1(1), it is true that

(a) |h(φ(P ))− dh(P )| ≤ c1h(φ) + c2.

(b) ĥφ(P ) = limn h(φ(n)(P ))/dn.

(c) |ĥφ(P )− h(P )| ≤ c3h(φ) + c4.
Where c1, c2, c3 and c4 above depend only on d.

Gathering these facts with Lemma 2.3 and Lemma 2.6, we derive the
following:

Lemma 3.5. Let F = {φ1, ..., φk} such that each φj : P1 → P1 is a rational
function of degree dj ≥ 2 over K. There are constants c1, c2, c3 and c4

depending only on the degrees d1, ..., dk such that

(i) |ĥΦw(P )− h(P )| ≤ c1h(F) + c2 ,

(ii) |ĥF (P )− ĥΦw(P )| ≤ c3h(F) + c4

for any P , and any w = (wj)
∞
j=1 ∈W .

Proof. By Lemma 3.4, we see that maxi c(φi) ≤ c1h(F)+c2 in the notation
of Lemma 2.3. Then Lemma 2.6 completes the proof. �



1098 JORGE MELLO

4. A distance estimate and a quantitative Roth’s Theorem

We will state two known results that will be needed to prove our main
theorems. The first one is a result due to Silverman that gives explicit
estimates for the dependence on local heights of points and function.

Let us recall that, for a rational function f(z), P 6= ∞ and f(P ) 6= ∞,
the ramification index of f at P is defined as the order of P as a zero of the
rational function f(z)− f(P ), i.e.,

eP (f) = ordP (f(z)− f(P )).

If P =∞, or f(P ) =∞, we change coordinates through a linear fractional
transformation L, such that L−1(P ) = β 6= ∞, L−1(f(L(β))) 6= ∞, and
define eP (f) = eβ(L−1 ◦ f ◦ L). It will not depend on the choice of L. We
say that f is totally ramified at P if eP (f) = deg f . It is also an exercise to
show that

eP (g ◦ f) = eP (f)eg(f(P ))

for every f, g rational functions and P ∈ K ∪ {∞}.
The result is as follows.

Lemma 4.1. (Proposition 7, [4]) Let ψ ∈ K(z) be a nontrivial rational
function, let S ⊂MK be a finite set of absolute values on K, each extended
in some way to K̄, and let A,P ∈ P1(K). Then∑
v∈S

max
A′∈ψ−1(A)

eA′(ψ)dvλv(P,A
′) ≥

∑
v∈S

dvλv(ψ(P ), A)−O(h(A) + h(ψ) + 1),

where the implied constant depends only on the degree of the map ψ.

The second result is the following quantitative version of Roth’s theorem.

Lemma 4.2. (Theorem 10, [4]) Let S be a finite subset of MK that contains
all infinite places. We assume that each place in S is extended to K̄ in some
fashion. Let s is the cardinality of S, Υ a finite GK̄/K-invariant subset of

K̄, β a map S → Υ, µ > 2, and M ≥ 0. Then there are constants r1 and
r2, depending only on [K : Q],#Υ and µ, such that there are at most 4sr1

elements x ∈ K satisfying both of the following conditions:

(1)
∑

v∈S dv log+ |x− βv|−1
v ≥ µh(x)−M .

(2) h(x) ≥ r2 max
v∈S
{h(βv),M, 1}.

For quantitative bounds on this Theorem, we refer to [2].
To end this section let again be F = {φ1, ..., φk} such that each φj : P1 →

P1 is a rational function of degree dj ≥ 2 defined over a number field K. For

J,W , and w as in (2.1), we have Φw := (φwj )
∞
j=1 and Φ

(n)
w = φwn ◦ ... ◦ φw1

with Φ
(0)
w =Id. We fix w and denote Φ := Φw,Φ

n := Φ
(n)
w by simplicity.
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Lemma 4.3. Suppose that the Φ-orbit of P does not repeat points or oth-
erwise that no point in its Φ-orbit is totally ramified for any φj in F . Then
there exist two positive contants κ1 > 0 and 0 < κ2 < 1 depending only on
the degrees of the functions belonging to F = {φ1, ..., φk} such that

eP (Φm) ≤ κ1κ
m
2 deg Φm for any m ≥ 0.

Proof. Let P ∈ P1(K) be a point whose Φ-orbit does not have any periodic
points within it, namely, that Φn(P ) 6= Φm(P ) for all n 6= m. Then using
well known facts such as the multiplicativity of the ramification index, and
the formula ∑

P

(eP (f)− 1) = deg f − 2

for rational functions f , we can compute that

eP (Φm) = eP (φwm ◦ ... ◦ φw1)

= eP (φw1)eφw1 (P )(φw2)...eφwm−1 (...(φw1 (P )))(φwm)

= eP (φw1)eΦ1(P )(φw2)...eΦm−1(P )(φwm)

= e1.e2...em,

where we make

ei := eφwi−1 (...(φw1 (P )))(φwi) = eΦi−1(P )(φwi). (2)

Therefore

eP (Φm) = e1e2...em ≤
(
e1 + ...+ em

m

)m
=

(
(e1 − 1) + ...+ (em − 1)

m
+ 1

)m
≤
(∑

i≤k(2di − 2)

m
+ 1

)m
≤ e

∑
i≤k(2di−2) = κ1 = κ1

(
1

d1
d1

)m
.

Hence, with κ2 = 1/d1, we get the desired.
Now we work out we work out the second situation. Using the nota-

tion (4.1), the ramification hypothesis implies that ei ≤ dii − 1 for each i.
Therefore

eP (Φm) = e1e2...em ≤
∏
j≤m

(dij − 1)

≤
∏
j≤m

(
1− 1

dij

) ∏
j≤m

dij



1100 JORGE MELLO

≤
(

1− 1

maxi di

)m ∏
j≤m

dij

=

(
1− 1

maxi di

)m
deg Φm,

which is as desired with κ1 = 1, κ2 =

(
1− 1

maxi di

)
.

�

5. A bound for the number of quasiintegral points in an
orbit

In this section, we show explicit bounds for the number of S-integral
points in a given orbit of a wandering point for a dynamical system of
rational functions extending previous work by Hsia and Silverman [4].

It was first showed by J. Silverman that orbits of this kind have only a
finite number of S-integers, which we recall below.

Theorem 5.1. (Theorem 2.1, [8]) Let RS be the ring of S-integers of K,
and let F = {φ1, ..., φk} be a set of rational maps of degree at least two
defined over K. Let OF (P ) be the orbit of P under the semigroup generated
by F . Assume that no map in the semigroup is totally ramified in its fixed
points. Then for any function z ∈ K(P1), the set

{Q ∈ P1(K)|Q ∈ OF (P ) and z(Q) ∈ RS}
is finite.

The next quantitative theorem generalizes Theorem 11 of Hsia and Silver-
man [4] to a semigroup situation. The definitions and strategy of the proof
are inspired by their ideas with diophantine approximation, but now making
use of the more general canonical height functions constructed Kawaguchi,
and their more general properties, as well as the ramification result for se-
quences of several functions from last section.

Theorem 5.2. Let F = {φ1, φ2, ..., φk} ⊂ K(z) be a set of rational maps of
respective degrees 2 ≤ d1 ≤ d2 ≤ ... ≤ dk. We fix a sequence Φ = (φij )

∞
j=1 of

functions in F , with Φn = φin ◦ ...◦φi1 ∈ Fn, and P ∈ P1(K) not preperiodic
for Φ. Fix A ∈ P1(K) such that no two points in the Φ-orbit of A coincide,
or otherwise that no point in its orbit is totally ramified for any map in F .
For any finite set of places S ⊂ MK and any constant 1 ≥ ε > 0, define a
set of nonnegative integers by

ΓΦ,S(A,P, ε) := {n ≥ 0 :
∑

v∈S dvλv(Φ
n(P ), A) ≥ εĥSn(Φ)(Φ

n(P ))}.
(a) There exist effective constants

γ1 = γ2(d1, ..., dk, ε, [K : Q]) and γ2 = γ2(d1, ..., dk, ε, [K : Q])

such that
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#

{
n ∈ ΓΦ,S(A,P, ε) : n > γ1 + log+

d1

(
ĥF (A) + h(F)

ĥΦ(P )

)}
≤ 4#Sγ2.

In particular, there is an effective constant γ3(d1, ..., dk, ε, [K : Q]) such that

#ΓΦ,S(A,P, ε) ≤ 4#Sγ3 + log+
d1

(
ĥF (A) + h(F)

ĥΦ(P )

)
(b) If P is not Φ-preperiodic for each Φ, there is a constant γ3(K,S,F , A, ε)
that is independent of P and of the sequence Φ chosen from F such that

max
Φ,P

ΓΦ,S(A,P, ε) ≤ γ4.

Proof. For simplicity, we write ΓS(ε) instead of ΓΦ,S(A,P, ε). Taking κ1

and κ2 < 1 the constants from Lemma 4.3, we choose m ≥ 1 minimal such
that κm2 ≤ ε/5κ1. Then κ1, κ2 and m depend only on d1, .., dk and on ε.

If n ≤ m for all n ∈ ΓS(ε), then

#ΓS(ε) ≤ m ≤ log(5κ1) + log(ε−1)

log(κ−1
2 )

+ 1,

which is in the desired form. If there is an n ∈ ΓS(ε) such that n > m, we
fix n for instance. Then by definition of ΓS(ε) we have

εĥSn(Φ)(Φ
n(P )) ≤

∑
v∈S

dvλv(Φ
n(P ), A). (3)

We can write Φn = ψ ◦ Φn−m for ψ = φin ◦ ... ◦ φin−m+1 ∈ Fm.

For our chosen m, we denote

em := max
A′∈ψ−1(A)

eA′(ψ).

By Lemma 4.4 and our choice of m, we notice that

em ≤ κ1(κ2)m degψ ≤ εdegψ/5

Therefore, Lemma 4.1 yields, for Q ∈ P1(K) and ψ ∈ Fm, that∑
v∈S

dvλv(ψ(Q), A)−O(h(A)+h(ψ)+1) ≤ em
∑
v∈S

max
A′∈ψ−1(A)

dvλv(Q,A
′). (4)

Gathering (5.1) and (5.2) with Q := Φn−m(P ), we obtain that

εĥSn(Φ)(Φ
n(P )) ≤ em

∑
v∈S

max
A′∈ψ−1(A)

dvλv(Φ
n−m(P ), A′)

+O(h(A) + h(Fm) + 1),

where the involved constants depend only on the degree of the functions in
Fm, and so on d1, ...dk and on ε.

For each v ∈ S, we choose A′v ∈ ψ−1(A) such that

λv(Φ
n−m(P ), A′v) = max

A′∈ψ−1(A)
λv(Φ

n−m(P ), A′),
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so that

εĥSn(Φ)(Φ
n(P )) ≤ em

∑
v∈S dvλv(Φ

n−m(P ), A′v) +O(h(A) + h(Fm) + 1).

For instance, we can assume that z(A′) 6= ∞ for all A′ ∈ Ψ−1(A),Ψ ∈ Fm.
If this is not the case, we use z for some of the A′ and z−1 for the others.

Let S′ ⊂ S be the set of places in S defined by

S′ = {v ∈ S;λv(Φ
n−m(P ), A′v) > λv(A

′
v,∞) + log lv},

where again lv = 2 for v archimedean and lv = 1 otherwise.
Set S′′ := S − S′. Applying Lemma 3.2 to the places in S′ and using the

definition of S′′ we find that

εĥSn(Φ)(Φ
n(P )) ≤ em

∑
v∈S

dvλv(Φ
n−m(P ), A′v) +O(h(A) + h(Fm) + 1)

≤ em
∑
v∈S′

dv(2λv(A
′
v,∞)− log |z(Φn−m(P ))− z(A′v)|+ log lv)

+ em
∑
v∈S′′

dv(λv(A
′
v,∞) + log lv) +O(h(A) + h(Fm) + 1)

≤ em
∑
v∈S′

dv log |z(Φn−m(P ))− z(A′v)|−1

+ em
∑
v∈S

dv(2λv(A
′
v,∞) + log lv) +O(h(A) + h(Fm) + 1).

Now using Lemma 2.3 and Lemma 3.5 it can be checked that∑
v∈S

dvλv(A
′
v,∞) ≤

∑
A′∈ψ−1(A)

∑
v∈S

dvλv(A
′,∞)

≤
∑

A′∈ψ−1(A)

h(A′)

≤
∑

A′∈ψ−1(A)

ĥSn−m(Φ)(A
′) +O(h(F) + 1)

=
∑

A′∈ψ−1(A)

(degψ)−1ĥSm(Sn−m(Φ))(ψ(A′)) +O(h(F) + 1)

≤
∑

A′∈ψ−1(A)

(degψ)−1ĥSn(Φ)(A) +O(h(F) + 1)

≤ ĥSn(Φ)(A) +O(h(F) + 1)

≤ ĥF (A) +O(h(F) + 1).

The constants depend only on m and d1, ..., dk.
Further, from the definition of lv, we have∑

v∈S dv log lv ≤ log 2.
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Also, from Proposition 3.3 it follows that h(Fm) = O(h(F) + 1).
All the inequalities above together imply that

ε(ĥSn(Φ)(Φ
n(P )) ≤ em

(∑
v∈S′

dv log |z(Φn−m(P ))− z(A′v)|−1

)
+O

(
ĥF (A) + h(F) + 1

)
.

Let us set some definitions in order to apply Roth’s theorem. We define

Υ = {z(A′) : A′ ∈ ψ−1(A)} ⊂ K̄, (5)

which is GK̄/K-invariant and #Υ ≤ dmk . We define the map β : S′ → Υ

by βv := A′v and analyze the points x = Φn−m(P ) for n ∈ ΓS(ε). Applying
Lemma 4.2 for the set of places S′,M = 0 and µ = 5/2, yields that there
exist constants r1, r2 depending only on [K : Q], d1, ..., dk and ε such that
the set of n ∈ ΓS(ε) with n > m can be written as a union

{n ∈ ΓS(ε) : n > m} = T1 ∪ T2 ∪ T3

such that

#T1 ≤ 4#S′r1,

T2 = {n > m :
∑
v∈S′

dv log |z(Φn−m(P ))− z(A′v)|−1 ≤ 5

2
h(Φn−m(P ))},

T3 = {n > m : h(Φn−m(P )) ≤ r2 max
v∈S′
{h(A′v), 1)}}.

We already have a bound for the size of T1. For T3, we use again Lem-
mas 2.3 and 3.5 to compute

h(A′v) ≤ ĥSn−m(Φ)(A
′
v) + c1h(F) + c2

= (degψ)−1ĥSm(Sn−m(Φ))(A) + c1h(F) + c2

= (degψ)−1ĥSn(Φ)(A) + c1h(F) + c2

≤ c5ĥF (A) + c6h(F) + c7,

and

h(Φn−m(P )) ≥ ĥSn−m(Φ)(Φ
n−m(P ))− c1h(F)− c2

= deg(Φn−m))ĥΦ(P )− c1h(F)− c2.

Hence

T3 ⊂ {n > m : dn−m1 ĥΦ(P ) ≤ c5ĥF (A) + c8h(F) + c9},

so every n ∈ T3 satisfies

n ≤ m+log+
d1

(
c5ĥF (A) + c10h(F) + c11

ĥΦ(P )

)
≤ c12 +log+

d1

(
ĥF (A) + h(F)

ĥΦ(P )

)
.
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Finally, we consider the set T2. Again using Lemmas 2.3 and 3.5 we derive

h(Φn−m(P )) ≤ ĥSn−m(Φ)(Φ
n−m(P )) + c1h(F) + c2

= deg(Φn−m)ĥΦ(P ) + c1h(F) + c2,

and then, for n ∈ T2, using that em ≤ ε degψ/5

εĥSn(Φ)(Φ
n(P ))

= εdeg(Φn)ĥΦ(P )

≤ em(
∑
v∈S′

dv log |z(Φn−m(P ))− z(A′v)|−1) + c13(ĥF (A) + h(F) + 1)

≤ (ε
degψ

5
)
5

2
deg(Φn−m)ĥΦ(P ) + c10(ĥF (A) + h(F) + 1)

=
ε

2
deg(Φn)ĥΦ(P ) + c14(ĥF (A) + h(F) + 1).

Thus

ε
2 deg(Φn)ĥΦ(P ) ≤ c14(ĥF (A) + h(F) + 1), which implies that

ε
2d

n
1 ĥΦ(P ) ≤ c14(ĥF (A) + h(F) + 1),

equivalent to

n ≤ c15 + log+
d1

(
ĥF (A) + h(F)

ĥΦ(P )

)
.

We observe that the set Υ defined by (5.3) does not depend on the point,
so the largest element in T1 is bounded independently of P . We also note
that the quantity

ĥmin
F ,K := inf{ĥΦ(P ) : Φ a sequence of maps in F , P ∈ P1(K) is not

preperiodic for Φ}

is strictly positive. Namely, from Lemma 3.5, we know that

ĥF (P ) ≤ ĥΦ(P ) +O(h(F)), (6)

and O does not depend on Φ chosen from F , and neither on P .
If P is a Φ-wandering point, then ĥF (P ) > 0. Also, for some c > 0 big,

we have

ĥmin
F ,K := inf{ĥΦw(P ) : w ∈W,P ∈ P1(K) and 0 < ĥΦw(P ) ≤ c}.

Since

{P ∈ P1(K) : w ∈W, and 0 < ĥΦw(P ) ≤ c}

⊂ {P ∈ P1(K) : 0 < ĥF (P ) ≤ c+O(1)}
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by (5.4), and this last set is finite by the Northcott property for ĥF , the
infimum observed is taken over a finite set of positive numbers.

Therefore, max(T1∪T2∪T3) can be bounded independently of P and the
choice of the sequence Φ generated by the semigroup F . �

Moreover, one can make the last item of Theorem 5.2 more precise.

Proposition 5.3. Under the conditions and notations of the proof of The-
orem 5.2, there exists γ2 depending only on A,F ,K, S, ε such that

max(T1 ∪ T2 ∪ T3) ≤ γ2 + log+
d1

(
ĥF (A) + h(F)

ĥΦ(P )

)
.

Proof. Due to the proof of Theorem 5.2, we only need to prove such bound
for maxT1.

According to the proof of theorem B from [2], page 131, line 6, for the
algebraic numbers x approximating α satisfying Roth’s theorem hypothesis,
there exists a finite number( depending on the constants given by Lemma
4.2) of βi’s approximating α that depend only on α and on the parameters
of Lemma 4.2 such that

log(4H(x)) ≤ 4rn

η

(
1

η
log(4H(α)) + log(4 maxiH(βi))

)
,

where r, n and η depend only on Υ defined in (5.3).
This implies that h(x) ≤ C(h(α) + maxi h(βi)), where C depends only on

the parameters of Lemma 4.2. Translating this for the notation of our set
T1, as in the proof of Theorem 5.2, we have that

h(Φn−m(P )) ≤ C( max
v∈S,ψ∈Fm

h(A′v) + max
i,v,ψ

h(βi,v))

= O(ĥF (A) + h(F) + max
i,v,ψ

h(βi,v))

= O(ĥF (A) + h(F)) + γ,

for each n ∈ T1, where γ depends only on A,F ,K, S and ε by our previous
choice of m.

We have thus that

dn−m1 ĥΦ(P ) ≤ deg(Φn−m)ĥΦ(P ) = ĥSn−mΦ(Φn−m(P ))

= h(Φn−m(P )) +O(1)

≤ O(ĥF (A) + h(F)) + γ1,

for each n ∈ T1, where γ1 depends only on A,F ,K, S and ε.
Therefore,

maxT1 ≤ m+ log+
d1

(
O(ĥF (A) + h(F)) + γ1

ĥΦ(P )

)
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≤ γ2 + log+
d1

(
ĥF (A) + h(F)

ĥΦ(P )

)
,

where γ2({βi,v)}i,v,ψ) depends only on A,F ,K, S and ε, concluding the
proof. �

Corollary 5.4. Let S ⊂ MK be a finite set of places that includes all
archimedean places, let RS be the ring os S-integers of K, and let 2 ≤
d1 ≤ ... ≤ dk. There is an effective constant γ = γ(d1, ..., dk, [K : Q]) such
that for all sets F = {φ1, ..., φk} ⊂ K(z) of k rational maps of respective
degrees d1, ..., dk that are not totally ramified at the F-orbit of ∞ or that the
F-orbit of ∞ has no repeated points, and for any sequence Φ of maps from
F and all points P ∈ P1(K) that are not preperiodic for Φ, the number of
S-integers in the Φ−orbit of P is bounded by

#{n ≥ 1; z(Φn(P )) ∈ RS} ≤ 4#Sγ + log+
d1

(
h(F)

ĥΦ(P )

)
.

Proof. An element α ∈ K is in RS if and only if |α|v ≤ 1 for all v 6∈ S, or
equivalently, if and only if

h(α) =
∑

v∈S dv log max{|α|v, 1}.

Another fact is that

log max{|α|v, 1} ≤ λv(α,∞).

This implies for α ∈ RS that h(α) ≤
∑

v∈S dvλv(α,∞).
Let n ≥ 1 satisfy z(Φn(P )) ∈ RS . Then

h(Φn(P )) ≤
∑

v∈S dvλv(Φ
n(P ),∞).

Lemmas 3.5 and 2.3 tell us that

h(Φn(P )) ≥ ĥSn(Φ)(Φ
n(P ))− c3h(F)− c4 = deg(Φn)ĥΦ(P )− c3h(F)− c4,

which implies that

deg(Φn)ĥΦ(P )− c3h(F)− c4 ≤
∑

v∈S dvλv(Φ
n(P ),∞).

The rest of the proof is divided in two cases: First one, when

deg(Φn)ĥΦ(P ) ≤ 2c3h(F) + 2c4.

In this case, dn1 ĥΦ(P ) ≤ 2C3h(F) + 2c4, and then

n ≤ log+
d1

(
2c3h(F) + 2c4

ĥΦ(P )

)
.

In the second case , deg(Φn)ĥΦ(P ) ≥ 2c3h(F) + 2c4. Therefore∑
v∈S dvλv(Φ

n(P ),∞) ≥ 1
2 deg(Φn)ĥΦ(P ) = 1

2 ĥSn(Φ)(Φ
n(P )).
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Now the previous theorem with ε = 1/2, A = ∞ (∞ is not totally ramified
for any map of the system) tells us that n is at most

4#Sγ3 + log+
d1

(
h(F) + ĥΦ(∞)

ĥΦ(P )

)
,

for γ3 depending only on [K : Q], d1, ..., dk. Both bounds are on the desired

form since ĥΦ(∞) ≤ h(∞) +O(1) = 0 +O(1). �

Corollary 5.5. Under the conditions of Corollary 5.4, there is a constant
γ = γ(S,F , [K : Q]) such that for all sets F = {φ1, ..., φk} ⊂ K(z) of
rational maps of respective degrees d1, ..., dk that are not totally ramified at
the F-orbit of ∞ or that the F-orbit of ∞ has no repeated points, and all
points P ∈ P1(K) that are not preperiodic for any sequence Φ of terms in
F , the number of S-integers in the F−orbit of P is bounded by

#{Q ∈ OF (P ); z(Q) ∈ RS} ≤
kM − 1

k − 1
,

where

M = dγ + log+
d1

( h(F)

ĥmin
F,K(P )

)e+ 1.

Proof. If Q ∈ OF (P ), z(Q) ∈ RS , then there exists a sequence Φ of maps
from F , and an n ≥ 1, such that Q = Φn(P ) and z(Φn(P )) ∈ RS . By
Theorem 5.2, Corollary 5.4 and Proposition 5.3, there exists a suitable γ
such that

n ≤ γ + log+
d1

(
h(F)

ĥmin
F ,K(P )

)
.

And for each m, there are at most km maps inside Fm, and therefore at
most kmS-integer points on the set {f(P )|f ∈ Fm}. The result follows from

the identity 1 + k + ...+ kn =
kn+1 − 1

k − 1
. �

Remark 5.6. In the particular case of a system of polynomial maps that
are non-special (not monomials neither Tchebychev’s), the number of points
for which some orbit has repeated points is finite, due to Theorem 1.7 of [7],
and therefore only for a finite number of points A the hypothesis of Theorem
5.2 will not be satisfied.

Remark 5.7. Theorem 5.2 delivers, in particular, under its conditions for
sequences Φ of rational functions in a given system over a certain number
field and P,A rational numbers, an explicit upper bound for

#{n ≥ 1;
1

Φn(P )−A
is quasi-(S, ε)-integral },

and this does not depend on which Φ was chosen from the initial dynamical
system F .
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Corollary 5.8. Under the hypothesis of Theorem 5.2,

lim
n→∞

λv(Φ
n(P ), A)

deg(Φn)
= 0 for every v ∈MK .

Proof. Applying Theorem 5.2 for the set of places that contains just the
place v, we conclude that for every natural n big enough, it will be true that

λv(Φ
n(P ), A)

deg(Φn)
≤ ε ĥΦ(P )

dv
.

Choosing ε sufficiently small, the result is proven.
�

Note that, due to Theorem 5.2, the convergence above has an uniformity
for the semigroup of maps, in the sense that the big natural n does not
depend on the Φ chosen in the semigroup generated by the initial dynamical
system, so that actually the stronger fact

lim
n→∞

(
sup

Φ seq. of F

λv(Φ
n(P ), A)

deg(Φn)

)
= 0 for every v ∈MK

is also true.

Corollary 5.9. Suppose that a set ={φ1, ..., φk} ⊂ Q(z) of rational func-
tions of degree at least 2 satisfies the hypothesis of theorem 5.2 with P =
α ∈ Q, A = 0 and A = ∞, and let Φ be a sequence of functions of F such
that #OΦ(α) =∞. Write

Φn(α) =
an(α)

bn(α)
∈ Q as a fraction in lowest terms.

Then

lim
n→∞

log |an(α)|
log |bn(α)|

= 1.

Proof. From previous corollary, for v the place at infinity, it is true that

lim
n→∞

λv(Φ
n(α), 0)

deg(Φn)
= lim

n→∞

λv(Φ
n(α),∞)

deg(Φn)
= 0.

Working out similarly as in the proof of previous corollary, using Lemma
3.4 (i), it is true that

lim
n→∞

λv(Φ
n(α), 0)

h(Φn(α))
= lim

n→∞

λv(Φ
n(α),∞)

h(Φn(α))
= 0.

On the other hand, if t =
a

b
∈ Q written in lowest terms, since max{|a|, |b|} ≤√

|a|2 + |b|2, then h(t) = log max{|a|, |b|} and

λv(t,∞) = λv([a, b], [1, 0]) = log

(√
|a|2 + |b|2
|b|

)
= − log |b|+ log(

√
|a|2 + |b|2)
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≥ − log |b|+ h(t).

And in the same way

λv(t, 0) = λv([a, b], [0, 1]) = log

(√
|a|2 + |b|2
|a|

)
= − log |a|+ log(

√
|a|2 + |b|2)

≥ − log |a|+ h(t).

Gathering these facts, and recalling that Φn(α) =
an(α)

bn(α)
yields

lim
n→∞

− log |bn(α)|+ h(Φn(α))

h(Φn(α))
= lim

n→∞

− log |an(α)|+ h(Φn(α))

h(Φn(α))
= 0,

and thus

lim
n→∞

log |bn(α)|
log max{|an(α)|, |bn(α)|}

= lim
n→∞

log |an(α)|
log max{|an(α)|, |bn(α)|}

= 1.

This implies that

lim
n→∞

log |an(α)|
log |bn(α)|

= 1.

�

Remark 5.10. Again, from Theorem 5.2, for a given α ∈ Q, the last result
does not depend on Φ, in the sense that for every sequence Φ of functions
in the tree of functions belonging to the initial set F , the correspondent

quotient sequences
log |an(α)|
log |bn(α)|

converge to 1 as n goes to ∞ with the same

speed.

The Φ-uniformity pointed in Remark 5.10 results in the following semi-
group integrality result.

Corollary 5.11. Suppose that a set F = {φ1, ..., φk} ⊂ Q(z) of rational
functions of degree at leats 2 satisfies the hypothesis of Theorem 5.2 with
P = α ∈ Q, A = 0 and A =∞, and that #OF (α) =∞ for each sequence Φ
of functions in F . Suppose also that for some M > 0, Φn(α) 6= 0 for any
n > M and any Φ sequence of maps in F . Write

f(α) =
af (α)

bf (α)
∈ Q as a fraction in lowest terms

for each f in the semigroup generated by F .
Then

lim
n→∞

1

kn

∑
f∈Fn

log |af (α)|
log |bf (α)|

 = 1.

Proof. By Corollary 5.9 with its notation, for any ε > 0 we have that
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1− ε ≤ log |an(α)|
log |bn(α)|

≤ 1 + ε

for n sufficiently large, and uniformly for Φ. For such numbers n, this implies
that

1− ε ≤ lim
n→∞

1

kn

∑
f∈Fn

log |af (α)|
log |bf (α)|

 ≤ 1 + ε,

from where the result follows, since ε is arbitrary. �
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