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Brownian isometric parts of
concave operators

Witold Majdak and Laurian Suciu

Abstract. We describe some invariant or reducing subspaces for a con-
cave operator T on a complex Hilbert space which satisfies the regularity

condition ∆TT = ∆
1/2
T T∆

1/2
T , where ∆T = T ∗T − I. We consider those

subspaces on which T acts as a 2-isometry and show that T has some
Brownian type properties on them. Among other, the Brownian unitary
part and the Brownian isometric (reducing or invariant) parts are inves-
tigated. In the case when T is a Brownian operator or even a general
2-isometry we determine the Brownian unitary reducing parts on which
T has the maximal covariance.
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1. Introduction and preliminaries

In all that follows, H stands for a complex Hilbert space and B(H) is the
C∗-algebra of all bounded linear operators on H. By I we mean the identity
operator on a considered Hilbert space. Given T ∈ B(H), we write R(T ),
N (T ) and T ∗ for the range, the kernel and the adjoint of T , respectively.
Recall that T is a contraction if T ∗T ≤ I, T is an isometry if T ∗T = I, and
T is a unitary operator if it is an isometry with R(T ) = H. If M ⊂ H,
then byM we mean the closure ofM in H. LetM be a closed subspace of
H. We denote by PM ∈ B(H) the orthogonal projection of H onto M. We
say that M is invariant (resp., reducing) for T if TPM = PMTPM (resp.,
TPM = PMT ). If M is invariant for T , then TM := T |M ∈ B(M) is the
restriction of T toM and T is an extension for TM. The operator PMT |M
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is said to be the compression of T on M. For an isometry T ∈ B(H) and
a closed subspace M of N (T ∗), we set l2+(T,M) :=

⊕∞
n=0 T

nM. If Mn

(n = 0, 1, . . .) are subsets of H, the closure in H of their linear span is
denoted by

∨
n≥0Mn.

Following [20], an operator T ∈ B(H) is called concave if

T ∗2T 2 − 2T ∗T + I ≤ 0. (1.1)

If there holds the equality in (1.1), then we say that T is a 2-isometry.
For T ∈ B(H), we put ∆T := T ∗T − I. When ∆T ≥ 0 the operator T is

said to be expansive. One can check that concave operators are expansive
and the inequality (1.1) can be written as T ∗∆TT ≤ ∆T , i.e. T is a ∆T -
contraction. Also, T is a 2-isometry if and only if T ∗∆TT = ∆T , i.e. T is
a ∆T -isometry (see [21, 22] for other references to general A-contractions).
Remark that if T is a contraction, then ∆T ≤ 0 and in this case DT =
(−∆T )1/2 is the defect operator of T , where Z1/2 denotes the square root
of Z ∈ B(H). A concave operator is contractive if and only if it is an
isometry. Let us recall that the concave operators also appear under the
name of 2-hyperexpansive operators, and were well studied in the literature
(see [4, 7, 9, 10, 16]). It is clear from (1.1) that if T is concave, then the
subspace N (∆T ) is invariant for T and also V = T |N (∆T ) is an isometry;
see for instance [18, Proposition 3.1(a)]. Therefore, if T is a non-isometric

concave operator, then the subspace R(∆T ) 6= {0} is invariant for T ∗ and
in this case we can obtain a usual matrix representation of T with respect
to the orthogonal decomposition H = N (∆T )⊕R(∆T ).

In our present work we deal specifically with those concave operators T
which satisfy the condition

∆TT = ∆
1/2
T T∆

1/2
T . (1.2)

According to [13, 21, 22] a concave operator T satisfying (1.2) is called
∆T -regular. Such operators are very special because in their matrix repre-
sentations on H = N (∆T )⊕R(∆T ) the operators T ∗|R(∆T )

are contractions

which commute with ∆T |R(∆T )
. This fact permits to use many results from

the theory of contractions in the study of these concave operators (as well
the Wold-type decompositions, liftings, dilations etc; see [8, 13, 20]). It
is also interesting to recall that for ∆T -regular concave operators one can
completely characterize the subnormality of their associated Cauchy dual
operators (see [5, 6, 8, 9]).

Following [5, 6], a 2-isometry T which is ∆T -regular is called a quasi-

Brownian isometry. In this case, the compression W of T to R(∆T ) is an
isometry which commutes with the operator E∗E, where E = PN (∆T )T |R(∆T )

,

and also V ∗E = 0, where V = T |N (∆T ). When W is a unitary operator on

R(∆T ) with WE∗E = E∗EW and E = δ0E0, where E0 is a (necessarily
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injective) contraction while δ0 = ‖∆T ‖1/2, then T is called Brownian isom-
etry. A Brownian isometry is called Brownian unitary if the operator E0

is an isometry and R(E) = N (V ∗). For a 2-isometry T the above scalar

cov(T ) := ‖∆T ‖1/2 is called the covariance of T . Clearly, if T is an isometry,
then cov(T ) = 0, and conversely.

For other relevant results on concave operators and 2-isometries we refer
the reader to [1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15, 16, 20] and the references
therein.

If Q is a property for operators from B(H), then the maximum subspace
in H which is invariant (or, resp., reducing) for an operator T ∈ B(H) on
which T has the property Q is called the Q-invariant (resp., Q-reducing)
part of T in H. Also, following [17], the reducible part of T in an invariant
subspace M of H is the maximum reducing subspace for T in M. Below
we deal with parts of concave operators which have received considerable
attention in recent period in the literature, as well the Brownian unitaries
(or isometries).

The organization of this paper is as follows. In Section 2 we first recall
the unitary and isometric (reducing) parts of a concave operator. Next, we
characterize the concave operators satisfying the condition (1.2) by their
usual matrix representations. For such operators we describe the quasi-
Brownian isometric invariant (resp., reducing) parts in H, which in fact are
even the corresponding 2-isometric parts. Moreover, we find the 2-isometric
invariant part H0 ⊂ H with ‖∆T ‖−1∆T |H0 being an orthogonal projection,
which in particular refers to the ∆T -regular concave operators T which have
Brownian extensions in the sense of McCullough [14] (i.e. with ‖T‖ ≤

√
2).

In Section 3 we are concerned, on one hand, with the Brownian isometric
invariant (resp., reducing) part in H for a concave operator T satisfying
(1.2). Also, we determine the 2-isometric reducing part Hδ ⊂ H for T

such that δ−2∆T |Hδ is an orthogonal projection, where 0 < δ ≤ ‖∆T ‖1/2.
More particularly, we find the Brownian unitary (reducing) part of T in
H on which T has the covariance δ. In Section 4, we first provide the
relationship between these (invariant or reducing) parts for the Brownian
operators considered in [14]. Moreover, we determine the Brownian unitary
reducing part of a concave T with ‖T‖ ≤

√
2 (i.e. a subbrownian operator)

on which T has the covariance 1, by using the same part of a Brownian
extension of T . We remark finally that a similar argument can be used to
obtain the Brownian unitary reducing part of a general 2-isometry T on
which T preserves its covariance.

2. Quasi-Brownian isometric parts

Let T ∈ B(H) be a concave operator. Then N (∆T ) is an invariant sub-
space for T , and hence N (∆T ∗) ⊂ N (∆T ). First, we take a closer look at
the unitary and isometric (reducing) parts of the operator T in H. The uni-
tary part was described in [2, 15, 20], but we recall it below together with
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the description of the isometric part, which was obtained in [18, Proposition
3.1(b)] as a particular case.

Proposition 2.1. For a concave operator T ∈ B(H), the unitary reducing
part H∞ and the isometric reducing part H∞ of T are given as follows:

H∞ =
⋂
n≥1

TnH =
⋂
n≥1

TnN (∆T ) =
⋂
n≥1

TnN (∆T ∗), (2.1)

H∞ = H	
∨
n≥0

TnR(∆T ). (2.2)

Proof. It was proved in [20, Proposition 3.4] or [15, Proposition 1.1] that
H∞ =

⋂
n≥1 T

nH is even the unitary part of T in H. So, for every integer

n ≥ 1, we have H∞ = TnH∞ ⊂ TnN (∆T ∗) ⊂ TnN (∆T ), whence we obtain

H∞ ⊂
⋂
n≥1

TnN (∆T ∗) ⊂
⋂
n≥1

TnN (∆T ) ⊂ H∞. (2.3)

Therefore the equalities in (2.1) are true.
The equality (2.2) is known from [18, Proposition 3.1(b)], but for com-

pleteness we prove it. Clearly, the subspace N :=
∨
n≥0 T

nR(∆T ) is invari-

ant for T , and since R(∆T ) is invariant for T ∗, we have for n ≥ 1

T ∗Tn|R(∆T )
= (∆T + I)Tn−1R(∆T ) ⊂ N ,

whence it follows that T ∗N ⊂ N . Hence the subspaceH∞ := H	N reduces
T , and T |H∞ is an isometry because H∞ ⊂ N (∆T ).

Now, let M be a subspace of H which reduces T to an isometry. Then
M⊂ N (∆T ) and

H	M =
∨
n≥0

Tn(H	M) ⊃
∨
n≥0

TnR(∆T ) = H	H∞.

This implies that M ⊂ H∞. We conclude that H∞ is even the (reducing)
isometric part of T in H. �

Remark 2.2. If T is a concave operator, then

N (∆T ) = N (∆TT − T∆T ). (2.4)

Indeed, as N (∆T ) is invariant for T , we have

N (∆T ) ⊂ N (TT ∗T − T ∗T 2) = N (T∆T −∆TT ).

Conversely, if h ∈ N (T∆T −∆TT ), then (T ∗T )2h = T ∗2T 2h, which yields
‖∆Th‖2 = 〈(T ∗2T 2 − 2T ∗T + I)h, h〉 ≤ 0 using the fact that T is concave.
Hence h ∈ N (∆T ) and the equality (2.4) is proved.

In what follows, we focus on the class of ∆T -regular concave operators T ,
that is, satisfying the condition (1.2), which is weaker than the commutation
relation of T with ∆T . Obviously, (1.2) holds on N (∆T ) by (2.4), so actually

the condition (1.2) plays an essential role on R(∆T ). Now, we provide a
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matrix description of these operators, while in a slightly modified form it
appears in the equivalence (i)⇔(ii) of [8, Theorem 2.3]. Notice also that
the “only if” part of the following proposition can be deduced from [18,
Proposition 3.1(c)].

Proposition 2.3. A non-isometric operator T ∈ B(H) is a ∆T -regular
concave operator if and only if T has the block matrix form

T =

(
V E
0 W

)
(2.5)

with respect to the decomposition H = N (∆T )⊕R(∆T ), where

(a) V is an isometry on N (∆T ),

(b) E : R(∆T ) → N (∆T ) is an injective operator such that V ∗E = 0,
and

(c) W is a contraction on R(∆T ) which commutes to E∗E + ∆W .

In particular, a concave operator T with ∆T being a scalar multiple of an
orthogonal projection is ∆T -regular.

Proof. Let T be a ∆T -regular concave operator which is not an isometry,
i.e. ∆T 6= 0. Then with respect to the orthogonal decomposition H =
N (∆T ) ⊕ R(∆T ) we have ∆T = 0 ⊕ ∆0 with a positive injective operator
∆0 = ∆T |R(∆T )

. Obviously, T has the matrix representation (2.5) with an

isometry V = T |N (∆T ) and E = PN (∆T )T |R(∆T )
, W ∗ = T ∗|R(∆T )

such that

V ∗E = 0 (because ∆T ≥ 0) and W ∗∆0W ≤ ∆0 (because T ∗∆TT ≤ ∆T ).

Since T is ∆T -regular, W is ∆0-regular, i.e. ∆0W = ∆
1/2
0 W∆

1/2
0 . As ∆0

is injective, we have ∆0W = W∆0, which together with the above inequality
involving W and ∆0 implies that W is a contraction on R(∆T ).

Next, expressing ∆T = T ∗T − I with the help of (2.5) we have ∆0 =
E∗E + ∆W and, as ∆W ≤ 0, we get ∆0 ≤ E∗E. This yields that E is
injective (like ∆0). Thus, (a), (b) and (c) hold for a ∆T -regular concave T .

Conversely, if an operator T has the matrix representation (2.5) satisfying

(a)-(c), then clearly W ∗∆0W = ∆
1/2
0 W ∗W∆

1/2
0 ≤ ∆0, where ∆0 is as above.

But this implies that T ∗∆TT ≤ ∆T , while ∆0W = W∆0 also gives the

condition ∆TT = ∆
1/2
T T∆

1/2
T . Hence T is a ∆T -regular concave operator.

Thus, the first assertion of the proposition is proved.
The second assertion is immediate. Indeed, if T is concave with δ∆T

being an orthogonal projection for some δ > 0, then, as R(∆T ) is invariant
for T ∗, we get

T ∗(δ∆T ) = δ∆TT
∗(δ∆T ) =

√
δ∆

1/2
T T ∗(

√
δ∆

1/2
T ),

whence by passing to the adjoint we derive the condition (1.2). The proof
is complete. �

Recall that the matrix representation of the form (2.5) for a quasi-Brownian
isometry was obtained in [13, Proposition 5.1] and in a generalized version
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in [5, Theorem 4.1]. A quasi-Brownian isometry is characterized in terms
of (2.5) by the fact that the operator W is an isometry which commutes to
E∗E, while E is injective with V ∗E = 0.

Now, as a completion of the last assertion in Proposition 2.3, we obtain
the following proposition.

Proposition 2.4. If T is a ∆T -regular concave operator, then for 0 < δ ≤
‖∆T ‖1/2 the subspace

Mδ := N (δ2∆T −∆2
T ) = N (∆T )⊕N (∆T − δ2I)

is invariant for T and such that δ−2∆T |Mδ
is an orthogonal projection.

Proof. Indeed, take h ∈ H such that δ2∆Th = ∆2
Th. Thus δ∆

1/2
T h = ∆Th,

so by (2.4),

δ2∆TTh = δ2∆
1/2
T T∆

1/2
T h = δ∆

1/2
T T∆Th

= δ∆TT∆
1/2
T h = ∆TT∆Th = ∆2

TTh.

Also, the subspace N (∆T − δ2I) is invariant for T ∗ (using the dual relation
of (1.2)), but this is not invariant for T when it is non-null. Since both
subspaces N (∆T ) and N (∆T − δ2I) are invariant for T ∗T , it follows that
Mδ reduces ∆T . Thus Tδ := T |Mδ

is a concave operator with ∆Tδ = ∆T |Mδ
,

while the later relation implies that Tδ is also ∆Tδ -regular. Moreover, we
have N (∆Tδ) = N (∆T ) and N (∆Tδ−δ2I) = N (∆T −δ2I) = R(∆Tδ), hence
δ−2∆Tδ is even the orthogonal projection on R(∆Tδ). �

Now, for a ∆T -regular concave operator T , we determine the quasi-
Brownian isometric invariant (and reducing) parts of T in H.

Theorem 2.5. Let T ∈ B(H) be a non-isometric ∆T -regular concave op-
erator. Then the quasi-Brownian isometric invariant part of T in H is the
subspace

Hq = N (∆T )⊕N (I − SW ), (2.6)

where W ∗ = T ∗|R(∆T )
and SW := s − limn→∞W

∗nWn for the contraction

W . Moreover, Hq is even the 2-isometric invariant part of T in H. In
addition, if N (I − SW ) 6= {0}, then cov(T |Hq) = ‖E|N (I−SW )‖, where E :=
PN (∆T )T |R(∆T )

.

Proof. Consider the matrix representation (2.5) of T on H = N (∆T ) ⊕
R(∆T ) given by the operators V , E and W . As W is a contraction on

R(∆T ), the subspace

N (I − SW ) =
⋂
j≥1

N (I −W ∗jW j) (2.7)

is even the isometric invariant part of W in R(∆T ). Since W commutes with
∆0 = E∗E + ∆W (as in Proposition 2.3(c)), we have for h ∈ N (I − SW )
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and n ≥ 1 that E∗Eh = W ∗nWnE∗Eh. Therefore, E∗Eh ∈ N (I − SW ) by
(2.7). Hence N (I − SW ) reduces E∗E and ∆T .

Now, the matrix representation (2.5) of T on

H = N (∆T )⊕N (I − SW )⊕R(I − SW )

has the form

T =

V E0 ?
0 W0 ?
0 0 ?

 =

(
T0 ?
0 ?

)
with T0 = T |N (∆T )⊕N (I−SW ),

where E0 = E|N (I−SW ) and W0 = W |N (I−SW ) is an isometry. In addition,
as N (I − SW ) reduces E∗E, we have E∗0E0 = E∗E|N (I−SW ). Therefore, E0

is injective because so is too E, and also V ∗E0 = 0 (by Proposition 2.3(b)).
Further, since W commutes with ∆0 (by Proposition 2.3(c)), it follows that

W0 commutes with E∗0E0 on N (I − SW ) = R(∆T0). We conclude that
the subspace Hq from (2.6) is invariant for T and T0 = T |Hq is a ∆T0-
regular 2-isometry, that is, a quasi-Brownian isometry. In addition, when
N (I − SW ) 6= {0} we have

cov(T0) = ‖∆T0‖1/2 = ‖E∗0E0 + ∆W0‖1/2 = ‖E0‖ > 0.

Next, we show that Hq is the maximum invariant subspace for T in H on
which T is a 2-isometry. This fact also ensures that Hq is even the quasi-
Brownian isometric invariant part of T in H. Indeed, let M ⊂ H be an
invariant subspace for T such that T ′ = T |M is a 2-isometry. Then with
respect to the orthogonal decomposition H =M⊕M⊥ we can represent T
as

T =

(
T ′ X
0 Y

)
with some appropriate operators X,Y . A simple computation gives

T ∗∆TT −∆T =

(
T ′∗∆T ′T

′ −∆T ′ Z
Z∗ Y0

)
=

(
0 0
0 Y0

)
.

Here we used the property that T ′ is a 2-isometry, i.e. T ′∗∆T ′T
′ = ∆T ′ , as

well as the fact that T is concave, i.e. ∆T − T ∗∆TT ≥ 0. This positivity
condition in turn implies Z = 0. We conclude that

M⊂ N (∆T − T ∗∆TT ) =: M̃.

Since W in (2.5) commutes with ∆0 = ∆T |R(∆T )
, for h ∈ R(∆T )∩M̃ we

have
∆0h = W ∗∆0Wh = ∆0W

∗Wh,

and, as ∆0 is injective, we obtain h = W ∗Wh. It follows that

M⊂ M̃ ⊂ N (∆T )⊕N (I −W ∗W ).

We consider the subspace N := N (∆T ) +M which is also invariant for T ,
so TN := T |N is a concave operator. But N (∆T ) is invariant for TN too and
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T ∗NTNh = PNT
∗Th = h for h ∈ N (∆T ), i.e. TN is an isometry on N (∆T ).

Hence N (∆T ) ⊂ N (∆TN ). On the other hand, N (∆TN ) is invariant for T
and ‖Th‖ = ‖TNh‖ = ‖h‖ for h ∈ N (∆TN ). Thus T |N (∆TN ) is concave and

contractive, that is, an isometry such that N (∆T ) = N (∆TN ). Therefore,

N = N (∆T ) ⊕ R(∆TN ), while from the above inclusion of M and the

definition of N we derive that R(∆TN ) ⊂ N (I −W ∗W ) ⊂ R(∆T ).
Denoting WN := PR(∆TN )

TN |R(∆TN )
we obtain

WR(∆TN ) = PR(∆T )
TR(∆TN ) = PR(∆T )

TNR(∆TN )

⊂ PR(∆T )
(N (∆T )⊕WNR(∆TN ))

= WNR(∆TN ) ⊂ R(∆TN ).

So, R(∆TN ) is invariant for W . SinceR(∆TN ) ⊂ N (I−W ∗W ), we infer that

W |R(∆TN )
is an isometry. But, by (2.7), this gives R(∆TN ) ⊂ N (I − SW ),

hence
M⊂ N ⊂ N (∆T )⊕N (I − SW ) = Hq.

We conclude that Hq has the required maximality properties, which ends
the proof. �

Combining Hq in (2.6) with a subspace from Proposition 2.4 we obtain a
particular quasi-Brownian isometric invariant part.

Proposition 2.6. Let T ∈ B(H) be a ∆T -regular concave operator with

δ0 = ‖∆T ‖1/2 > 0, and letMδ0 and Hq be the subspaces given by Proposition
2.4 and Theorem 2.5, while W = PR(∆T )

T |R(∆T )
. If

R(∆T |Mδ0
) ∩R(∆T |Hq) 6= {0},

then

H0 :=Mδ0 ∩Hq = N (∆T )⊕N (∆T − δ2
0I) ∩N (I − SW ) (2.8)

is the maximum invariant subspace for T in H such that T0 := T |H0 is a
2-isometry with an orthogonal projection δ−2

0 ∆T0.

Proof. The subspaceH0 in (2.8) is invariant for T and T0 = T |H0 is concave.
So we get

{0} 6=R(∆T |Mδ0
) ∩R(∆T |Hq) = R(∆T0)

=N (∆T − δ2
0I) ∩N (I − SW ) ⊂ R(∆T ).

But, as in the previous proof, we see that R(∆T0) is invariant for W , while
the above equality implies that W0 := W |R(∆T0

)
is an isometry. In addition,

if E0 := PN (∆T )T0|R(∆T0
)
, then using the matrix representation of T0 on

H0 = N (∆T )⊕R(∆T0) we have

δ2
0h = ∆Th = PH0∆Th = ∆T0h = (E∗0E0 + ∆W0)h = E∗0E0h
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for h ∈ R(∆T0). Thus δ−2
0 E0 is an isometry, and consequently T0 is a

2-isometry with δ−2
0 ∆T0 being an orthogonal projection on H0.

Let us show the required maximality property ofH0 relative to T . For this
purpose, let M ⊂ H be an invariant subspace for T such that T ′ = T |M
is a 2-isometry with δ−2

0 ∆T ′ being an orthogonal projection. Obviously,
M⊂ Hq by the maximality property of Hq established in Theorem 2.5. We

represent T on H =M⊕M⊥ in the form

T =

(
T ′ X
0 Y

)
,

with some appropriate operators X and Y . As a consequence, we obtain

∆T =

(
∆T ′ T ′∗X
X∗T ′ X∗X + ∆Y

)
=

0 0 0
0 I Z
0 Z∗ X∗X + ∆Y

 ,

the second representation being onH = N (∆T ′)⊕N (∆T ′−δ2
0I)⊕M⊥, where

we use that δ−2
0 ∆T ′ is an orthogonal projection so R(∆T ′) = N (∆T ′ − δ2

0I),
and that ∆T ≥ 0 (so N (∆T ′) is invariant for T ∗T ). We infer that

(∆T − δ2
0I)|R(∆T ′ )⊕M⊥ =

(
0 Z
Z∗ X∗X + ∆Y − I

)
,

and since ∆T ≤ δ2
0I (by the choice of δ0), we get Z = 0. Hence R(∆T ′) ⊂

N (∆T − δ2
0I). Also, since N (∆T ′) is invariant for T ′, and so for T , we have

(as above) N (∆T ′) ⊂ N (∆T ). Thus we get M = N (∆T ′)⊕R(∆T ′) ⊂Mδ0

and finally M ⊂ Mδ0 ∩ Hq = H0. Consequently, H0 has the required
maximality property, which completes the proof. �

Next, we turn our attention to the quasi-Brownian isometric reducing
part.

Theorem 2.7. Let T ∈ B(H) be a non-isometric ∆T -regular concave op-
erator. Then the quasi-Brownian isometric reducing part of T in H is the
2-isometric reducing part of T in H. More precisely, it is the subspace

H∗q := H∞ ⊕ [l2+(V,ER∞)⊕R∞], (2.9)

where H∞ and R∞ are, respectively, the isometric reducing parts of T in
H and of W in R(∆T ), while V , E and W are the operators from the
block matrix form (2.5) of T . In addition, if R∞ 6= {0}, then cov(T |H∗q ) =

‖E|R∞‖.

Proof. Consider the decomposition R(∆T ) = R∞⊕ (R(∆T )	R∞), where

R∞ is the reducing isometric part of the compression W of T on R(∆T ),
that is, (by (2.2))

R∞ = R(∆T )	
∨
n≥0

WnR(I −W ∗W ).
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To prove that R∞ is invariant for E∗E, where E = PN (∆T )T |R(∆T )
, we

first express the commutation relation in Proposition 2.3(c) in the following
ways:

E∗EW −WE∗E = WW ∗W −W ∗W 2,

W ∗E∗E − E∗EW ∗ = W ∗WW ∗ = W ∗2W.

Since the right hand side of each of these relations is 0 on R∞, we have
E∗EWh = WE∗Eh and E∗EW ∗h = W ∗E∗Eh for h ∈ R∞. Then for
k = (I−W ∗W )h′ (h′ ∈ R(∆T )), h ∈ R∞ and any positive integer n, taking
into account the previous relations and that R∞ reduces W , we obtain

〈E∗Eh,Wnk〉 = 〈E∗E(I −W ∗W )W ∗nh, h′〉 = 0.

But this yields E∗Eh ∈ R∞ by the above structure of R∞. Hence this
subspace is invariant (and so reducing) for E∗E. This also implies that R∞
reduces ∆0 = E∗E + ∆W .

Now, let E = J |E| be the polar decomposition of E. Since E is injective
and V ∗E = 0 (by Proposition 2.3(b)), the operator J is an isometry from

R(E∗E) = R(∆T ) onto R(E) ⊂ N (V ∗). In fact, R(E) = N (V ∗1 ), where
V1 = V |N (∆T )	H∞ , H∞ being the isometric reducing part of T in H. As
R∞ reduces E∗E, we have

R(E) = J |E|R∞ ⊕ J |E|(R(∆T )	R∞).

Thus ER∞ is a wandering subspace for V , so the subspace

N∞ := l2+(V,ER∞)

is well defined inN (∆T ). Furthermore, the subspace K := N∞⊕R∞ reduces
T . Indeed, it is immediate that TK ⊂ K by using the matrix representation
(2.5) of T . On the other hand, N∞ reduces V because E∗V = 0 and also
we have

E∗N∞ ⊂
∨
n≥0

E∗V nER∞ ⊂ E∗ER∞ ⊂ R∞.

These facts and the form of T ∗ given by (2.5) show that T ∗K ⊂ K, hence
K reduces T and so ∆T . In addition, since K ⊂ Hq, it follows that K also
reduces T |Hq and, as this last operator is a quasi-Brownian isometry, we
deduce that T |K is a quasi-Brownian isometry. Consequently, H∗q := H∞⊕K
reduces T to a quasi-Brownian isometry.

Next, we show that H∗q is the maximum subspace in H which reduces T
to a 2-isometry. This will imply that it is even the quasi-Brownian isometric
reducing part of T in H.

Let M ⊂ H be a reducing subspace for T such that T ′ = T |M is a
2-isometry. Then ∆T ′ = ∆T |M and PM∆T = ∆TPM, so

R(∆T ′) = R(∆T ) ∩M = PMR(∆T ) = PR(∆T )
M.
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It follows immediately that R(∆T ′) is invariant for T ∗, and since W ∗ =

T ∗|R(∆T )
, the subspace R(∆T ′) is invariant for W ∗. This subspace is also

invariant for W (as we proved in the proof of Theorem 2.5), hence R(∆T ′)
reduces W . But T ′ is a quasi-Brownian isometry (T being ∆T -regular),
so W ′ := W |R(∆T ′ )

= PR(∆T ′ )
T ′|R(∆T ′ )

is an isometry. Consequently,

R(∆T ′) ⊂ R∞.
On the other hand, it is clear that N (∆T ′) ⊂ N (∆T ) and

N (∆T ) = H∞ ⊕ l2+(V,N (V ∗)) = H∞ ⊕ l2+(V,R(E)),

where H∞ is given by (2.1). But, as M reduces T , the 2-isometry T ′ has

the matrix representation of the form (2.5) onM = N (∆T ′)⊕R(∆T ′) given
by the operators V ′ := V |N (∆T ′ )

, W ′ of above and E′ = E|R(∆T ′ )
. Thus we

get

N (∆T ′) =M∞ ⊕ l2+(V,ER(∆T ′)) ⊂ H∞ ⊕ l2+(V,ER∞),

and we conclude that

M⊂ H∞ ⊕ [l2+(V,ER∞)⊕R∞] = H∗q .
Hence H∗q has the required maximality property. Also, from the matrix

representation of T |H∗q on H∗q = [H∞ ⊕ l2+(V,ER∞)]⊕R∞ we get

cov(T |H∗q ) = ‖(E∗E + ∆W )|R∞‖1/2 = ‖E|R∞‖

when R∞ 6= {0}. This ends the proof. �

From the above theorem we derive the ensuing corollary.

Corollary 2.8. Let T ∈ B(H) be a non-isometric ∆T -regular concave op-
erator. Then T has a unique representation as a direct sum of the form

T = T2 ⊕ T1

on a reducing orthogonal decomposition H = H2⊕H1 for T , such that T2 =
T |H2 is a 2-isometry while T1 has no non-zero 2-isometric direct summand.

3. Brownian isometric parts

We begin with a result which, for a concave operator, gives other reducing
parts contained in the subspaces H∗q from (2.9) and H0 from (2.8).

Theorem 3.1. Let T ∈ B(H) be a non-isometric ∆T -regular concave oper-
ator having the matrix representation (2.5) given by the operators V , W ,

E and for 0 < δ ≤ ‖∆T ‖1/2 we put Eδ = δ−1E. Let H∞ ⊂ H and

R∞ ⊂ R(∆T ) be the isometric reducing parts of T and W , respectively,
and we suppose that Rδ := R∞ ∩N (∆Eδ) 6= {0}. Then the subspace

Hδ := H∞ ⊕ [l2+(V,ERδ)⊕Rδ] (3.1)

is the 2-isometric reducing part of T in H such that δ−2∆T |Hδ
is an orthog-

onal projection.
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Proof. By the block matrix representation (2.5) of T , we have

∆T |R(∆T )
= E∗E −D2

W ≤ E∗E,

therefore 0 < ‖∆T ‖1/2 ≤ ‖E‖, T being non-isometric. Thus, for a fixed
δ ∈ (0, ‖E‖], we can write E = δEδ with an injective (like E) operator Eδ
such that ‖Eδ‖ ≥ 1.

Since W commutes to E∗E −D2
W on R(∆T ) (by Proposition 2.3(c)), it

follows that the subspace Rδ = R∞ ∩N (∆Eδ) reduces W , and (using (2.2)
for R∞) one can see that Rδ also reduces E∗δEδ. Hence Wδ = W |Rδ is an
isometry, and Eδ isometrically maps Rδ into N (V ∗) when Rδ 6= {0}. In this
case the operator

E : Rδ⊕ [R(∆T )	Rδ]→ [N (∆T )	Lδ]⊕Lδ, where Lδ = l2+(V,ERδ),

has the matrix representation

E =

(
0 E′

F 0

)
,

with δ−1F = Eδ|Rδ being an isometry from Rδ into Lδ. Because the sub-
space Lδ reduces the isometry V , from the representation (2.5) of T it fol-
lows that the subspace Lδ ⊕ Rδ is reducing for T . Hence the subspace
Hδ = H∞⊕ (Lδ⊕Rδ) from (3.1) is reducing for T , such that Tδ = T |Hδ is a
2-isometry because it has onHδ = (H∞⊕Lδ)⊕Rδ the matrix representation

Tδ =

(
Vδ δFδ
0 Wδ

)
.

Here Vδ = V |H∞⊕Lδ , Wδ as above and Fδ = (0, δ−1F )tr fromRδ intoH∞⊕Lδ
are isometries such that V ∗δ Fδ = 0. Hence the above matrix gives ∆Tδ =
0 ⊕ δ2I, i.e. δ−2∆Tδ is an orthogonal projection. But since Rδ 6= {0} we

infer that δ = ‖∆Tδ‖1/2 = ‖∆T |Rδ‖1/2 ≤ ‖∆T ‖1/2, so δ necessarily belongs

to the interval (0, ‖∆T ‖1/2] (comparing with the choice of δ before).
Let us prove that Hδ is the maximum subspace in H with the required

properties relative to T . Indeed, let M ⊂ H be another reducing subspace
for T such that T ′ := T |M is a 2-isometry with δ−2∆T ′ an orthogonal
projection. Then ∆T ′ = ∆T |M and so T ′ is a quasi-Brownian isometry
(T being ∆T -regular), hence M ⊂ H∗q by Theorem 2.7 and M reduces

T∗ := T |H∗q . This yields ∆T ′ = ∆T∗ |M, therefore R(∆T ′) ⊂ R(∆T∗) = R∞,
and also

PR(∆T ′ )
T ′R(∆T ′) = PR(∆T ′ )

TR(∆T ′) = WR(∆T ′),

T
′∗R(∆T ′) = T ∗R(∆T ′) = W ∗R(∆T ′).

Thus R(∆T ′) reduces W to an isometry and W |R(∆T ′ )
= PR(∆T ′ )

T ′.

On the other hand, by the choice of T ′ on M, we have

δ2IR(∆T ′ )
= ∆T ′ |R(∆T ′ )

= ∆T∗ |R(∆T ′ )
= δ2E∗δEδ|R(∆T ′ )

,
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therefore R(∆T ′) reduces E∗δEδ to an isometry. This shows that R(∆T ′) ⊂
N (∆Eδ) and finally R(∆T ′) ⊂ R∞ ∩N (∆Eδ) = Rδ.

Now, since ∆T ′ = ∆T∗ |M, we have N (∆T ′) ⊂ N (∆T∗), and by (2.9) we
obtain N (∆T ′) 	 H∞ ⊂ l2+(V,ER∞). But as R(∆T ′) reduces E∗δEδ, it is
clear that PN (∆T ′ )

T ′|R(∆T ′ )
= δEδ|R(∆T ′ )

= E|R(∆T ′ )
. Thus we infer that

N (∆T ′) =M∞ ⊕ l2+(V,ER(∆T ′)) ⊂ H∞ ⊕ l2+(V,ERδ) = Hδ 	Rδ,
where M∞ is the isometric reducing part of T ′ in M. We conclude that
M = N (∆T ′) ⊕ R(∆T ′) ⊂ Hδ, which shows the desired property of Hδ
relative to T . This ends the proof. �

As we remarked in the above proof, the subspace Hδ from (3.1) is even
the quasi-Brownian isometric reducing part of T in H on which δ−2∆T is
an orthogonal projection. We also observe from the given argument that
if δ = ‖E‖ > 0 and Rδ 6= {0}, then δ = ‖∆T ‖1/2, while Eδ = δ−1E is a
contraction (like W ) with ‖Eδ‖ = ‖W‖ = 1 in this case. This certainly
happens when T is a quasi-Brownian isometry, where W is an isometry, so
R(∆T ) = R∞ and Rδ = N (DEδ). Thus we obtain the following result.

Corollary 3.2. If T ∈ B(H) is a quasi-Brownian isometry of covariance

δ0 = ‖∆T ‖1/2 > 0, then the corresponding subspace Hδ from (3.1) is

Hδ0 = H∞ ⊕ [l2+(V,EN (DEδ0
))⊕N (DEδ0

)] (3.2)

where the isometry V and the contraction Eδ0 have the meaning as in The-
orem 3.1.

Notice that for a quasi-Brownian isometry this part Hδ0 from (3.2), as
well as the Brownian isometric and unitary reducing parts, respectively, were
obtained in [13, Theorem 5.4]. Regarding the last two parts for the concave
operators we can formulate the following theorem.

Theorem 3.3. Let T ∈ B(H) be a non-isometric ∆T -regular concave op-

erator and V,W,E = δEδ for 0 < δ ≤ ‖∆T ‖1/2 be as in Theorem 3.1. Let
H∞,H∞ (resp., R∞,R∞) be the isometric and the unitary parts of T (resp.,
of W ). Then the following statements hold.

(i) If R∞ 6= {0}, then the Brownian isometric invariant and reducing
parts, respectively, of T in H are the subspaces

Hb0 := N (∆T )⊕R∞ (3.3)

and respectively

H∗b0 := H∞ ⊕ [l2+(V,ER∞)⊕R∞]. (3.4)

Moreover, we have cov(T |H∗b0) = cov(T |Hb0) = ‖∆T |R∞‖1/2.

(ii) If R0
δ := R∞ ∩ N (∆Eδ) 6= {0}, then the Brownian unitary reducing

part of T in H on which T has the covariance δ is the subspace

H0
δ := H∞ ⊕ [l2+(V,ER0

δ)⊕R0
δ ]. (3.5)



1080 WITOLD MAJDAK AND LAURIAN SUCIU

In addition, in this case we have

δ = cov(T |H0
δ
) = cov(T |Hδ) = ‖∆T |R0

δ
‖1/2, (3.6)

where Hδ is the subspace from (3.1).

Proof. (i) Since R∞ ⊂ R∞, it follows that R∞ reduces W |R∞ to a unitary

operator, and also by (2.1), R∞ =
⋂
n≥1W

nR(∆T ) reduces E∗E because

WE∗E = E∗EW . Thus the subspace Hb0 from (3.3) is invariant for T
and Hb0 ⊂ Hq (from (2.6)). Therefore, Hb0 is invariant for T |Hq , hence
T |Hb0 is a 2-isometry with an injective operator E|R∞ = PN (∆T )T |R∞ and
a unitary operator T ∗|R∞ = W ∗|R∞ which commutes with E∗E|R∞ . Since
δb0 := cov(T |Hb0) = ‖E|R∞‖, it follows that δ−1

b0 E|R∞ is a contraction.
These properties when combined imply that T |Hb0 is a Brownian isometry.

Next, we show that Hb0 is even the maximum invariant subspace for T
with this property. Indeed, let M⊂ H be an invariant subspace for T such
that T ′ = T |M is a Brownian isometry. Obviously, N (∆T ′) ⊂ N (∆T ) and

so R(∆T ′) ⊂ [N (∆T )	N (∆T ′)]⊕R(∆T ). This implies

∆T ′M = PM∆TM = PM∆TR(∆T ′)

⊂ PR(∆T ′ )
∆TR(∆T ) = PR(∆T )

R(∆T ),

hence R(∆T ′) ⊂ R(∆T ). This leads to the relations

WR(∆T ′) = PR(∆T )
TR(∆T ′) = PR(∆T )

T ′R(∆T ′)

⊂ PR(∆T )
(N (∆T ′)⊕R(∆T ′)) = PR(∆T )

R(∆T ′) = R(∆T ′),

which means that R(∆T ′) is invariant for W . In fact, by Theorem 2.5 we
have M ⊂ Hq, therefore M is also invariant for T |Hq . Then, as above, we

have R(∆T ′) ⊂ R(∆T |Hq ) = N (I − SW ) =: N and

W |R(∆T ′ )
= PNT |R(∆T ′ )

= PNT
′|R(∆T ′ )

= PNPMT
′|R(∆T ′ )

= PR(∆T ′ )
T ′|R(∆T ′ )

=: W ′.

Here we used that M = N (∆T ′) ⊕ R(∆T ′), where N (∆T ′) ⊂ H 	 N and

R(∆T ′) ⊂ N . Therefore, R(∆T ′) is invariant for W and so for the isometry
W |N . Since W ′ (of above) is unitary (T |M being a Brownian isometry), it

follows that R(∆T ′) reduces W |N to a unitary operator. Hence, taking into
account that W is a contraction (see [12]),

R(∆T ′) ⊂
⋂
n≥1

WnN (I − SW ) = N (I − SW ∗) ∩N (I − SW ) = R∞.

Finally, we haveM = N (∆T ′)⊕R(∆T ′) ⊂ Hb0 which is the desired property.
We conclude that Hb0 is the Brownian isometric invariant part of T in H.

Concerning the subspace H∗b0 from (3.4) is easy to see that it is invariant
for T . Furthermore, since R∞ reduces E∗E and W |R∞ is unitary, using
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the matrix representation of T ∗ from (2.5), we immediately obtain that
T ∗H∗b0 ⊂ H∗b0. Thus H∗b0 reduces T to a Brownian isometry and, in fact, it
is the maximum subspace of H with this property.

Indeed, let M ⊂ H be another reducing subspace for T such that T ′ =
T |M is a Brownian isometry. Then M reduces ∆T and ∆T ′ = ∆T |M. So

R(∆T ′) = M∩R(∆T ) reduces W to a unitary operator, hence R(∆T ) ⊂
R∞. Also we have

N (∆T ′) =M∩N (∆T ) =M∩H∞ ⊕ E ,

whereM∩H∞ is the isometric reducing part of T ′ inM, while the subspace
E reduces the isometry T |N (∆T ′ )

= V |N (∆T ′ )
to a shift operator. Using the

matrix representation of T ′ on M = N (∆T ′) ⊕ R(∆T ′) and the inclusion

R(∆T ′) ⊂ R∞, we infer that

E = l2+(V,ER(∆T ′)) ⊂ l2+(V,ER∞),

which leads to the inclusionM⊂ H∗b0. This shows that H∗b0 is the Brownian
isometric reducing part of T in H. In addition, when R∞ 6= {0} by using
the block matrices (2.5) for T |Hb0 and T |H∗b0 we get

‖∆T |Hb0
‖ = ‖E∗E|R∞‖ = ‖∆T |H∗

b0

‖.

Therefore,

cov(T |Hb0) = cov(T |H∗b0) = ‖∆T |R∞‖1/2,

where for the last equality we used that ∆T |Hb0
= PHb0∆T |Hb0 . This ends

the proof of (i).
(ii) We can proceed similarly as for H∗b0 to show that the subspace H0

δ

reduces T to a Brownian unitary of covariance δ ∈ (0, ‖∆T ‖1/2], because if
R0
δ = R∞ ∩ N (∆Eδ) 6= {0}, then this subspace reduces W and E∗δEδ, such

that W |R0
δ

is unitary and Eδ isometrically maps R0
δ into N (V ∗). To see

that H0
δ is the maximum subspace in H with these properties, let M ⊂ H

be another subspace which reduces T to a Brownian unitary of covariance
δ. Then M ⊂ H∗b0 ∩ Hδ (Hδ from (3.1)), and denoting T ′ = T |M we infer
that R(∆T ′) ⊂ R∞∩N (∆Eδ) = R0

δ . Also, by the above inclusion ofM and
the fact that M reduces T , we obtain

N (∆T ′) =M∩N (∆T ) ⊂ H∞ ⊕ l2+(V,ER(∆T ′)) ⊂ H∞ ⊕ l2+(V,ER0
δ).

Thus we get M ⊂ Hb1, which shows that H0
δ is even the Brownian unitary

part of T in H with cov(T |H0
δ
) = δ.

Finally, it is clear that in the case R0
δ 6= {0} we have cov(T |H0

δ
) =

cov(T |Hδ) = δ. Also, since R0
δ ⊂ R∞ we obtain cov(T |H0

δ
) = ‖∆T |R0

δ
‖1/2.

Therefore the relations (3.6) hold true, which completes the assertion (ii)
and ends the proof of the theorem. �
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Remark 3.4. The Brownian isometric (unitary) parts of a ∆T -regular
concave operator T coincide with the corresponding parts of the quasi-
Brownian isometric invariant part T |Hq of T (which can be easily pro-
vided). Here by Theorem 3.3 and Theorem 3.1, for such T we get a col-
lection of Brownian unitary parts {H0

δ} and, respectively, of reducing parts
{Hδ} of T to 2-isometries with δ−2∆T |Hδ

being an orthogonal projection,

for δ ∈ (0, ‖∆T ‖1/2]. But we cannot select those desired δ with H0
δ 6= H∞

(R0
δ 6= {0}), or Hδ 6= H∞ (Rδ 6= {0}), such that in (3.1) and (3.5) we meant

only these cases.
However an inspection of the proof of Theorem 3.1 reveals that for every

scalar δ > δT one has Rδ = {0}. For δ > ‖E‖ even N (∆Eδ) = {0} because
from E = δEδ we have ‖Eδ‖ < 1. But, if Rδ 6= {0} (or, respectively, even
R0
δ 6= {0}), thenRδ∩Rδ′ = {0} (resp., R0

δ∩R0
δ′ = {0}) for every δ′ ∈ (0, δT ],

δ′ 6= δ. Hence Hδ ∩Hδ′ = H∞ and H0
δ ∩H0

δ′ = H∞, in these cases.

Remark 3.5. Let the operator E in (2.5) be bounded from below and let

δ0 = ‖∆T ‖1/2 and

δ1 := min{δ0, inf
‖h‖=1

‖Eh‖} > 0.

Then for δ ∈ (0, δ1), we have E∗E = δ2
1E
∗
δ1
Eδ1 = δ2E∗δEδ. The first equality

and the choice of δ1 yield E∗δ1Eδ1 ≥ I. So E∗δEδ−I ≥ E∗δ1Eδ1−I ≥ 0, whence

it follows Rδ ⊂ Rδ1 and R0
δ ⊂ R0

δ1
. But by the last assertion in the previous

remark this implies Rδ = R0
δ = {0}. In this case only for δ ∈ [δ1, δ0] we can

have Hδ 6= H∞ or H0
δ 6= H∞.

Next we derive some consequences from the above theorems. Thus The-
orem 3.3 yields

Corollary 3.6. Let T ∈ B(H) be a ∆T -regular concave operator with δ0 =

‖∆T ‖1/2 > 0 such that H0
δ0
6= H∞. Then

cov(T |H0
δ0

) = cov(T |Hδ0 ) = cov(T |H∗b0) = cov(T |Hb0) = δ0.

Now, from Theorem 3.3 we have a Sz.-Nagy–Foias–Langer type decom-
position for the concave operators satisfying (1.2). Instead of the unitary
part from the decomposition of a contraction we have here Brownian uni-
tary parts, while the completely non-Brownian unitary part can be refined
by the Brownian isometric part. To simplify the expression, if R0

δ 6= {0} we
will call T |H0

δ
(resp. H0

δ) the δ-Brownian unitary part of T (in H).

Corollary 3.7. Let T ∈ B(H) be a ∆T -regular concave operator such that

R0
δ 6= {0} for 0 < δ ≤ ‖∆T ‖1/2. Then T can be uniquely represented as a

direct sum of the form

T = Tδ ⊕ T0δ ⊕ T00 on H = H0
δ ⊕ (H∗b0 	H0

δ)⊕ (H	H∗b0) (3.7)
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such that Tδ is the δ-Brownian unitary part of T , T0δ is a Brownian isome-
try without a δ-Brownian unitary part, while T00 is a ∆T00-regular concave
operator without a Brownian isometric reducing part.

According to [2, 3], we say that a concave operator T is pure if it has no
non-zero isometric direct summand, i.e. H∞ = {0} for T in (2.3). Obviously,
this means that T |N (∆T ) is a pure isometry, i.e. a shift operator. In this
case the three parts of T in (3.7), as well as T |Hδ are pure besides.

Now from Theorem 3.1 and Theorem 3.3 we derive the following result.

Corollary 3.8. If T ∈ B(H) is a pure ∆T -regular concave operator with
non-trivial δ-Brownian unitary part H0

δ ⊂ H for some δ ∈ (0, δ0], then

H0
δ = Hδ ∩H∗b0, (3.8)

where Hδ and H∗b0 are given by (3.1) and (3.4), respectively, and δ0 =

‖∆T ‖1/2. In particular, if T is pure with δ−2
0 ∆T being an orthogonal projec-

tion, then H∗b0 = H0
δ0

.

We end this section with a simple example of a pure concave operator
satisfying (1.2) for which all the above reducing subspaces are null. Such an
operator may be slightly modified to an expansive operator also satisfying
(1.2).

Example 3.9. We first record some facts concerning the forward (unilat-
eral) weighted shifts as concave operators. Such an operator T on H = l2+(C)
can be written on the canonical orthonormal basis {en : n ≥ 0} ⊂ H by

Ten = wnen+1, n ≥ 0,

where {wn} is a bounded sequence of nonnegative numbers. It is known that

such T is a concave operator if and only if wn ≥ 1 and wnwn+1 ≤
√

2w2
n − 1

for n ≥ 0 and in this case {wn} is necessarily decreasing and wn ≤
√

2 for
n ≥ 1 (see [10, Section 6], or [18]). Assuming that T is concave, a direct
computation shows that T is ∆T -regular if and only if

(w2
n+1 − 1)wn = (w2

n+1 − 1)1/2wn(w2
n − 1)1/2, n ≥ 0. (3.9)

As w0 > 1 (otherwise T will be an isometry), the relation (3.9) implies
that either wn = w0 for every n ≥ 1 or there exists n0 ≥ 1 such that
w0 = . . . = wn0−1 and wn = 1 for n ≥ n0. In the first case, w0 = 1 (as
T is concave), which contradicts the above assumption on w0. Therefore it
remains to analyse the second case. Thus, if n0 > 1, then rank(∆T ) ≥ 2
and, as w0 > 1, it follows that W = PR(∆T )T |R(∆T ) is not a contraction
so T cannot be ∆T -regular by Proposition 2.3. We conclude that T is non-
isometric ∆T -regular concave if and only if w0 > 1 and wn = 1 for n ≥ 1.
In this case rank(∆T ) = 1 and W = 0, while Hq = Hb0 = N (∆T ), H∗b0 =

H0
δ = Hδ = {0} for 0 < δ ≤

√
w2

0 − 1.
It is worth noting that if we choose the weighted shift T with the weights

w0 = w1 > 1 and wn = 1 for n ≥ 2, then T is an expansive operator,
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but not concave, which satisfies the condition ∆TT = ∆
1/2
T T∆

1/2
T . Now,

rank(∆T ) = 2 and N (∆T ) is invariant for T , while V = T |N (∆T ) is an
isometry. In addition, if ∆ := T ∗1 T1 + T ∗0 T0, where T1 = PN (∆T )T |R(∆T )

and T ∗0 = T ∗|R(∆T ), then (as V ∗T1 = 0) one has T ∗T = I ⊕ ∆ on H =
N (∆T )⊕R(∆T ). So ∆−I = ∆T |R(∆T ) and it is easy to see that T0∆ = ∆T0

(because w0 = w1).

4. Applications to subbrownian operators and 2-isometries

According to [14], T ∈ B(H) is said to be a Brownian operator if T has
the matrix representation (2.5) with respect to an orthogonal decomposition
H = H1⊕H2, where V is an isometry on H1, W is a coisometry on H2 and
E : H2 → H1 is such that V ∗E = 0, E∗E+W ∗W = 2I and EE∗+V V ∗ ≥ I.
In this case ∆T |R(∆T ) = E∗E + ∆W = I, so ∆T = 0 ⊕ I on H1 ⊕ H2 =
N (∆T )⊕R(∆T ) is an orthogonal projection.

Clearly, such an operator T is concave (as W ∗W ≤ I) and ∆T -regular
(by Proposition 2.3). In addition, E∗E ≥ I, i.e. E is expansive and so
injective, and R(E) = N (V ∗) by the above inequality satisfied by V and
E. Hence the Brownian operators are those concave operators which have a
matrix representation (2.5) on H = N (∆T )⊕R(∆T ) with an isometry V , a
coisometry W , and an expansive operator E such that R(E) = N (V ∗) and
E∗E +W ∗W = 2I.

Notice that a quasi-Brownian isometry T is a Brownian operator if and
only if W is a unitary operator and E/‖∆T ‖1/2 is an isometry in (2.5) with
R(E) = N (V ∗), that is, if and only if T is a Brownian unitary. Also, a quasi-
Brownian isometry T is a Brownian isometry if and only if W is unitary in
(2.5).

Following [14] we say that an operator T on H is subbrownian if it has an
extension to a Brownian operator on a Hilbert space containing H. Thus,
by [14, Theorem B], T is subbrownian if and only if T is concave with
‖T‖ ≤

√
2. Such an operator is not necessarily ∆T -regular. However, we

can determine a Brownian unitary reducing part for a subbrownian operator
using a Brownian extension.

Firstly, we refer to the relationship between the subspaces Hq,Hb0,H∗b0
and Hb = H0

1 of a Brownian operator.

Theorem 4.1. If T ∈ B(H) is a Brownian operator, then the quasi-Brownian
isometric and the Brownian isometric invariant parts, respectively, the Brow-
nian unitary and the Brownian isometric reducing parts of T in H coincide.
In fact, if R∞ 6= {0} we have

Hq = Hb0 = l2+(V,ER⊥∞)⊕H∗b0, H∗b0 = Hb (4.1)

where the operators V,E are from the block matrix (2.5) of T , R∞ is the
unitary part of T ∗|R(∆T ), while Hb = H0

1 is the Brownian unitary part of T
in H with cov(T |H1) = 1.
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Proof. We know that a Brownian operator T has the representation (2.5) on
H = N (∆T )⊕R(∆T ) with isometries V = T |N (∆T ) and W ∗ = T ∗|R(∆T ), an
expansive operator E = PN (∆T )T |R(∆T ) with R(E) = N (V ∗) and
∆T |R(∆T ) = E∗E + ∆W = I.

Since W is a coisometry, one has W ∗W = I ⊕ 0, and so E∗E = I ⊕ 2I on
R(∆T ) = R(W ∗)⊕N (W ). In addition, the unitary part of W in R(∆T ) is
R∞ = N (I−SW ) ⊂ R(W ∗), so W = U ⊕S∗ on R(∆T ) = R∞⊕R⊥∞, where
U is unitary and S is a shift operator. But R∞ reduces E∗E (using (2.1)
and the fact that E∗E commutes to W ), hence if we write E =

(
F G

)
from R∞ ⊕R⊥∞ into N (∆T ), then E∗E = F ∗F ⊕ G∗G = I ⊕ G∗G whence
F ∗F = I. Thus F is an isometry and one obtains the relations

N (V ∗) = R(E) = R(F )⊕R(G) = ER∞ ⊕ ER⊥∞.
Therefore we can write the isometry V as a direct sum

V = V0 ⊕ V1 on N (∆T ) = [H∞ ⊕ l2+(V,ER⊥∞)]⊕ l2+(V,ER∞) =: E0 ⊕ E1

where H∞ is as in (2.1).
Next with such V and E,W as above we infer the representation

T =


V0 0 0 G
0 V1 F 0
0 0 U 0
0 0 0 S∗

 (4.2)

on the orthogonal decomposition H = E0 ⊕ E1 ⊕ R∞ ⊕ R⊥∞. Since R∞ =
N (I − SW ) = R∞ and that F is injective, we conclude by (2.6) and (3.3)
that Hq = Hb0 (= N (∆T ), if R∞ = {0}), i.e. the first equality in (4.1)
holds. When R∞ 6= {0} we infer from the above matrix representation that
the subspace

H1 := H∞ ⊕ [l2+(V,ER∞)⊕R∞]

reduces T to a Brownian unitary operator of covariance 1 = ‖∆T ‖, which
is even the 1-Brownian unitary part of T in H. Moreover, because R(E) =
N (V ∗) it follows that the isometric reducing part is even the unitary part
of T in H, i.e. H∞ = H∞. So, by (3.4), we have H∗b0 = H1 and from the
above matrix representation of T we obtain the second equality in (4.1).
This completes the proof. �

Since for a Brownian operator T , ∆T is an orthogonal projection, we
have ‖∆T |M‖ = 1 for any non-zero subspace M ⊂ R(∆T ). Hence T has a
Brownian unitary reducing part Hb 6= H∞ in H (with cov(T |Hb) = 1) if and
only if T ∗|R(∆T ) has a non-zero unitary part in R(∆T ). In this case we can
determine the Brownian unitary reducing parts preserving the covariance 1
of the restrictions of T to non-null invariant subspaces, and we express such
parts in terms of T |Hb .

Theorem 4.2. Let S ∈ B(H) be a subbrownian operator such that {0} 6=
N (∆S) 6= H and T ∈ B(K) be a Brownian extension of S on K ⊃ H.
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Suppose that Kb ⊂ K is the Brownian unitary reducing part of T with
cov(T |Kb) = 1 and that S has Brownian unitary reducing part Hb ⊂ H
with cov(S|Hb) = 1. Then Hb is the reducible part of T in H ∩Kb.

Moreover, let V = T |N (∆T ), W = T ∗|R(∆T ) and E = PN (∆T )T |R(∆T ).
Then

Hb = H∞ ⊕ [l2+(V,ER)⊕R], (4.3)

where R is the unitary part of the compression of W to the subspace
R(∆S)∩E∗N (V ∗1 ), V1 = V |H1, while H1 is the reducible part of V |N (∆T |Kb )

in N (∆S) ∩N (∆T |Kb).

Proof. Let S = T |H and Hb, Kb be as above. Then Hb is invariant for
T and T |Hb = SHb is Brownian unitary, hence Hb ⊂ Kb0 (the Brownian
isometric invariant part in K of T ). Next Hb is invariant for the 2-isometry
T |Kb0 and cov(T |Hb) = cov(T |Kb0) = 1, consequently Hb reduces T |Kb0 to
a Brownian unitary operator, by [3, Lemma 5.90]. Then, by Theorem 4.1,
we have Hb ⊂ K∗b0 = Kb, and so (as above) Hb reduces T |Kb , and finally Hb
reduces T . This last conclusion together with the fact that Hb ⊂ H∩Kb and
that H∩Kb is invariant for T implies Hb ⊂ Hr is the reducible part of T in
H∩Kb. ButHr reduces T , hence it reduces S and T |Kb (asHr ⊂ H∩Kb), and
S|Hr = (T |Kb)|Hr is Brownian unitary. Since ∆S|Hb

= ∆S|Hr |Hb = ∆T |Kb
|Hb

and cov(S|Hb) = cov(T |Kb) = 1, we get cov(S|Hr) = 1. Consequently,
Hr ⊂ Hb (by the meaning of Hb) and finally Hb = Hr. This provides the
first assertion of theorem.

Next we express Hb in the terms of isometries V = T |N (∆T ), W =
T ∗|R(∆T ) and of the expansive operator E = PN (∆T )T |R(∆T ) with R(E) =
N (V ∗) from the block matrix of T on K = N (∆T )⊕R(∆T ). Recall that ∆T

is an orthogonal projection, so E∗E +W ∗W = 2I, and R∞ = N (I − SW ∗)
is the unitary part of W in R(∆T ), W being an isometry. So F = E|R∞ is
an isometry from R∞ onto N (V ∗b ), where Vb = V |N (∆T |Kb ).

Let M ⊂ H be any reducing subspace for S such that S′ = S|M is
Brownian unitary with cov(S′) = 1. ThenM⊂ Kb andM reduces T |Kb (as
in the case of Hb before), therefore

M =M(∆S′)⊕R(∆S′) ⊂ N (∆S) ∩N (∆T |Kb)⊕R(∆S) ∩R(∆T |Kb).

Since cov(S′) > 0, we have N (∆S′) 6= {0}, so

H0 = N (∆S) ∩N (∆T |Kb) 6= {0}.

The subspace H0 is invariant for T , and so for Vb and S, while V0 =
T |H0 = S|H0 is an isometry and

Vb =

(
V0 D
0 C

)
on N (∆T |Kb) = H0 ⊕H⊥0 ,

where C,D are contractions. Consider the subspace H1 ⊂ H0 given by

H1 := H0∞ ⊕ l2+(V,N (V ∗0 )	R(D)),
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where H0∞ is the unitary part of V0. Clearly, H1 reduces the isometries
V0, V, Vb, S|N (∆S) and let V1 := V0|H1(= V |H1 = S|H1). Then

N (V ∗1 ) ⊂ N (V ∗0 ) ⊂ N (V ∗b ) = FR∞,
which implies F ∗N (V ∗1 ) ⊂ R∞. So we have

R1 := F ∗N (V ∗1 ) ∩R(∆S) ⊂ R∞ ∩R(∆S).

But as M reduces S and T |Kb to S′ = S|M = T |M a Brownian unitary of
covariance 1, we infer that {0} 6= R(∆S′) ⊂ R1.

On the other hand, the above subspace H0∞ is invariant for the isometry
S|N (∆S) and S|H0∞ = V0|H0∞ is unitary, therefore H0∞ reduces S|N (∆S)

and so it reduces S to a unitary operator. Hence H0∞ ⊂ H∞ (the unitary
part of S in H). Also, H∞ is invariant for V and so it reduces V and T
to a unitary operator, therefore H∞ ⊂ H0 and H∞ reduces V0 which gives
H∞ ⊂ H0∞. Thus H∞ = H0∞, and as N (∆S′) ⊂ H0 ⊂ N (∆T |Kb

) and M
reduces T |Kb , we obtain N (∆S′) ⊂ H1 = H∞ ⊕ l2+(V,N (V ∗0 )	R(D)).

Let W1 = PR1W |R1 which is a contraction on R1 and let R ⊂ R1 be
the unitary part of W1 in R1. Clearly, R reduces W to a unitary opera-
tor, so R is even the unitary reducing part of W in R1. Now we remark
that R(∆S′) is invariant for S

′∗ = T ∗|M = W |M and S
′∗|R(∆S′ )

is unitary

(as S′ is Brownian unitary). Since R(∆S′) ⊂ R1, we obtain by the pre-
vious conclusion that R(∆S′) ⊂ R. In turn this, by the above inclusion
N (∆S′) ⊂ H1, yields N (∆S′) ⊂ H∞⊕ l2+(V, FR), and finally as F |R = E|R
we get

M⊂ H∞ ⊕ [l2+(V,ER)⊕R] =: H′.
In particular we have Hb ⊂ H′ (taking into account the choice of M). But
H′ ⊂ H ∩ Kb and obviously H′ is invariant for T |Kband T |H′ = S|H′ is
Brownian unitary with cov(T |H′) = 1 (as E|R = F |R is an isometry and
T ∗|R = W |R is unitary). Hence H′ reduces the 2-isometry T |Kb and so H′
reduces T . Then by the first assertion of theorem we infer that H′ ⊂ Hb and
by the above converse inclusion we get Hb = H′, that is, the representation
(4.3) of Hb. We proved the second assertion and this ends the proof. �

We retain from the previous proof that a subbrownian operator S has a
Brownian unitary part Hb on which S has covariance 1 if and only if the
subspace R from (4.3) is non-zero.

Remark finally that the argument from this proof can be also used for
any 2-isometry of positive covariance and a Brownian unitary extension of
it which preserves the covariance (see [3, Theorem 5.80]). We give this result
in the sequel.

Proposition 4.3. Let S ∈ B(H) be a 2-isometry with δ = cov(S) > 0 and
N (∆S) 6= {0}, and let T ∈ B(K) be a Brownian unitary extension of S on
K ⊃ H such that cov(T ) = δ. Assume that the block matrix (2.5) of T on
K = N (∆T ) ⊕ R(∆T ) is given by the isometries V = T |N (∆T ), F = δ−1E
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where E = PN (∆T )T |R(∆T ) and the unitary operator W ∗ = T ∗|R(∆T ). Then
S has a Brownian unitary reducing part Hb ⊂ H with cov(S|Hb) = δ if

and only if W has a reducible part R 6= {0} in F ∗N (V ∗1 ) ∩ R(∆S), where
V1 = V |H1 and H1 is the reducible part of V in N (∆S). In this case Hb has
the form (4.3) and it is the reducible part of T in H.

The proof of this proposition follows step by step as the previous proof
in a simplified form, because in this case we have Kb = K, W is unitary, so
R∞ = R(∆T ), δ−1E is an isometry and H0 = N (∆S) (in the above proof).
We omit other details and comments.

Proposition 4.3 leads to a generalized von Neumann–Wold decomposition
for a 2-isometry T with a non-trivial part Hb, which thus can be written
as a direct sum between a Brownian unitary part having the covariance of
T and a 2-isometry without such a direct summand. Recall that the von
Neumann–Wold decomposition from [15, 20] for a 2-isometry refers to the
unitary part (i.e. the Brownian unitary part of covariance 0) and to the
analytic 2-isometric part.

The last two results show that it is possible to get Brownian type parts
for concave operators which does not satisfy the condition (1.2). The inves-
tigation in this direction will be continued in a future paper and will concern
even non-expansive operators.
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