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Unbounded strongly irreducible operators
and transitive representations of quivers

on infinite-dimensional Hilbert spaces

Masatoshi Enomoto and Yasuo Watatani

Abstract. We introduce unbounded strongly irreducible operators and
transitive operators. These operators are related to a certain class of in-
decomposable Hilbert representations of quivers on infinite-dimensional
Hilbert spaces. We regard the theory of Hilbert representations of quiv-
ers as a generalization of the theory of unbounded operators. A non-zero
Hilbert representation of a quiver is said to be transitive if the endo-
morphism algebra is trivial. If a Hilbert representation of a quiver is
transitive, then it is indecomposable. But the converse is not true. Let
Γ be a quiver whose underlying undirected graph is an extended Dynkin
diagram. Then there exists an infinite-dimensional transitive Hilbert
representation of Γ if and only if Γ is not an oriented cyclic quiver.
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1. Introduction

A bounded linear operator T on a Hilbert space H is called strongly irre-
ducible if T cannot be decomposed to a non-trivial (not necessarily orthogo-
nal) direct sum of two operators, that is, if there exist no non-trivial invariant
closed subspaces M and N of T such that M ∩ N = 0 and M + N = H.
A strongly irreducible operator is an infinite-dimensional generalization of
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a Jordan block. F. Gilfeather [Gi] introduced the notion of strongly irre-
ducible operators. We refer to excellent books [JiW1] and [JiW2] by Jiang
and Wang on strongly irreducible operators.

In [EW1, EW2] we studied the relative positions of subspaces in a sepa-
rable infinite-dimensional Hilbert space after Nazarova [Na1], Gelfand and
Ponomarev [GeP]. We think that relative positions of subspaces have a close
relation with subfactor theory [Jo, GoHJ].

Let H be a Hilbert space and E1, . . . En be n subspaces in H. Then
it is said that S = (H;E1, . . . , En) is a system of n subspaces in H or
an n-subspace system in H. Two systems S = (H;E1, . . . , En) and T =
(K;F1, . . . , Fn) are isomorphic if there exists an invertible operator ϕ :
H → K such that ϕ(Ei) = Fi for i = 1, 2, · · · , n. A non-zero system
S = (H;E1, . . . , En) is said to be indecomposable if it cannot be decom-
posed to a non-trivial direct sum of two systems up to isomorphism. We
recall that strongly irreducible operators contribute an important role to
construct indecomposable systems of four subspaces [EW1].

On the other hand, Gabriel [Ga] introduced a finite-dimensional (lin-
ear) representation of quivers by attaching vector spaces and linear maps
for vertices and edges of quivers respectively. A finite-dimensional inde-
composable representation of a quiver is a direct graph generalization of a
Jordan block. Historically, Kronecker [Kro] solved the indecomposable rep-

resentations of Ã1, the so called matrix pencils in 1890. Nazarova [Na1] and

Gelfand-Ponomarev [GeP] treated the four-subspace situation D̃4. Donovan-
Freislich [DoF] and Nazarova [Na2] classified the indecomposable represen-
tations of the tame quivers. About these topics we also refer to Bernstein-
Gelfand-Ponomarev [BGP], V. Dlab-Ringel [DlR], Ringel [Ri2], Gabriel-
Roiter [GaR], Kac [Ka], and so on.

We recall infinite-dimensional representations in purely algebraic setting.
In [Au] Auslander found that if a finite-dimensional algebra is not of finite
representation type, then there exist indecomposable modules which are not
of finite length. These are trivially infinite-dimensional. Several works about
infinite-dimensional Kronecker modules have been done by N. Aronszjan, A.
Dean, U. Fixman, F. Okoh and F. Zorzitto in [Ar, DeZ1, Fi, FiO, FiZ, Ok].
A. Dean and F. Zorzitto [DeZ2] constructed a family of infinite-dimensional

indecomposable representations of D̃4. K.Ringel [Ri1] founded a general
theory of infinite-dimensional representations of tame, hereditary algebra
(see also [Ri3, KrR]).

In [EW3, E] we started to investigate the representation theory of quivers
on Hilbert spaces. We asked the existence of an indecomposable infinite-
dimensional Hilbert representation for any quiver whose underlying undi-
rected graph is one of extended Dynkin diagrams. And we solved it affirma-
tively using the unilateral shift S. The argument works even if we replace
the unilateral shift S with any strongly irreducible operator. From this,
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it is suggested that strongly irreducible operators are useful to construct
indecomposable Hilbert representations of quivers [EW4].

From the analogy of a transitive lattice (see P.R. Halmos [H] and K.J.
Harrison, H. Radjavi and P. Rosenthal [HRR]), we called an indecompos-
able Hilbert representation (H, f) of a quiver such that End(H, f) = CI
transitive. If a Hilbert representation of a quiver is transitive, then it is
indecomposable. But the converse is not true. Therefore, it is important
to investigate the existence problem of an transitive infinite-dimensional
Hilbert representation for any quiver whose underlying undirected graph is
one of extended Dynkin diagrams. In this direction, we [EW4] showed two
kinds of constructions of quite non-trivial transitive Hilbert representations
(H, f) of the Kronecker quiver.

In the purely algebraic setting, a representation of a quiver is called a brick
if its endomorphism ring is a division ring. But for a Hilbert representation
(H, f), End(H, f) is a Banach algebra and not isomorphic to its purely
algebraic endomorphism ring in general, because we only consider bounded
endomorphisms. By the Gelfand-Mazur theorem, any Banach algebra over
C which is a division ring must be isomorphic to C.

We remark that locally scalar representations of quivers were introduced
by Kruglyak and Roiter [KrRo]. But their subject is different from ours. We
also refer to S. Kruglyak, V. Rabanovich, and Y. Samoilenko [KrRS] and Y.
P. Moskaleva and Y. S. Samoilenko [MS].

We consider finite-dimensional indecomposable representations of quiv-
ers whose underlying graph is a Dynkin diagram. They are transitive
(cf.[As]). But it is extremely difficult to solve the existence problem for
infinite-dimensional indecomposable (also transitive) Hilbert representations
of quivers whose underlying undirected graph is a Dynkin diagram. The ex-
istence is not known even for quivers whose underlying undirected graph is
D4.

In this paper we introduce unbounded strongly irreducible operators and
transitive operators. It is known that any unbounded closed operator T on
a Hilbert space can be realized as a quotient BA−1 of bounded operators
A and B on H. This fact is related with operator ranges and intersections
of domains of unbounded operators. See, for example, P. Fillmore and
J. Williams [FiW], W.E. Kaufman [Kau] and H. Kosaki [Ko]. We point
out that the study of an unbounded closed operator T = BA−1 can be
translated to the study of a Hilbert representation given by A and B of the
Kronecker quiver. We show that some transitive operators are constructed
by a certain transitive Hilbert representation of the Kronecker quiver. We
regard the theory of Hilbert representations of quivers as a generalization of
the theory of unbounded operators. We also solve completely the existence
problem of infinite-dimensional transitive Hilbert representations of quivers
whose underlying undirected graphs are the extended Dynkin diagrams.
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Let Γ be a quiver whose underlying undirected graph is an extended

Dynkin diagram. If the underlying undirected graph of Γ is not Ãn, then
there exists an infinite-dimensional transitive Hilbert representation of Γ. If

the underlying undirected graph of Γ is Ãn, then there exists an infinite-
dimensional transitive Hilbert representation of Γ if and only if Γ is not an
oriented cyclic quiver. We used unbounded transitive operators based on an
idea of a transitive lattice by K.J. Harrison, H. Radjavi and P. Rosenthal
([HRR],[RR]).

2. Hilbert representations of quivers

A quiver Γ = (V,E, s, r) is a quadruple consisting of the set V of vertices,
the set E of arrows, and two maps s, r : E → V which associate with each
arrow α ∈ E its support s(α) and range r(α). In this paper we assume that
Γ is a finite quiver.

We denote by α : x → y an arrow with x = s(α) and y = r(α). Thus a
quiver is a directed graph. We denote by |Γ| the underlying undirected graph
of a quiver Γ. We say that a quiver Γ is connected if |Γ| is a connected graph.
A quiver Γ is called finite if both V and E are finite sets. A path of length m
is a finite sequence α = (α1, · · · , αm) of arrows such that r(αk) = s(αk+1) for
k = 1, · · · ,m−1. Its support is s(α) = s(α1) and its range is r(α) = r(αm).
A path of length m ≥ 1 is called a cycle if its support and range coincide.
A cycle of length one is called a loop. A quiver which is a loop is also called
the Jordan quiver L. A quiver which is a cycle of length m ≥ 1 is also called
the oriented cyclic quiver Cm with length m ≥ 1. A quiver is said to be
acyclic if it contains no cycles.

Definition. Let Γ = (V,E, s, r) be a finite quiver. It is said that (H, f)
is a Hilbert representation of Γ if H = (Hv)v∈V is a family of Hilbert spaces
and f = (fα)α∈E is a family of bounded linear operators with fα : Hs(α) →
Hr(α).

Definition. Let Γ = (V,E, s, r) be a finite quiver. Let (H, f) and (K, g)
be Hilbert representations of Γ. A homomorphism T : (H, f) → (K, g)
is a family T = (Tv)v∈V of bounded operators Tv : Hv → Kv satisfying
Tr(α)fα = gαTs(α) for any arrow α ∈ E.

The composition T ◦S of homomorphisms T and S is defined by (T ◦S)v =
Tv ◦ Sv for v ∈ V . In this way we have obtained a category HRep (Γ)
of Hilbert representations of Γ. We denote by Hom ((H, f), (K, g)) the
set of homomorphisms T : (H, f) → (K, g). We denote by End(H, f) :=
Hom((H, f), (H, f)) the set of endomorphisms. We can regard End(H, f)
as a subalgebra of ⊕v∈VB(Hv).

In the paper we distinguish the following two classes of operators. A
bounded operator A is said to be a projection(resp. an idempotent) if A2 =



QUIVERS ON INFINITE-DIMENSIONAL HILBERT SPACES 979

A = A∗ (resp. A2 = A). We denote by

Idem(H, f) := {T ∈ End(H, f) | T 2 = T}
={T = (Tv)v∈V ∈ End(H, f) | T 2

v = Tv(for any v ∈ V )}

the set of all idempotents of End(H, f).
Let 0=(0v)v∈V be a family of zero endomorphisms and I = (Iv)v∈V be

a family of identity endomorphisms. It is said that (H, f) and (K, g) are
isomorphic, denoted by (H, f) ∼= (K, g), if there exists an isomorphism ϕ :
(H, f) → (K, g), that is, there exists a family ϕ = (ϕv)v∈V of bounded
invertible operators ϕv ∈ B(Hv,Kv) such that ϕr(α)fα = gαϕs(α) for any
arrow α ∈ E. We say that (H, f) is a finite-dimensional representation if
Hv is finite-dimensional for all v ∈ V . And (H, f) is an infinite-dimensional
representation if Hv is infinite-dimensional for some v ∈ V .

We recall a notion of indecomposable representation in [EW3], that is,
a representation which cannot be decomposed into a direct sum of smaller
representations anymore.

Definition. Let Γ = (V,E, s, r) be a finite quiver. Let (K, g) and (K
′
, g
′
)

be Hilbert representations of Γ. We define the direct sum (H, f) = (K, g)⊕
(K
′
, g
′
) by Hv = Kv ⊕K

′
v for v ∈ V and fα = gα ⊕ g

′
α for α ∈ E. It is said

that a Hilbert representation (H, f) is zero, denoted by (H, f) = 0 if Hv = 0
for any v ∈ V .

Definition. A Hilbert representation (H, f) of Γ is said to be decompos-
able if (H, f) is isomorphic to a direct sum of two non-zero Hilbert repre-
sentations. A non-zero Hilbert representation (H, f) of Γ is called indecom-
posable if it is not decomposable, that is, if (H, f) ∼= (K, g) ⊕ (K ′, g′) then
(K, g) ∼= 0 or (K ′, g′) ∼= 0.

The following proposition is useful to show the indecomposability in con-
crete examples.

Proposition 2.1. [EW3, Proposition 3.1.] Let (H, f) be a Hilbert represen-
tation of a quiver Γ. Then the following conditions are equivalent:

(1) (H, f) is indecomposable.
(2) Idem(H, f) = {0, I}.

Remark. The indecomposability of Hilbert representations of a quiver is
an isomorphic invariant, but it is not a unitary invariant. Hence we cannot
replace the set Idem(H, f) of idempotents of endomorphisms by the subset
of idempotents of endomorphisms which consists of projections to show the
indecomposability.

Definition.([EW4, page 569]) A Hilbert representation (H, f) of a quiver
Γ is said to be transitive if End(H, f) = CI.

If a Hilbert representation (H, f) of Γ is transitive, then (H, f) is inde-
composable. In fact, since End(H, f) = CI, any idempotent endomorphism
T is 0 or I. In purely algebraic setting, a representation of a quiver is said
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to be a brick if its endomorphism ring is a division ring (see for example, cf.
[As]).

Let H be a Hilbert space and E1, . . . En be n subspaces in H. Then
it is said that S = (H;E1, . . . , En) is a system of n subspaces in H. Let
T = (K;F1, . . . , Fn) be another system of n subspaces in a Hilbert space K.
Then we say that ϕ : S → T is a homomorphism if ϕ : H → K is a bounded
linear operator satisfying that ϕ(Ei) ⊂ Fi for i = 1, . . . , n. We say that
ϕ : S → T is an isomorphism if ϕ : H → K is an invertible (i.e., bounded
bijective) linear operator satisfying that ϕ(Ei) = Fi for i = 1, . . . , n. It is
said that systems S and T are isomorphic if there is an isomorphism ϕ :
S → T . This means that the relative positions of n subspaces (E1, . . . , En)
in H and (F1, . . . , Fn) in K are same under disregarding angles. Let us
denote by Hom(S, T ) the set of homomorphisms of S to T and End(S) :=
Hom(S,S) the set of endomorphisms on S. Let S = (H;E1, . . . , En) and
S ′ = (H ′;E′1, · · · , E′n) be systems of n subspaces in Hilbert spaces H and
H ′. Then their direct sum S ⊕ S ′ is defined by

S ⊕ S ′ := (H ⊕H ′;E1 ⊕ E′1, . . . , En ⊕ E′n).

A system S = (H;E1, . . . , En) of n subspaces is said to be decomposable if
the system S is isomorphic to a direct sum of two non-zero systems. A non-
zero system S = (H;E1, · · · , En) of n subspaces is called indecomposable if
it is not decomposable.

We recall that strongly irreducible operators A play an extremely impor-
tant role to construct indecomposable systems of four subspaces. Moreover
the commutant {A}′ corresponds to the endomorphism ring.

For any single operator A ∈ B(K) on a Hilbert space K, let SA =
(H;E1, E2, E3, E4) be the associated operator system such that H = K⊕K
and

E1 = K ⊕ 0, E2 = 0⊕K,E3 = {(x,Ax);x ∈ K}, E4 = {(y, y); y ∈ K}.

It follows that

End(SA) = {T ⊕ T ∈ B(H);T ∈ B(K), AT = TA}

is isomorphic to the commutant {A}′. The associated system SA of four
subspaces is indecomposable if and only if A is strongly irreducible. More-
over for any operators A,B ∈ B(K) on a Hilbert space K, the associated
systems SA and SB are isomorphic if and only if A and B are similar.

Following [H] and [HRR], we [EW1, page 272] introduced a transitive
system of subspaces. A system S = (H;E1, E2, · · · , En) of n subspaces in a
Hilbert space is called transitive if the endomorphism algebra is trivial, that
is,

End(S) = {A ∈ B(H); A(Ei) ⊂ Ei for any i = 1, 2, · · · , n} = CI.
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3. Unbounded strongly irreducible operators

In this section we shall introduce unbounded strongly irreducible opera-
tors and transitive operators. These operators are related to a certain class
of indecomposable Hilbert representations of quivers on infinite-dimensional
Hilbert spaces and four- subspace systems. Let H be a Hilbert space and A
a bounded linear operator on H. We denote the image of A by Im(A) and
the graph of A by G(A), that is, G(A) = {(x,Ax);x ∈ H}. For elements
x, y ∈ H, we define a rank-one operator θx,y by θx,y(z) = (z|y)x for z ∈ H.

P.R. Halmos [H] initiated the study of transitive lattices. A lattice L of
subspaces of a Hilbert space H containing 0 and H is called a transitive
lattice if

{A ∈ B(H); AM ⊂M for any M ∈ L} = CI.
K.J. Harrison, H. Radjavi and P. Rosenthal ([HRR]) constructed a transitive
subspace lattice using an unbounded weighted shift as follows: Let K =
`2(Z) be a Hilbert space with an orthogonal basis {ei}+∞i=−∞. Let

wn = 1 (n ≤ 0), wn = exp((−1)nn!) (n > 0).

Let T be the bilateral weighted shift defined by Ten = wnen+1, with the
domain

D(T ) = {x =
+∞∑
i=−∞

αiei;
+∞∑
i=−∞

|αiwi|2 < +∞}.

Put E1 = K ⊕ 0, E2 = 0 ⊕ K,E3 = G(T ), E4 = {(x, x);x ∈ K}. Their
transitive lattice is L = {0, H = K ⊕K,E1, E2, E3, E4}. See also the book
of Radjavi-Rosenthal [RR, 4.7. page 78].

We [EW4] considered a finite subspace lattice as a Hilbert representation
of a quiver Γ as follows. Let L = {0,M1, M2, . . . ,Mn, H} be a finite lattice.
Consider an n subspace quiver Rn = (V,E, s, r), that is, V = {1, 2, . . . , n, n+
1} and E = {αk; k = 1, . . . , n} with s(αk) = k and r(αk) = n + 1 for
k = 1, . . . , n. Then there exists a Hilbert representation (K, f) of Rn such
that Kk = Mk, Kn+1 = H and fαk : Mk → H is an inclusion for k =
1, . . . , n. The lattice L is transitive if and only if the corresponding Hilbert
representation (K, f) is transitive. By this fact we may use the terminology
“transitive” in the Hilbert representation case.

We recall some facts on strongly irreducible operators for convenience.

Lemma 3.1. Let A be a bounded operator on a Hilbert space H. Then the
following three conditions are equivalent:

(0) For any closed subspaces M and N of H with H = M + N and
M ∩N = 0, if AM ⊂M and AN ⊂ N , then M = 0 or N = 0.

(1) If T ∈ B(H) is an idempotent in the commutant {A}′ of A, then
T = 0 or T = I.

(2) If T ∈ B(H) is an idempotent such that (T ⊕ T )(G(A)) ⊂ G(A) ,
then T = 0 or T = I.
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Proof. Let M and N be closed subspaces of H such that H = M +N and
M ∩N = 0. Then there exists an idempotent E such that M = E(H) and
N = (I − E)H. Hence (0) is equivalent to (1).

We shall show that (1) is equivalent to (2). Assume that (1) holds. Let
T ∈ B(H) be an idempotent such that (T ⊕ T )(G(A)) ⊂ G(A). Then for
any x ∈ H, there exists y ∈ H such that (T ⊕ T )((x,Ax)) = (y,Ay). Hence
Tx = y and TAx = Ay. Thus TA = AT . Hence T ∈ {A}′. Since T is an
idempotent, T = 0 or T = I. Hence (2) holds. Next we assume that (2)
holds. Take an idempotent T ∈ {A}′ ∩B(H). Then

(T ⊕ T )((x,Ax)) = (Tx, TAx) = (Tx,ATx).

Thus (T⊕T )(G(A)) ⊂ G(A). We have T = 0 or T = I. Hence (1) holds. �

Definition. A bounded operator A ∈ B(H) is said to be strongly irre-
ducible if A satisfies one of the three conditions of the above lemma.

Inspired by the example of K.J. Harrison, H. Radjavi and P. Rosenthal,
we introduce unbounded strongly irreducible operators and unbounded tran-
sitive operators.

Definition. Let A be an unbounded closed operator on a Hilbert space
H with the domain D(A) ⊂ H. We define the (bounded) commutant {A}′ of
A by {A}′ = {S ∈ B(H);S(D(A)) ⊂ D(A) and, for any x ∈ D(A), ASx =
SAx}. See for example [Ak, §17].

Let A and B be unbounded closed operators on H. We say that A and
B are similar if there exists a bounded invertible operator T ∈ B(H) such
that T (D(A)) = D(B) and B = TAT−1. We say that A is an orthog-
onal direct sum A1 ⊕ A2 of operators A1 and A2 on H = H1 ⊕ H2 if
D(A) = {(x1, x2);x1 ∈ D(A1), x2 ∈ D(A2)} and Ax = (A1x1, A2x2) for
x = (x1, x2) ∈ D(A).

Lemma 3.2. Let A be an unbounded closed operator on a Hilbert space
H with the domain D(A) ⊂ H. Then the following three conditions are
equivalent:

(0) If A is similar to A1 ⊕ A2 on H = H1 ⊕ H2 for some unbounded
closed operators A1 and A2, then H1 = 0 or H2 = 0.

(1) For any idempotent E ∈ B(H), if E is in the commutant {A}′, then
E = 0 or E = I.

(2) For any idempotent E ∈ B(H), if (E ⊕ E)(G(A)) ⊂ G(A), then
E = 0 or E = I.

Proof. We shall show that (0)⇒(1). Let E ∈ {A}′ be an idempotent.
We have E(D(A)) ⊂ D(A) and AEx = EAx for x ∈ D(A). There exists
an invertible operator T ∈ B(H) such that T (E(H)) = H1 and T ((I −
E)H) = H2 and H = H1⊕H2. We define A1x = TAT−1x = TAET−1x for
x ∈ T (E(D(A))) ⊂ H1. Since E(D(A)) ⊂ D(A), A1 is well defined. And A1

is an operator from T (E(D(A))) to H1 by AEx = EAx for x ∈ D(A). We
define A2x = TAT−1x = TA(I − E)T−1x for x ∈ T ((I − E)(D(A))) ⊂ H2.
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Since E(D(A)) ⊂ D(A), A2 is well defined. And A2 is an operator from
T ((I − E)(D(A))) to H2 by AEx = EAx for x ∈ D(A). Hence we have

TAT−1 = TAET−1 + TA(I − E)T−1 = A1 ⊕A2.

Hence A ∼= A1⊕A2 on H1⊕H2. Since (0) holds, we have H1 = 0 or H2 = 0.
Hence TE(H) = 0 or T (I − E)(H) = 0. So E = 0 or E = I. Thus we have
(0)⇒(1).

Conversely we shall show that (1)⇒(0). Assume that A ∼= A1 ⊕ A2 on
H1 ⊕H2 for some unbounded closed operators A1 and A2. There exists an
invertible operator T ∈ B(H) such that TAT−1x = (A1 ⊕ A2)x for x ∈
D(A1 ⊕ A2) = T (D(A)). There exists an idempotent E ∈ B(H) such that
T−1H1 = E(H) and T−1H2 = (I − E)H. We shall show that E(D(A)) ⊂
D(A) and AE = EA on D(A). We have T−1D(A1) ⊂ T−1H1 = EH and
T−1D(A2) ⊂ T−1H2 = (I − E)H. D(A) = T−1D(A1 ⊕A2) = T−1D(A1) +
T−1D(A2).

E(D(A)) = E(T−1D(A1) + T−1D(A2)) = T−1D(A1)

⊂ T−1D(A1) + T−1D(A2) = D(A).

For x ∈ D(A), we can write x = x1 + x2 with x1 ∈ T−1D(A1) and x2 ∈
T−1D(A2). We have

AEx = (T−1(A1 ⊕A2)T )E(x1 + x2)

= (T−1(A1 ⊕A2)T )x1 = T−1A1Tx1

and

EAx = E(T−1(A1 ⊕A2)T )(x1 + x2)

= E(T−1A1Tx1 + T−1A2Tx2)

= T−1A1Tx1.

Thus we have AE = EA on D(A). Therefore E = 0 or E = I. Hence
H1 = 0 or H2 = 0.

Next, we shall show that (1)⇒(2). Let E ∈ B(H) be an idempotent such
that (E⊕E)(G(A)) ⊂ G(A). Then for any x ∈ D(A), there exists y ∈ D(A)
such that (E ⊕ E)(x,Ax) = (y,Ay). Hence

(Ex,EAx) = (y,Ay) = (Ex,AEx).

Thus E ∈ {A}′. By (1), then E = 0 or E = I.
Conversely, we shall show that (2)⇒(1). Let E ∈ {A}′ be an idempotent.

Then E(D(A)) ⊂ D(A), EAx = AEx for x ∈ D(A), and

(E ⊕ E)((x,Ax)) = (Ex,EAx) = (Ex,AEx).

Hence (E ⊕ E)(G(A)) ⊂ G(A), and E = 0 or E = I. �

Definition. An unbounded closed operator A is said to be strongly
irreducible if A satisfies one of the three conditions of the above lemma.

The next lemma is proved similarly.
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Lemma 3.3. Let A be an unbounded closed operator on a Hilbert space
H with the domain D(A) ⊂ H. Then the following two conditions are
equivalent:

(1) For any T ∈ B(H), if T is in the commutant {A}′, then T is a scalar
operator.

(2) For any T ∈ B(H), if (T ⊕ T )(G(A)) ⊂ G(A), then T is a scalar
operator.

Definition. An unbounded closed operator A is said to be transitive if
A satisfies one of the two conditions of the above lemma.

If an unbounded closed operator A is transitive, then A is strongly irre-
ducible. Any bounded strongly irreducible operator A on a Hilbert space H
with dimH ≥ 2 is not transitive, because A ∈ {A}′.

By the same argument we have the following lemma.

Lemma 3.4. Let A be an unbounded closed operator on a Hilbert space K
with the domain D(A). Let SA = (H;E1, E2, E3, E4) be a four-subspace
system such that H = K ⊕K, E1 = K ⊕ 0, E2 = 0⊕K, E3 = {(x,Ax);x ∈
D(A)}, and E4 = {(x, x);x ∈ K}. Then SA is transitive if and only if A is
transitive.

We shall construct transitive operators using transitive Hilbert represen-
tations and quotients of operators.

Definition. Let A and B be bounded linear operators on a Hilbert
space H. We say that B(A|Ker(A)⊥)−1 is a quotient of B by A. We denote

(A|Ker(A)⊥)−1 briefly by A−1. If we have an additional condition such that

kerA ⊂ kerB, then the quotient is the mapping Ax 7→ Bx, x ∈ H. In [Kau],
Kaufman showed the following useful result about quotient operators.

Theorem 3.5. [Kau, Theorem 1, page 531] Let T be an unbounded operator
on a Hilbert space H. Then T is a closed operator if and only if T =
B(A|Ker(A)⊥)−1 for some A,B ∈ B(H) such that Im(A∗) + Im(B∗) is closed
in H.

We show that there is a non-zero surjective algebra homomorphism of the
endomorphism algebra of a Hilbert representation of the Kronecker quiver to
the endomorphism algebra of a four-subspace system. The Kronecker quiver
Q is a quiver with two vertices {1, 2} and two paralleled arrows {α, β}:

Q : 1
α−→
−→
β

2

A Hilbert representation (H, f) of the Kronecker quiver is given by two
Hilbert spaces H1, H2 and two bounded operators fα, fβ : H1 → H2.

Proposition 3.6. Let K 6= 0 be a Hilbert space and A,B ∈ B(K). Let
(H, f) be a Hilbert representation of the Kronecker quiver Q such that H1 =
H2 = K, fα = A and fβ = B. Let S = (E0;E1, E2, E3, E4) be a four-
subspace system such that E0 = K ⊕ K, E1 = K ⊕ 0, E2 = 0 ⊕ K,
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E3 = {(Ax,Bx);x ∈ K}, and E4 = {(x, x);x ∈ K}. Assume that E3 is
closed. Then there exists a non-zero surjective algebra homomorphism Φ of
End(H, f) to End(S). Moreover, if kerA∩kerB = 0, then Φ is one to one.

Proof. Let (S, T ) be in End(H, f). We have AS = TA and BS = TB.
Since

(T ⊕ T )(Ax,Bx) = (TAx, TBx) = (ASx,BSx),

we have (T ⊕ T )(E3) ⊂ E3. Clearly (T ⊕ T )(Ei) ⊂ Ei for i = 1, 2, 4. Thus
we have that T ⊕ T is in End(S). We define a mapping Φ of End(H, f) to
End(S) by Φ(S, T ) = T ⊕ T. The map Φ is an algebra homomorphism. We
shall show that the map Φ is onto.

Take C ∈ End(S). Then there exists T ∈ B(K) such that C = (T ⊕ T ).
We have that

(T ⊕ T ){(Ax,Bx);x ∈ K} ⊂ {(Ay,By); y ∈ K}.
Hence, for any x ∈ K, there exists y ∈ K such that TAx = Ay and TBx =
By. We put L0 = kerA ∩ kerB and L1 = L⊥0 ∩K. By a decomposition of
y such that y = y0 + y1, y0 ∈ L0, y1 ∈ L1, we have TAx = Ay1, TBx = By1.
We define an operator S by Sx = y1. We shall show that S is well defined.
If there exists another y′ = y′0 + y′1 ∈ K for y′0 ∈ L0 and y′1 ∈ L1 such
that TAx = Ay′ = Ay′1 and TBx = By′ = By′1. We have Ay1 = Ay′1 and
By1 = By′1. Hence y1−y′1 ∈ (kerA∩kerB) = L0. We also have y1−y′1 ∈ L1.
Hence y1 − y′1 ∈ L0 ∩ L1 = (0). So y1 = y′1. Thus S is well defined.

Clearly S is linear. We shall show that S is a closed operator. Assume
that xn → x and Sxn = yn,1 → y1, for xn, x ∈ K and yn,1, y1 ∈ L1. Since
Sxn = yn,1, we have that TAxn = Ayn,1 → Ay1 and TBxn = Byn,1 → By1.
If n → ∞, then TAx = Ay1 and TBx = By1. It follows that Sx = y1.
Therefore S is closed. Hence S is bounded.

Since TAx = Ay1 = ASx and TBx = By1 = BSx for x ∈ K and y1 ∈ L1,
we have that TA = AS and TB = BS. Hence (S, T ) ∈ End(H, g). And
Φ(S, T ) = T ⊕ T . Hence Φ is surjective. We shall show that if kerA ∩
kerB = 0, then Φ is one-to-one. Suppose that Φ(S, T ) = T ⊕ T = 0 for
(S, T ) ∈ End(H, f). Then T = 0. We have that for any x ∈ K,

ASx = TAx = 0, BSx = TBx = 0.

Hence Sx ∈ kerA ∩ kerB = 0. Since Sx = 0 for any x ∈ K, we have S = 0.
Thus (S, T ) = 0. Therefore Φ is one-to-one. �

Remark. Let K be a Hilbert space and A,B ∈ B(K). We consider

Z =

(
A
B

)
: K → K ⊕K and Zx = (Ax,Bx) for x ∈ K.

We have

Z∗ = (A∗, B∗) : K ⊕K → K and Z∗
(
x
y

)
= A∗x+B∗y for x, y ∈ K.
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Since Im(Z) is closed if and only if Im(Z∗) is closed, we have that {(Ax,Bx);x ∈
K} is closed if and only if Im(A∗) + Im(B∗) is closed.

Remark. The map Φ is not one-one in general. We shall give an example
Φ which is not one to one. Let K be a Hilbert space and A,B be operators

on K ⊕ K such that A = B =

[
1 0
0 0

]
. Let S1, T1, S2, T2 be operators on

K ⊕K such that S1 =

[
0 0
1 0

]
, T1 =

[
0 0
0 1

]
and S2 =

[
0 0
0 1

]
, T2 =

[
0 0
0 1

]
.

Then (S1, T1) and (S2, T2) are in End(H, f). And (S1, T1) and (S2, T2) give
the same endomorphism T1 ⊕ T1 of S. Thus Φ is not one to one.

Under a certain condition we have a correspondence between transitive
Hilbert representations of the Kronecker quiver and transitive operators.

Proposition 3.7. Let K be a Hilbert space and A,B ∈ B(K). Assume
that kerA = 0 and ImA∗ + ImB∗ is closed in K. Let (H, f) be a Hilbert
representation of the Kronecker quiver Q such that H1 = H2 = K, fα = A
and fβ = B. Then BA−1 is transitive if and only if (H, f) is transitive.

Proof. At first we note that the graph G(BA−1) = {(Ax,Bx);x ∈ K},
because ker(A) = 0. Since ImA∗ + ImB∗ is closed, the operator BA−1 is
closed by the remark after Proposition 3.6 (or Theorem 3.5). Let SBA−1 =
(E0;E1, E2, E3, E4) be a four-subspace system such that E0 = K⊕K, E1 =
K ⊕ 0, E2 = 0 ⊕ K, E3 = {(Ax,Bx);x ∈ K} = G(BA−1), and E4 =
{(x, x);x ∈ K}. Since ker(A) = 0, there exists an algebra isomomorphism
Φ of End(H, f) onto End(SBA−1) by Proposition 3.6. Therefore (H, f) is
transitive if and only if SBA−1 is transitive. Moreover SBA−1 is transitive if
and only if BA−1 is transitive by Lemma 3.4. This implies the conclusion.

�

In the following we shall give some examples of transitive operators.

Proposition 3.8. Let Q be the Kronecker quiver. Let S be the unilateral
shift on H = `2(N) with a canonical basis {e1, e2, ...}. For a bounded weight
vector λ = (λ1, λ2, ...) ∈ `∞(N) we associate with a diagonal operator Dλ =
diag(λ1, λ2, ...), so that SDλ is a weighted shift operator. We assume that
λi 6= λj if i 6= j. Take a vector w = (wn)n ∈ `2(N) such that wn 6=
0 for any n ∈ N. Put A = SDλ + θe1,w and B = S. Define a Hilbert

representation (Hλ, fλ) of the Kronecker quiver Q by Hλ
1 = Hλ

2 = H, fλα =
A and fλβ = B. Then kerA = 0 and the quotient BA−1 is a transitive

operator. Furthermore, the operator BA−1 is densely defined if and only if

λk 6= 0 for each k ∈ N and (
wk
λk

)k 6∈ `2(N).

Proof. By [EW4, Theorem 3.7.], the Hilbert representation (Hλ, fλ) is
transitive.
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For x = (xn)n ∈ `2(N), assume that

Ax = (SDλ + θe1,w)x = (

∞∑
n=1

xnwn, λ1x1, λ2x2, · · · ) = 0.

If λk 6= 0 for any k ∈ N, then xk = 0 for any k ∈ N. If there exists a k ∈ N
such that λk = 0, then λi 6= 0 for i 6= k. Hence xi = 0 for i 6= k. Since∑∞

n=1 xnwn = xkwk = 0, xk = 0 by wk 6= 0. Thus we have that x = 0 and
kerA = 0. We note that ImB∗ = ImS∗ = H and ImA∗ + ImB∗ = H is
closed in H. Hence BA−1 is a closed operator.

Next we shall consider the condition such that BA−1 is densely defined.
We note that D(BA−1) = ImA = (kerA∗)⊥. We shall show that kerA∗ 6= 0
if and only if (1) λk = 0 for some k ∈ N or (2) λk 6= 0 for any k ∈ N and

(
wk
λk

)k ∈ `2(N). We see that A∗ = D∗λS
∗ + θw,e1 and x = (xn)n is in kerA∗

if and only if
(λ1x2, λ2x3, · · · ) = (−x1w1,−x1w2, · · · ).

Assume that (1) λk = 0 for some k ∈ N. We put x = (xi) by

xi =

{
0 (i 6= k + 1),

1 (i = k + 1).

We have that x ∈ kerA∗ and kerA∗ 6= 0.

Assume that (2) λk 6= 0 for any k ∈ N and (
wk
λk

)k ∈ `2(N). Take an

element x = (1,−
(
w1

λ1

)
,−
(
w2

λ2

)
, · · · ). We have x ∈ kerA∗ and kerA∗ 6= 0.

Conversely, assume that there exists x(6= 0) ∈ kerA∗. Assume that x1 6= 0.
Since

(λ1x2, λ2x3, · · · ) = (−x1w1,−x1w2, · · · ),
and wk 6= 0 for any k ∈ N, we have λk 6= 0 for any k ∈ N.

Since

(
−xk+1

x1

)
k

∈ `2(N) and

(
−xk+1

x1

)
k

=

(
wk
λk

)
k

, we have that(
wk
λk

)
k

∈ `2(N). Hence we have (2). Assume that x1 = 0. Since x 6= 0,

there exists k ∈ N such that xk+1 6= 0. Hence λk = 0. Therefore we have
(1). �

Remark. The operator BA−1 is densely defined for λn = 1/n,wn = 1/n
(n ∈ N). The operator BA−1 is not densely defined for (λn)n defined by

λn =

{
0 (n = 1),

1/n (n 6= 1).

The operator BA−1 is not densely defined for λn = 1−(1/2n), wn = 1/n (n ∈
N).

We refer to [Sh] for weighted shifts.
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Proposition 3.9. Let Q be the Kronecker quiver and H = `2(Z). Let
a = (a(n))n∈Z, b = (b(n))n∈Z ∈ `∞(Z) such that a(n) 6= 0, b(n) 6= 0 for any

n ∈ Z. We put wm =
b(m)

a(m)
,m ∈ Z. We put

Mk(m,n) :=
wmwm+1 · · ·wm+k−1

wnwn+1 · · ·wn+k−1
for m,n ∈ Z, k ≥ 1.

Assume that for any m 6= n, (Mk(m,n))k is an unbounded sequence. Let
Da be a diagonal operator with a = (a(n))n as diagonal coefficients and Db

be a diagonal operator with b = (b(n))n as diagonal coefficients. Let U be
the bilateral forward shift. Put A = Da and B = UDb. Define a Hilbert
representation (H, f) of the Kronecker quiver Q by H1 = H2 = H, fα = A
and fβ = B. Then the Hilbert representation (H, f) is transitive. We also
have kerA = 0 and kerB = 0. And the operator BA−1 is a densely defined
transitive operator.

Proof. As in [EW4, Theorem 3.8.], we can similarly prove that the Hilbert
representation (H, f) is transitive. By Proposition 3.7, the operator BA−1

is transitive. �

Example. [EW4, Theorem 3.8.] Fix a positive constant λ > 1. Consider
two sequences a = (a(n))n∈Z and b = (b(n))n∈Z by

a(n) =

{
e−λ

n
(n ≥ 1, n is even ),

1 (otherwise),
b(n) =

{
e−λ

n
(n ≥ 1, n is odd ),

1 (otherwise).

These two sequences a and b satisfy the condition of the proposition above.
The concept of transitive operators are useful because certain transitive

Hilbert representations of a quiver are given in terms of transitive operators
in the next section.

4. Extended Dynkin diagrams and transitive Hilbert
representations

We consider transitive Hilbert representations of quivers whose underlying

undirected graph is an extended Dynkin diagra Ãn (n ≥ 0). In the Ã0 case,
the oriented cyclic quiver is also called Jordan quiver. Trivially we have
no infinite-dimensional transitive Hilbert representations of quivers whose

underlying undirected graph is an extended Dynkin diagram Ã0.
Next we consider transitive Hilbert representations of quivers whose un-

derlying undirected graph is an extended Dynkin diagram Ãn (n ≥ 1). The
quiver Cn with n ≥ 2 whose underlying undirected graph is an extended

Dynkin diagram Ãn−1 is called the oriented cyclic quiver if the quiver has
cyclic orientation. The set V of the vertices of Cn is {1, 2, · · · , n} and the
set E of the arrows of Cn is {α1, α2, · · · , αn} such that s(αi) = i, r(αi) =

i+1 (i = 1, · · ·n−1) and s(αn) = n, r(αn) = 1. For the Ã1 case, the quivers
are the oriented cyclic quiver C2 and the Kronecker quiver Q.
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Theorem 4.1. Let Γ be a quiver whose underlying undirected graph is an

extended Dynkin diagram Ãn, n ≥ 1. If Γ is not an oriented cyclic quiver,
then there exists an infinite-dimensional transitive Hilbert representation of
Γ.

Proof. Assume that Γ is not an oriented cyclic quiver. Then there exist
vertices i and j and arrows α and β such that s(α) = i, r(α) = i + 1
and s(β) = j + 1, r(β) = j ( mod n). There exists a transitive Hilbert
representation (H, f) of the Kronecker quiver Q given by A,B ∈ B(H)
in [EW4, Theorem 3.8.]. We construct a Hilbert representation (H ′, f ′) of
Γ = (V,E) such that H ′k = H (k ∈ V ), f ′γ = IH for γ 6= α, β (γ ∈ E),
f ′α = A, and f ′β = B. Then the representation (H ′, f ′) of Γ = (V,E) is
transitive. �

By Theorem 4.1, the remaining case of the problem for Ãn (n ≥ 1) is an
oriented cyclic quiver. It is enough to consider the case that Hi 6= 0 for any
i by the following lemma.

Lemma 4.2. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver Cn. Assume that there exists a vertex k such that Hk = 0 (1 ≤
k ≤ n). Let (K, g) be a Hilbert representation of the oriented cyclic quiver
Cn−1 such that Ki = Hi (1 ≤ i ≤ k − 1), Ki = Hi+1 (k ≤ i ≤ n − 1),
gαi = fαi (1 ≤ i ≤ k − 2), gαk−1

= 0, gαi = fαi+1 (k ≤ i ≤ n − 1). Then
End(H, f) is isomorphic to End(K, g).

Proof. Take T = (Ti)i ∈ End(H, f) for i = 1, · · · , n. Since Hk = 0,
B(Hk) = 0. Hence we can associate T = (Ti)i ∈ End(H, f) with T ′ =
(T ′i )i ∈ End(K, g), by putting Ti = T ′i for 1 ≤ i ≤ k − 1 and Ti+1 = T ′i for
k ≤ i ≤ n−1. By this correspondence we have that End(H, f) is isomorphic
to End(K, g). �

For the case that Hi = C or 0, we introduce a concept of an equivalence
relation for vertices in terms of a Hilbert representation.

Definition. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver Cn = (V,E) such that Hi = C or 0. We give an equivalence relation
for the set of vertices {i ∈ V ;Hi 6= 0} as follows: Take vertices i, j such that
Hi 6= 0 and Hj 6= 0. We say that vertices i and j are (H, f)-connected if
(1) i = j or (2) i < j and fαj−1 6= 0, · · · , fαi+1 6= 0, fαi 6= 0 or (3) i > j and
fαi−1 6= 0, · · · , fαj+1 6= 0, fαj 6= 0.

Lemma 4.3. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver Cn such that Hi = C or 0 (i = 1, 2, · · · , n). Then (H, f) is transitive
if and only if there exists only one (H, f)-connected component.

Proof. Assume that (H, f) is transitive. Assume that there exist two
(H, f)-connected components D1 and D2 in the set {i ∈ V ;Hi 6= 0}. Let
λ1 ∈ C, λ2 ∈ C such that λ1 6= λ2. We define T = (Ti)i∈V by Ti = λ1
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for i ∈ D1 and Tj = λ2 for j ∈ D2 and Tk = 0 for k (otherwise). Then
T = (Ti)i∈V is in End(H, f). This is a contradiction.

Conversely, assume that there exists only one (H, f)-connected compo-
nent. Then there exist decomposition of V by D3 and D4 such that

D3 ∪D4 = V, D3 ∩D4 = ∅, D3 = {i;Hi 6= 0}, D4 = {j;Hj = 0}

and D3 is the (H, f)-connected component.
Let T = (Ti)i∈V ∈ End(H, f). Then Ti = Tj for i, j ∈ D3. In fact, if i < j,

then fαi 6= 0, fαi+1 6= 0, · · · , fαj−1 6= 0 and fαiTi = Ti+1fαi , · · · , fαj−1Tj−1 =
Tjfαj−1 . Since fαi 6= 0 for i ∈ D3, Ti = Ti+1 = · · · = Tj . Hence Ti = Tj for
all i, j ∈ D3. And Ti = Tj = 0 for i, j ∈ D4. Thus End(H, f) is isomorphic
to C. Hence (H, f) is transitive. �

The next lemma guarantees that we may assume thatHi ⊂ Hj if dimHi ≤
dimHj .

Lemma 4.4. Let (Hi)
n
i=1 be a family of nonzero Hilbert spaces. Then there

exists a family (K(i))ni=1 of subspaces in a Hilbert space V , such that for
any i (1 ≤ i ≤ n), there exists a number m(i) (1 ≤ m(i) ≤ n) such that Hi

is isomorphic to ⊕m(i)
j=1 K(j).

Proof. We arrange a family of Hilbert spaces (Hi)i in increasing order of
dimension and as a result, we have (H`(1)), (H`(2)), · · · , (H`(n)) in increas-
ing order of dimension. Construct an ambient space V and its increasing
subspaces H ′i

∼= Hi such that (H ′`(1)) ⊂ (H ′`(2)) ⊂ · · · ⊂ (H ′`(n)) ⊂ V . Put

K1 = H ′`(1),K2 = H ′`(2) ∩ (H ′`(1))
⊥, · · · ,Kn = H ′`(n) ∩ (H ′`(n−1))

⊥. Hence

there exists a number m(i) such that H ′i = K(1) ⊕K(2) ⊕ · · · ⊕K(m(i)).
Thus we have that Hi is isomorphic to K(1)⊕K(2)⊕ · · · ⊕K(m(i)). �

Firstly we investigate transitive Hilbert representations of oriented cyclic
quivers C2 and C3. Let (H, f) be a Hilbert representation of C2. In what
follows we denote fα1 , fα2 by A1, A2 for short.

Lemma 4.5. Let (H, f) be a transitive Hilbert representation of C2. Assume
that H1 = H2 = K 6= 0, A1 ∈ C and A2 ∈ C. If A1 6= 0 or A2 6= 0, then
K = C.

Proof. Let T ∈ B(K). Then (T, T ) ∈ End(H, f). In fact, A1T = TA1 and
A2T = TA2. If dimK > 1, B(K) 6= CI. Since (H, f) is transitive, this is a
contradiction. Thus dimK = 1. �

Lemma 4.6. Let (H, f) be a Hilbert representation of C2. Then (H, f) is
transitive if and only if one of the following conditions holds.

(1) H1 = C, H2 = 0, A1 = 0 and A2 = 0,
(2) H1 = 0, H2 = C, A1 = 0 and A2 = 0,
(3) H1 = C and H2 = C and (A1 6= 0 or A2 6= 0).
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Proof. If (1), (2) or (3) holds, then (H, f) is clearly transitive. Conversely,
assume that (H, f) is transitive. Assume that dimH1 6= 0 and dimH2 = 0.
If dimH1 > 1, then there exists a non-scalar operator in B(H1). Since
B(H1) = End(H, f), this contradicts the transitivity of (H, f). Hence
dimH1 = 1. This is the case (1).

Similarly we have the case (2).
Therefore it is sufficient to assume that dimH1 6= 0 and dimH2 6= 0. By

Lemma 4.4 we may assume that dimH1 ≤ dimH2 and H1 is a subspace of
H2. We define T = (T1, T2) = (A2A1, A1A2). Then T ∈ End(H, f). In fact,

A1T1 = A1(A2A1) = (A1A2)A1 = T2A1

and
T1A2 = (A2A1)A2 = A2(A1A2) = A2T2.

By the assumption of transitivity for (H, f),

(T1, T2) ∈ {(µIH1 , µIH2)|µ ∈ C}.
Hence

T1 = A2A1 = µIH1 , T2 = A1A2 = µIH2 for some µ ∈ C.
We denote by E1 ∈ B(H1, H2) the embedding map of H1 into H2 and
E2 ∈ B(H2, H1) the projection map of H2 onto H1. We define

T {1} = (T
{1}
1 , T

{1}
2 ) = (A2E1, E1A2).

Then T {1} ∈ End(H, f). In fact,

A1T
{1}
1 = A1(A2E1) = (A1A2)E1 = µIH2E1

= µE1 = E1µIH1 = (E1A2)A1 = T
{1}
2 A1

and
T
{1}
1 A2 = (A2E1)A2 = A2(E1A2) = A2T

{1}
2 .

Thus T {1} ∈ End(H, f). Since (H, f) is transitive, there exists a constant

µ{1} ∈ C such that A2E1 = µ{1}IH1 and E1A2 = µ{1}IH2 . We define

T {2} = (T
{2}
1 , T

{2}
2 ) = (E2A1, A1E2).

Then T {2} ∈ End(H, f). In fact,

A1T
{2}
1 = A1(E2A1) = (A1E2)A1 = T

{2}
2 A1

and

T
{2}
1 A2 = (E2A1)A2 = E2(µIH2) = µE2

= µIH1E2 = A2(A1E2) = A2T
{2}
2 .

Since (H, f) is transitive, there exists a constant µ{2} ∈ C such that

E2A1 = µ{2}IH1 and A1E2 = µ{2}IH2 .
We define

T {1,2} = (T
{1,2}
1 , T

{1,2}
2 ) = (E2E1, E1E2).
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Then T {1,2} ∈ End(H, f). In fact,

A1T
{1,2}
1 = A1(E2E1) = (A1E2)E1 = µ{2}IH2E1 = µ{2}E1

= µ{2}E1 = E1(µ{2}IH1) = E1(E2A1) = T
{1,2}
2 A1,

and

T
{1,2}
1 A2 = (E2E1)A2 = E2(µ{1}IH2) = µ{1}E2

= µ{1}E2 = (µ{1}IH1)E2 = A2(E1E2) = A2T
{1,2}
2 .

Since (H, f) is transitive, there exists a constant µ{1,2} ∈ C such that

E2E1 = µ{1,2}IH1 , E1E2 = µ{1,2}IH2 .

For x( 6= 0) ∈ H1, we have x = E2E1x = µ{1,2}IH1x = µ{1,2}x. Hence

µ{1,2} = 1. If H1 6= H2, then H⊥1 ∩H2 6= 0. Take x(6= 0) ∈ H⊥1 ∩H2. Then

E1E2x = µ{1,2}IH2x. Hence 0 = x. This is a contradiction. Thus H1 = H2

and E1 = E2. Since A1E2 = µ{2}IH2 , A1 = µ{2}IH1 . And we also have

E1A2 = A2 = µ{1}IH1 . Since (H, f) is transitive, A1 6= 0 or A2 6= 0. By
Lemma 4.5, we have H1 = H2 = C. Thus (H, f) is in the case (3). �

Let (H, f) be a Hilbert representation of the oriented cyclic quiver C3. In
the below we denote fα1 , fα2 , fα3 by A1, A2, A3 for short.

Lemma 4.7. Let (H, f) be a transitive Hilbert representation of C3. Assume
that Hi = C (i = 1, 2, 3) . Then AiAj 6= 0 for some i 6= j.

Proof. Assume that Ai = Aj = 0 for some i 6= j. We may and do assume
i = 1, j = 2. Let T = (T1, T2, T3) such that T1 = T3,T2 6= T1, T1 6= 0 and
T2 6= 0. Then T = (T1, T2, T3) is in End(H, f). Since (H, f) is transitive,
T1 = T2 = T3 ∈ C. This is a contradiction. Hence this lemma holds. �

Lemma 4.8. Let (H, f) be a Hilbert representation of C3. Then (H, f) is
transitive if and only if one of the following holds.

(1) H1 = C and Hi = 0 (i = 2, 3).
(2) H2 = C and Hi = 0 (i = 1, 3).
(3) H3 = C and Hi = 0 (i = 1, 2).
(4) Hi = C (i = 1, 2),H3 = 0 and A1 6= 0.
(5) Hi = C (i = 2, 3),H1 = 0 and A2 6= 0.
(6) Hi = C (i = 1, 3),H2 = 0 and A3 6= 0.
(7) Hi = C (i = 1, 2, 3) and AiAj 6= 0 for some i 6= j (i, j = 1, 2, 3).

Proof. If a Hilbert representations (H, f) satisfies (1), (2),· · · or (7), then
the Hilbert representation is obviously transitive. Conversely assume that
(H, f) is transitive. At first we assume that all Hilbert spaces Hi 6= 0
(1 ≤ i ≤ 3) and by Lemma 4.4 a totally ordered set by inclusion order and
H1 ⊂ Hi (i = 2, 3). We define

T1 = A3A2A1, T2 = A1A3A2, T3 = A2A1A3, T = (T1, T2, T3).
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We define a mapping Ei ∈ B(Hi, Hi+1) by

Ei =

{
the inclusion map of Hi into Hi+1, Hi ⊂ Hi+1,

the projection map of Hi onto Hi+1, Hi+1 ⊂ Hi.

For a subset S of {1, 2, 3}, we define Bi ∈ B(Hi, Hi+1) by

Bi =

{
Ai if i /∈ S,
Ei if i ∈ S.

We also define

TS1 = B3B2B1, T
S
2 = B1B3B2, T

S
3 = B2B1B3, T

S = (TS1 , T
S
2 , T

S
3 ).

We note that TS = (TS1 , T
S
2 , T

S
3 ) is obtained by replacing each word Ai

in T = (T1, T2, T3) with Ei for all i ∈ S. We regard T = (T1, T2, T3) as

T ∅ = (T ∅1 , T
∅
2 , T

∅
3 ). Since

A1T1 = A1(A3A2A1) = T2A1,

A2T2 = A2(A1A3A2) = T3A2,

A3T3 = A3(A2A1A3) = T1A3,

we have that T is in End(H, f). Since (H, f) is transitive, there exists a
constant µ ∈ C such that

A3A2A1 = µIH1 , A1A3A2 = µIH2 , A2A1A3 = µIH3 .

For S = {1}, we define TS = T {1} = (T
{1}
1 , T

{1}
2 , T

{1}
3 ) by

T
{1}
1 = A3A2E1, T

{1}
2 = E1A3A2, T

{1}
3 = A2E1A3.

It follows that

A1T
{1}
1 = A1A3A2E1 = µIH2E1 = µE1

= E1µIH1 = E1(A3A2)A1 = T
{1}
2 A1,

A2T
{1}
2 = A2E1(A3A2) = T

{1}
3 A2,

A3T
{1}
3 = A3A2E1A3 = T

{1}
1 A3.

Thus T {1} is in End(H, f). Since (H, f) is transitive, there exists a constant

µ{1} ∈ C such that

A3A2E1 = µ{1}IH1 , E1A3A2 = µ{1}IH2 , A2E1A3 = µ{1}IH3 .

For S = {2}, we define TS = T {2} = (T
{2}
1 , T

{2}
2 , T

{2}
3 ) by

T
{2}
1 = A3E2A1, T

{2}
2 = A1A3E2, T

{2}
3 = E2A1A3.



994 MASATOSHI ENOMOTO AND YASUO WATATANI

It follows that

A1T
{2}
1 = A1A3E2A1 = T

{2}
2 A1,

A2T
{2}
2 = A2A1A3E2 = µIH3E2 = µE2

= E2µIH2 = E2A1A3A2 = T
{2}
3 A2,

A3T
{2}
3 = A3E2A1A3 = T

{2}
1 A3.

Thus T {2} is in End(H, f). Since (H, f) is transitive, there exists a constant

µ{2} ∈ C such that

A3E2A1 = µ{2}IH1 , A1A3E2 = µ{2}IH2 , (E2A1)A3 = µ{2}IH3 .

For S = {3}, we define TS = T {3} = (T
{3}
1 , T

{3}
2 , T

{3}
3 ) by

T
{3}
1 = E3A2A1, T

{3}
2 = A1E3A2, T

{3}
3 = A2A1E3.

It follows that

A1T
{3}
1 = A1E3A2A1 = T

{3}
2 A1,

A2T
{3}
2 = A2A1E3A2 = T

{3}
3 A2, A3T

{3}
3 = A3A2A1E3 = µIH1E3 = µE3

= E3µIH3 = E3A2A1A3 = T
{3}
1 A3.

Thus T {3} is in End(H, f). Since (H, f) is transitive, there exists a constant

µ{3} ∈ C such that

E3A2A1 = µ{3}IH1 , A1E3A2 = µ{3}IH2 , A2A1E3 = µ{3}IH3 .

For S = {1, 2}, we have

T {1,2} = (T
{1,2}
1 , T

{1,2}
2 , T

{1,2}
3 ) = (A3E2E1, E1A3E2, E2E1A3).

It follows that

A1T
{1,2}
1 = A1A3E2E1 = µ{2}IH2E1 = µ{2}E1

= E1µ
{2}IH1 = E1A3E2A1 = T

{1,2}
2 A1,

A2T
{1,2}
2 = A2E1A3E2 = µ{1}IH3E2 = µ{1}E2

= E2µ
{1}IH2 = E2E1A3A2 = T

{1,2}
3 A2,

A3T
{1,2}
3 = A3E2E1A3 = T

{1,2}
1 A3.

Thus T {1,2} is in End(H, f). Since (H, f) is transitive, there exists a constant

µ{1,2} ∈ C such that

A3E2E1 = µ{1,2}IH1 , E1A3E2 = µ{1,2}IH2 , E2E1A3 = µ{1,2}IH3 .

For S = {1, 3}, we have

T {1,3} = (T
{1,3}
1 , T

{1,3}
2 , T

{1,3}
3 ) = (E3A2E1, E1E3A2, A2E1E3).
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It follows that

A1T
{1,3}
1 = A1E3A2E1 = µ{3}IH2E1 = µ{3}E1

= E1µ
{3}IH1 = E1E3A2A1 = T

{1,3}
2 A1,

A2T
{1,3}
2 = A2E1E3A2 = T

{1,3}
3 A2,

A3T
{1,3}
3 = A3A2E1E3 = µ{1}IH1E3 = µ{1}E3

= E3µ
{1}IH3 = E3A2E1A3 = T

{1,3}
1 A3.

Thus T {1,3} is in End(H, f). Since (H, f) is transitive, there exists a constant

µ{1,3} ∈ C such that

E3A2E1 = µ{1,3}IH1 , E1E3A2 = µ{1,3}IH2 , A2E1E3 = µ{1,3}IH3 .

For S = {2, 3}, we have

T {2,3} = (T
{2,3}
1 , T

{2,3}
2 , T

{2,3}
3 ) = (E3E2A1, A1E3E2, E2A1E3).

It follows that

A1T
{2,3}
1 = A1E3E2A1 = T

{2,3}
2 A1,

A2T
{2,3}
2 = A2A1E3E2 = µ{3}IH3E2 = µ{3}E2

= E2µ
{3}IH2 = E2A1E3A2 = T

{2,3}
3 A2,

A3T
{2,3}
3 = A3E2A1E3 = µ{2}IH1E3 = µ{2}E3

= E3µ
{2}IH3 = E3E2A1A3 = T

{2,3}
1 A3.

Thus T {2,3} is in End(H, f). Since (H, f) is transitive, there exists a constant

µ{2,3} ∈ C such that

E3E2A1 = µ{2,3}IH1 , A1E3E2 = µ{2,3}IH2 , E2A1E3 = µ{2,3}IH3 .

For S = {1, 2, 3}, we have

T {1,2,3} = (T
{1,2,3}
1 , T

{1,2,3}
2 , T

{1,2,3}
3 ) = (E3E2E1, E1E3E2, E2E1E3).

It follows that

A1T
{1,2,3}
1 = A1E3E2E1 = µ{2,3}IH1E1 = µ{2,3}E1

= E1µ
{2,3}IH1 = E1E3E2A1 = T

{1,2,3}
2 A1,

A2T
{1,2,3}
2 = A2E1E3E2 = µ{1,3}IH3E2 = µ{1,3}E2

= E2µ
{1,3}IH2 = E2E1E3A2 = T

{1,2,3}
3 A2,

A3T
{1,2,3}
3 = A3E2E1E3 = µ{1,2}IH1E3 = µ{1,2}E3

= E3µ
{1,2}IH3 = E3E2E1A3 = T

{1,2,3}
1 A3.
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Thus T {1,2,3} is in End(H, f). Since (H, f) is transitive, there exists a

constant µ{1,2,3} ∈ C such that

E3E2E1 = µ{1,2,3}IH1 , E1E3E2 = µ{1,2,3}IH2 , E2E1E3 = µ{1,2,3}IH3 .

Take x (6= 0) ∈ H1. Since H1 ⊂ Hi (1 ≤ i ≤ 3), E3E2E1x = x =

µ{1,2,3}IH1x. Hence µ{1,2,3} = 1. By Lemma 4.4, we can represent Hi by
Hi = K1⊕K2⊕· · ·⊕Km(i) (1 ≤ i ≤ 3). We shall show that H1 = H2 = H3.

Now, m(1) = 1 and assume that m(2) 6= 1. We compare m(3) with m(2).
Assume that m(3) < m(2). Take x (6= 0) ∈ Km(2) ⊂ H2. Then E2x = 0.
This contradicts that E1E3E2 = IH2 . Assume that m(3) ≥ m(2). Take
x (6= 0) ∈ Km(2) ⊂ H2. Then E2x = x and E3x = 0. This contradicts that
E1E3E2 = IH2 .

Hence m(1) = m(2) and H1 = H2. Next assume that H3 6= H1 (hence
m(3) 6= 1). Take x ( 6= 0) ∈ Km(3) ⊂ H3. Then E3x = 0. This contradicts
that E2E1E3 = IH3 . Hence we have that H1 = H2 = H3 := M . Therefore,

E1 = E2 = E3 = IM and T
{1,2,3}
i = IM ∈ C Since

E3E2A1 = µ{2,3}IH1 , E1E3A2 = µ{1,3}IH2 , E2E1A3 = µ{1,2}IH3 ,

we have

A1 = µ{2,3}IM , A2 = µ{1,3}IM , A3 = µ{1,2}IM .

If dimM > 1, there is a non-scalar operator B ∈ B(M). Since A1, A2, A3

are scalar operators, (B,B,B) ∈ End(H, f). This contradicts that (H, f)
is transitive. Hence we have dimM = 1. By Lemma 4.7,AiAj 6= 0 for some
i 6= j (i, j = 1, 2, 3). Thus (H, f) is in the case (7).

Next we consider other cases. Assume that there exists Hi = 0 for some
i. Since (H, f) is transitive, the number |{i;Hi 6= 0}| is 1 or 2. If |{i;Hi 6=
0}| = 1 = |{k}|, then dimHk = 1 because (H, f) is transitive. Hence
these are in the cases (1), (2), (3). If |{i;Hi 6= 0}| = 2 = |{k, `}|, (k < `
mod 3), then we consider the reduction C2 of the quiver C3 as it is shown in
Lemma 4.2. Let (K, g) be the reduced Hilbert representation of C2 from the
Hilbert representation (H, f) of C2 by Lemma 4.2. We have End(H, f) ∼=
End(K, g). Hence End(K, g) is transitive. By the same argument in the
case (7), we have dimHk = dimH` = 1. Since (H, f) is transitive, Ak 6= 0.
Thus these are in the cases (4), (5), (6). All these cases are summarized as
the existence of unique (H, f)-connected component by Lemma 4.3. �

Let (H, f) be a Hilbert representation of Cn. In the below we denote
fα1 , fα2 , · · · , fαn by A1, A2, · · · , An for short.

Lemma 4.9. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver Cn. Then (H, f) is transitive if and only if Hi = C or 0 and there
exists only one (H, f)-connected component in {i ∈ V ;Hi 6= 0}.

Proof. Assume that Hi = C or 0 and there exists only one (H, f)-connected
component in {i ∈ V ;Hi 6= 0}. Then (H, f) is transitive by Lemma 4.3.



QUIVERS ON INFINITE-DIMENSIONAL HILBERT SPACES 997

Conversely assume that (H, f) is transitive. At first we consider the case
that Hi 6= 0 for any i. By lemma 4.4, we may and do assume that the family
(Hi) of Hilbert spaces are totally ordered under the inclusion order. We also
assume that dimH1 is the smallest dimension among {dimHi; i = 1, · · · , n}.

We define T = (T1, T2, · · · , Tn) by

T1 = An · · ·A3A2A1, T2 = A1An · · ·A4A3A2, · · · , Tn = An−1 · · ·A3A2A1An.

Then T = (T1, T2, · · · , Tn) is clearly in End(H, f).
We denote by Ei the following operator Ei : Hi → Hi+1:

Ei =

{
the inclusion map from Hi into Hi+1, Hi ⊂ Hi+1,

the projection map fromHi onto Hi+1, Hi+1 ⊂ Hi.

For S ⊆ {1, 2, · · · , n}, we define Bi ∈ B(Hi, Hi+1), which depends on S,
by

Bi =

{
Ai, if i /∈ S
Ei, if i ∈ S

We also define TSi ∈ B(Hi) and TS ∈ B(H1 ⊕ ...⊕Hn) by

TSi = Bi−1Bi−2 · · ·B2B1BnBn−1 · · ·Bi+1Bi for 1 ≤ i ≤ n,

and TS = (TS1 , T
S
2 , · · · , TSn ). That is, TS = (TS1 , T

S
2 , · · · , TSn ) is obtained by

replacing each word Ai in T = (T1, T2, · · · , Tn) with Ei for all i ∈ S.

For example, T {1} = (T
{1}
1 , T

{1}
2 ,· · · , T {1}n ) is given by

T
{1}
1 = AnAn−1 · · ·A2E1,

T
{1}
2 = E1AnAn−1 · · ·A3A2,

T
{1}
3 = A2E1AnAn−1 · · ·A4A3,

· · ·

T {1}n = An−1An−2 · · ·A2E1An.

We regard T as T ∅.
In the following we shall show that TS = (TS1 , T

S
2 , · · · , TSn ) is in End(H, f)

for any S ⊆ {1, 2, · · · , n}. We shall prove it by the induction on the number
k = |S|. First consider the case k = |S| = 0, that is, S = ∅. Then

T ∅ = T = (T1, T2, · · · , Tn) is clearly in End(H, f).
Next, we assume that TS is in End(H, f) for |S| = k. Since (H, f) is

transitive, there exists a constant µS ∈ C such that TSi = µSIHi for any
i = 1, . . . , n. Take S such that |S| = k + 1. We shall show that TS is in
End(H, f). It is enough to show that, for any i = 1, . . . , n, we have AiT

S
i =

TSi+1Ai. First we consider the case that i = 1. We need to show the validity

of the relation A1T
S
1 = TS2 A1, that is, A1Bn · · ·B2B1 = B1Bn · · ·B2A1.

Assume that 1 is in S. Then B1 = E1 and T
S\{1}
i is in End(H, f) by the
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assumption of the induction. Since A1BnBn−1 · · ·B2 and BnBn−1 · · ·B2A1

have k changed letters, we have

T
S\{1}
2 = A1BnBn−1 · · ·B2 = µS\{1}IH2

and

T
S\{1}
1 = BnBn−1 · · ·B2A1 = µS\{1}IH1 .

Therefore, we have

A1T
S
1 = A1Bn · · ·B1 = µS\{1}IH2B1 = µS\{1}E1

and

TS2 A1 = B1BnBn−1 · · ·B2A1 = B1µ
S\{1}IH1 = µS\{1}E1.

Thus A1T
S
1 = TS2 A1.

Assume that 1 is not in S. Then B1 = A1. Hence

A1T
S
1 = A1Bn · · ·B1 = A1Bn · · ·B2A1

and

TS2 A1 = B1Bn · · ·B2A1 = A1Bn · · ·B2A1.

Thus A1T
S
1 = TS2 A1.

For other cases that i = 2, 3, . . . n, we also have that AiT
S
i = TSi+1Ai.

Hence, by induction, we have that TS is in End(H, f) for any S ⊂ {1, 2, · · ·n}.
In particular, put S = {1, 2, · · · , n}. Since

T {1,2,··· ,n} = (T
{1,2,··· ,n}
1 , T

{1,2,··· ,n}
2 , · · · , T {1,2,··· ,n}n )

is in End(H, f) and (H, f) is transitive, there exits a constant µ{1,2,··· ,n} ∈ C
such that

T
{1,2,··· ,n}
i = Ei−1 · · ·E1EnEn−1 · · ·Ei+1Ei = µ{1,2,··· ,n}IHi .

Take x (6= 0) ∈ H1. Since H1 ⊂ Hj for any 1 ≤ j ≤ n and En · · ·E1 =

µ{1,2,··· ,n}IH1 , we have that x = µ{1,2,··· ,n}x. Hence µ{1,2,··· ,n} = 1.
We shall show that H1 = H2 = · · · = Hn. On the contrary we as-

sume that Hk 6= H` for some k 6= `. Using Lemma 4.4, we can rep-
resent Hi as Hi = K1 ⊕ K2 ⊕ · · · ⊕ Km(i) and m(1) = 1. Then there
exists the smallest i such that m(i) > 1. We compare m(j) and m(i).
If there exists m(j) such that m(j) < m(i) (i ≤ j ≤ n). Take x ( 6=
0) ∈ Km(i) ⊂ Hi. Then Ej−1Ej−2 · · ·Ei+1Eix = 0. This contradicts that
Ei−1 · · ·E1EnEn−1 · · ·Ei+1Ei = IHi .

If there exists no m(j) such that m(j) < m(i) (i ≤ j ≤ n). Take x ( 6=
0) ∈ Km(i) ⊂ Hi. Then En−1En−2 · · ·Ei+1Eix = x, and Enx = 0. This also
contradicts that

Ei−1 · · ·E1EnEn−1 · · ·Ei+1Ei = IHi .
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Therefore we have that H1 = H2 = · · · = Hn =: M . Moreover we also have

that E1 = E2 = · · · = En = IM . In particular, T
{1,2,··· ,n}
i = IM for any i

and

Ai = Ei−1 · · ·E1EnEn−1 · · ·Ei+1Ai = T
{1,2,··· ,n}\k
i = µ{1,2,··· ,n}\kIHk .

We shall show that dimM = 1. On the contrary, assume that dimM ≥ 2.
Then there exists a non-scalar operator B ∈ B(M). Since each Ak is a
scalar operator for any k, (B, . . . , B) is in End(H, f). This contradicts to
that (H, f) is transitive. Therefore dimM = 1. Hence we may assume
that Hi = C for any i. Since (H, f) is transitive, there exists only one
(H, f)-connected component on V = {1, 2, · · · , n} by Lemma 4.3.

Next we consider the case that there exists Hi = 0 for some i. If there
exists only one vertex i such that Hi 6= 0, then dimHi = 1 because (H, f)
is transitive. Therefore we may assume that there exists more than two
vertices i such that Hi 6= 0.

We consider the reduction of the quiver Cn to the set of vertices i with
Hi 6= 0 to get another quiver Cm (2 ≤ m ≤ n).

Let (K, g) be the reduced Hilbert representation of Cm from the Hilbert
representation (H, f) of Cn by Lemma 4.2. Then End(H, f) is isomorphic
to End(K, g). Since (H, f) is transitive, (K, g) is also transitive.

Since we can adapt the above consideration to (K, g), we have thatHi = C
for all i such that Hi 6= 0. Therefore in (H, f), we may and do have that
Hi = C or 0 for 1 ≤ i ≤ n. Since (H, f) is transitive, by Lemma 4.3, there
exists only one (H, f)-connected component {i ∈ V ;Hi 6= 0}. �

Theorem 4.10. Let Γ be a quiver whose underlying undirected graph is

an extended Dynkin diagram Ãn, n ≥ 0. Then there exists an infinite-
dimensional transitive Hilbert representation of Γ if and only if Γ is not an
oriented cyclic quiver.

Proof. Assume that Γ is not an oriented cyclic quiver. By Theorem 4.1,
there exists an infinite-dimensional transitive Hilbert representation of Γ.
Conversely, assume that Γ is an oriented cyclic quiver. Then transitive
Hilbert representations of Γ are finite-dimensional by Lemma 4.9. Hence
there exist no infinite-dimensional transitive Hilbert representations of Γ.

�

Gabriel’s theorem states that a finite, connected quiver has only finitely
many indecomposable representations if and only if the underlying undi-
rected graph is one of Dynkin diagrams An, Dn, E6, E7, E8. In [EW3], we
constructed some examples of indecomposable, infinite-dimensional repre-
sentations of quivers with the underlying undirected graphs being extended
Dynkin diagrams D̃n (n ≥ 4), Ẽ6, Ẽ7 and Ẽ8. We used the quivers whose
vertices are represented by a family of subspaces and whose arrows are
represented by natural inclusion maps. Replacing the unilateral shift S
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with a transitive operator in the construction of examples of indecompos-
able, infinite-dimensional representations of quivers in [EW3], we shall give
some examples of infinite-dimensional transitive representations of quivers
with the underlying undirected graphs being extended Dynkin diagrams
D̃n (n ≥ 4), Ẽ6, Ẽ7 and Ẽ8. Our construction of examples is considered as
a modification of an unbounded operator used by Harrison, Radjavi and
Rosenthal [HRR] to provide a transitive lattice.

Lemma 4.11. Let Γ = (V,E, s, r) be the following quiver with the underly-

ing undirected graph an extended Dynkin diagram D̃n for n ≥ 4 :

a
1

-
α1

a
5

?

a2
α2

- a
6

- · · ·- a
n

- a
n+1

�
α3

a
3

?

a4
α4

Then there exists an infinite-dimensional, transitive Hilbert representation
(H, f) of Γ.

Proof. Let K = `2(N) and S a transitive operator on K with the domain
D(S). We define a Hilbert representation (H, f) := ((Hv)v∈V , (fα)α∈E) of
Γ as follows: H1 = K ⊕ 0, H2 = 0⊕K, H3 = {(x, Sx) ∈ K ⊕K;x ∈ D(S)},
H4 = {(x, x) ∈ K ⊕K;x ∈ K}, and H5 = H6 = · · · = Hn+1 = K ⊕K.

Let fαk : Hs(αk) → Hr(αk) be the inclusion map for any αk ∈ E for
k = 1, 2, 3, 4, and fβ = id for other arrows β ∈ E. Take T = (Tv)v∈V ∈
End(H, f). Since T ∈ End(H, f) and any arrow is represented by the
inclusion map, we have Ti = Tj (i = 5, · · · , n + 1), T5x = Tvx for any
v ∈ {1, 2, 4}, any x ∈ Hv. In particular, T5Hv ⊂ Hv (v ∈ {1, 2, 4}). Hence
T5 is written as T5 = A⊕A as in [EW3, Lemma 6.1, Example 3]. Moreover
H3 is also invariant under T5. Since S is transitive, we have that A is a
scalar by Lemma 3.3. Thus T is a scalar, that is, End(H, f) = C. Therefore
(H, f) is transitive. �

Lemma 4.12. Let Γ = (V,E, s, r) be the following quiver with the underly-

ing undirected graph an extended Dynkin diagram Ẽ6 :

a
0

?

a 1′′
?

a 2′′

� a
1′
� a

2′
-a

1
-a

2

Then there exists an infinite-dimensional, transitive Hilbert representation
(H, f) of Γ.

Proof. Let (H, f) = ((Hv)v∈V , (fα)α∈E) be the following Hilbert represen-
tation of Γ: LetK = `2(N) and S a transitive operator onK with the domain
D(S). Define H0 = K ⊕ K ⊕ K, H1 = 0 ⊕ K ⊕ K, H2 = 0 ⊕ {(y, Sy) ∈
K2; y ∈ D(S)}, H1′ = K ⊕ K ⊕ 0, H2′ = {(x, x) ∈ K2; x ∈ K} ⊕ 0,
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H1′′ = K ⊕ 0 ⊕ K, and H2′′ = {(x, 0, x) ∈ K3; x ∈ K}. For any ar-
row α ∈ E, let fα : Hs(α) → Hr(α) be the canonical inclusion map. Take
T = (Tv)v∈V ∈ End(H, f). Since any arrow is represented by the inclusion
map, we have T0x = Tvx for any v ∈ {1, 1′, 2′, 1′′, 2′′} and any x ∈ Hv. In
particular, T0Hv ⊂ Hv. Hence T0 is written as T0 = A ⊕ A ⊕ A. Moreover
H2 = {(0, x, Sx) ∈ K3; x ∈ D(S)} is also invariant under T0. Hence for
any x ∈ D(S), there exists y ∈ D(S) such that (0, Ax,ASx) = (0, y, Sy) as
in [EW3, Example 4]. Since S is transitive, we have that A is a scalar by
Lemma 3.3. Thus T is a scalar, that is, End(H, f) = C. Therefore (H, f) is
transitive. �

Lemma 4.13. Let Γ = (V,E, s, r) be the following quiver with the underly-

ing undirected graph an extended Dynkin diagram Ẽ7 :

a
3

- a
2

- a
1

- a
0

� a
1′
� a

2′
� a

3′

?

a
1′′

Then there exists an infinite-dimensional, transitive Hilbert representation
(H, f) of Γ.

Proof. Let K = `2(N) and S a transitive operator on K with the domain
D(S). Define a Hilbert representation (H, f) := ((Hv)v∈V , (fα)α∈E) of Γ
as follows: Let H0 = K ⊕ K ⊕ K ⊕ K, H1 = K ⊕ 0 ⊕ K ⊕ K, H2 =
K ⊕ 0 ⊕ {(x, x);x ∈ K}, H3 = K ⊕ 0 ⊕ 0 ⊕ 0, H1′ = 0 ⊕ K ⊕ K ⊕ K,

H2′ = 0⊕K ⊕ {(y, Sy) ∈ K2; y ∈ D(S)}, H3′ = 0⊕K ⊕ 0⊕ 0, and H1′′ =

{(x, y, x, y) ∈ K4; x, y ∈ K}. For any arrow α ∈ E, let fα : Hs(α) → Hr(α)

be the canonical inclusion map. Take T = (Tv)v∈V ∈ End(H, f). Since
any arrow is represented by the inclusion map, we have T0x = Tvx for any
v ∈ {1, 2, 3, 1′, 2′, 3′, 1′′} and any x ∈ Hv. In particular, T0Hv ⊂ Hv. Hence
T0 is written as T0 = A⊕ A⊕ A⊕ A. Moreover H1 ∩H2′ = {(0, 0, x, Sx) ∈
K4; x ∈ D(S)} is also invariant under T0. Hence for any x ∈ D(S), there
exists y ∈ D(S) such that (0, 0, Ax,ASx) = (0, 0, y, Sy) as in [EW3, Lemma
6.2]. Since S is transitive , we have that A is a scalar by Lemma 3.3. Thus
T is a scalar, that is, End(H, f) = C. Therefore (H, f) is transitive. �

Lemma 4.14. Let Γ = (V,E, s, r) be the following quiver with the underly-

ing undirected graph an extended Dynkin diagram Ẽ8 :

a
5

- a
4

- a
3

- a
2

- a
1

- a
0

� a
1′
� a

2′

a
1′′

?

Then there exists an infinite-dimensional, transitive Hilbert representation
(H, f) of Γ.

Proof. Let K = `2(N) and S a transitive operator on K with the domain
D(S). We define a Hilbert representation (H, f) := ((Hv)v∈V , (fα)α∈E) of
Γ as follows: Let H0 = K ⊕K ⊕K ⊕K ⊕K ⊕K, H1 = {(x, x) ∈ K2; x ∈
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K}⊕K⊕K⊕K⊕K, H2 = 0⊕0⊕K⊕K⊕K⊕K, H3 = 0⊕0⊕0⊕K⊕K⊕K,
H4 = 0⊕0⊕0⊕K⊕{(y, Sy) ∈ K2; y ∈ D(S)}, H5 = 0⊕0⊕0⊕K⊕0⊕0,
H1′ = K ⊕K ⊕ {(x, y, x, y) ∈ K4; x, y ∈ K}, H2′ = K ⊕K ⊕ 0⊕ 0⊕ 0⊕ 0,

and H1′′ = {(y, z, x, 0, y, z) ∈ K6; x, y, z ∈ K}. For any arrow α ∈ E, let
fα : Hs(α) → Hr(α) be the canonical inclusion map.

Take T = (Tv)v∈V ∈ End(H, f). Since any arrow is represented by the
inclusion map, we have T0x = Tvx for any v ∈ V and any x ∈ Hv. In par-
ticular, T0Hv ⊂ Hv. Since T0 preserves subspaces Hv, v = 1, 1′, 1”, 2, 2′, 3, 5,
T0 is written as

T0 = A⊕A⊕A⊕A⊕A⊕A.

Finally, H4 = 0⊕ 0⊕ 0⊕K ⊕ {(y, Sy) ∈ K2; y ∈ K} is invariant under
T0. Then for any x ∈ K and y ∈ D(S), there exist x′ ∈ K and y′ ∈ D(S)
such that

T0(0, 0, 0, x, y, Sy) = (0, 0, 0, Ax,Ay,ASy) = (0, 0, 0, x′, y′, Sy′).

Hence ASy = Sy′ = SAy as in [EW3, Lemma 6.3]. Since S is transitive, we
have that A is a scalar by Lemma 3.3.

Thus T = (Tv)v∈V is a scalar, that is, End(H, f) = C. Therefore, (H, f)
is transitive. �

Next, we shall investigate the endomorphism algebras of Hilbert represen-
tations. At first we recall some facts about reflection functors from [EW3].

Reflection functors are crucially used in the proof of the classification of
finite-dimensional, indecomposable representations of tame quivers (cf.[As],
[BGP], [DlR],[DoF], [GaR], [GeP]). As a matter of fact, many indecom-
posable representations of tame quivers can be reconstructed by iterating
reflection functors on simple indecomposable representations. We can not
expect such a best position in infinite-dimensional Hilbert representations.
But reflection functors are still valuable to show that some property of repre-
sentations of quivers on infinite-dimensional Hilbert spaces does not depend
on the choice of orientations and does depend on the fact underlying undi-
rected graphs are (extended) Dynkin diagrams or not.

Let Γ = (V,E, s, r) be a finite quiver. We say that a vertex v ∈ V is a
sink if v 6= s(α) for any α ∈ E. Put Ev = {α ∈ E; r(α) = v}. We denote
by E the set of all formally reversed new arrows α for α ∈ E. In this way if
α : x→ y is an arrow, then α : x← y.

Definition.[EW3] Let Γ = (V,E, s, r) be a finite quiver. For a sink v ∈ V ,
we construct a new quiver σ+

v (Γ) = (σ+
v (V ), σ+

v (E), s, r) as follows: All the
arrows of Γ having v as range are reversed and all the other arrows remain
unchanged. That is,

σ+
v (V ) = V σ+

v (E) = (E \ Ev) ∪ Ev,

where Ev = {α; α ∈ Ev}.
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Definition. [EW3] (reflection functor Φ+
v .) Let Γ = (V,E, s, r) be a

finite quiver. For a sink v ∈ V , we define a reflection functor at v

Φ+
v : HRep(Γ)→ HRep(σ+

v (Γ))

between the categories of Hilbert representations of Γ and σ+
v (Γ) as follows:

For a Hilbert representation (H, f) of Γ, we define a Hilbert representation
(K, g) = Φ+

v (H, f) of σ+
v (Γ). Let

hv : ⊕α∈EvHs(α) → Hv

be a bounded linear operator defined by

hv((xα)α∈Ev) =
∑
α∈Ev

fα(xα).

We shall define

Kv := Kerhv = {(xα)α∈Ev ∈ ⊕α∈EvHs(α);
∑
α∈Ev

fα(xα) = 0}.

We also consider the canonical inclusion map iv : Kv → ⊕α∈EvHs(α). For
u ∈ V with u 6= v, put Ku = Hu.

For β ∈ Ev, let
Pβ : ⊕α∈EvHs(α) → Hs(β)

be the canonical projection. Then we shall define

gβ : Ks(β) = Kv → Kr(β) = Hs(β) by gβ = Pβ ◦ iv
that is, gβ((xα)α∈Ev) = xβ.

For β 6∈ Ev, let gβ = fβ. For a homomorphism T : (H, f)→ (H ′, f ′), we
define a homomorphism

S = (Su)u∈V = Φ+
v (T ) : (K, g) = Φ+

v (H, f)→ (K ′, g′) = Φ+
v (H ′, f ′)

If u = v, a bounded operator Sv : Kv → K ′v is given by

Sv((xα)α∈Ev) = (Ts(α)(xα))α∈Ev .

It is easily seen that Sv is well-defined and we have the following commu-
tative diagram:

0 −−−−→ Kv
iv−−−−→ ⊕α∈EvHs(α)

hv−−−−→ Hv

Sv

y (Ts(α))α∈Ev

y Tv

y
0 −−−−→ K ′v

i′v−−−−→ ⊕α∈EvH ′s(α)
h′v−−−−→ H ′v

For other u ∈ V with u 6= v, put

Su = Tu : Ku = Hu → K ′u = H ′u.

We also consider a dual of the above construction. We say that a vertex
v ∈ V is a source if v 6= r(α) for any α ∈ E. Put Ev = {α ∈ E; s(α) = v}.

Definition.[EW3] Let Γ = (V,E, s, r) be a finite quiver. For a source
v ∈ V , we shall construct a new quiver σ−v (Γ) = (σ−v (V ), σ−v (E), s, r) as
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follows: All the arrows of Γ having v as source are reversed and all the other
arrows remain unchanged. That is,

σ−v (V ) = V σ−v (E) = (E \ Ev) ∪ Ev,
where Ev = {α; α ∈ Ev}.

Definition.[EW3] (reflection functor Φ−v .) Let Γ = (V,E, s, r) be a finite
quiver. For a source v ∈ V , we shall define a reflection functor at v

Φ−v : HRep(Γ)→ HRep(σ−v (Γ))

between the categories of Hilbert representations of Γ and σ−v (Γ) as follows:
For a Hilbert representation (H, f) of Γ, we define a Hilbert representation
(K, g) = Φ−v (H, f) of σ−v (Γ). Let

ĥv : Hv → ⊕α∈EvHr(α)

be a bounded linear operator defined by

ĥv(x) = (fα(x))α∈Ev for x ∈ Hv.

We shall define

Kv := (Imĥv)
⊥ = Ker ĥ∗v ⊂ ⊕α∈EvHr(α),

where ĥ∗v : ⊕α∈EvHr(α) → Hv is given ĥ∗v((xα)α∈Ev) =
∑
f∗α(xα). For u ∈ V

with u 6= v, put Ku = Hu.
Let Qv : ⊕α∈EvHr(α) → Kv be the canonical projection. For β ∈ Ev, let

jβ : Hr(β) → ⊕α∈EvHr(α)

be the canonical inclusion. We shall define

gβ : Ks(β) = Hr(β) → Kr(β) = Kv by gβ = Qv ◦ jβ.

For β 6∈ Ev, let gβ = fβ.
For a homomorphism T : (H, f) → (H ′, f ′), we shall define a homomor-

phism

S = (Su)u∈V = Φ−v (T ) : (K, g) = Φ−v (H, f)→ (K ′, g′) = Φ−v (H ′, f ′).

For u = v, a bounded operator Sv : Kv → K ′v is given by

Sv((xα)α∈Ev) = Q′v((Tr(α)(xα))α∈Ev),

where Q′v : ⊕α∈EvH ′r(α) → K ′v be the canonical projection.

We have the following commutative diagram:

Hv
ĥv−−−−→ ⊕α∈EvHr(α)

Qv−−−−→ Kv −−−−→ 0

Tv

y ⊕α∈EvTr(α)
y Sv

y
H ′v

ĥ′v−−−−→ ⊕α∈EvH ′r(α)
Q′v−−−−→ K ′v −−−−→ 0

For other u ∈ V with u 6= v, put

Su = Tu : Ku = Hu → K ′u = H ′u.
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We shall describe a relation between two (covariant) functors Φ+
v and Φ−v .

We shall define another (contravariant) functor Φ∗ at the begining.
Let Γ = (V,E, s, r) be a finite quiver. We shall define the opposite quiver

Γ = (V ,E, s, r) by reversing all the arrows, more precisely, V = V and
E = {α; α ∈ E}.

Definition.[EW3] Let Γ = (V,E, s, r) be a finite quiver and Γ = (V ,E, s, r)
its opposite quiver. We shall define a contravariant functor

Φ∗ : HRep(Γ)→ HRep(Γ)

between the categories of Hilbert representations of Γ and Γ as follows:
For a Hilbert representation (H, f) of Γ, we define a Hilbert representation
(K, g) = Φ∗(H, f) of Γ by Ku = Hu for u ∈ V and gα = f∗α for α ∈ E. For
a homomorphism T : (H, f)→ (H ′, f ′), we define a homomorphism

S = (Su)u∈V = Φ∗(T ) : (K ′, g′) = Φ∗(H ′, f ′)→ (K, g) = Φ∗(H, f),

by bounded operators Su : K ′u = H ′u → Ku = Hu given by Su = T ∗u .

Proposition 4.15. [EW3, Proposition 4.2.] Let Γ = (V,E, s, r) be a finite

quiver. If v ∈ V is a source of Γ, then v is a sink of Γ, σ−v (Γ) = σ+
v (Γ) and

the following assertions hold:

(1) For a Hilbert representation (H, f) of Γ,

Φ−v (H, f) = Φ∗(Φ+
v (Φ∗(H, f))).

(2) For a homomorphism T : (H, f)→ (H ′, f ′),

Φ−v (T ) = Φ∗(Φ+
v (Φ∗(T ))).

Proposition 4.16. [EW3, Proposition 4.3.] Let Γ = (V,E, s, r) be a finite

quiver. If v ∈ V is a sink of Γ, then v is a source of Γ, σ+
v (Γ) = σ−v (Γ) and

the following assertions hold:

(1) For a Hilbert representation (H, f) of Γ,

Φ+
v (H, f) = Φ∗(Φ−v (Φ∗(H, f))).

(2) For a homomorphism T : (H, f)→ (H ′, f ′),

Φ+
v (T ) = Φ∗(Φ−v (Φ∗(T ))).

We shall investigate endomorphisms of Hilbert representations and its
images of reflection functors. In the case of infinite-dimensional Hilbert
representations, we need to assume a certain closedness condition at a sink
or a source.

Definition.[EW3] Let Γ = (V,E, s, r) be a finite quiver and v ∈ V a sink.
We recall that Ev = {α; r(α) = v}. It is said that a Hilbert representation
(H, f) of Γ is closed at v if

∑
α∈Ev Imfα ⊂ Hv is a closed subspace. It is

said that (H, f) is full at v if
∑

α∈Ev Imfα = Hv.
Definition.([EW3]) Let Γ = (V,E, s, r) be a finite quiver and v ∈ V

a source. We recall that Ev = {α|s(α) = v}. It is said that a Hilbert
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representation (H, f) of Γ is co-closed at v if
∑

α∈Ev Imf∗α ⊂ Hv is a closed
subspace. It is said that (H, f) is co-full at v if

∑
α∈Ev Imf∗α = Hv.

We note that the properties of fullness, co-fullness, closedness and co-
closedness are preserved under isomorphism of Hilbert representations.

Lemma 4.17. Let Γ be a finite quiver and v ∈ Γ a sink. Let (H, f)
and (K, g) be isomorphic Hilbert representations of Γ. If (H, f) is full
(resp.closed) at v, then (K, g) is full (resp.closed) at v.

Proof. Assume that (H, f) is full at v. Since (H, f) and (K, g) are isomor-
phic, there exists a family S = (Su)u∈V of bounded invertible operators such
that Sr(α)fα = gαSs(α) for α ∈ E. Take an element y ∈ Kv. By the invert-
ibility of Sv, there exists an element x ∈ Hv such that Sv(x) = y. Since
(H, f) is full at v, there exist xs(α) ∈ Hs(α) such that

∑
α∈Ev fα(xs(α)) = x.

We put ys(α) := Ss(α)(xs(α)). Then∑
α∈Ev

gα(ys(α)) =
∑
α∈Ev

gαSs(α)(xs(α)) =
∑
α∈Ev

Svfα(xs(α))

= Sv
∑
α∈Ev

fα(xs(α)) = Sv(x) = y

Hence (K, g) is full at v.
We can similarly prove that closedness property is preserved under iso-

morphism of Hilbert representations. �

Lemma 4.18. Let Γ be a finite quiver and v ∈ V a source. Let (H, f)
and (K, g) be isomorphic Hilbert representations of Γ. If (H, f) is co-full
(resp.co-closed) at v, then (K, g) is co-full (resp.co-closed) at v.

Proof. Since (H, f) and (K, g) are isomorphic, Φ∗(H, f) and Φ∗(K, g) are
isomorphic. Hence the case of co-fullness is reduced to the case of full-
ness. We can similarly prove that co-closedness property is preserved under
isomorphism of Hilbert representations. �

The following theorem is well known for finite-dimensional Hilbert spaces
([As, page289, 5.7. Corollary] and [DlR, page16, Proposition 2.1]).

Theorem 4.19. Let Γ = (V,E, s, r) be a finite quiver and v ∈ V a sink.
If a Hilbert representation (H, f) of Γ is full at v, then the map Φ+

v :
End(H, f)→ End(Φ+

v (H, f)) is an isomorphism as C-algebras.

Proof. We put (K, g) := Φ+
v (H, f). The mapping Φ+

v gives a mapping of
End(H, f) to End(K, g). At first we shall show that Φ+

v is one to one.
Assume that S := Φ+

v (T ) = 0 for T ∈ End(H, f). We have Su = Tu =
0 (u 6= v). From this we shall show that Tv = 0. Since T ∈ End(H, f),
Tvfα = fαTs(α) for α ∈ Ev = {α ∈ E; r(α) = v}. Hence, for xα ∈ Hs(α),

Tv(
∑
α∈Ev

fα(xα)) =
∑
α∈Ev

fαTs(α)(xα) = 0.
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Since (H, f) is full at v, Tv = 0. Thus Φ+
v is one to one. Next we shall show

that Φ+
v is onto. Take S = (Su)u∈V ∈ End(K, g). We put Tu = Su for u 6= v.

We shall define an operator Tv : Hv → Hv such that Tv(
∑

α∈Ev fα(xα)) =∑
α∈Ev fα(Ts(α)(xα)) for xα ∈ Hs(α). We need to show that Tv is well

defined. If there exists an element (x′α)α∈Ev ∈ ⊕α∈EvHs(α) such that∑
α∈Ev

fα(xα) =
∑
α∈Ev

fα(x′α),

then we must show that∑
α∈Ev

fαTs(α)(xα) =
∑
α∈Ev

fαTs(α)(x
′
α).

Since
∑

α∈Ev fα(xα) =
∑

α∈Ev fα(x′α), we have

hv((xα − x′α)α∈Ev) =
∑
α∈Ev

fα(xα − x′α) = 0.

Hence (xα−x′α)α∈Ev ∈ kerhv = Kv. Since Sv : Kv → Kv, we have Sv((xα−
x′α)α∈Ev) ∈ kerhv = Kv. Hence hv(Sv((xα − x′α)α∈Ev)) = 0. Since S ∈
End(K, g), we have Ss(α)gᾱ = gᾱSv for α ∈ Ev,

Ss(α)gᾱ((xβ − x′β)β∈Ev)) = Ss(α)(xα − x′α) = Ts(α)(xα − x′α),

and
gᾱSv((xβ − x′β)β∈Ev)) = PαSv((xβ − x′β)β∈Ev)).

Hence
Ts(α)(xα − x′α) = PαSv((xβ − x′β)β∈Ev)).

Then ∑
α∈Ev

fαTs(α)(xα − x′α) =
∑
α∈Ev

fαPαSv((xβ − x′β)β∈Ev)

and ∑
α∈Ev

fαPαSv((xβ − x′β)β∈Ev)) = hv(Sv((xβ − x′β)β∈Ev)) = 0.

This gives ∑
α∈Ev

fαTs(α)(xα) =
∑
α∈Ev

fαTs(α)(x
′
α).

Thus Tv is well defined.
Next we shall show that Tvfα(x) = fαTs(α)(x) for x ∈ Hs(α). Take and

fix x ∈ Hs(α) for α ∈ Ev. For β ∈ Ev, we put

xβ =

{
x (β = α),

0 (β 6= α).

Since Tv(
∑

β∈Ev fβ(xβ)) =
∑

β∈Ev fβ(Ts(β)(xβ)), we have

Tvfα(x) =
∑
β

fβTs(β)(xβ) = fαTs(α)(x).
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Next we shall show that Tv : Hv → Hv is bounded. We decompose

⊕α∈EvHs(α) = kerhv ⊕ (kerhv)
⊥ = Kv ⊕K⊥v .

By the Banach invertibility theorem, hv|(Kv)⊥ : (Kv)
⊥ → Hv is a bounded

invertible operator. We shall show that there exists a positive constant c
such that ‖ Tvx ‖5 c ‖ x ‖ for any x ∈ Hv. Take x = h((xα)α∈Ev) =∑

x∈Ev fα(xα). We get

‖ Tv(x) ‖=‖
∑
α∈Ev

Tv(fα(xα)) ‖=‖
∑
x∈Ev

fα(Ts(α)(xα)) ‖

=‖ ((fαTs(α))α∈Ev)((xα)α∈Ev) ‖5‖ ((fαTs(α))α∈Ev) ‖‖ ((xα)α∈Ev) ‖
=‖ ((fαTs(α))α∈Ev) ‖‖ (h|K⊥v )−1 ‖‖ x ‖5 c ‖ x ‖

where ((fαTs(α))α∈Ev) is a row matrix and

c :=‖ ((fαTs(α))α∈Ev) ‖‖ (h|K⊥v )−1 ‖ .

Hence Tv is bounded. Next we shall show that Φ+
v (T ) = S. Since S ∈

End(K, g), Ss(α)Pαiv = Ss(α)gᾱ = gᾱSv = PαivSv for α ∈ Ev. For ((xα)α∈Ev) ∈
Kv, we have

Sv((xα)) = (PαivSv((xα)))α∈Ev = (Ss(α)Pαiv((xα)))α∈Ev = (Ss(α)(xα)).

By the definition of Φ+
v (T ), (Φ+

v (T ))u = Su = Tu for u 6= v. For u = v and
((xα)α∈Ev) ∈ Kv,

(Φ+
v (T ))v((xα)α∈Ev) = ((Ts(α)(xα))α∈Ev)

= ((Ss(α)(xα))α∈Ev) = Sv((xα)α∈Ev).

Thus (Φ+
v (T ))v = Sv. Hence Φ+

v (T ) = S. Hence Φ+
v is onto. We conclude

that End(H, f) ∼= End(Φ+
v (H, f)) as C-algebras. �

Corollary 4.20. Let Γ = (V,E, s, r) be a finite quiver and v ∈ V a sink.
Assume that a Hilbert representation (H, f) of Γ is full at v. If (H, f) is
transitive (resp. indecomposable), then Φ+

v (H, f) is transitive(resp. inde-
composable).

The following theorem is well known for finite-dimensional Hilbert spaces
([As, page289, 5.7. Corollary] and [DlR, page16, Proposition 2.1]).

Theorem 4.21. Let Γ = (V,E, s, r) be a finite quiver and v ∈ V a source. If
a Hilbert representation (H, f) of Γ is co-full at v. Then Φ−v : End(H, f)→
End(Φ−v (H, f)) is an isomorphism as C-algebras.

Proof. We put (K, g) := Φ−v (H, f). The mapping Φ−v gives a mapping of
End(H, f) to End(K, g). At first we shall show that Φ−v is one to one.
Assume that S := Φ−v (T ) = 0 for T ∈ End(H, f). We shall show that
Tv = 0. Since T ∈ End(H, f), fαTv = Tr(α)fα for α ∈ Ev. For (xα)α∈Ev ∈
⊕α∈EvHr(α), we have

T ∗v (
∑

f∗α(xα)) =
∑

f∗α(T ∗r(α)(xα)) =
∑

f∗α(S∗r(α)(xα)) = 0.
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Since (H, f) is co-full at v, T ∗v = 0. Hence Tv = 0. Thus Φ−v is one to one.
Next we shall show that Φ−v is onto. We put Tu = Su for u 6= v. And we shall
define an operator Wv : Hv → Hv such that for (xα)α∈Ev ∈ ⊕α∈EvHr(α),

Wv(
∑
α∈Ev

f∗α(xα)) =
∑
α∈Ev

f∗α(T ∗r(α)(xα)).

We need to show that Wv is well defined. Assume that there exists an
element (x′α)α∈Ev ∈ ⊕α∈EvHr(α) such that∑

α∈Ev

f∗α(xα) =
∑
α∈Ev

f∗α(x′α).

We have

ĥv
∗
((xα − x′α)) =

∑
α∈Ev

f∗α(xα − x′α) = 0.

Hence (xα − x′α)α∈Ev ∈ ker ĥv
∗

= Kv. Since S∗v : Kv → Kv, we have

S∗v((xα − x′α)α∈Ev) ∈ Kv. Hence ĥv
∗
(S∗v((xα − x′α)α∈Ev)) = 0. Since S ∈

End(K, g), we have Svgβ̄ = gβ̄Sr(β) and g∗
β̄
S∗v = S∗r(β)g

∗
β̄
. Hence

g∗β̄S
∗
v((xα − x′α)α∈Ev) = Pr(β)ivS

∗
v((xα − x′α)α∈Ev)

and

S∗r(β)g
∗
β̄((xα − x′α)α∈Ev) = S∗r(β)(xβ − x

′
β).

Thus we have

Pr(β)ivS
∗
v((xα − x′α)α∈Ev) = S∗r(β)(xβ − x

′
β)

and ∑
f∗βPr(β)iv(S

∗
v((xα − x′α)α∈Ev)) =

∑
f∗βS

∗
r(β)(xβ − x

′
β).

Since∑
f∗βPr(β)iv(S

∗
v((xα − x′α)α∈Ev)) = ĥv

∗
(S∗v((xβ − x′β)β∈Ev)) = 0,

we have ∑
f∗βS

∗
r(β)(xβ − x

′
β) =

∑
β∈Ev

f∗βT
∗
r(β)(xβ − x

′
β) = 0.

Hence ∑
f∗βT

∗
r(β)(xβ) =

∑
f∗βT

∗
r(β)(x

′
β).

Thus Wv is well defined. Put Tv = W ∗v . Next we shall show that fαTv =
Ts(α)fα and T ∗v f

∗
α = f∗αT

∗
s(α). Take and fix x ∈ Hr(α). For β ∈ Ev, we put

xβ =

{
x (β = α),

0 (β 6= α).

By the definition of Wv = T ∗v ,

Wv(
∑
α∈Ev

f∗α(xα)) =
∑
α∈Ev

f∗α(T ∗r(α)(xα)).
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Hence
T ∗v f

∗
α(x) =

∑
β

f∗βT
∗
r(β)(xβ) = f∗αT

∗
r(α)(x) for x ∈ Hr(α).

Thus we proved it.
Next we shall show that Wv = T ∗v : Hv → Hv is bounded. By the

Banach invertibility theorem, ĥ∗v|(Kv)⊥ : (Kv)
⊥ → Hv is a bounded invertible

operator. We shall show that there exists a positive constant c such that
‖ T ∗v x ‖5 c ‖ x ‖ for any x ∈ Hv. For x ∈ Hv, there exists (xα)α∈Ev ∈ (Kv)

⊥

such that x = ĥ∗v((xα)α∈Ev) =
∑

α∈Ev f
∗
α(xα). We have

‖ T ∗v (x) ‖ =‖
∑
α∈Ev

T ∗v (f∗α(xα)) ‖=‖
∑
α∈Ev

f∗α(T ∗r(α)(xα)) ‖

=‖ (f∗αT
∗
r(α))α∈Ev(xα)α∈Ev ‖5‖ (f∗αT

∗
r(α))α∈Ev ‖‖ (xα)α∈Ev ‖

=‖ (f∗αT
∗
r(α))α∈Ev ‖‖ (ĥ∗v|K⊥v )−1 ‖‖ x ‖5 c ‖ x ‖,

where (f∗αT
∗
r(α))α∈Ev is a row matrix and

c :=‖ ((f∗αT
∗
r(α)))α∈Ev ‖‖ (ĥ∗v|K⊥v )−1 ‖ .

Hence Tv is bounded. Next we shall show that Φ−v (T ) = S. By the definition
of Φ−v (T ), (Φ−v (T ))u = Su = Tu for u (6= v) ∈ V . Since S ∈ End(K, g), we
have

SvQvjβ = Svgβ̄ = gβ̄Sr(β) = QvjβSr(β)

for β ∈ Ev. For (xβ)β∈Ev ∈ Kv, we have

Sv((xβ)β∈Ev) = SvQv(
∑
β∈Ev

jβ(xβ)) =
∑
β∈Ev

SvQvjβ(xβ)

=
∑
β∈Ev

Qvjβ(Sr(β)xβ) = Qv
∑
β∈Ev

jβ(Sr(β)xβ)

= Qv((Sr(β)xβ)β∈Ev).

Thus
Sv((xβ)β∈Ev) = Qv((Sr(β)xβ)β∈Ev).

For u = v and ((xα)α∈Ev) ∈ Kv,

(Φ−v (T ))v((xα)α∈Ev) = Qv((Tr(α)xα)α∈Ev)) = Qv((Sr(α)xα)α∈Ev))

= Sv((xα)α∈Ev).

Thus (Φ−v (T ))v = Sv. Hence Φ−v (T ) = S and

Φ−v : End(H, f)→ End(Φ−v (H, f))

is onto. Thus we have End(H, f) ∼= End(Φ−v (H, f)) as C-algebras. �

Corollary 4.22. Let Γ = (V,E, s, r) be a finite quiver and v ∈ V a source.
Assume that a Hilbert representation (H, f) of Γ is co-full at v. If (H, f) is
transitive, then Φ−v (H, f) is transitive. Similarly, if (H, f) is indecomposible,
then Φ−1

v (H, f) is indecomposible.
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Next, we shall show the existence of infinite-dimensional transitive Hilbert
representations of quivers with any orientation whose underlying undirected
graphs are extended Dynkin diagrams D̃n (n ≥ 4), Ẽ6, Ẽ7 and Ẽ8.

We recall some definitions and lemmas in [EW3].
Definition.[EW3] Let Γ be a quiver whose underlying undirected graph

is Dynkin diagram An. We count the arrows from the left as αk : s(αk) →
r(αk), (k = 1, . . . , n − 1). Let (H, f) be a Hilbert representation of Γ. We
denote fαk briefly by fk. For example,

◦H1

f1−→ ◦H2

f2−→ ◦H3

f3←− ◦H4

f4−→ ◦H5

f5←− ◦H6

It is said that (H, f) is positive-unitary diagonal if there exist m ∈ N and
orthogonal decompositions (admitting zero components) of Hilbert spaces

Hk = ⊕mi=1Hk,i (k = 1, . . . , n)

and decompositions of operators

fk = ⊕mi=1fk,i : ⊕mi=1Hs(αk),i → ⊕mi=1Hr(αk),i (k = 1, . . . , n)

such that each fk,i : Hs(αk),i → Hr(αk),i is written as fk,i = 0 or fk,i = λk,iuk,i
for some positive scalar λk,i and onto unitary uk,i ∈ B(Hs(αk),i, Hr(αk),i).

It is easily seen that if (H, f) is positive-unitary diagonal, then Φ∗(H, f)
is also positive-unitary diagonal.

Lemma 4.23. [EW3, Lemma 6.4.] Let Γ be a quiver whose underlying undi-
rected graph is Dynkin diagram An and (H, f) be a Hilbert representation of
Γ. Suppose that (H, f) is positive-unitary diagonal. Then (H, f) is closed
at any sink of Γ and co-closed at any source of Γ.

Proposition 4.24. [EW3, Proposition 6.5.] Let Γ be a quiver whose un-
derlying undirected graph is Dynkin diagram An and (H, f) be a Hilbert
representation of Γ. Let v be a source of Γ. Suppose that (H, f) is positive-
unitary diagonal. Then Φ−v (H, f) is also positive-unitary diagonal.

It is known that every orientation of Dynkin diagram An is obtained by an
iteration of σ−v at sources v except the right end from a particular orientation
as follows:

Lemma 4.25. [EW3, Lemma 6.6.] Let Γ0 and Γ be quivers whose underlying
undirected graphs are the same Dynkin diagram An for n ≥ 2. Assume that
Γ0 is the following:

◦1 −→ ◦2 −→ ◦3 · · · ◦n−1 −→ ◦n
Then there exists a sequence v1, . . . , vm of vertices in Γ0 such that

(1) for each k = 1, . . . ,m, vk is a source in σ−vk−1
. . . σ−v2σ

−
v1(Γ0),

(2) σ−vm . . . σ
−
v2σ
−
v1(Γ0) = Γ,

(3) for each k = 1, . . . ,m, vk 6= n.
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Lemma 4.26. [EW3, Lemma 5.6.] Let Γ = (V,E, s, r) be a finite quiver and
v ∈ V a sink. Then for any Hilbert representation (H, f) of Γ, Φ+

v (H, f) is
co-full at v.

Theorem 4.27. [EW3, Theorem 5.13.] Let Γ = (V,E, s, r) be a finite quiver
and v ∈ V a source. Assume that a Hilbert representation (H, f) of Γ is
indecomposable and co-closed at v. Then the following assertions hold:

(1) If Φ−v (H, f) = 0, then Hv = C, Hu = 0 for any u ∈ V with u 6= v
and fα = 0 for any α ∈ E.

(2) If Φ−v (H, f) 6= 0, then Φ−v (H, f) is also indecomposable and (H, f) ∼=
Φ+
v Φ−v (H, f)).

The following is one of the main theorems in this paper.

Theorem 4.28. Let Γ be a quiver whose underlying undirected graph is an
extended Dynkin diagram. Then there exists an infinite-dimensional tran-
sitive Hilbert representation of Γ if and only if Γ is not an oriented cyclic
quiver.

Proof. Suppose that Γ is an oriented cyclic quiver. Theorem 4.10 proves
the nonexistence of infinite-dimensional transitive Hilbert representation of
Γ. Suppose that Γ is not an oriented cyclic quiver. We shall prove the exis-
tence of infinite-dimensional transitive Hilbert representations of Γ. When

Ãn case, Theorem 4.10 proves the existence of infinite-dimensional transitive
Hilbert representations of Γ. Next we consider the case that the |Γ| is D̃n.

Let Γ0 be the quiver of Lemma 4.11 and (H(0), f (0)) the Hilbert represen-

tation constructed there. Then |Γ0| = |Γ| = D̃n, but their orientations are

different in general. Let Γ1 be a quiver such that |Γ1| = D̃n and the orienta-
tion is as same as Γ on the path between 5 and n+ 1 and as same as Γ0 on
the rest four “wings”. We shall define a Hilbert representation (H(1), f (1))

of Γ1 modifying (H(0), f (0)). We put f
(1)
β = I for any arrow β in the path

between 5 and n + 1. and f
(0)
β = f

(1)
β for other arrow β. The same proof

for (H(0), f (0)) shows that (H(1), f (1)) is transitive. Since f
(1)
αi (i = 1, · · · , 4)

is an inclusion map, (H(1), f (1)) is co-full at sources 1,2,3 and 4. By Theo-
rem 4.21, a certain iteration of reflection functors at a source 1,2,3 or 4 on
(H(1), f (1)) gives an infinite-dimensional, transitive, Hilbert representation
of Γ. We have proved this case.

Next we consider the case that the |Γ| is Ẽ6. Let Γ0 be the quiver of

Lemma 4.12, and we denote here by (H(0), f (0)) the Hilbert representation

constructed there. Then |Γ0| = |Γ| = Ẽ6, but their orientations are different
in general. Three “wings” of |Γ0| 2 − 1 − 0, 2′ − 1′ − 0, 2′′ − 1′′ − 0 can
be regarded as Dynkin diagrams A3. Applying Lemma 4.25 for these wings
locally, we can find a sequence v1, . . . , vm of vertices in Γ0 such that

(1) for each k = 1, . . . ,m, vk is a source in σ−vk−1
. . . σ−v2σ

−
v1(Γ0),

(2) σ−vm . . . σ
−
v2σ
−
v1(Γ0) = Γ,
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(3) for each k = 1, . . . ,m, vk 6= 0.

We note that co-closedness of Hilbert representations at a source can be
checked locally around the source. Since the restriction of the representation
(H(0), f (0)) to each “wing” is positive-unitary diagonal and the iteration of
reflection functors does not move the vertex 0, we can apply Lemma 4.23
and Proposition 4.24 locally that Φ−vk−1

. . . Φ−v2Φ−v1(H(0), f (0)) is co-closed

at vk for k = 1, . . . ,m. Since the particular Hilbert space H
(0)
0 associated

with the vertex 0 is infinite-dimensional and remains unchanged under the
iteration of the reflection functors above, Φ−vi · · ·Φ

−
v1(H(0), f (0)) (1 ≤ i ≤ m)

is infinite-dimensional. Therefore Theorem 4.27 implies that

Φ−vi · · ·Φ
−
v1(H(0), f (0)) (1 ≤ i ≤ m)

is an infinite-dimensional indecomposable Hilbert representation of

σ−vi . . . σ
−
v2σ
−
v1(Γ).

By Theorem 4.27, for

(K, g) := Φ−vi · · ·Φ
−
v1(H(0), f (0)) (1 ≤ i ≤ m),

we have

(K, g) ∼= Φ+
vi+1

Φ−vi+1
(K, g).

On the other hand, by Lemma 4.26, Φ+
vi+1

Φ−vi+1
(K, g) is co-full at vi+1. Since

(K, g) ∼= Φ+
vi+1

Φ−vi+1
(K, g), by Lemma 4.18, we have that (K, g) is co-full at

vi+1. Hence Theorem 4.21 implies that End(K, g) ∼= End(Φ−vi+1
(K, g)). By

induction, we have

End(H(0), f (0)) ∼= End(Φ−vm · · ·Φ
−
v1(H(0), f (0))).

Since (H(0), f (0)) is transitive, (Φ−vm · · ·Φ
−
v1(H(0), f (0))) is also transitive.

Thus there exist infinite-dimensional transitive Hilbert representations for
quivers with any orientation whose underlying undirected graphs is extended

Dynkin diagram Ẽ6. The other cases Ẽ7 and Ẽ8 are proved similarly. �
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representation theory of associative algebras. 1. Techniques of representation
theory. London Mathematical Society Student Texts, 65 Cambridge University
Press, Cambridge, 2006. x+458 pp. ISBN: 978-0-521-58423-4; 978-0-521-58631-
3. MR2197389, Zbl 1092.16001, doi: 10.1017/CBO9780511614309. 977, 980, 1002,
1006, 1008

http://www.ams.org/mathscinet-getitem?mr=0264420
http://www.emis.de/cgi-bin/MATH-item?0467.47001
http://www.ams.org/mathscinet-getitem?mr=0240114
http://www.emis.de/cgi-bin/MATH-item?0165.15202
http://dx.doi.org/10.4064/sm-30-3-273-338
http://www.ams.org/mathscinet-getitem?mr=2197389
http://www.emis.de/cgi-bin/MATH-item?1092.16001
http://dx.doi.org/10.1017/CBO9780511614309


1014 MASATOSHI ENOMOTO AND YASUO WATATANI

[Au] Auslander, Maurice. Large modules over Artin algebras. Algebra, topology and
category theory (a collection of papers in honor of Samuel Eilenberg), 1–17. Aca-
demic Press New York, 1976. MR0424874, Zbl 0442.16025, doi: 10.1016/B978-0-
12-339050-9.50006-7. 976
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2000. MR1789209, Zbl 0988.16002, doi: 10.1007/978-3-0348-8426-6 1. 976

[Sh] Shields, Allen L. Weighted shift operators and analytic function theory. Topics
in operator theory, 49–128. Math. Surveys, 13. Amer. Math. Soc., Providence, R.I.,
1974. MR0361899, Zbl 0303.47021, doi: 10.1090/surv/013/02. 987

(Masatoshi Enomoto) Institute of Education and Research, Koshien University,
Takarazuka, Hyogo 665-0006, Japan
enomotoma@hotmail.co.jp

(Yasuo Watatani) Department of Mathematical Sciences, Kyushu University,
Motooka, Fukuoka, 819-0395, Japan
watatani@math.kyushu-u.ac.jp

This paper is available via http://nyjm.albany.edu/j/2019/25-43.html.

http://www.ams.org/mathscinet-getitem?mr=2161513
http://www.emis.de/cgi-bin/MATH-item?1175.16011
http://arXiv.org/abs/math/0307163
http://dx.doi.org/10.1007/s10688-005-0022-8
http://dx.doi.org/10.1007/s10688-005-0022-8
http://www.ams.org/mathscinet-getitem?mr=2210905
http://www.emis.de/cgi-bin/MATH-item?1092.46037
http://arXiv.org/abs/math/0603503
http://www.ams.org/mathscinet-getitem?mr=0223352
http://www.emis.de/cgi-bin/MATH-item?0222.16028
http://dx.doi.org/10.1070/IM1967v001n06ABEH000619
http://www.ams.org/mathscinet-getitem?mr=0338018
http://www.emis.de/cgi-bin/MATH-item?0298.15012
http://dx.doi.org/10.1070/IM1973v007n04ABEH001975
http://www.ams.org/mathscinet-getitem?mr=0830339
http://www.emis.de/cgi-bin/MATH-item?0591.16011
http://dx.doi.org/10.1016/0024-3795(86)90221-1
http://www.emis.de/cgi-bin/MATH-item?0591.16012
http://dx.doi.org/10.1016/0024-3795(86)90222-3
http://dx.doi.org/10.1016/0024-3795(86)90222-3
http://www.ams.org/mathscinet-getitem?mr=0367682
http://www.emis.de/cgi-bin/MATH-item?0269.47003
http://dx.doi.org/10.1007/978-3-642-65574-6
http://www.ams.org/mathscinet-getitem?mr=0565613
http://www.emis.de/cgi-bin/MATH-item?0429.16022
http://www.ams.org/mathscinet-getitem?mr=0571574
http://www.emis.de/cgi-bin/MATH-item?0433.15009
http://dx.doi.org/10.1007/BF01390253
http://www.ams.org/mathscinet-getitem?mr=1789209
http://www.emis.de/cgi-bin/MATH-item?0988.16002
http://dx.doi.org/10.1007/978-3-0348-8426-6_1
http://www.ams.org/mathscinet-getitem?mr=0361899
http://www.emis.de/cgi-bin/MATH-item?0303.47021
http://dx.doi.org/10.1090/surv/013/02
mailto:enomotoma@hotmail.co.jp
mailto:watatani@math.kyushu-u.ac.jp
http://nyjm.albany.edu/j/2019/25-43.html

	1. Introduction
	2. Hilbert representations of quivers
	3. Unbounded strongly irreducible operators
	4. Extended Dynkin diagrams and transitive Hilbert representations
	References

