New York Journal of Mathematics

New York J. Math. 25 (2019) 589-602.

On the spaces of bounded and compact multiplicative Hankel operators

Karl-Mikael Perfekt

Abstract

A multiplicative Hankel operator is an operator with matrix representation $M(\alpha)=\{\alpha(n m)\}_{n, m=1}^{\infty}$, where α is the generating sequence of $M(\alpha)$. Let \mathcal{M} and \mathcal{M}_{0} denote the spaces of bounded and compact multiplicative Hankel operators, respectively. In this note it is shown that the distance from an operator $M(\alpha) \in \mathcal{M}$ to the compact operators is minimized by a nonunique compact multiplicative Hankel operator $N(\beta) \in \mathcal{M}_{0}$. Intimately connected with this result, it is then proven that the bidual of \mathcal{M}_{0} is isometrically isomorphic to \mathcal{M}, $\mathcal{M}_{0}^{* *} \simeq \mathcal{M}$. It follows that \mathcal{M}_{0} is an M -ideal in \mathcal{M}. The dual space \mathcal{M}_{0}^{*} is isometrically isomorphic to a projective tensor product with respect to Dirichlet convolution. The stated results are also valid for small Hankel operators on the Hardy space $H^{2}\left(\mathbb{D}^{d}\right)$ of a finite polydisk.

Contents

1. Introduction 589
2. Results 593

References 600

1. Introduction

Given a sequence $\alpha: \mathbb{N} \rightarrow \mathbb{C}$, we consider the corresponding multiplicative Hankel operator $m=M(\alpha): \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$, defined by

$$
\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}=\sum_{n, m=1}^{\infty} a(n) \overline{b(m)} \alpha(n m), \quad a, b \in \ell^{2}(\mathbb{N})
$$

Initially, we consider this equality only for finite sequences a and b. It defines a bounded operator $M(\alpha): \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$, with matrix representation $\{\alpha(n m)\}_{n, m=1}^{\infty}$ in the standard basis of $\ell^{2}(\mathbb{N})$, if and only if there is a constant $C>0$ such that

$$
\left|\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}\right| \leq C\|a\|_{\ell^{2}(\mathbb{N})}\|b\|_{\ell^{2}(\mathbb{N})}, \quad a, b \text { finite sequences. }
$$

Received February 2, 2018.
2010 Mathematics Subject Classification. 46B28, 47B35.
Key words and phrases. essential norm, Hankel operator, bidual, M-ideal, weak product space.

Multiplicative Hankel operators are also known as Helson matrices, having been introduced by Helson in [14, 15].

There are two common alternative interpretations. One is in terms of Dirichlet series. Let \mathcal{H}^{2} be the Hardy space of Dirichlet series, the Hilbert space with $\left(n^{-s}\right)_{n=1}^{\infty}$ as a basis. Elements $f \in \mathcal{H}^{2}$ are holomorphic functions in the half-plane $\{s \in \mathbb{C}: \operatorname{Re} s>1 / 2\}$. If

$$
f(s)=\sum_{n=1}^{\infty} a(n) n^{-s}, g(s)=\sum_{n=1}^{\infty} \overline{b(n)} n^{-s}, \rho(s)=\sum_{n=1}^{\infty} \overline{\alpha(n)} n^{-s},
$$

then

$$
\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}=\langle f g, \rho\rangle_{\mathcal{H}^{2}}
$$

Hence there is an isometric correspondence between Helson matrices and Hankel operators on \mathcal{H}^{2}, since the forms associated with the latter are precisely of the type $(f, g) \mapsto\langle f g, \rho\rangle_{\mathcal{H}^{2}}$.

The second interpretation is in terms of the Hardy space of the infinite polytorus $H^{2}\left(\mathbb{T}^{\infty}\right)$, the Hilbert space with basis $\left(z^{\kappa}\right)_{\kappa}$, where $z=\left(z_{1}, z_{2}, \ldots\right)$, and $\kappa=\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ runs through the countably infinite, but finitely supported, multi-indices. Identify each integer n with a multi-index κ of this type through the factorization of n into the primes p_{1}, p_{2}, \ldots,

$$
n \longleftrightarrow \kappa \text { if and only if } n=\prod_{j=1}^{\infty} p_{j}^{\kappa_{j}} .
$$

Under this equivalence, multiplicative Hankel operators correspond to additive Hankel operators on a countably infinite number of variables,

$$
\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}=\sum_{\kappa, \kappa^{\prime}} a(\kappa) \overline{b\left(\kappa^{\prime}\right)} \alpha\left(\kappa+\kappa^{\prime}\right) .
$$

Hence the multiplicative Hankel operators correspond isometrically to small Hankel operators on $H^{2}\left(\mathbb{T}^{\infty}\right)$, since the matrix representations of the latter are of the form $\left\{\alpha\left(\kappa+\kappa^{\prime}\right)\right\}_{\kappa, \kappa^{\prime}}$. See $[14,15]$ for details.

In particular, the Helson matrices generalize the small Hankel operators on the Hardy space of any finite polytorus $H^{2}\left(\mathbb{T}^{d}\right), d<\infty$. In fact, the results in this note have analogous statements for small Hankel operators on $H^{2}\left(\mathbb{T}^{d}\right)$; every proof given remains valid verbatim after restricting the number of prime factors, that is, the number of variables.

The first result is the following. We denote by $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ and $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$, respectively, the spaces of bounded and compact operators on $\ell^{2}(\mathbb{N})$.

Theorem 1.1. Let $M(\alpha)$ be a bounded multiplicative Hankel operator. Then there exists a compact multiplicative Hankel operator $N(\beta)$ such that

$$
\begin{equation*}
\|M(\alpha)-N(\beta)\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}=\inf \left\{\|M(\alpha)-K\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}: K \in \mathcal{K}\left(\ell^{2}(\mathbb{N})\right)\right\} \tag{1}
\end{equation*}
$$

The minimizer $N(\beta)$ is never unique, unless $M(\alpha)$ is compact.

The quantity on the right-hand side of (1) is known as the essential norm of $M(\alpha)$. For classical Hankel operators on $H^{2}(\mathbb{T})$, this result was proven by Axler, Berg, Jewell, and Shields in [6], and can be viewed as a limiting case of the theory of Adamjan, Arov, and Krein [1]. The demonstration of Theorem 1.1 requires only a minor modification of the arguments in [6], the main point being that a characterization of the class of bounded multiplicative Hankel operators is not necessary for the proof.

On $H^{2}(\mathbb{T})$, Nehari's theorem [21] states that the class of bounded Hankel operators can be isometrically identified with $L^{\infty}(\mathbb{T}) / H^{\infty}(\mathbb{T})$, where $L^{\infty}(\mathbb{T})$ and $H^{\infty}(\mathbb{T})$ denote the spaces of bounded and bounded analytic functions on \mathbb{T}, respectively. By Hartman's theorem [13], the class of compact Hankel operators is isometrically isomorphic to $\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right) / H^{\infty}(\mathbb{T})$, where $C(\mathbb{T})$ denotes the space of continuous functions on \mathbb{T}. Note that the spaces L^{∞}, H^{∞}, and $H^{\infty}+C$ are all algebras, as proven by Sarason [26].

Luecking [20] observed, through a very illustrative argument relying on function algebra techniques, that the compact Hankel operators form an M-ideal in the space of bounded Hankel operators. The concept of an Mideal will be defined shortly, but let us note for now that M-ideality implies proximinality; the distance from a bounded Hankel operator to the compact Hankel operators has a minimizer. Thus Luecking reproved some of the results of [6]. Since

$$
\left(\left(H^{\infty}+C\right) / H^{\infty}\right)^{* *} \simeq L^{\infty} / H^{\infty},
$$

it follows that the bidual of the space of compact Hankel operators is isometrically isomorphic to the space of bounded Hankel operators. Spaces which are M-ideals in their biduals are said to be M-embedded.

The multiplicative Hankel operators, on the other hand, have thus far resisted all attempts to characterize their boundedness. It has been shown that a Nehari-type theorem cannot exist [22], and positive results only exist in special cases [14, 24]. In spite of this, the main theorem shows that Luecking's result holds for multiplicative Hankel operators.

Let

$$
\mathcal{M}_{0}=\left\{m=M(\alpha): M(\alpha): \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N}) \text { compact }\right\}
$$

and

$$
\mathcal{M}=\left\{m=M(\alpha): M(\alpha): \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N}) \text { bounded }\right\}
$$

Equipped with the operator norm, \mathcal{M}_{0} and \mathcal{M} are closed subspaces of $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$ and $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$, respectively. For a Banach space Y, we denote by ι_{Y} the canonical embedding $\iota_{Y}: Y \rightarrow Y^{* *}$,

$$
\iota_{Y} y\left(y^{*}\right)=y^{*}(y), \quad y \in Y, y^{*} \in Y^{*}
$$

Theorem 1.2. There is a unique isometric isomorphism $U: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ such that $U \iota_{\mathcal{M}_{0}} m=m$ for every $m \in \mathcal{M}_{0}$. Furthermore, \mathcal{M}_{0} is an M-ideal in \mathcal{M}.

Remark. As pointed out earlier, Theorem 1.2 is also true when stated for small Hankel operators on $H^{2}\left(\mathbb{T}^{d}\right), d<\infty$. The biduality has in this case been demonstrated isomorphically in [18], with an argument based on the non-isometric Nehari-type theorems proven in [10, 17].

The M-ideal property means the following: there is an (onto) projection $L: \mathcal{M}^{*} \rightarrow \mathcal{M}_{0}^{\perp}$ such that

$$
\left\|m^{*}\right\|_{\mathcal{M}^{*}}=\left\|L m^{*}\right\|_{\mathcal{M}^{*}}+\left\|m^{*}-L m^{*}\right\|_{\mathcal{M}^{*}}, \quad m^{*} \in \mathcal{M}^{*}
$$

where \mathcal{M}_{0}^{\perp} denotes the space of functionals $m^{*} \in \mathcal{M}^{*}$ which annihilate \mathcal{M}_{0}. M-ideals were introduced by Alfsen and Effros [3] as a Banach space analogue of closed two-sided ideals in C^{*}-algebras. Very loosely speaking, the fact that \mathcal{M}_{0} is an M -ideal in \mathcal{M} implies that the norm of \mathcal{M} resembles a maximum norm and, in this analogy, that \mathcal{M}_{0} is the subspace of elements vanishing at infinity. The book [12] comprehensively treats M-structure theory and its applications.

We will make use of the following consequences of Theorem 1.2. Proximinality of \mathcal{M}_{0} in \mathcal{M} was already mentioned, but the M -ideal property also implies that the minimizer is never unique [16]. It also ensures that \mathcal{M}_{0}^{*} is a strongly unique predual of \mathcal{M} [12, Proposition III.2.10]. This means that every isometric isomorphism of \mathcal{M} onto Y^{*}, Y a Banach space, is weak*-weak* continuous, that is, arises as the adjoint of an isometric isomorphism of Y onto \mathcal{M}_{0}^{*}. On the other hand, \mathcal{M}_{0}^{*} has infinitely many different preduals [11, Theoreme 27].

The predual of \mathcal{M} is well known to have an almost tautological characterization as a projective tensor product with respect to Dirichlet convolution,

$$
\mathcal{X}=\ell^{2}(\mathbb{N}) \hat{\star} \ell^{2}(\mathbb{N}) .
$$

The space \mathcal{X} is also referred to as a weak product space. We defer the precise definition to the next section - after establishing the main theorems, we essentially show, following [25], that all reasonable definitions of \mathcal{X} coincide.

Theorem 1.3. There is an isometric isomorphism $L: \mathcal{X} \rightarrow \mathcal{M}_{0}^{*}$ such that $L^{*} U^{-1}: \mathcal{M} \rightarrow \mathcal{X}^{*}$ is the canonical isometric isomorphism of \mathcal{M} onto \mathcal{X}^{*}, where $U: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ is the isometric isomorphism of Theorem 1.2.

Informally stated, $\mathcal{M}_{0}^{*} \simeq \mathcal{X}$ and $\mathcal{X}^{*} \simeq \mathcal{M}$. Theorem 1.3 follows at once from Theorem 1.2 and the uniqueness of the predual of \mathcal{M}, but we also supply a direct proof. While the duality $\mathcal{X}^{*} \simeq \mathcal{M}$ is a rephrasing of the definition of \mathcal{M}, it is difficult to identify a common approach to dualities of the type $\mathcal{M}_{0}^{*} \simeq \mathcal{X}$ in the existing literature. Often, the latter duality is deduced (isomorphically) via a concrete description of \mathcal{M}. For a small selection of relevant examples, see $[4,8,12,18,19,23,28]$.

The idea behind this note is that the direct view of \mathcal{M} as a subspace of $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ already provides sufficient information to prove Theorems 1.1, 1.2, and 1.3. In this direction, $\mathrm{Wu}[28]$ worked with an embedding into the space
of bounded operators to deduce duality results for certain Hankel-type forms on Dirichlet spaces.

The proofs of the results only have two main ingredients. The first is a device to approximate elements of \mathcal{M} by elements of \mathcal{M}_{0} (Lemma 2.1). Such an approximation property is necessary, because if $\mathcal{M}_{0}^{* *} \simeq \mathcal{M}$, then the unit ball of \mathcal{M}_{0} is weak* dense in the unit ball of \mathcal{M}. The second ingredient is an inclusion of \mathcal{M} into a reflexive space; in our case, $\ell^{2}(\mathbb{N})$. Analogous theorems could be proven for many other linear spaces of bounded and compact operators using the same technique.

2. Results

For a sequence a and $0<r<1$, let

$$
D_{r} a(n)=r^{\sum_{j=1}^{\infty} j \kappa_{j}} a(n), \text { where } n=\prod_{j=1}^{\infty} p_{j}^{\kappa_{j}} .
$$

Note that

$$
\sum_{\kappa} r^{2} \sum_{j=1}^{\infty} j \kappa_{j}=\prod_{j=1}^{\infty} \frac{1}{1-r^{2 j}}<\infty .
$$

Hence it follows by the dominated convergence theorem that $D_{r}: \ell^{2}(\mathbb{N}) \rightarrow$ $\ell^{2}(\mathbb{N})$ is a compact operator. Furthermore, D_{r} is self-adjoint and contractive, $\left\|D_{r}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \leq 1$. The dominated convergence theorem also implies that $D_{r} \rightarrow \operatorname{id}_{\ell^{2}(\mathbb{N})}$ in the strong operator topology (SOT) as $r \rightarrow 1$, that is, $\lim _{r \rightarrow 1} D_{r} a=a$ in $\ell^{2}(\mathbb{N})$, for every $a \in \ell^{2}(\mathbb{N})$. A study of the operators D_{r} in the context of Hardy spaces of the infinite polytorus can be found in [2].

The Dirichlet convolution of two sequences a and b is the new sequence $a \star b$ given by

$$
(a \star b)(n)=\sum_{k \mid n} a(k) \overline{b(n / k)}, \quad n \in \mathbb{N} .
$$

If a and b are two finite sequences, then

$$
\begin{equation*}
\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}=(\alpha, a \star b), \tag{2}
\end{equation*}
$$

where $(a, b)=\sum_{n=1}^{\infty} a(n) b(n)$ denotes the bilinear pairing between $a, b \in$ $\ell^{2}(\mathbb{N})$. Note also that, for $0<r<1$,

$$
\begin{equation*}
D_{r}(a \star b)=D_{r} a \star D_{r} b . \tag{3}
\end{equation*}
$$

The following simple lemma is key.
Lemma 2.1. Let $M(\alpha)$ be a bounded multiplicative Hankel operator, $M(\alpha) \in$ \mathcal{M}. For $0<r<1$, let $\alpha_{r}=D_{r} \alpha$. Then $M_{\alpha_{r}} \in \mathcal{M}_{0}$,

$$
\left\|M_{\alpha_{r}}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \leq\left\|M_{\alpha}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}
$$

and $M_{\alpha_{r}} \rightarrow M_{\alpha}$ and $M_{\alpha_{r}}^{*} \rightarrow M_{\alpha}^{*}$ SOT as $r \rightarrow 1$.

Proof. By (2) and (3), it holds for finite sequences a and b that

$$
\left\langle M\left(\alpha_{r}\right) a, b\right\rangle_{\ell^{2}(\mathbb{N})}=\left\langle M_{\alpha} D_{r} a, D_{r} b\right\rangle_{\ell^{2}(\mathbb{N})} .
$$

Hence $M_{\alpha_{r}}=D_{r} M_{\alpha} D_{r}$. We conclude that $M_{\alpha_{r}}$ is compact, $\left\|M_{\alpha_{r}}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \leq$ $\left\|M_{\alpha}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}$, and $M_{\alpha_{r}} \rightarrow M_{\alpha}$ SOT as $r \rightarrow 1$. Similarly, $M_{\alpha_{r}}^{*}=M_{\bar{\alpha}_{r}} \rightarrow$ $M_{\bar{\alpha}}=M_{\alpha}^{*}$ SOT as $r \rightarrow 1$.

The following is a recognizable consequence, cf. [27, Theorem 1]. Note that if S_{n} and T_{n} are operators such that $S_{n} \rightarrow S$ and $T_{n} \rightarrow T$ SOT, and if C is a compact operator, then $S_{n} C T_{n}^{*} \rightarrow S C T^{*}$ in operator norm.

Proposition 2.2. Let $M(\alpha) \in \mathcal{M}$. Then $M(\alpha) \in \mathcal{M}_{0}$ if and only if

$$
\begin{equation*}
\lim _{r \rightarrow 1}\left\|M\left(\alpha_{r}\right)-M(\alpha)\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}=0 . \tag{4}
\end{equation*}
$$

Proof. If (4) holds, then $M(\alpha) \in \mathcal{M}_{0}$, since $M\left(\alpha_{r}\right)$ is compact for every $0<r<1$. If $M(\alpha) \in \mathcal{M}_{0}$, then (4) holds, since $M\left(\alpha_{r}\right)=D_{r} M(\alpha) D_{r}=$ $D_{r} M(\alpha) D_{r}^{*}$ and $D_{r} \rightarrow \mathrm{id}_{\ell^{2}(\mathbb{N})} \mathrm{SOT}$ as $r \rightarrow 1$.

Recall next the main tool from [6].
Theorem $2.3([6])$. Let $T: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be a non-compact operator and $\left(T_{n}\right)$ a sequence of compact operators such that $T_{n} \rightarrow T$ SOT and $T_{n}^{*} \rightarrow T^{*}$ SOT. Then there exists a sequence (c_{n}) of non-negative real numbers such that $\sum_{n} c_{n}=1$ for which the compact operator

$$
J=\sum_{n} c_{n} T_{n}
$$

satisfies

$$
\|T-J\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}=\inf \left\{\|T-K\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}: K \in \mathcal{K}\left(\ell^{2}(\mathbb{N})\right)\right\}
$$

Lemma 2.1 and Theorem 2.3 immediately yield the existence part of Theorem 1.1.

Proof of Theorem 1.1. Let $M(\alpha)$ be a bounded multiplicative Hankel operator and let $\left(r_{k}\right)$ be a sequence such that $0<r_{k}<1$ and $r_{k} \rightarrow 1$. Then $M(\alpha)$ has a best compact approximant of the form

$$
N=\sum_{k} c_{k} M\left(\alpha_{r_{k}}\right) .
$$

But then $N=N(\beta)$ is a multiplicative Hankel operator, $\beta=\sum_{k} c_{k} \alpha_{r_{k}}$.
The non-uniqueness of $N(\beta)$ follows immediately once we have established Theorem 1.2, by general M-ideal results [16]. In fact, if $M(\alpha) \notin \mathcal{M}_{0}$, then the set of minimizers $N(\beta)$ is so large that it spans \mathcal{M}_{0}.

Note that

$$
\|M(\alpha)\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \geq \varlimsup_{N \rightarrow \infty} \frac{1}{\left\|(\alpha(n))_{n=1}^{N}\right\|_{\ell^{2}(\mathbb{N})}} \sum_{n=1}^{N}|\alpha(n)|^{2}=\|\alpha\|_{\ell^{2}(\mathbb{N})}
$$

Therefore the inclusion $I: \mathcal{M}_{0} \rightarrow \ell^{2}(\mathbb{N})$ is a contractive operator, $I m=$ $I(M(\alpha))=\alpha$. We can state Theorem 1.2 slightly more precisely in terms of I.

Theorem 1.2. Consider the bitranspose $U=I^{* *}: \mathcal{M}_{0}^{* *} \rightarrow \ell^{2}(\mathbb{N})$. Then $U \mathcal{M}_{0}^{* *}=\mathcal{M}$, viewing \mathcal{M} as a (non-closed) subspace of $\ell^{2}(\mathbb{N})$. Furthermore,

$$
U \iota_{\mathcal{M}_{0}} m=m, \quad m \in \mathcal{M}_{0}
$$

and

$$
\left\|U m^{* *}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}=\left\|m^{* *}\right\|_{\mathcal{M}_{0}^{* *}}, \quad m^{* *} \in \mathcal{M}_{0}^{* *}
$$

If $V: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ is another isometric isomorphism such that $V \iota_{\mathcal{M}_{0}} m=m$ for all $m \in \mathcal{M}_{0}$, then $V=U$. Furthermore, \mathcal{M}_{0} is an M-ideal in \mathcal{M}.

Proof. We identify $\left(\ell^{2}(\mathbb{N})\right)^{*} \simeq \ell^{2}(\mathbb{N})$ linearly through the pairing $(a, b)=$ $\sum_{n=1}^{\infty} a(n) b(n)$ between $a, b \in \ell^{2}(\mathbb{N})$. With this convention, $I^{*}: \ell^{2}(\mathbb{N}) \rightarrow \mathcal{M}_{0}^{*}$ is also contractive, and

$$
I^{*} a(m)=(\alpha, a), \quad a \in \ell^{2}(\mathbb{N}), m=M(\alpha) \in \mathcal{M}_{0}
$$

Since I is injective, I^{*} has dense range. In particular, \mathcal{M}_{0}^{*} is separable. Furthermore, $I^{* *}: \mathcal{M}_{0}^{* *} \rightarrow \ell^{2}(\mathbb{N})$ is injective. By the reflexivity of $\ell^{2}(\mathbb{N})$, we have that $I^{* *} \iota_{\mathcal{M}_{0}}=I$, since

$$
\left(I^{* *} \iota_{\mathcal{M}_{0}} m, a\right)=\iota_{\mathcal{M}_{0}} m\left(I^{*} a\right)=(\alpha, a)=(I m, a)
$$

for every $m=M(\alpha) \in \mathcal{M}_{0}$ and $a \in \ell^{2}(\mathbb{N})$. The interpretation, viewing \mathcal{M} as a non-closed subspace of $\ell^{2}(\mathbb{N})$, is that $I^{* *} \iota_{\mathcal{M}_{0}} m=m$, for all $m \in \mathcal{M}_{0}$.

Consider any $m^{* *} \in \mathcal{M}_{0}^{* *}$, and let $\alpha=I^{* *} m^{* *} \in \ell^{2}(\mathbb{N})$. Since \mathcal{M}_{0}^{*} is separable, the weak ${ }^{*}$ topology of the unit ball $B_{\mathcal{M}_{0}^{* *}}$ of $\mathcal{M}_{0}^{* *}$ is metrizable. As is the case for every Banach space, $\iota_{\mathcal{M}_{0}}\left(B_{\mathcal{M}_{0}}\right)$ is weak ${ }^{*}$ dense in $B_{\mathcal{M}_{0}^{* *}}$. Hence there is a sequence $\left(m_{n}\right)_{n=1}^{\infty}$ in \mathcal{M}_{0} such that $\iota_{\mathcal{M}_{0}} m_{n} \rightarrow m^{* *}$ weak ${ }^{*}$ and $\left\|m_{n}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \leq\left\|m^{* *}\right\|_{\mathcal{M}_{0}^{* *}}$. Suppose that $m_{n}=M\left(\alpha_{n}\right)$ and let $a, b \in \ell^{2}(\mathbb{N})$ be two finite sequences. Then, since $\iota_{\mathcal{M}_{0}} m_{n} \rightarrow m^{* *}$ weak*,

$$
\left\langle M\left(\alpha_{n}\right) a, b\right\rangle_{\ell^{2}(\mathbb{N})}=\left(\alpha_{n}, a \star b\right)=I^{*}(a \star b)\left(m_{n}\right) \rightarrow m^{* *}\left(I^{*}(a \star b)\right)=(\alpha, a \star b)
$$ as $n \rightarrow \infty$. It follows that

$$
\begin{aligned}
\left|\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}\right| & =|(\alpha, a \star b)| \leq \varlimsup_{n \rightarrow \infty}\left\|m_{n}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}\|a\|_{\ell^{2}(\mathbb{N})}\|b\|_{\ell^{2}(\mathbb{N})} \\
& \leq\left\|m^{* *}\right\|_{\mathcal{M}_{0}^{* *}}\|a\|_{\ell^{2}(\mathbb{N})}\|b\|_{\ell^{2}(\mathbb{N})} .
\end{aligned}
$$

Since a, b were arbitrary finite sequences, it follows that $M(\alpha) \in \mathcal{M}$ and

$$
\|M(\alpha)\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \leq\left\|m^{* *}\right\|_{\mathcal{M}_{0}^{* *}}
$$

Since $\alpha=I^{* *} m^{* *}$ this proves that $I^{* *}$ maps $\mathcal{M}_{0}^{* *}$ contractively into \mathcal{M}.
Conversely, suppose that $m=M(\alpha) \in \mathcal{M}$. By Lemma 2.1, for $0<r<1$, $M\left(\alpha_{r}\right) \in \mathcal{M}_{0},\left\|M\left(\alpha_{r}\right)\right\| \leq\|M(\alpha)\|$, and $\alpha_{r} \rightarrow \alpha$ in $\ell^{2}(\mathbb{N})$ as $r \rightarrow 1$. Define $m^{* *} \in \mathcal{M}_{0}^{* *}$ by

$$
\begin{equation*}
m^{* *}\left(I^{*} a\right):=(\alpha, a)=\lim _{r \rightarrow 1}\left(\alpha_{r}, a\right)=\lim _{r \rightarrow 1} I^{*} a\left(M\left(\alpha_{r}\right)\right), \quad a \in \ell^{2}(\mathbb{N}) \tag{5}
\end{equation*}
$$

This specifies an element $m^{* *} \in \mathcal{M}_{0}^{* *}$ since I^{*} has dense range in \mathcal{M}_{0}^{*} and

$$
\left|m^{* *}\left(I^{*} a\right)\right| \leq \varlimsup_{r \rightarrow 1}\left\|M\left(\alpha_{r}\right)\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}\left\|I^{*} a\right\|_{\mathcal{M}_{0}^{*}} \leq\|M(\alpha)\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}\left\|I^{*} a\right\|_{\mathcal{M}_{0}^{*}}
$$

From this inequality we also see that

$$
\begin{equation*}
\left\|m^{* *}\right\|_{\mathcal{M}_{0}^{* *}} \leq\|m\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \tag{6}
\end{equation*}
$$

Furthermore, since

$$
\left(I^{* *} m^{* *}, a\right)=m^{* *}\left(I^{*} a\right)=(\alpha, a), \quad a \in \ell^{2}(\mathbb{N})
$$

we have that $I^{* *} m^{* *}=\alpha$. Hence $I^{* *}$ maps $\mathcal{M}_{0}^{* *}$ bijectively and contractively onto \mathcal{M}. By (6), $I^{* *}: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ is also expansive, and hence it is an isometric isomorphism.

Recall that $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$ is an M-ideal in $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ [9] - indeed, $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$ is a two-sided closed ideal in $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$. It is well known that there is an isometric isomorphism $E: \mathcal{K}\left(\ell^{2}(\mathbb{N})\right)^{* *} \rightarrow \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ such that $E \iota_{\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)} K=K$ for all $K \in \mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$. Thus $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$ is M-embedded. Since \mathcal{M}_{0} is a closed subspace of $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right), \mathcal{M}_{0}$ is also M -embedded [12, Theorem III.1.6]. Hence, since we have shown that $I^{* *}: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ is an isometric isomorphism for which $I^{* *} \iota_{\mathcal{M}_{0}} m=m$ for all $m \in \mathcal{M}_{0}$, it follows that \mathcal{M}_{0} is an M-ideal in \mathcal{M}.

Finally, if $V: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ is another isometric isomorphism such that $V \iota_{\mathcal{M}_{0}} m=m, m \in \mathcal{M}_{0}$, then $F=V^{-1} I^{* *}: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}_{0}^{* *}$ is an isometric isomorphism such that $F \iota_{\mathcal{M}_{0}}=\iota_{\mathcal{M}_{0}}$. However, since \mathcal{M}_{0} is M-embedded, F must be obtained as the bitranspose, $F=G^{* *}$, of an isometric isomorphism $G: \mathcal{M}_{0} \rightarrow \mathcal{M}_{0}$ [12, Proposition III.2.2]. But then $G=\operatorname{id}_{\mathcal{M}_{0}}$, since

$$
m^{*}(G m)=G^{*} m^{*}(m)=F \iota_{\mathcal{M}_{0}} m\left(m^{*}\right)=m^{*}(m), \quad m \in \mathcal{M}_{0}, m^{*} \in \mathcal{M}_{0}^{*}
$$

Hence $F=\operatorname{id}_{\mathcal{M}_{0}^{* *}}$ and so $V=I^{* *}$.
The predual of a space of Hankel operators usually has an abstract description as a projective tensor product [5, 7, 10]. In the present context, let

$$
X=\left\{c: c=\sum_{\text {finite }} a_{k} \star b_{k}, a_{k}, b_{k} \text { finite sequences }\right\}
$$

and equip X with the norm

$$
\|c\|_{X}=\inf \sum_{\text {finite }}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}
$$

where the infimum is taken over all finite representations of c. By writing $c=c \star(1,0,0, \ldots)$ it is clear that $\|c\|_{X} \leq\|c\|_{\ell^{2}(\mathbb{N})}$ for $c \in X$.

We define the projective tensor product space $\mathcal{X}=\ell^{2}(\mathbb{N}) \hat{\star} \ell^{2}(\mathbb{N})$ with respect to Dirichlet convolution as the Banach space completion of X. It is essentially definition that $\mathcal{X}^{*} \simeq \mathcal{M}$.

Lemma 2.4. For $m=M(\alpha) \in \mathcal{M}$, let

$$
\operatorname{Jm}(c)=(\alpha, c), \quad c \in X
$$

Then Jm extends to a bounded functional on \mathcal{X} for every $m \in \mathcal{M}$, and $J: \mathcal{M} \rightarrow \mathcal{X}^{*}$ is an isometric isomorphism.
Proof. Let $m \in \mathcal{M}$. If $c \in X$ and $\varepsilon>0$, choose a representation $c=$ $\sum_{k=1}^{N} a_{k} \star b_{k}$, where a_{k} and b_{k} are finite sequences for every k, and

$$
\sum_{k=1}^{N}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}<\|c\|_{X}+\varepsilon
$$

Then

$$
|\operatorname{Jm}(c)|=\left|\sum_{k=1}^{N}\left\langle M(\alpha) a_{k}, b_{k}\right\rangle_{\ell^{2}(\mathbb{N})}\right| \leq\|m\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}\left(\|c\|_{X}+\varepsilon\right)
$$

Hence $\|J m\|_{\mathcal{X}^{*}} \leq\|m\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}$. Choosing finite sequences a and b such that $\|a\|_{\ell^{2}(\mathbb{N})}=\|b\|_{\ell^{2}(\mathbb{N})}=1$ and $\langle M(\alpha) a, b\rangle_{\ell^{2}(\mathbb{N})}>\|m\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}-\varepsilon$, and letting $c=a \star b$ gives that

$$
\|m\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}-\varepsilon<\|J m\|_{\mathcal{X}^{*}}\|c\|_{X} \leq\|J m\|_{\mathcal{X}^{*}}
$$

Hence J is an isometry.
The inclusion of finite sequences into X extends to a contractive map $E: \ell^{2}(\mathbb{N}) \rightarrow \mathcal{X}$. Let $\ell \in \mathcal{X}^{*}$ and let $c \in X$. Then $\ell(c)=(\alpha, c)$, where $\alpha=E^{*} \ell \in \ell^{2}(\mathbb{N})$. Then $m=M(\alpha) \in \mathcal{M}$, since $\ell \in \mathcal{X}^{*}$. Clearly $J m=\ell$ and thus J is onto.

Theorem 1.3. For every $c \in X$, let

$$
L c(m)=(\alpha, c), \quad m=M(\alpha) \in \mathcal{M}_{0} .
$$

Then L extends to an isometric isomorphism $L: \mathcal{X} \rightarrow \mathcal{M}_{0}^{*}$, and

$$
L^{*} U^{-1}=J: \mathcal{M} \rightarrow \mathcal{X}^{*}
$$

is the isometric isomorphism of Lemma 2.4. Here $U: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{M}$ is the isometric isomorphism of Theorem 1.2.

Proof. The quickest proof proceeds by noting that \mathcal{M}_{0}^{*} is a strongly unique predual of $\mathcal{M}_{0}^{* *}$, since \mathcal{M}_{0} is M -embedded. This implies that the isometric isomorphism $J U: \mathcal{M}_{0}^{* *} \rightarrow \mathcal{X}^{*}$ is the adjoint of an isometric isomorphism $E: \mathcal{X} \rightarrow \mathcal{M}_{0}^{*}, E^{*}=J U$. But then, for $c \in X$ and $m=M(\alpha) \in \mathcal{M}_{0}$,

$$
\begin{align*}
E c(m) & =\iota_{\mathcal{M}_{0}} m(E c)=E^{*} \iota_{\mathcal{M}_{0}} m(c)=J U \iota_{\mathcal{M}_{0}} m(c) \tag{7}\\
& =\operatorname{Jm}(c)=(\alpha, c)=L c(m)
\end{align*}
$$

Hence $L=E$, and thus L is an isometric isomorphism.
Alternatively, the weak*-weak* continuity of $J U$ can be proven by hand. L clearly extends to a contractive operator $L: \mathcal{X} \rightarrow \mathcal{M}_{0}^{*}$. The computation (7) shows that $J U \iota_{\mathcal{M}_{0}}=L^{*} \iota_{\mathcal{M}_{0}}$. Let $m^{* *} \in \mathcal{M}_{0}^{* *}$ and let $M(\alpha)=U m^{* *}$.

From (5) we deduce that $m_{r}^{* *}=\iota_{\mathcal{M}_{0}} M\left(\alpha_{r}\right) \rightarrow m^{* *}$ weak ${ }^{*}$ in $\mathcal{M}_{0}^{* *}$. Hence $L^{*} m_{r}^{* *} \rightarrow L^{*} m^{* *}$ weak ${ }^{*}$ in \mathcal{X}^{*}. On the other hand, for $c \in X$,

$$
\begin{aligned}
J U m^{* *}(c) & =(\alpha, c)=\lim _{r \rightarrow 1}\left(\alpha_{r}, c\right)=\lim _{r \rightarrow 1} \operatorname{JUm}_{r}^{* *}(c) \\
& =\lim _{r \rightarrow 1} L^{*} m_{r}^{* *}(c)=L^{*} m^{* *}(c) .
\end{aligned}
$$

This shows that $J U=L^{*}$, and hence L is an isometric isomorphism.
Remark. In the notation of Theorem 1.2, $I^{*} c=L c$ for $c \in X$. Theorem 1.3 hence completes the picture of Theorem 1.2 by giving an interpretation of the operator I^{*}.

Suppose that we had instead defined the projective tensor product space $\ell^{2}(\mathbb{N}) \hat{\star} \ell^{2}(\mathbb{N})$ as the sequence space

$$
\mathcal{Y}=\left\{c: c=\sum_{k=1}^{\infty} a_{k} \star b_{k}, a_{k}, b_{k} \in \ell^{2}(\mathbb{N}), \sum_{k=1}^{\infty}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}<\infty\right\},
$$

normed by

$$
\|c\|_{\mathcal{Y}}=\inf \sum_{k=1}^{\infty}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}
$$

where the infimum is taken over all representations of c. One would like to know that $\mathcal{Y}=\mathcal{X}$. Indeed, it is not a priori clear that \mathcal{X} is a sequence space; or if \mathcal{X} is identifiable with a space of Dirichlet series, if considering multiplicative Hankel operators in that context. For \mathcal{Y} these properties are immediate.

Lemma 2.5. \mathcal{Y} is a Banach space.
Proof. Since $|(a \star b)(n)| \leq\|a\|_{\ell^{2}(\mathbb{N})}\|b\|_{\ell^{2}(\mathbb{N})}$ it is clear that

$$
e_{n}(c)=c(n), \quad c \in \mathcal{Y},
$$

defines an element $e_{n} \in \mathcal{Y}^{*}$, for every $n \in \mathbb{N}$. It follows that $\|c\|_{\mathcal{Y}}=0$ if and only if $c=0$.

Suppose that $\sum_{k=1}^{\infty} c_{k}$ is an absolutely convergent series in \mathcal{Y}. Then there are double sequences $\left(a_{k, j}\right)$ and $\left(b_{k, j}\right)$ such that $c_{k}=\sum_{j=1}^{\infty} a_{k, j} \star b_{k, j}$ for every k and

$$
\sum_{k, j=1}^{\infty}\left\|a_{k, j}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k, j}\right\|_{\ell^{2}(\mathbb{N})}<\infty
$$

Then $c=\sum_{k, j=1}^{\infty} a_{k, j} b_{k, j}$ is an element of \mathcal{Y} and

$$
\left\|c-\sum_{k=1}^{N} c_{k}\right\|_{\mathcal{Y}} \leq \sum_{k=N+1}^{\infty} \sum_{j=1}^{\infty}\left\|a_{k, j}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k, j}\right\|_{\ell^{2}(\mathbb{N})} \rightarrow 0, \quad N \rightarrow \infty .
$$

Hence $\sum_{k=1}^{\infty} c_{k}$ converges in \mathcal{Y} to c. Thus \mathcal{Y} is complete.

We now prove that $\mathcal{Y}=\mathcal{X}$. The details are similar to those of [25], where projective tensor products of spaces of holomorphic functions were considered. Note that X is contractively contained in \mathcal{Y}.

Proposition 2.6. The inclusion $V: X \rightarrow \mathcal{Y}$ extends to an isometric isomorphism $V: \mathcal{X} \rightarrow \mathcal{Y}$.
Proof. We make the following preliminary observation. Since for every $0<$ $r<1$,

$$
D_{r}(a \star b)=D_{r} a \star D_{r} b, \quad\left\|D_{r}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \leq 1,
$$

D_{r} defines a bounded operator $D_{r}: \mathcal{X} \rightarrow \mathcal{X}$,

$$
\left\|D_{r}\right\|_{B(\mathcal{X})} \leq 1
$$

Furthermore, since $D_{r} \rightarrow \mathrm{id}_{\ell^{2}(\mathbb{N})}$ SOT on $\ell^{2}(\mathbb{N})$ as $r \rightarrow 1$, it follows that $\left\|D_{r} c-c\right\|_{X} \leq\left\|D_{r} c-c\right\|_{\ell^{2}(\mathbb{N})} \rightarrow 0$ as $r \rightarrow 1$ for every $c \in X$. Hence $D_{r} \rightarrow \mathrm{id}_{\mathcal{X}}$ SOT on \mathcal{X} as $r \rightarrow 1$.

As in Lemma 2.5, for each $n \in \mathbb{N}$,

$$
e_{n}(c)=c(n), \quad c \in X,
$$

extends to a functional $e_{n} \in \mathcal{X}^{*}$ with $\left\|e_{n}\right\|_{\mathcal{X}^{*}} \leq 1$. We show now that (e_{n}) is a complete sequence in \mathcal{X}^{*} with respect to the weak* topology. Suppose that $c \in \mathcal{X}$ and that $e_{n}(c)=0$ for all n. Pick a sequence $\left(c_{k}\right)$ in X such that $c_{k} \rightarrow c$ in \mathcal{X}. Then for fixed $r<1$,

$$
\begin{aligned}
\left\|D_{r} c\right\|_{\mathcal{X}} & \leq \varlimsup_{k \rightarrow \infty}\left(\left\|D_{r}\left(c-c_{k}\right)\right\|_{\mathcal{X}}+\left\|D_{r} c_{k}\right\|_{\mathcal{X}}\right) \\
& =\varlimsup_{k \rightarrow \infty}\left\|D_{r} c_{k}\right\|_{X} \leq \varlimsup_{k \rightarrow \infty}\left\|D_{r} c_{k}\right\|_{\ell^{2}(\mathbb{N})} .
\end{aligned}
$$

Since $c_{k} \rightarrow c$ in \mathcal{X} and $e_{n} \in \mathcal{X}^{*}$, we have that $\lim _{k \rightarrow \infty} c_{k}(n)=e_{n}(c)=0$ for every n. Furthermore, $\left|c_{k}(n)\right| \leq\left\|e_{n}\right\| \mathcal{X}^{*}\left\|c_{k}\right\|_{X} \leq\left\|c_{k}\right\|_{X}$ is uniformly bounded in k and n. Hence it follows by the dominated convergence theorem that $\varlimsup_{k \rightarrow \infty}\left\|D_{r} c_{k}\right\|_{\ell^{2}(\mathbb{N})}=0$ and thus that $D_{r} c=0$. Since $D_{r} c \rightarrow c$ in \mathcal{X} as $r \rightarrow 1$ we conclude that $c=0$. Therefore $\left(e_{n}\right)$ is complete.

Hence \mathcal{X} is a space of sequences. More precisely, since every evaluation e_{n} is a bounded functional on \mathcal{Y} as well, the extension $V: \mathcal{X} \rightarrow \mathcal{Y}$ of the inclusion map is given by

$$
\begin{equation*}
V c=\left(e_{n}(c)\right)_{n=1}^{\infty}, \quad c \in \mathcal{X} . \tag{8}
\end{equation*}
$$

The completeness of $\left(e_{n}\right)$ implies that V is injective.
We next prove that V is onto. The argument is precisely as in [25], but we include it for completeness. For a sequence a and $m \in \mathbb{N}$, let $a^{m}=(a(1), \ldots, a(m), 0, \ldots)$. Given $a \in \ell^{2}(\mathbb{N})$ and $\delta>0$, choose a sequence $\left(m_{1}, m_{2}, \ldots\right)$ such that $\left\|a-a^{m_{k}}\right\|_{\ell^{2}(\mathbb{N})} \leq 2^{-k}$. Let $a_{k}=a^{m_{k+1}}-a^{m_{k}}$. Then, for sufficiently large K,

$$
a=a^{m_{K}}+\sum_{k=K}^{\infty}\left(a^{m_{k+1}}-a^{m_{k}}\right), \quad \sum_{k=K}^{\infty}\left\|a^{m_{k+1}}-a^{m_{k}}\right\|_{\ell^{2}(\mathbb{N})}<\delta .
$$

Hence we can write $a=\sum_{j=1}^{\infty} a_{j}$, where each a_{j} is a finite sequence and $\sum_{j}\left\|a_{j}\right\|_{\ell^{2}(\mathbb{N})}<\|a\|_{\ell^{2}(\mathbb{N})}+\delta$.

Given $c \in \mathcal{Y}$ and $\varepsilon>0$, choose $\left(a_{k}\right)_{k=1}^{\infty}$ and $\left(b_{k}\right)_{k=1}^{\infty}$ such that

$$
c=\sum_{k=1}^{\infty} a_{k} \star b_{k}, \quad \sum_{k=1}^{\infty}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}<\|c\| \mathcal{Y}+\varepsilon .
$$

For each k, write, as in the preceding paragraph, $a_{k}=\sum_{j=1}^{\infty} a_{k, j}, b_{k}=$ $\sum_{j=1}^{\infty} b_{k, j}$, where each $a_{k, j}$ and $b_{k, j}$ is a finite sequence and

$$
\sum_{j=1}^{\infty}\left\|a_{k, j}\right\|_{\ell^{2}(\mathbb{N})}<\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}+\delta_{k}, \quad \sum_{j=1}^{\infty}\left\|b_{k, j}\right\|_{\ell^{2}(\mathbb{N})}<\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}+\delta_{k} .
$$

Here the δ_{k} are chosen so that

$$
\sum_{k=1}^{\infty}\left(\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}+\delta_{k}\right)\left(\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}+\delta_{k}\right)<\sum_{k=1}^{\infty}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}+\epsilon .
$$

Then $c=\sum_{k, j, l=1}^{\infty} a_{k, j} \star b_{k, l}$, and

$$
\sum_{k, j, l=1}^{\infty}\left\|a_{k, j}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k, l}\right\|_{\ell^{2}(\mathbb{N})}<\sum_{k=1}^{\infty}\left\|a_{k}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{k}\right\|_{\ell^{2}(\mathbb{N})}+\epsilon<\|c\|_{\mathcal{Y}}+2 \varepsilon
$$

Relabeling, we have a representation $c=\sum_{n=1}^{\infty} a_{n} \star b_{n}$ where a_{n} and b_{n} are finite sequences and $\sum_{n}\left\|a_{n}\right\|_{\ell^{2}(\mathbb{N})}\left\|b_{n}\right\|_{\ell^{2}(\mathbb{N})}<\|c\| y+2 \varepsilon$. Let $c_{N}=$ $\sum_{n=1}^{N} a_{n} \star b_{n}$. Then $c_{N} \rightarrow c$ in \mathcal{Y}, and furthermore $\left(c_{N}\right)$ is a Cauchy sequence in X, hence has a limit \tilde{c} in \mathcal{X}. By continuity of the functionals e_{n} on both \mathcal{Y} and \mathcal{X}, we find in view of (8) that $V \tilde{c}=c$. Hence V is onto.

Furthermore, since V is contractive,

$$
\|c\|_{\mathcal{Y}} \leq\|\tilde{c}\|_{\mathcal{X}}=\lim _{N \rightarrow \infty}\left\|c_{N}\right\|_{X}<\|c\|_{\mathcal{Y}}+2 \varepsilon .
$$

We already showed that V is injective, so that \tilde{c} is uniquely defined by c. On the other hand, ε is arbitrary. We conclude that $\|c\|_{\mathcal{Y}}=\|\tilde{c}\|_{\mathcal{X}}$. It follows that V is an isometric isomorphism.

References

[1] Adamjan, Vadym M.; Arov, Damir Z.; Kreĭn, Mark G. Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Mat. Sb. (N.S.) 86(128) (1971), 34-75. MR0298453, Zbl 0248.47019, doi: 10.1070/sm1971v015n01abeh001531. 591
[2] Aleman, Alexandru; Olsen, Jan-Fredrik; Saksman, Eero. Fatou and brothers Riesz theorems in the infinite-dimensional polydisc. J. Anal. Math. 137 (2019), no. 1, 429-447. MR3938009, Zbl 07074794, arXiv:1512.01509, doi: $10.1007 /$ s11854-019-0006-x. 593
[3] Alfsen, Erik M.; Effros, Edward G. Structure in real Banach spaces. I, II. Ann. of Math. (2) 96 (1972), 98-128; ibid. (2) 96 (1972), 129-173. MR0352946, Zbl 0248.46019, doi: 10.2307/1970895. 592
[4] Arazy, Jonathan; Fisher, Stephen D.; Peetre, Jaak. Möbius invariant function spaces. J. Reine Angew. Math. 363 (1985), 110-145. MR0814017, Zbl 0566.30042. 592
[5] Arcozzi, Nicola; Rochberg, Richard; Sawyer, Eric; Wick, Brett D. Bilinear forms on the Dirichlet space. Anal. PDE 3 (2010), no. 1, 21-47. MR2663410, Zbl 1262.30066, arXiv:0811.4107, doi: 10.2140/apde.2010.3.21. 596
[6] Axler, Sheldon; Berg, I. David; Jewell, Nicholas; Shields, Allen. Approximation by compact operators and the space $H^{\infty}+C$. Ann. of Math. (2) 109 (1979), no. 3, 601-612. MR0534765, Zbl 0399.47024, doi: 10.2307/1971228. 591, 594
[7] Coifman, Ronald R.; Rochberg, Richard; Weiss, Guido. Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103 (1976), no. 3, 611-635. MR0412721, Zbl 0326.32011, doi: 10.2307/1970954. 596
[8] Coifman, Ronald R.; Weiss, Guido. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645. MR0447954, Zbl 0358.30023, doi: 10.1090/s0002-9904-1977-14325-5. 592
[9] Dixmier, J. Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert. Ann. of Math. (2) 51 (1950), 387-408. MR0033445, Zbl 0036.35801, doi: 10.2307/1969331. 596
[10] Ferguson, Sarah H.; Lacey, Michael T. A characterization of product BMO by commutators. Acta Math. 189 (2002), no. 2, 143-160. MR1961195, Zbl 1039.47022, arXiv:math/0104144, doi: 10.1007/bf02392840. 592, 596
[11] Godefroy, Gilles. Sous-espaces bien disposes de L^{1}-applications. Trans. Amer. Math. Soc. 286 (1984), no. 1, 227-249. MR0756037, Zbl 0521.46012, doi: 10.2307/1999403. 592
[12] Harmand, Peter; Werner, Dirk; Werner, Wend. M-ideals in Banach spaces and Banach algebras. Lecture Notes in Mathematics, 1547. Springer-Verlag, Berlin, 1993. viii +387 pp. ISBN: 3-540-56814-X. MR1238713, Zbl 0789.46011, doi: $10.1007 /$ bfb0084355. 592, 596
[13] Hartman, Philip. On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9 (1958), 862-866. MR0108684, Zbl 0090.09203, doi: 10.2307/2033318. 591
[14] Helson, Henry. Hankel forms and sums of random variables. Studia Math. 176 (2006), no. 1, 85-92. MR2263964, Zbl 1108.43003, doi: 10.4064/sm176-1-6. 590, 591
[15] Helson, Henry. Hankel forms. Studia Math. 198 (2010), no. 1, 79-84. MR2640082, Zbl 1229.47042, doi: 10.4064/sm198-1-5. 590
[16] Holmes, Richard; Scranton, Bruce; Ward, Joseph. Approximation from the space of compact operators and other M-ideals. Duke Math. J. 42 (1975), 259269. MR0394301, Zbl 0332.47024, doi: 10.1215/s0012-7094-75-04224-6. 592, 594
[17] Lacey, Michael; Terwilleger, Erin. Hankel operators in several complex variables and product BMO. Houston J. Math. 35 (2009), no. 1, 159-183. MR2491875, Zbl 1163.47024, arXiv:math/0310348. 592
[18] Lacey, Michael T.; Terwilleger, Erin; Wick, Brett D. Remarks on product VMO. Proc. Amer. Math. Soc. 134 (2006), no. 2, 465-474. MR2176015, Zbl 1130.42022, arXiv:math/0405097, doi: 10.1090/s0002-9939-05-07974-8. 592
[19] Li, Fengying. Essential norm of Toeplitz operators and Hankel operators on the weighted Bergman space. Integral Equations Operator Theory 75 (2013), no. 4, 517-525. MR3032666, Zbl 1287.47026, arXiv:1210.4793, doi: 10.1007/s00020-012-2024-2. 592
[20] Luecking, Daniel H. The compact Hankel operators form an M-ideal in the space of Hankel operators. Proc. Amer. Math. Soc. 79 (1980), no. 2, 222-224. MR0565343, Zbl 0437.46043, doi: 10.2307/2043239. 591
[21] Nehari, Zeev. On bounded bilinear forms. Ann. of Math. (2) 65 (1957), 153-162. MR0082945, Zbl 0077.10605, doi: 10.2307/1969670. 591
[22] Ortega-Cerdà, Joaquim; Seip, Kristian. A lower bound in Nehari's theorem on the polydisc. J. Anal. Math. 118 (2012), no. 1, 339-342. MR2993031, Zbl 1276.32005, arXiv:1107.0175, doi: 10.1007/s11854-012-0038-y. 591
[23] Perfekt, Karl-Mikael. Duality and distance formulas in spaces defined by means of oscillation. Ark. Mat. 51 (2013), no. 2, 345-361. MR3090201, Zbl 1283.46011, arXiv:1110.6766, doi: 10.1007/s11512-012-0175-7. 592
[24] Perfekt, Karl-Mikael; Pushnitski, Alexander. On Helson matrices: moment problems, non-negativity, boundedness, and finite rank. Proc. Lond. Math. Soc. (3) 116 (2018), no. 1, 101-134. MR3747045, Zbl 06836089, arXiv:1611.03772, doi: 10.1112/plms.12068. 591
[25] Richter, Stefan; Sundberg, Carl. Weak products of Dirichlet functions. J. Funct. Anal. 266 (2014), 5270-5299. MR3177336, Zbl 1303.30050, doi: 10.1016/j.jfa.2014.02.005. 592, 599
[26] Sarason, Donald. Algebras of functions on the unit circle. Bull. Amer. Math. Soc. 79 (1973), 286-299. MR0324425, Zbl 0257.46079, doi: 10.1090/s0002-9904-1973-13144-1. 591
[27] Sarason, Donald. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391-405. MR0377518, Zbl 0319.42006, doi: 10.2307/1997184. 594
[28] Wu, Zhi Jian. The predual and second predual of W_{α}. J. Funct. Anal. 116 (1993), no. 2, 314-334. MR1239074, Zbl 0809.47024, doi: 10.1006/jfan.1993.1115. 592
(Karl-Mikael Perfekt) Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom
k.perfekt@reading.ac.uk

This paper is available via http://nyjm.albany.edu/j/2019/25-27.html.

