New York Journal of Mathematics
New York J. Math. 25 (2019) 589-602.

On the spaces of bounded and compact
multiplicative Hankel operators

Karl-Mikael Perfekt

ABSTRACT. A multiplicative Hankel operator is an operator with ma-
trix representation M (a) = {a(nm)}o,n=1, where « is the generating
sequence of M(«a). Let M and My denote the spaces of bounded and
compact multiplicative Hankel operators, respectively. In this note it
is shown that the distance from an operator M(a) € M to the com-
pact operators is minimized by a nonunique compact multiplicative Han-
kel operator N(3) € My. Intimately connected with this result, it is
then proven that the bidual of M is isometrically isomorphic to M,
MG* ~ M. Tt follows that My is an M-ideal in M. The dual space Mg
is isometrically isomorphic to a projective tensor product with respect to
Dirichlet convolution. The stated results are also valid for small Hankel
operators on the Hardy space H? (]D)d) of a finite polydisk.
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1. Introduction

Given a sequence a: N — C, we consider the corresponding multiplicative
Hankel operator m = M (a): £2(N) — ¢2(N), defined by
(M(e)a, by = Y a(n)b(m)a(nm), a,b e *(N).

n,m=1

Initially, we consider this equality only for finite sequences a and b. It de-
fines a bounded operator M (a): £2(N) — ¢2(N), with matrix representation
{a(nm)}°,,—; in the standard basis of £2(N), if and only if there is a constant

C > 0 such that
|<M(a)a, b>62(N)’ < Cllallemllbllezqyy, a,b finite sequences.

Received February 2, 2018.

2010 Mathematics Subject Classification. 46B28, 47B35.

Key words and phrases. essential norm, Hankel operator, bidual, M-ideal, weak product
space.

ISSN 1076-9803,/2019
589


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2019/Vol25.htm

590 KARL-MIKAEL PERFEKT

Multiplicative Hankel operators are also known as Helson matrices, having
been introduced by Helson in [14, 15].

There are two common alternative interpretations. Omne is in terms of
Dirichlet series. Let H? be the Hardy space of Dirichlet series, the Hilbert
space with (n7%)%%; as a basis. Elements f € H? are holomorphic functions

in the half-plane {s € C : Re s > 1/2}. If

Fls) = Y almn™, g(s) = 3 Bmn~, pls) = > alwn ™",

n=1 n=1

then
(M(a)a, b2y = (f9, p)ae-

Hence there is an isometric correspondence between Helson matrices and
Hankel operators on H?2, since the forms associated with the latter are pre-
cisely of the type (f,g) — (fg, p)3e.

The second interpretation is in terms of the Hardy space of the infinite
polytorus H?(T>), the Hilbert space with basis (2"),, where z = (21, 22, ...),
and k = (K1, Ko, ...) runs through the countably infinite, but finitely sup-
ported, multi-indices. Identify each integer n with a multi-index k of this
type through the factorization of n into the primes p1, po, ...,

oo
n <— & if and only if n:Hp;”j.
j=1

Under this equivalence, multiplicative Hankel operators correspond to addi-
tive Hankel operators on a countably infinite number of variables,

(M(e)a, by = > alk)b()a(k + ).

K,k

Hence the multiplicative Hankel operators correspond isometrically to small
Hankel operators on H?(T), since the matrix representations of the latter
are of the form {a(k + k') }, . See [14, 15] for details.

In particular, the Helson matrices generalize the small Hankel operators
on the Hardy space of any finite polytorus H?(T%), d < oo. In fact, the
results in this note have analogous statements for small Hankel operators
on H?(T9); every proof given remains valid verbatim after restricting the
number of prime factors, that is, the number of variables.

The first result is the following. We denote by B(¢%(N)) and K(¢*(N)),
respectively, the spaces of bounded and compact operators on ¢?(N).

Theorem 1.1. Let M («) be a bounded multiplicative Hankel operator. Then
there exists a compact multiplicative Hankel operator N(B) such that

1M (c) = N(B)llsz vy = inf {[M () — Kllgeqy : K € LEN))}. (1)

The minimizer N () is never unique, unless M () is compact.
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The quantity on the right-hand side of (1) is known as the essential norm
of M(a). For classical Hankel operators on H?(T), this result was proven by
Axler, Berg, Jewell, and Shields in [6], and can be viewed as a limiting case
of the theory of Adamjan, Arov, and Krein [1]. The demonstration of Theo-
rem 1.1 requires only a minor modification of the arguments in [6], the main
point being that a characterization of the class of bounded multiplicative
Hankel operators is not necessary for the proof.

On H?(T), Nehari’s theorem [21] states that the class of bounded Hankel
operators can be isometrically identified with L>°(T)/H*°(T), where L*°(T)
and H>°(T) denote the spaces of bounded and bounded analytic functions
on T, respectively. By Hartman’s theorem [13], the class of compact Hankel
operators is isometrically isomorphic to (H*°(T) + C(T))/H(T), where
C(T) denotes the space of continuous functions on T. Note that the spaces
L, H*, and H*® + C are all algebras, as proven by Sarason [26].

Luecking [20] observed, through a very illustrative argument relying on
function algebra techniques, that the compact Hankel operators form an
M-ideal in the space of bounded Hankel operators. The concept of an M-
ideal will be defined shortly, but let us note for now that M-ideality implies
proximinality; the distance from a bounded Hankel operator to the compact
Hankel operators has a minimizer. Thus Luecking reproved some of the
results of [6]. Since

((H* +C)/H>)"™ ~ L™ /H>,

it follows that the bidual of the space of compact Hankel operators is isomet-
rically isomorphic to the space of bounded Hankel operators. Spaces which
are M-ideals in their biduals are said to be M-embedded.

The multiplicative Hankel operators, on the other hand, have thus far
resisted all attempts to characterize their boundedness. It has been shown
that a Nehari-type theorem cannot exist [22], and positive results only exist
in special cases |14, 24]|. In spite of this, the main theorem shows that
Luecking’s result holds for multiplicative Hankel operators.

Let

Mo = {m = M(a) : M(a): {*(N) — (*(N) compact}
and
M= {m=M(a) : M(a): (*(N) = ¢2(N) bounded}.

Equipped with the operator norm, My and M are closed subspaces of
K(#3(N)) and B(¢%(N)), respectively. For a Banach space Y, we denote
by ¢y the canonical embedding vy : Y — Y™**,

wy(y* ) =y"(y), yeY, y eY"

Theorem 1.2. There is a unique isometric isomorphism U: M§* — M
such that Uip,m = m for every m € My. Furthermore, My is an M-ideal
in M.
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Remark. As pointed out earlier, Theorem 1.2 is also true when stated for
small Hankel operators on H?(T%), d < co. The biduality has in this case
been demonstrated isomorphically in [18], with an argument based on the
non-isometric Nehari-type theorems proven in [10, 17].

The M-ideal property means the following: there is an (onto) projection
L: M* — Mg such that

[m* s = [Lm™ [ a4 [Im* = L[ e, m™ € M,

where Mg denotes the space of functionals m* € M* which annihilate M.
M-ideals were introduced by Alfsen and Effros [3| as a Banach space analogue
of closed two-sided ideals in C*-algebras. Very loosely speaking, the fact that
M is an M-ideal in M implies that the norm of M resembles a maximum
norm and, in this analogy, that Mg is the subspace of elements vanishing
at infinity. The book [12] comprehensively treats M-structure theory and its
applications.

We will make use of the following consequences of Theorem 1.2. Proxim-
inality of My in M was already mentioned, but the M-ideal property also
implies that the minimizer is never unique [16]. It also ensures that M is a
strongly unique predual of M [12, Proposition 111.2.10]. This means that ev-
ery isometric isomorphism of M onto Y*, Y a Banach space, is weak*-weak*
continuous, that is, arises as the adjoint of an isometric isomorphism of Y
onto M{. On the other hand, M{ has infinitely many different preduals 11,
Theoreme 27|.

The predual of M is well known to have an almost tautological character-
ization as a projective tensor product with respect to Dirichlet convolution,

X = *(N) % £2(N).

The space X is also referred to as a weak product space. We defer the precise
definition to the next section — after establishing the main theorems, we
essentially show, following [25], that all reasonable definitions of X coincide.

Theorem 1.3. There is an isometric isomorphism L: X — M{ such that
L*U~': M — X* is the canonical isometric isomorphism of M onto X*,
where U: M§* — M s the isometric isomorphism of Theorem 1.2.

Informally stated, M§ ~ X and &* ~ M. Theorem 1.3 follows at once
from Theorem 1.2 and the uniqueness of the predual of M, but we also
supply a direct proof. While the duality X* ~ M is a rephrasing of the
definition of M, it is difficult to identify a common approach to dualities
of the type M ~ X in the existing literature. Often, the latter duality
is deduced (isomorphically) via a concrete description of M. For a small
selection of relevant examples, see [4, 8, 12, 18, 19, 23, 28].

The idea behind this note is that the direct view of M as a subspace of
B(¢*(N)) already provides sufficient information to prove Theorems 1.1, 1.2,
and 1.3. In this direction, Wu [28] worked with an embedding into the space



MULTIPLICATIVE HANKEL OPERATORS 593

of bounded operators to deduce duality results for certain Hankel-type forms
on Dirichlet spaces.

The proofs of the results only have two main ingredients. The first is
a device to approximate elements of M by elements of My (Lemma 2.1).
Such an approximation property is necessary, because if Mg* ~ M, then
the unit ball of M is weak® dense in the unit ball of M. The second
ingredient is an inclusion of M into a reflexive space; in our case, ¢?(N).
Analogous theorems could be proven for many other linear spaces of bounded
and compact operators using the same technique.

2. Results

For a sequence a and 0 < r < 1, let

o0
D,a(n) = r>=i=19%q(n), where n = Hp;j.

j=1
Note that
1
23752, K — -
ZT J H 1,2 < 0Q.
K ]:]_

Hence it follows by the dominated convergence theorem that D,.: ¢2(N) —
/2(N) is a compact operator. Furthermore, D, is self-adjoint and contractive,
| Drllge2vyy < 1. The dominated convergence theorem also implies that
D; — idp(y) in the strong operator topology (SOT) as r — 1, that is,
lim,_,; Dya = a in £2(N), for every a € ¢?(N). A study of the operators D,
in the context of Hardy spaces of the infinite polytorus can be found in [2].

The Dirichlet convolution of two sequences a and b is the new sequence
a* b given by

(a%b)(n) =) _a(k)b(n/k), neN.

k|n

If a and b are two finite sequences, then
<M(a)a, b)ﬁ(N) = (a7 a*x b)7 (2)

where (a,b) = > 07 a(n)b(n) denotes the bilinear pairing between a,b €
?2(N). Note also that, for 0 < r < 1,

D,(axb) = Dya* D,b. (3)
The following simple lemma is key.

Lemma 2.1. Let M(«) be a bounded multiplicative Hankel operator, M («) €
M. For0<r <1, let ap = Dya. Then M, € Mo,

Mo, |52y < [[Mallgezmvy),
and My, — My and M5 — Mj SOT asr — 1.
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Proof. By (2) and (3), it holds for finite sequences a and b that
(M(ar)a, b)ZQ(N) = <MaDra, Dﬂ))zz(N).
Hence M,, = D, MqD,. We conclude that M,, is compact, ||Ma, ||z <

[ MallBe2my), and My, — My SOT as v — 1. Similarly, My = Mg, —
Mg = M} SOT as r — 1. O

The following is a recognizable consequence, cf. |27, Theorem 1|. Note
that if S,, and T,, are operators such that S, — S and T,, — T SOT, and if
C is a compact operator, then S,CT — SCT™ in operator norm.

Proposition 2.2. Let M(a) € M. Then M(a) € My if and only if
lim [[M () = M(e)lg(e2 vy = O- (4)

Proof. If (4) holds, then M(a) € My, since M(a,) is compact for every
0 <r <1 If M(a) € Mo, then (4) holds, since M(«a,) = D, M()D, =
Dy M(a) Dy and Dy — idg2(yy SOT as 7 — 1. O

Recall next the main tool from |6].

Theorem 2.3 ([6]). Let T: (*(N) — ¢*(N) be a non-compact operator and
(T,) a sequence of compact operators such that T,, — T SOT and T} — T*
SOT. Then there exists a sequence (c,) of non-negative real numbers such
that Y, c¢n =1 for which the compact operator

J = chTn

satisfies
1T = Jlsean) = inf {|IT — Kllgeeqy : K € K((N))}.

Lemma 2.1 and Theorem 2.3 immediately yield the existence part of The-
orem 1.1.

Proof of Theorem 1.1. Let M («) be a bounded multiplicative Hankel op-
erator and let (1) be a sequence such that 0 < rp < 1 and rp — 1. Then
M («) has a best compact approximant of the form

N = chM(ark).
k

But then N = N(3) is a multiplicative Hankel operator, 5 =, cray, .
The non-uniqueness of N () follows immediately once we have established
Theorem 1.2, by general M-ideal results [16]. In fact, if M(«) ¢ My, then

the set of minimizers N (3) is so large that it spans M. O
Note that
1M ()l gezqy) > lim Z la(n)]* = [lall -

N=oe [|(ev(n) 1”62(1\!
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Therefore the inclusion I: My — ¢?(N) is a contractive operator, Im =
I(M(a))) = a. We can state Theorem 1.2 slightly more precisely in terms of
I

Theorem 1.2. Consider the bitranspose U = I**: M§* — (*(N). Then
UME = M, viewing M as a (non-closed) subspace of ¢2(N). Furthermore,
Utpem =m, m e Mo,

and
[UM™ | se2vyy = [Im™ || pmge, m™ € Mg™.

If V: M§* — M is another isometric isomorphism such that Vip,m = m
for all m € My, then V = U. Furthermore, Mg is an M-ideal in M.

Proof. We identify (EQ(N))* ~ (?(N) linearly through the pairing (a,b) =
3¢ L a(n)b(n) between a,b € ¢2(N). With this convention, I*: £2(N) — M,
is also contractive, and
I*a(m) = (a,a), ac*(N), m= M(a)€ M.
Since I is injective, I* has dense range. In particular, M is separable.
Furthermore, I**: M{* — (%(N) is injective. By the reflexivity of £2(N), we
have that I**1pq, = I, since
(I tpmgm,a) = tpmem(I*a) = (a,a) = (Im, a)

for every m = M(a) € Mg and a € ¢*(N). The interpretation, viewing M
as a non-closed subspace of £2(N), is that I**1,m = m, for all m € M.

Consider any m** € M#*, and let o = I**m*™ € (?(N). Since M} is
separable, the weak™ topology of the unit ball Bag+ of M{* is metrizable.
As is the case for every Banach space, ta1y(Ba,) is weak™ dense in By«
Hence there is a sequence (my,)32; in Mg such that ¢, my, — m** weak™ and
ImallBezmy) < lm™*||mz+. Suppose that m, = M(ay) and let a,b € /2(N)
be two finite sequences. Then, since (g, m, — Mm™ weak™,

(M(an)a,b)pm) = (an,axb) = I"(axb)(m,) = m™([*(axb)) = (a,axb),
as n — 0o. It follows that
(M (a)a,b)ezoy| = |(e, ax b)] < Tl 5z oy llall ez [1Blle2 vy
< Nm™ || agg llalle2 ) 1Bl e2 vy -
Since a, b were arbitrary finite sequences, it follows that M («) € M and
[ M ()| g2y < [[m™ [ az=-

Since o = I"*m™** this proves that I** maps M{* contractively into M.

Conversely, suppose that m = M(a) € M. By Lemma 2.1, for 0 < r < 1,

M (o) € My, ||M(a,)|| < ||M(a)|, and a,, — « in £2(N) as » — 1. Define
m* € Mg* by

m*™(I*a) := (a,a) = }E(ar,a) = lim I*a(M(a,)), ac€*(N). (5)

r—1
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This specifies an element m™* € Mg* since I* has dense range in Mg and
[m™(I"a)| < E | M ()| Bz oy 1 @l az < 1M () 3eez o) 1 all v -

From this inequality we also see that

[m™ | mze < llml e avy)- (6)

Furthermore, since
(I*m*,a) = m™(I*a) = (o, a), a € 2(N),

we have that I**m™ = a. Hence ™ maps Mg* bijectively and contractively
onto M. By (6), I**: M§* — M is also expansive, and hence it is an
isometric isomorphism.

Recall that K(¢2(N)) is an M-ideal in B(£?(N)) [9] — indeed, K(¢3(N)) is a
two-sided closed ideal in B(¢?(N)). It is well known that there is an isometric
isomorphism E: K(2(N))** — B(f?(N)) such that EucienyK = K for
all K € K(/%(N)). Thus K(¢?(N)) is M-embedded. Since My is a closed
subspace of K(£2(N)), My is also M-embedded [12, Theorem III.1.6]. Hence,
since we have shown that I™*: M§* — M is an isometric isomorphism for
which I"* i p,m = m for all m € My, it follows that My is an M-ideal in
M.

Finally, if V: M§* — M is another isometric isomorphism such that
Vipem = m, m € Mg, then F = V1[**: MG* — MG® is an isometric
isomorphism such that Fupg, = trg,. However, since My is M-embedded, F'
must be obtained as the bitranspose, F' = G**, of an isometric isomorphism
G: Mo — My [12, Proposition II1.2.2|. But then G = idvy,, since

m*(Gm) = G'm*(m) = Fupym(m™) = m*(m), m e My, m* € M.
Hence F = id gz and so V = I'™. U

The predual of a space of Hankel operators usually has an abstract de-
scription as a projective tensor product [5, 7, 10]. In the present context,
let

X = {c = Z ap * by, ap, by, finite sequences},

finite

and equip X with the norm

lelx = inf >~ arllemlbxlle e,
finite
where the infimum is taken over all finite representations of ¢. By writing
c=cx%(1,0,0,...) it is clear that |c[|x < [[c[|pzy) for c € X.
We define the projective tensor product space X = ¢*(N) * ¢2(N) with
respect to Dirichlet convolution as the Banach space completion of X. It is
essentially definition that X™* ~ M.
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Lemma 2.4. For m = M(«a) € M, let
Jm(c) = (a,c), ce€ X.

Then Jm extends to a bounded functional on X for every m € M, and
J: M — X* is an isometric isomorphism.

Proof. Let m € M. If ¢ € X and € > 0, choose a representation ¢ =
Z]kvzl ay, * by, where ap and by are finite sequences for every k, and

N
> llawlle@lbellem) < llellx + &
k=1
Then
N
[Tm(c)| = > (M(a)ak, b)) | < llmllsemy ldlx + &)
k=1

Hence [[Jm| 2+ < [|m|ge2m)). Choosing finite sequences a and b such that
lalley = [[blleey = 1 and (M (a)a,b) 2y > [|m|lge2avy) — €, and letting
¢ = ax b gives that

Imllsemy) =& < [Jmllx-llellx < [|Jml|x-.

Hence J is an isometry.

The inclusion of finite sequences into X extends to a contractive map
E:?(N) - X. Let £ € X* and let ¢ € X. Then £(c) = (a,c), where
o = E*( € ((N). Then m = M(a) € M, since £ € X*. Clearly Jm = ¢ and
thus J is onto. O

Theorem 1.3. For every c € X, let
Le(m) = (a,¢), m = M(a) € M.
Then L extends to an isometric isomorphism L: X — Mg, and
L'Ut=J: M- X
is the wsometric isomorphism of Lemma 2.4. Here U: M§* — M s the

isometric isomorphism of Theorem 1.2.

Proof. The quickest proof proceeds by noting that Mg is a strongly unique
predual of M{*, since My is M-embedded. This implies that the isometric
isomorphism JU: Mg* — X* is the adjoint of an isometric isomorphism
E: X - M{, E* = JU. But then, for c € X and m = M(a) € My,

Ec(m) = tpym(Ec) = E*ipgm(c) = JUpym(c) (7)
= Jm(c) = (a, ¢) = Le(m).
Hence L = FE, and thus L is an isometric isomorphism.
Alternatively, the weak*-weak™* continuity of JU can be proven by hand.

L clearly extends to a contractive operator L: X — M. The computation
(7) shows that JUipm, = L*tpm,. Let m™ € M§* and let M(a) = Um**.
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From (5) we deduce that m}* = iy, M(ay) — m*™ weak* in M{*. Hence
L*m}* — L*m** weak® in X*. On the other hand, for ¢ € X,
JUmM™(¢) = (e, ¢) = lim(ay, ¢) = lim JUmM;™(c)
r—1 r—1
= }1_)1]% L*m;*(c) = L*™m™(c).
This shows that JU = L*, and hence L is an isometric isomorphism. O

Remark. In the notation of Theorem 1.2, I*¢ = Lc¢ for ¢ € X. Theorem 1.3
hence completes the picture of Theorem 1.2 by giving an interpretation of
the operator I*.

Suppose that we had instead defined the projective tensor product space
22(N) % 2(N) as the sequence space

V= {C fe= apxbe, ag by € CN), D lagll e 1bellemy < OO} :

k=1 k=1

normed by

o
lelly = inf Y [lax]le2 v 1kl

k=1
where the infimum is taken over all representations of ¢. One would like
to know that ) = X. Indeed, it is not a priori clear that X is a sequence
space; or if X is identifiable with a space of Dirichlet series, if considering
multiplicative Hankel operators in that context. For ) these properties are
immediate.

Lemma 2.5. ) is a Banach space.
Proof. Since [(axb)(n)| < [lallzm)[|blleay) it is clear that
en(c) =c(n), ce),

defines an element e, € Y*, for every n € N. It follows that ||c[|y = 0 if and
only if ¢ = 0.

Suppose that > "2 | ¢ is an absolutely convergent series in ). Then there
are double sequences (ay, ;) and (by, ;) such that ¢, = > 222, ay jxby, ; for every

k and
Z llak,jllez () l[br, 5
k,j=1

£2(N) < Q.

Then ¢ = Zzojzl ag,jby,; is an element of )V and

HC_ZCk||y< Z ZH%JI

k=N+1 j=1

2(N kuJHp (N) —0, N — 0.

Hence ZZOZI ¢, converges in Y to ¢. Thus ) is complete. O
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We now prove that Y = X. The details are similar to those of [25],
where projective tensor products of spaces of holomorphic functions were
considered. Note that X is contractively contained in Y.

Proposition 2.6. The inclusion V: X — Y extends to an isometric iso-
morphism V: X — Y.

Proof. We make the following preliminary observation. Since for every 0 <
r<l1,

Dr(a*b) = Dra*Drb, HDTHB(ZQ(N)) <1,
D, defines a bounded operator D,: X — X,

I Drll Bxy < 1.

Furthermore, since D, — idgy) SOT on 2(N) as r — 1, it follows that
[Dre —cllx < [[Drc —cllpqyy — 0 as 7 — 1 for every ¢ € X. Hence
D, —idy SOT on X as r — 1.

As in Lemma 2.5, for each n € N,

en(c) = c(n), ceX,

extends to a functional e, € X* with |le,||x» < 1. We show now that (e,)
is a complete sequence in X'* with respect to the weak®™ topology. Suppose
that ¢ € X and that e, (c) = 0 for all n. Pick a sequence (c) in X such that
¢ — ¢ in X. Then for fixed r < 1,

|Dycl|x < lim (||Dy(c— cp)llx + || Drekllx)
k—o0
= lim ”D’I‘ckHX < lim HDrckHZQ(N)'
k—o0 k—o0

Since ¢ — ¢ in X and e, € X*, we have that limg_,o cx(n) = e,(c) =0
for every m. Furthermore, |cx(n)| < |lenlla+|lckllx < [lckl|x is uniformly
bounded in k£ and n. Hence it follows by the dominated convergence theorem
that limg_, o | Drekllzaey = 0 and thus that D,.c = 0. Since D¢ — ¢ in X
as r — 1 we conclude that ¢ = 0. Therefore (e,) is complete.

Hence X is a space of sequences. More precisely, since every evaluation
en 18 a bounded functional on ) as well, the extension V: X — Y of the
inclusion map is given by

Ve=(en(c))pr,, ceX. (8)

The completeness of (e,) implies that V is injective.

We next prove that V' is onto. The argument is precisely as in [25],
but we include it for completeness. For a sequence a and m € N, let
a™ = (a(1),...,a(m),0,...). Given a € £*(N) and & > 0, choose a sequence
(m1,ma,...) such that [|a — a™*||2qy < 27%. Let ap = a™+1 — a™*. Then,
for sufficiently large K,

(o) (o]
a=am¥ + Z (a™k+t — gk, Z @™+t — @[ g2y < 6.
k=K k=K



600 KARL-MIKAEL PERFEKT

Hence we can write a = Z;‘;l a;, where each a; is a finite sequence and

i llajlleey < llalley + 6.
Given c € Y and € > 0, choose (a;)?2, and (by)3 such that

oo o0
c= Zak*blw Z||ak||£2(N)”ka€2(N) <llelly +¢.
k=1 k=1

For each k, write, as in the preceding paragraph, a; = Zjoil agj, by =
Z?; bi,j, where each ay ; and by ; is a finite sequence and

> arglleey < lalleey + 0 Y Ibkillew < 1okleq) + k-
j=1 j=1

Here the ;. are chosen so that

Z(H%H@(N) + 61) ([[bk |l 2y + 0k) < Z lak|le2 ) 10k [l 2 vy + €
k=1 k=1

Then ¢ = ZZO] j—1 Gk, * bg;, and

o0 [e.¢]
> Nk ilemlbrlle <O larlemlbrlem) + € < lly + 2.
E,jl=1 k=1
Relabeling, we have a representation ¢ = > >, a, * b, where a, and

bn are finite sequences and ), [lanl2mllbnllemy < llelly + 2¢. Let ey =

25:1 an*by. Then cy — cin Y, and furthermore (cy) is a Cauchy sequence

in X, hence has a limit ¢ in X. By continuity of the functionals e,, on both

Y and X, we find in view of (8) that Vé= c. Hence V is onto.
Furthermore, since V' is contractive,

lelly = flella = lim Jlenllx < lefly + 2e.
—00

We already showed that V is injective, so that ¢ is uniquely defined by c.
On the other hand, ¢ is arbitrary. We conclude that ||c||y = ||¢]|x. It follows
that V' is an isometric isomorphism. (I
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