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On the spaces of bounded and compact
multiplicative Hankel operators

Karl-Mikael Perfekt

Abstract. A multiplicative Hankel operator is an operator with ma-
trix representation M(α) = {α(nm)}∞n,m=1, where α is the generating
sequence of M(α). Let M and M0 denote the spaces of bounded and
compact multiplicative Hankel operators, respectively. In this note it
is shown that the distance from an operator M(α) ∈ M to the com-
pact operators is minimized by a nonunique compact multiplicative Han-
kel operator N(β) ∈ M0. Intimately connected with this result, it is
then proven that the bidual of M0 is isometrically isomorphic to M,
M∗∗

0 ' M. It follows that M0 is an M-ideal in M. The dual space M∗
0

is isometrically isomorphic to a projective tensor product with respect to
Dirichlet convolution. The stated results are also valid for small Hankel
operators on the Hardy space H2(Dd) of a finite polydisk.
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1. Introduction

Given a sequence α : N→ C, we consider the corresponding multiplicative
Hankel operator m =M(α) : `2(N)→ `2(N), defined by

〈M(α)a, b〉`2(N) =
∞∑

n,m=1

a(n)b(m)α(nm), a, b ∈ `2(N).

Initially, we consider this equality only for finite sequences a and b. It de-
fines a bounded operator M(α) : `2(N)→ `2(N), with matrix representation
{α(nm)}∞n,m=1 in the standard basis of `2(N), if and only if there is a constant
C > 0 such that∣∣〈M(α)a, b〉`2(N)

∣∣ ≤ C‖a‖`2(N)‖b‖`2(N), a, b finite sequences.
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Multiplicative Hankel operators are also known as Helson matrices, having
been introduced by Helson in [14, 15].

There are two common alternative interpretations. One is in terms of
Dirichlet series. Let H2 be the Hardy space of Dirichlet series, the Hilbert
space with (n−s)∞n=1 as a basis. Elements f ∈ H2 are holomorphic functions
in the half-plane {s ∈ C : Re s > 1/2}. If

f(s) =
∞∑
n=1

a(n)n−s, g(s) =
∞∑
n=1

b(n)n−s, ρ(s) =
∞∑
n=1

α(n)n−s,

then
〈M(α)a, b〉`2(N) = 〈fg, ρ〉H2 .

Hence there is an isometric correspondence between Helson matrices and
Hankel operators on H2, since the forms associated with the latter are pre-
cisely of the type (f, g) 7→ 〈fg, ρ〉H2 .

The second interpretation is in terms of the Hardy space of the infinite
polytorusH2(T∞), the Hilbert space with basis (zκ)κ, where z = (z1, z2, . . .),
and κ = (κ1, κ2, . . .) runs through the countably infinite, but finitely sup-
ported, multi-indices. Identify each integer n with a multi-index κ of this
type through the factorization of n into the primes p1, p2, . . .,

n←→ κ if and only if n =
∞∏
j=1

p
κj
j .

Under this equivalence, multiplicative Hankel operators correspond to addi-
tive Hankel operators on a countably infinite number of variables,

〈M(α)a, b〉`2(N) =
∑
κ,κ′

a(κ)b(κ′)α(κ+ κ′).

Hence the multiplicative Hankel operators correspond isometrically to small
Hankel operators on H2(T∞), since the matrix representations of the latter
are of the form {α(κ+ κ′)}κ,κ′ . See [14, 15] for details.

In particular, the Helson matrices generalize the small Hankel operators
on the Hardy space of any finite polytorus H2(Td), d < ∞. In fact, the
results in this note have analogous statements for small Hankel operators
on H2(Td); every proof given remains valid verbatim after restricting the
number of prime factors, that is, the number of variables.

The first result is the following. We denote by B(`2(N)) and K(`2(N)),
respectively, the spaces of bounded and compact operators on `2(N).

Theorem 1.1. Let M(α) be a bounded multiplicative Hankel operator. Then
there exists a compact multiplicative Hankel operator N(β) such that

‖M(α)−N(β)‖B(`2(N)) = inf
{
‖M(α)−K‖B(`2(N)) : K ∈ K(`2(N))

}
. (1)

The minimizer N(β) is never unique, unless M(α) is compact.
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The quantity on the right-hand side of (1) is known as the essential norm
ofM(α). For classical Hankel operators on H2(T), this result was proven by
Axler, Berg, Jewell, and Shields in [6], and can be viewed as a limiting case
of the theory of Adamjan, Arov, and Krein [1]. The demonstration of Theo-
rem 1.1 requires only a minor modification of the arguments in [6], the main
point being that a characterization of the class of bounded multiplicative
Hankel operators is not necessary for the proof.

On H2(T), Nehari’s theorem [21] states that the class of bounded Hankel
operators can be isometrically identified with L∞(T)/H∞(T), where L∞(T)
and H∞(T) denote the spaces of bounded and bounded analytic functions
on T, respectively. By Hartman’s theorem [13], the class of compact Hankel
operators is isometrically isomorphic to (H∞(T) + C(T))/H∞(T), where
C(T) denotes the space of continuous functions on T. Note that the spaces
L∞, H∞, and H∞ + C are all algebras, as proven by Sarason [26].

Luecking [20] observed, through a very illustrative argument relying on
function algebra techniques, that the compact Hankel operators form an
M-ideal in the space of bounded Hankel operators. The concept of an M-
ideal will be defined shortly, but let us note for now that M-ideality implies
proximinality; the distance from a bounded Hankel operator to the compact
Hankel operators has a minimizer. Thus Luecking reproved some of the
results of [6]. Since

((H∞ + C)/H∞)∗∗ ' L∞/H∞,

it follows that the bidual of the space of compact Hankel operators is isomet-
rically isomorphic to the space of bounded Hankel operators. Spaces which
are M-ideals in their biduals are said to be M-embedded.

The multiplicative Hankel operators, on the other hand, have thus far
resisted all attempts to characterize their boundedness. It has been shown
that a Nehari-type theorem cannot exist [22], and positive results only exist
in special cases [14, 24]. In spite of this, the main theorem shows that
Luecking’s result holds for multiplicative Hankel operators.

Let
M0 = {m =M(α) : M(α) : `2(N)→ `2(N) compact}

and
M = {m =M(α) : M(α) : `2(N)→ `2(N) bounded}.

Equipped with the operator norm, M0 and M are closed subspaces of
K(`2(N)) and B(`2(N)), respectively. For a Banach space Y , we denote
by ιY the canonical embedding ιY : Y → Y ∗∗,

ιY y(y
∗) = y∗(y), y ∈ Y, y∗ ∈ Y ∗.

Theorem 1.2. There is a unique isometric isomorphism U : M∗∗0 → M
such that UιM0m = m for every m ∈ M0. Furthermore, M0 is an M-ideal
inM.
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Remark. As pointed out earlier, Theorem 1.2 is also true when stated for
small Hankel operators on H2(Td), d < ∞. The biduality has in this case
been demonstrated isomorphically in [18], with an argument based on the
non-isometric Nehari-type theorems proven in [10, 17].

The M-ideal property means the following: there is an (onto) projection
L :M∗ →M⊥0 such that

‖m∗‖M∗ = ‖Lm∗‖M∗ + ‖m∗ − Lm∗‖M∗ , m∗ ∈M∗,

whereM⊥0 denotes the space of functionals m∗ ∈M∗ which annihilateM0.
M-ideals were introduced by Alfsen and Effros [3] as a Banach space analogue
of closed two-sided ideals in C∗-algebras. Very loosely speaking, the fact that
M0 is an M-ideal inM implies that the norm ofM resembles a maximum
norm and, in this analogy, that M0 is the subspace of elements vanishing
at infinity. The book [12] comprehensively treats M-structure theory and its
applications.

We will make use of the following consequences of Theorem 1.2. Proxim-
inality of M0 in M was already mentioned, but the M-ideal property also
implies that the minimizer is never unique [16]. It also ensures thatM∗0 is a
strongly unique predual ofM [12, Proposition III.2.10]. This means that ev-
ery isometric isomorphism ofM onto Y ∗, Y a Banach space, is weak∗-weak∗
continuous, that is, arises as the adjoint of an isometric isomorphism of Y
ontoM∗0. On the other hand,M∗0 has infinitely many different preduals [11,
Theoreme 27].

The predual ofM is well known to have an almost tautological character-
ization as a projective tensor product with respect to Dirichlet convolution,

X = `2(N) ?̂ `2(N).

The space X is also referred to as a weak product space. We defer the precise
definition to the next section – after establishing the main theorems, we
essentially show, following [25], that all reasonable definitions of X coincide.

Theorem 1.3. There is an isometric isomorphism L : X → M∗0 such that
L∗U−1 : M → X ∗ is the canonical isometric isomorphism of M onto X ∗,
where U :M∗∗0 →M is the isometric isomorphism of Theorem 1.2.

Informally stated, M∗0 ' X and X ∗ ' M. Theorem 1.3 follows at once
from Theorem 1.2 and the uniqueness of the predual of M, but we also
supply a direct proof. While the duality X ∗ ' M is a rephrasing of the
definition of M, it is difficult to identify a common approach to dualities
of the type M∗0 ' X in the existing literature. Often, the latter duality
is deduced (isomorphically) via a concrete description of M. For a small
selection of relevant examples, see [4, 8, 12, 18, 19, 23, 28].

The idea behind this note is that the direct view of M as a subspace of
B(`2(N)) already provides sufficient information to prove Theorems 1.1, 1.2,
and 1.3. In this direction, Wu [28] worked with an embedding into the space
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of bounded operators to deduce duality results for certain Hankel-type forms
on Dirichlet spaces.

The proofs of the results only have two main ingredients. The first is
a device to approximate elements of M by elements of M0 (Lemma 2.1).
Such an approximation property is necessary, because if M∗∗0 ' M, then
the unit ball of M0 is weak∗ dense in the unit ball of M. The second
ingredient is an inclusion of M into a reflexive space; in our case, `2(N).
Analogous theorems could be proven for many other linear spaces of bounded
and compact operators using the same technique.

2. Results

For a sequence a and 0 < r < 1, let

Dra(n) = r
∑∞
j=1 jκja(n), where n =

∞∏
j=1

p
κj
j .

Note that ∑
κ

r2
∑∞
j=1 jκj =

∞∏
j=1

1

1− r2j
<∞.

Hence it follows by the dominated convergence theorem that Dr : `
2(N) →

`2(N) is a compact operator. Furthermore, Dr is self-adjoint and contractive,
‖Dr‖B(`2(N)) ≤ 1. The dominated convergence theorem also implies that
Dr → id`2(N) in the strong operator topology (SOT) as r → 1, that is,
limr→1Dra = a in `2(N), for every a ∈ `2(N). A study of the operators Dr

in the context of Hardy spaces of the infinite polytorus can be found in [2].
The Dirichlet convolution of two sequences a and b is the new sequence

a ? b given by
(a ? b)(n) =

∑
k|n

a(k)b(n/k), n ∈ N.

If a and b are two finite sequences, then

〈M(α)a, b〉`2(N) = (α, a ? b), (2)

where (a, b) =
∑∞

n=1 a(n)b(n) denotes the bilinear pairing between a, b ∈
`2(N). Note also that, for 0 < r < 1,

Dr(a ? b) = Dra ? Drb. (3)

The following simple lemma is key.

Lemma 2.1. LetM(α) be a bounded multiplicative Hankel operator,M(α) ∈
M. For 0 < r < 1, let αr = Drα. Then Mαr ∈M0,

‖Mαr‖B(`2(N)) ≤ ‖Mα‖B(`2(N)),

and Mαr →Mα and M∗αr →M∗α SOT as r → 1.
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Proof. By (2) and (3), it holds for finite sequences a and b that

〈M(αr)a, b〉`2(N) = 〈MαDra,Drb〉`2(N).

HenceMαr = DrMαDr. We conclude thatMαr is compact, ‖Mαr‖B(`2(N)) ≤
‖Mα‖B(`2(N)), and Mαr → Mα SOT as r → 1. Similarly, M∗αr = Mαr →
Mα =M∗α SOT as r → 1. �

The following is a recognizable consequence, cf. [27, Theorem 1]. Note
that if Sn and Tn are operators such that Sn → S and Tn → T SOT, and if
C is a compact operator, then SnCT ∗n → SCT ∗ in operator norm.

Proposition 2.2. Let M(α) ∈M. Then M(α) ∈M0 if and only if

lim
r→1
‖M(αr)−M(α)‖B(`2(N)) = 0. (4)

Proof. If (4) holds, then M(α) ∈ M0, since M(αr) is compact for every
0 < r < 1. If M(α) ∈ M0, then (4) holds, since M(αr) = DrM(α)Dr =
DrM(α)D∗r and Dr → id`2(N) SOT as r → 1. �

Recall next the main tool from [6].

Theorem 2.3 ([6]). Let T : `2(N) → `2(N) be a non-compact operator and
(Tn) a sequence of compact operators such that Tn → T SOT and T ∗n → T ∗

SOT. Then there exists a sequence (cn) of non-negative real numbers such
that

∑
n cn = 1 for which the compact operator

J =
∑
n

cnTn

satisfies

‖T − J‖B(`2(N)) = inf
{
‖T −K‖B(`2(N)) : K ∈ K(`2(N))

}
.

Lemma 2.1 and Theorem 2.3 immediately yield the existence part of The-
orem 1.1.

Proof of Theorem 1.1. LetM(α) be a bounded multiplicative Hankel op-
erator and let (rk) be a sequence such that 0 < rk < 1 and rk → 1. Then
M(α) has a best compact approximant of the form

N =
∑
k

ckM(αrk).

But then N = N(β) is a multiplicative Hankel operator, β =
∑

k ckαrk .
The non-uniqueness of N(β) follows immediately once we have established

Theorem 1.2, by general M-ideal results [16]. In fact, if M(α) 6∈ M0, then
the set of minimizers N(β) is so large that it spansM0. �

Note that

‖M(α)‖B(`2(N)) ≥ lim
N→∞

1

‖(α(n))Nn=1‖`2(N)

N∑
n=1

|α(n)|2 = ‖α‖`2(N).
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Therefore the inclusion I : M0 → `2(N) is a contractive operator, Im =
I(M(α)) = α. We can state Theorem 1.2 slightly more precisely in terms of
I.

Theorem 1.2. Consider the bitranspose U = I∗∗ : M∗∗0 → `2(N). Then
UM∗∗0 =M, viewingM as a (non-closed) subspace of `2(N). Furthermore,

UιM0m = m, m ∈M0,

and
‖Um∗∗‖B(`2(N)) = ‖m∗∗‖M∗∗0 , m∗∗ ∈M∗∗0 .

If V :M∗∗0 →M is another isometric isomorphism such that V ιM0m = m
for all m ∈M0, then V = U . Furthermore,M0 is an M-ideal inM.

Proof. We identify
(
`2(N)

)∗ ' `2(N) linearly through the pairing (a, b) =∑∞
n=1 a(n)b(n) between a, b ∈ `2(N). With this convention, I∗ : `2(N)→M∗0

is also contractive, and

I∗a(m) = (α, a), a ∈ `2(N), m =M(α) ∈M0.

Since I is injective, I∗ has dense range. In particular, M∗0 is separable.
Furthermore, I∗∗ :M∗∗0 → `2(N) is injective. By the reflexivity of `2(N), we
have that I∗∗ιM0 = I, since

(I∗∗ιM0m, a) = ιM0m(I∗a) = (α, a) = (Im, a)

for every m = M(α) ∈ M0 and a ∈ `2(N). The interpretation, viewing M
as a non-closed subspace of `2(N), is that I∗∗ιM0m = m, for all m ∈M0.

Consider any m∗∗ ∈ M∗∗0 , and let α = I∗∗m∗∗ ∈ `2(N). Since M∗0 is
separable, the weak∗ topology of the unit ball BM∗∗0 of M∗∗0 is metrizable.
As is the case for every Banach space, ιM0(BM0) is weak∗ dense in BM∗∗0 .
Hence there is a sequence (mn)

∞
n=1 inM0 such that ιM0mn → m∗∗ weak∗ and

‖mn‖B(`2(N)) ≤ ‖m∗∗‖M∗∗0 . Suppose that mn = M(αn) and let a, b ∈ `2(N)
be two finite sequences. Then, since ιM0mn → m∗∗ weak∗,

〈M(αn)a, b〉`2(N) = (αn, a ? b) = I∗(a ? b)(mn)→ m∗∗(I∗(a ? b)) = (α, a ? b),

as n→∞. It follows that

|〈M(α)a, b〉`2(N)| = |(α, a ? b)| ≤ lim
n→∞

‖mn‖B(`2(N))‖a‖`2(N)‖b‖`2(N)
≤ ‖m∗∗‖M∗∗0 ‖a‖`2(N)‖b‖`2(N).

Since a, b were arbitrary finite sequences, it follows that M(α) ∈M and

‖M(α)‖B(`2(N)) ≤ ‖m∗∗‖M∗∗0 .
Since α = I∗∗m∗∗ this proves that I∗∗ mapsM∗∗0 contractively intoM.

Conversely, suppose that m =M(α) ∈M. By Lemma 2.1, for 0 < r < 1,
M(αr) ∈ M0, ‖M(αr)‖ ≤ ‖M(α)‖, and αr → α in `2(N) as r → 1. Define
m∗∗ ∈M∗∗0 by

m∗∗(I∗a) := (α, a) = lim
r→1

(αr, a) = lim
r→1

I∗a(M(αr)), a ∈ `2(N). (5)
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This specifies an element m∗∗ ∈M∗∗0 since I∗ has dense range inM∗0 and

|m∗∗(I∗a)| ≤ lim
r→1
‖M(αr)‖B(`2(N))‖I∗a‖M∗0 ≤ ‖M(α)‖B(`2(N))‖I∗a‖M∗0 .

From this inequality we also see that

‖m∗∗‖M∗∗0 ≤ ‖m‖B(`2(N)). (6)

Furthermore, since

(I∗∗m∗∗, a) = m∗∗(I∗a) = (α, a), a ∈ `2(N),

we have that I∗∗m∗∗ = α. Hence I∗∗ mapsM∗∗0 bijectively and contractively
onto M. By (6), I∗∗ : M∗∗0 → M is also expansive, and hence it is an
isometric isomorphism.

Recall that K(`2(N)) is an M-ideal in B(`2(N)) [9] – indeed, K(`2(N)) is a
two-sided closed ideal in B(`2(N)). It is well known that there is an isometric
isomorphism E : K(`2(N))∗∗ → B(`2(N)) such that EιK(`2(N))K = K for
all K ∈ K(`2(N)). Thus K(`2(N)) is M-embedded. Since M0 is a closed
subspace of K(`2(N)),M0 is also M-embedded [12, Theorem III.1.6]. Hence,
since we have shown that I∗∗ :M∗∗0 → M is an isometric isomorphism for
which I∗∗ιM0m = m for all m ∈ M0, it follows that M0 is an M-ideal in
M.

Finally, if V : M∗∗0 → M is another isometric isomorphism such that
V ιM0m = m, m ∈ M0, then F = V −1I∗∗ : M∗∗0 → M∗∗0 is an isometric
isomorphism such that FιM0 = ιM0 . However, sinceM0 is M-embedded, F
must be obtained as the bitranspose, F = G∗∗, of an isometric isomorphism
G :M0 →M0 [12, Proposition III.2.2]. But then G = idM0 , since

m∗(Gm) = G∗m∗(m) = FιM0m(m∗) = m∗(m), m ∈M0, m
∗ ∈M∗0.

Hence F = idM∗∗0 and so V = I∗∗. �

The predual of a space of Hankel operators usually has an abstract de-
scription as a projective tensor product [5, 7, 10]. In the present context,
let

X =

{
c : c =

∑
finite

ak ? bk, ak, bk finite sequences

}
,

and equip X with the norm

‖c‖X = inf
∑
finite

‖ak‖`2(N)‖bk‖`2(N),

where the infimum is taken over all finite representations of c. By writing
c = c ? (1, 0, 0, . . .) it is clear that ‖c‖X ≤ ‖c‖`2(N) for c ∈ X.

We define the projective tensor product space X = `2(N) ?̂ `2(N) with
respect to Dirichlet convolution as the Banach space completion of X. It is
essentially definition that X ∗ 'M.
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Lemma 2.4. For m =M(α) ∈M, let

Jm(c) = (α, c), c ∈ X.
Then Jm extends to a bounded functional on X for every m ∈ M, and
J :M→ X ∗ is an isometric isomorphism.

Proof. Let m ∈ M. If c ∈ X and ε > 0, choose a representation c =∑N
k=1 ak ? bk, where ak and bk are finite sequences for every k, and

N∑
k=1

‖ak‖`2(N)‖bk‖`2(N) < ‖c‖X + ε.

Then

|Jm(c)| =

∣∣∣∣∣
N∑
k=1

〈M(α)ak, bk〉`2(N)

∣∣∣∣∣ ≤ ‖m‖B(`2(N))(‖c‖X + ε).

Hence ‖Jm‖X ∗ ≤ ‖m‖B(`2(N)). Choosing finite sequences a and b such that
‖a‖`2(N) = ‖b‖`2(N) = 1 and 〈M(α)a, b〉`2(N) > ‖m‖B(`2(N)) − ε, and letting
c = a ? b gives that

‖m‖B(`2(N)) − ε < ‖Jm‖X ∗‖c‖X ≤ ‖Jm‖X ∗ .
Hence J is an isometry.

The inclusion of finite sequences into X extends to a contractive map
E : `2(N) → X . Let ` ∈ X ∗ and let c ∈ X. Then `(c) = (α, c), where
α = E∗` ∈ `2(N). Then m =M(α) ∈M, since ` ∈ X ∗. Clearly Jm = ` and
thus J is onto. �

Theorem 1.3. For every c ∈ X, let

Lc(m) = (α, c), m =M(α) ∈M0.

Then L extends to an isometric isomorphism L : X →M∗0, and

L∗U−1 = J :M→ X ∗

is the isometric isomorphism of Lemma 2.4. Here U : M∗∗0 → M is the
isometric isomorphism of Theorem 1.2.

Proof. The quickest proof proceeds by noting thatM∗0 is a strongly unique
predual ofM∗∗0 , sinceM0 is M-embedded. This implies that the isometric
isomorphism JU : M∗∗0 → X ∗ is the adjoint of an isometric isomorphism
E : X →M∗0, E∗ = JU . But then, for c ∈ X and m =M(α) ∈M0,

Ec(m) = ιM0m(Ec) = E∗ιM0m(c) = JUιM0m(c) (7)
= Jm(c) = (α, c) = Lc(m).

Hence L = E, and thus L is an isometric isomorphism.
Alternatively, the weak∗-weak∗ continuity of JU can be proven by hand.

L clearly extends to a contractive operator L : X →M∗0. The computation
(7) shows that JUιM0 = L∗ιM0 . Let m∗∗ ∈ M∗∗0 and let M(α) = Um∗∗.
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From (5) we deduce that m∗∗r = ιM0M(αr) → m∗∗ weak∗ in M∗∗0 . Hence
L∗m∗∗r → L∗m∗∗ weak∗ in X ∗. On the other hand, for c ∈ X,

JUm∗∗(c) = (α, c) = lim
r→1

(αr, c) = lim
r→1

JUm∗∗r (c)

= lim
r→1

L∗m∗∗r (c) = L∗m∗∗(c).

This shows that JU = L∗, and hence L is an isometric isomorphism. �

Remark. In the notation of Theorem 1.2, I∗c = Lc for c ∈ X. Theorem 1.3
hence completes the picture of Theorem 1.2 by giving an interpretation of
the operator I∗.

Suppose that we had instead defined the projective tensor product space
`2(N) ?̂ `2(N) as the sequence space

Y =

{
c : c =

∞∑
k=1

ak ? bk, ak, bk ∈ `2(N),
∞∑
k=1

‖ak‖`2(N)‖bk‖`2(N) <∞

}
,

normed by

‖c‖Y = inf
∞∑
k=1

‖ak‖`2(N)‖bk‖`2(N),

where the infimum is taken over all representations of c. One would like
to know that Y = X . Indeed, it is not a priori clear that X is a sequence
space; or if X is identifiable with a space of Dirichlet series, if considering
multiplicative Hankel operators in that context. For Y these properties are
immediate.

Lemma 2.5. Y is a Banach space.

Proof. Since |(a ? b)(n)| ≤ ‖a‖`2(N)‖b‖`2(N) it is clear that

en(c) = c(n), c ∈ Y,

defines an element en ∈ Y∗, for every n ∈ N. It follows that ‖c‖Y = 0 if and
only if c = 0.

Suppose that
∑∞

k=1 ck is an absolutely convergent series in Y. Then there
are double sequences (ak,j) and (bk,j) such that ck =

∑∞
j=1 ak,j ?bk,j for every

k and
∞∑

k,j=1

‖ak,j‖`2(N)‖bk,j‖`2(N) <∞.

Then c =
∑∞

k,j=1 ak,jbk,j is an element of Y and

‖c−
N∑
k=1

ck‖Y ≤
∞∑

k=N+1

∞∑
j=1

‖ak,j‖`2(N)‖bk,j‖`2(N) → 0, N →∞.

Hence
∑∞

k=1 ck converges in Y to c. Thus Y is complete. �
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We now prove that Y = X . The details are similar to those of [25],
where projective tensor products of spaces of holomorphic functions were
considered. Note that X is contractively contained in Y.

Proposition 2.6. The inclusion V : X → Y extends to an isometric iso-
morphism V : X → Y.

Proof. We make the following preliminary observation. Since for every 0 <
r < 1,

Dr(a ? b) = Dra ? Drb, ‖Dr‖B(`2(N)) ≤ 1,

Dr defines a bounded operator Dr : X → X ,
‖Dr‖B(X ) ≤ 1.

Furthermore, since Dr → id`2(N) SOT on `2(N) as r → 1, it follows that
‖Drc − c‖X ≤ ‖Drc − c‖`2(N) → 0 as r → 1 for every c ∈ X. Hence
Dr → idX SOT on X as r → 1.

As in Lemma 2.5, for each n ∈ N,
en(c) = c(n), c ∈ X,

extends to a functional en ∈ X ∗ with ‖en‖X ∗ ≤ 1. We show now that (en)
is a complete sequence in X ∗ with respect to the weak∗ topology. Suppose
that c ∈ X and that en(c) = 0 for all n. Pick a sequence (ck) in X such that
ck → c in X . Then for fixed r < 1,

‖Drc‖X ≤ lim
k→∞

(‖Dr(c− ck)‖X + ‖Drck‖X )

= lim
k→∞

‖Drck‖X ≤ lim
k→∞

‖Drck‖`2(N).

Since ck → c in X and en ∈ X ∗, we have that limk→∞ ck(n) = en(c) = 0
for every n. Furthermore, |ck(n)| ≤ ‖en‖X ∗‖ck‖X ≤ ‖ck‖X is uniformly
bounded in k and n. Hence it follows by the dominated convergence theorem
that limk→∞ ‖Drck‖`2(N) = 0 and thus that Drc = 0. Since Drc → c in X
as r → 1 we conclude that c = 0. Therefore (en) is complete.

Hence X is a space of sequences. More precisely, since every evaluation
en is a bounded functional on Y as well, the extension V : X → Y of the
inclusion map is given by

V c = (en(c))
∞
n=1, c ∈ X . (8)

The completeness of (en) implies that V is injective.
We next prove that V is onto. The argument is precisely as in [25],

but we include it for completeness. For a sequence a and m ∈ N, let
am = (a(1), . . . , a(m), 0, . . .). Given a ∈ `2(N) and δ > 0, choose a sequence
(m1,m2, . . .) such that ‖a− amk‖`2(N) ≤ 2−k. Let ak = amk+1 − amk . Then,
for sufficiently large K,

a = amK +
∞∑
k=K

(amk+1 − amk),
∞∑
k=K

‖amk+1 − amk‖`2(N) < δ.
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Hence we can write a =
∑∞

j=1 aj , where each aj is a finite sequence and∑
j ‖aj‖`2(N) < ‖a‖`2(N) + δ.
Given c ∈ Y and ε > 0, choose (ak)

∞
k=1 and (bk)

∞
k=1 such that

c =
∞∑
k=1

ak ? bk,
∞∑
k=1

‖ak‖`2(N)‖bk‖`2(N) < ‖c‖Y + ε.

For each k, write, as in the preceding paragraph, ak =
∑∞

j=1 ak,j , bk =∑∞
j=1 bk,j , where each ak,j and bk,j is a finite sequence and

∞∑
j=1

‖ak,j‖`2(N) < ‖ak‖`2(N) + δk,

∞∑
j=1

‖bk,j‖`2(N) < ‖bk‖`2(N) + δk.

Here the δk are chosen so that
∞∑
k=1

(‖ak‖`2(N) + δk)(‖bk‖`2(N) + δk) <
∞∑
k=1

‖ak‖`2(N)‖bk‖`2(N) + ε.

Then c =
∑∞

k,j,l=1 ak,j ? bk,l, and
∞∑

k,j,l=1

‖ak,j‖`2(N)‖bk,l‖`2(N) <
∞∑
k=1

‖ak‖`2(N)‖bk‖`2(N) + ε < ‖c‖Y + 2ε.

Relabeling, we have a representation c =
∑∞

n=1 an ? bn where an and
bn are finite sequences and

∑
n ‖an‖`2(N)‖bn‖`2(N) < ‖c‖Y + 2ε. Let cN =∑N

n=1 an?bn. Then cN → c in Y, and furthermore (cN ) is a Cauchy sequence
in X, hence has a limit c̃ in X . By continuity of the functionals en on both
Y and X , we find in view of (8) that V c̃ = c. Hence V is onto.

Furthermore, since V is contractive,

‖c‖Y ≤ ‖c̃‖X = lim
N→∞

‖cN‖X < ‖c‖Y + 2ε.

We already showed that V is injective, so that c̃ is uniquely defined by c.
On the other hand, ε is arbitrary. We conclude that ‖c‖Y = ‖c̃‖X . It follows
that V is an isometric isomorphism. �

References
[1] Adamjan, Vadym M.; Arov, Damir Z.; Kreĭn, Mark G. Analytic proper-
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