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Iteration and the minimal resultant

Kenneth Jacobs and Phillip Williams

Abstract. Let K be an algebraically closed field that is complete with
respect to a non-Archimedean absolute value, and let ϕ ∈ K(z) have
degree d ≥ 2. We characterize maps for which the minimal resultant
of an iterate ϕn is given by a simple formula in terms of d, n, and the
minimal resultant of ϕ. Three characterizations of such maps are given,
one measure-theoretic and two in terms of the indeterminacy locus I(d)
in the parameter space P2d+1 of (possibly degenerate) rational maps.

As an application, we are able to give a new explicit formula involving
the Arakelov-Green’s function attached to ϕ. We end by illustrating our
results with some explicit examples.
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1. Introduction

Let K be a complete, algebraically closed non-Archimedean valued field
with non-trivial absolute value | · |. We will denote the ring of integers by
O, with maximal ideal m. The residue field will be written k = O/m. If
char(k) = 0 let qm = e be the base of the natural logarithm; otherwise let
qm be the residue characteristic. Let ord(x) = − logqm |x|.

Let ϕ ∈ K(z) have degree d ≥ 2. A homogeneous lift of ϕ is a pair of
coprime homogeneous polynomials Φ = [F,G], say

F (X,Y ) = adX
d + ...+ a0Y

d

G(X,Y ) = bdX
d + ...+ b0Y

d ,

with the property that ϕ(z) = F (z,1)
G(z,1) . A lift [F,G] is said to be normalized

if max(|ai|, |bi|) = 1. We will often identify the map ϕ with a point in P2d+1

via the identification ϕ 7→ [ad : ... : a0 : bd : ... : b0] =: [a : b], which is clearly
independent of the choice of lift.

The resultant Res(F,G) of a lift of ϕ is a homogeneous polynomial in the
coefficients of F,G of degree 2d, which we can also regard as a function of
P2d+1 using the identification above. We will write Rϕ for the ord value of
the resultant of a normalized lift of ϕ. The minimal resultant is a conjugacy
invariant of ϕ given

R[ϕ] := min
γ∈PGL2(K)

Rϕγ (≥ 0) ,

where ϕγ = γ−1 ◦ ϕ ◦ γ is the usual conjugacy action. (A priori this should
be an infimum, but see [9]). We say that ϕ has good reduction if Rϕ = 0,
and that ϕ has potential good reduction if R[ϕ] = 0.

The minimal resultant has appeared in the work of several other authors.
Silverman [11] gives an overview of the minimal resultant and asked ques-
tions about the existence of a global minimal model and about Northcott-
type properties related to the minimal resultant. These questions were sub-
sequently explored in work Rumely [8] and of Stout and Towsley [13]. Szpiro,
Tepper, and the second author [14] have explored the connections between
the minimality of the resultant and semistability in the sense of GIT, as has
Rumely [9]. The first author has explored how the conjugates attaining the
minimal resultant vary for higher iterates of the map [7].

In this paper, we are interested in understanding how the minimal resul-
tant of an iterate ϕn relates to the minimal resultant of the original map.
The resultant form itself behaves nicely under iteration: it is a power of
the resultant of the original map, where the exponent is given by a simple
formula in terms of n and d (see Lemma 3.1 below). Two things, however,
get in the way of the minimal resultant from behaving so nicely. The first is
the normalization that may have to take place in order to ensure that not all
coefficients vanish under reduction: even if the coefficients for a lift of ϕ are
normalized, the coefficients obtained by iteration need not be. The second
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is the potential change of coordinates that takes place to give the minimal
valuation for the resultant, which need not be the same for every iterate.

We will draw on two tools for resolving these issues. The first is the
connection between semi-stability and the minimality of the resultant, men-
tioned above. The second is a notion of indeterminacy introduced by De-
Marco in [3, 4]; the indeterminacy locus I(d) ⊆ P2d+1 is the locus where the
rational map Γn : P2d+1 99K P2dn+1 induced by iterating ϕ is undefined for
some n.

These tools will be applied in particular to the reduction of ϕ: given a
normalized lift [F,G] of ϕ, corresponding to a point [a : b] ∈ P2d+1, let

[ã : b̃] ∈ P2d+1(k) define the coordinates of a rational map ϕm on P1(k);

we emphasize that ϕm may not be a morphism, as [ã : b̃] may give rise to
polynomials that share a common factor.

Our first main result is

Theorem 1.1. Fix n > 1. The following are equivalent:

(1) The minimal resultant iteration formula

1

d(d− 1)
·R[ϕ] =

1

dn(dn − 1)
·R[ϕn] (1.1)

holds.
(2) In any coordinate system in which ϕ has semistable reduction, we

have that ϕm 6∈ I(d) and ϕn has semistable reduction as well.

Condition 2 of the theorem can be stated in algebrogeometric terms: there
is a natural diagram of graded rings:

ASL2
d

// Ad

ASL2
dn

OO

// Adn

OO

Here, AD = Z[a0, . . . aD, b0, . . . , bD] is the free Z-algebra generated by
indeterminants corresponding to the coefficients of a pair of homogenous
polynomials of degree D; ASL2

D is the SL2 invariant subring. The vertical
maps are given by the iteration morphism, which preserves SL2 invariance
because iteration commutes with the group action. If we apply Proj to
the entire diagram then we get, passing from top right to bottom left, a
morphism that is defined on an open set Un of P2d+1:

Un → (Mdn)ss

Here the space Mss
dn is by definition Proj(ASL2

dn ), which has been shown
(see [10]) to be a categorical quotient in the sense of geometric invariant
theory. If we now base change to k, to get a diagram of varieties, then Un
consists of all maps that lie outside of I(d), are semi-stable, and for which
the n-th iterate is semi-stable. Condition 2 then says that there exists of
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choice of coordinates for which the reduction ϕm is in Un, the complement
of the indeterminacy locus of the rational map P2d+1 → (Mdn)ss.

The second main result we will prove gives a geometric condition that can
be useful in checking whether the minimal resultant iteration formula (1.1)
holds asymptotically. The barycenter, Bary(µϕ) referred to in the statement
of the theorem is a distinguished subset of the Berkovich projective line P1

K
that is ’balanced’ with respect to the dynamics of f ; its formal definition
will be given in Section 4.

Theorem 1.2. The following are equivalent:

(1) The minimal resultant iteration formula (1.1) holds for all n.
(2) The minimal resultant iteration formula (1.1) holds for infinitely

many n.
(3) There exists a point ζ ∈ Bary(µϕ) for which ζ = γ(ζG) and (ϕγ)m 6∈

I(d).

The proof of Theorem 1.2 involves a straightforward application of the
work of DeMarco-Faber [5], along with previous work of first author.

One might like to get some sense of how many maps satisfy the equivalent
conditions of Theorem 1.2. A natural way to measure this would be to
take the closure in the moduli space Md(K) of the set of such maps, and
look at its dimension. This set trivially contains maps with potential good
reduction. Silverman notes in [12] that the set of maps with potential good
reduction includes monic integral polynomials, which gives it dimension at
least d − 1. He then improves ([12, Proposition 12]) this lower bound to d
(he works over a number field, but the argument given works in our setting
as well). So we have a lower bound of d.

As an application of Theorem 1.1, we are able to compute the minimal
value of the diagonal Arakelov-Green’s function gϕ(x, x) (defined in Sec-
tion 4) for maps ϕ satisfying the minimal resultant iteration formula for all
n; in particular, we obtain

Corollary 1.3. If ϕ satisfies the minimal resultant iteration formula for all
n, then

min
x∈P1

K

gϕ(x, x) =
1

d(d− 1)
R[ϕ] .

While it is tempting to believe that such a formula might hold in gen-
eral, it turns out that this is not true: in a separate article the first author
will show that, for a flexible Lattès map ψm associated to multiplication-
by-m on a Tate curve with uniformizing parameter q, the min is given
by minx∈P1

K
gψm(x, x) = − 1

24 log |q|, while when m is even 1
d(d−1)R[ψm] =

−1
6 log |q|+ c(m) log |q| for an explicit function c(m) that depends on m (see

Theorem 6.1 below).
Baker has shown [1] that minx∈P1

K
gϕ(x, x) > 0 if and only if ϕ fails to have

potential good reduction, and used this to show the finiteness of points of
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small height for non-isotrivial maps defined over function fields [1, Theorem
1.6]. It would be interesting to see whether the explicit computation given
here can improve any of his bounds.

The outline for this paper is as follows: In Section 2 we introduce the
necessary background regarding parameter space and reduction of rational
maps. In Section 3 we establish preliminary lemmas concerning the resul-
tant, semistability, and the indeterminacy locus I(d), and at the end of
this section we prove Theorem 1.1. Following this, in Section 4 we recall
some background on the Berkovich projective line and prove Theorem 1.2.
In Section 5 we prove Corollary 1.3, and we close in Section 6 with some
examples.

Acknowledgements. The authors would like to thank Laura DeMarco and
Matt Baker for helpful coorespondence in preparing this manuscript, along
with the anonymous referees for feedback on earlier drafts.

2. Notation and background

2.1. Iteration on parameter Space. Over any base, morphisms of de-
gree d on P1 are parameterized by the coefficients of two homogeneous poly-
nomials of degree d without common roots. This last condition is equivalent
to the non-vanishing of the resultant of the two polynomials, and so the
space of rational maps of degree d is the complement of the resultant hy-
persurface, an open subscheme of a projective space: Ratd ⊂ P2d+1. Points
in P2d+1 that are not in Ratd correspond to pairs of homogeneous polyno-

mials [F̃ , G̃] with a common factor Ã; canceling the common factor yields a
“degenerate” map ϕ̃ of lower degree.

Iteration of a rational map defines a morphism Γn : Ratd → Ratdn . This
map extends to a rational map on the projective spaces:

Γn : P2d+1 99K P2dn+1.

In [3], DeMarco showed that, for every n, this map is defined outside of
a set I(d) of co-dimension d + 1, and described precisely what this locus
looks like. Though working over C, DeMarco gives a completely algebraic
characterization of the indeterminacy locus [3, Lemma 2.1] that works over
base Z. Her characterization of I(d) as a set [3, Lemma 2.2] then works over
an algebraically closed field.

Proposition 2.1. The set on which Γn : P2d+1 99K P2dn+1 is undefined
consists, for every n, of the maps such that ϕ̃ is constant and this constant

is a root of Ã.

Proof. See [3, Lemma 2.2]. �

Crucially, I(d) as a set doesn’t depend on n. Throughout this paper, we
will primarily be concerned with whether or not a rational map defined over
the residue field lies in I(d); as such, we will most often view I(d) ⊆ P2d+1(k).
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2.2. Reduction and the resultant. Let ϕ : P1(K) → P1(K) be a ra-
tional map of degree at most d. Then ϕ can be represented by a point
[a, b] = [ad, ..., a0, bd, ..., b0] ∈ P2d+1(K) in projective space; we let

F (X,Y ) = adX
d + ...+ a0Y

d , G(X,Y ) = bdX
d + ...+ b0Y

d

be homogeneous polynomials of degree d that represent ϕ. If ϕ is a mor-
phism, we say that the representation F,G is normalized if each coefficient
has absolute value at most one, and at least one coefficient has absolute
value 1. Any representative can be made into a normalized representative if
we divide through by the coefficient with the largest absolute value; on the
other hand, normalized representatives are not unique: scaling by any unit
will preserve normalization.

Notation 1. Given a normalized representative F,G of a morphism ϕ, we
define the reduction of ϕ to be the rational map of P1(k) given

ϕm := [F̃ , G̃] ,

where F̃ , G̃ are the polynomials over k obtained by reducing the coefficients
of F,G. On the parameter space P2d+1(K), this corresponds to reducing
coordinates modulo m; if ϕ corresponds to the point [a, b] ∈ P2d+1(K), the

point corresponding to the reduction map is denoted [ã, b̃] ∈ P2d+1(k).

Notation 2. The reduction is said to be degenerate if the polynomials F̃ , G̃
have a common factor. In this case, we write Ã =gcd(F̃ , G̃). Let F̃ = Ã · F̃0

and G̃ = Ã · G̃0. The factors of Ã are referred to as the holes of ϕm. The
residue map ϕ̃ of ϕ is the morphism of P1(k) given by

ϕ̃ := [F̃0, G̃0] .

If the polynomials F̃ , G̃ do not have a common factor, the residue map
is defined to be the morphism [F̃ , G̃] of P1(k); in this case, ϕ has good
reduction.

Notation 3. Given a rational map ϕ ∈ Ratd(K), let Rϕ denote the ord-
value of the resultant of a normalized lift of ϕ. Likewise, let R[ϕ] denote
the minimal resultant, which gives the minimal value of Rϕγ among all
PGL2(K)-conjugates of ϕ.

Notation 4. We let ρd denote the resultant form, i.e. the homogenous poly-
nomial of degree 2d in 2d+ 2 indeterminants that correspond to the generic
coefficients of two homogenous polynomials of degree d; as mentioned above,
the non-vanishing of the resultant determines Ratd as an open subscheme
of P2d+1.

3. Preliminary lemmas

3.1. The resultant under iteration. Our ultimate goal is to understand
when the minimal resultant transforms “nicely” under iteration. Therefore
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the following lemma about how the resultant transforms under iteration is
essential to what follows. Its proof is straightforward, so we have included
it here.

Fix an integer d, and let ρd be the resultant form. Let

Nn =
dn(dn − 1)

d(d− 1)
.

Lemma 3.1. If (a, b) are the 2d + 2 coefficients of two homogeneous poly-
nomials of degree d, and (an, bn) are the 2dn + 2 coefficients of the two
homogeneous polynomials of degree dn obtained by iteration n times, then
ρdn(an, bn) = ρd(a, b)

Nn.

Proof. This follows from an exercise in [11] that gives the resultant for a
composition of pairs of homogeneous polynomials in two variables: let f , g
be of degree n1 and F , G of degree n2. Then if R = F (f, g) and S = G(f, g),
then

ρn1n2(R,S) = ρn1(f, g)n2ρn2(F,G)n
2
1

We now apply this when F,G are the homogenous polynomials correspond-
ing to (a, b) and Fn, Gn are the homogeneous polynomials of degree dn ob-
tained by the n-th iteration. Then

ρdn+1(Fn+1, Gn+1) = ρd(F,G)d
n
ρdn(Fn, Gn)d

2

= ρd(F,G)d
n+d2(dn−1(dn−1+···+1))

= ρd(F,G)d
n(dn+1−1)/(d−1)

�

Now we move to understand when Rϕ transforms nicely under iteration,
without any assumptions yet about minimality:

Proposition 3.2. The following are equivalent:

(1) For every n we have Rϕn = Nn ·Rϕ.
(2) For some n > 1, we have Rϕn = Nn ·Rϕ.
(3) The reduction ϕm lies outside of I(d).

Proof. Clearly the first condition implies the second.
Now assume that for some n ∈ N we have Rϕn = Nn ·Rϕ. In [8, Equation

(2.3)], it is shown that for a given n one has

Rϕn = ordRes(Fn, Gn)− 2dn min
0≤i,j≤d

(ord(ani ), ord(bnj )) ,

where ani , b
n
j are the coefficients of the coordinate polynomials of ϕn =

[Fn, Gn]. Assuming that we start with normalized F,G, and using the iter-
ation formula for the resultant given in Lemma 3.1 above, we find

Rϕn = NnRϕ − 2dn min
0≤i,j≤dn

(ord(ani ), ord(bnj )) .
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Thus Rϕn = NnRϕ holds if and only if min0≤i,j≤dn(ord(ani ), ord(bnj )) = 0,

and since ord(ani ), ord(bni ) ≥ 0, this is equivalent to the fact that some

ãi
n, b̃i

n
is non-zero. Since reduction commutes with iteration when iteration

is defined, this is equivalent to saying that Γn(ϕm) is well-defined. By [3]
this is equivalent to saying that that ϕm is outside of I(d). So the second
condition implies the third.

In fact, assuming the third condition, the chain of equivalences in the
preceeding paragraph implies that Rϕn = Nn ·Rϕ for any choice of n; hence
the third condition implies the first, and we are done. �

3.2. Semi-stability. To address the question of minimality, we will invoke
a connection between semistability and minimality of the resultant.

In [10], Silverman studied the GIT quotient Md of Ratd by the conju-
gation action of SL2. Crucial to this construction is the semi-stable locus
(P2d+1)ss, which is an open subscheme of P2d+1 that contains Ratd. Intu-
itively, it is the largest subscheme of P2d+1 on which a quotient scheme makes
sense. The following is a useful explicit way to think of the semi-stable locus.
Let Ad = Z[a, b]. Md and Ratd are affine schemes, defined over Z, and the

map between them is given by the map of rings (Ad)
SL2

(ρd)
→ (Ad)(ρd) (the

superscript indicates SL2 invariant functions). The quotient space Mss
d is

Proj(ASL2
d ) and (P2d+1)ss is simply the largest open subset of P2d+1 on which

the inclusion of graded rings ASL2
d → Ad induces a morphism of schemes. In

this way, the semi-stable points are the complement of the indeterminacy
locus for the quotient map.

Proposition 3.3. ϕ has semi-stable reduction if and only if Rϕ = R[ϕ].

Proof. See [9, Theorem 7.4], which is stated in the language of Berkovich
spaces. The forward implication had been established earlier in [14, Theorem
3.3], for maps of Pn with n ≥ 1. �

We are now ready to prove Theorem 1.1:

Proposition 3.4. Let K be a complete, algebraically closed non-Archimedean
valued field, and let ϕ ∈ K(z) have degree d ≥ 2. Fix n > 1.

The minimal resultant iteration formula R[ϕn] = Nn · R[ϕ] holds if and
only if for any coordinate system where ϕ has semistable reduction, we have
that ϕm 6∈ I(d) and ϕn has semistable reduction as well.

Proof. Let n > 1. Suppose first that

R[ϕn] = Nn ·R[ϕ] , (3.1)

and fix coordinates so that ϕ has semistable reduction. Let ϕ = [F,G] be a
normalized lift of ϕ, with

F (X,Y ) = adX
d + ...+ a0Y

d , G(X,Y ) = bdX
d + ...+ b0Y

d .
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By Proposition 3.3, we find

R[ϕ] = ord(Res(F,G)) .

Again applying the formula in [8, Equation 2.3] and applying the iteration
formula from Lemma 3.1 we have

Rϕn = Nn ordRes(F,G)− 2dn min
0≤i,j≤dn

(ord(ani ), ord(bnj )) .

Now, suppose ϕn does not have semistable reduction. Then by Proposi-
tion 3.3, R[ϕn] < Rϕn , and we find

Nn · ordRes(F,G) = Nn ·R[ϕ]

= R[ϕn]

< Rϕn

= NnordRes(F,G)− 2dn min
0≤i,j≤dn

min(ord(ani ), ord(bnj )) .

Cancelling the common factor of Nn · ordRes(F,G) and reversing the in-
equality gives

0 > 2dn min
0≤i,j≤dn

min(ord(ani ), ord(bnj )) ; (3.2)

but recall that our lift ϕ = [F,G] of ϕ was normalized, and the coeffi-
cients ani , b

n
j are polynomial combinations of the coefficients of F,G. Taking

polynomial combinations cannot decrease the ord value, hence (3.2) is a
contradiction. We conclude that ϕn has semistable reduction as well.

In particular, (3.1) now reads

Rϕn = R[ϕn] = Nn ·R[ϕ] = Nn ·Rϕ ,

and so by Proposition 3.2 we conclude that ϕm 6∈ I(d). This completes the
proof of the forward implication of the proposition.

For the reverse implication, suppose that we have chosen a coordinate
system in which ϕ and ϕn have semistable reduction, and also for which
ϕm 6∈ I(d). Combining Propositions 3.2 and 3.3 gives

R[ϕn] = Rϕn = Nn ·Rϕ = Nn ·R[ϕ] ,

which is the asserted equality. �

4. Barycenters and minimal resultant locus

In this section we establish Theorem 1.2 which gives a geometric condition
for determining when the minimal resultant iteration formula (1.1) holds for
all n. To do this, we first recall some facts about the Berkovich projective
line P1

K and probability measures on P1
K .



460 KENNETH JACOBS AND PHILLIP WILLIAMS

4.1. The Berkovich projective line. Let K be an algebraically closed
field that is complete with respect to a non-trivial absolute value. The
Berkovich projective line P1

K over K is defined as the set of (equivalence
classes1 of) multiplicative seminorms on K[X,Y ] which extend the absolute
value on K. There are four types of points in P1

K :

• A point [a : b] ∈ P1(K) gives rise to a seminorm G 7→ |G(a, b)|;
these are called type I points. This identification gives an inclusion
P1(K) ↪→ P1

K .
• A closed disc D(a, r) ⊆ K gives rise to a seminorm by

G 7→ sup
z∈D(a,r)

|G(z, 1)| ;

these are called type II points if r ∈ |K×|, and are called type III
points otherwise.
• Points of type IV correspond to sequences of type II or type III

points, but their precise definition is not needed here. See [2, Chap-
ters 1, 2].

When K = C, it is a consequence of Gelfand’s theorem that P1
K = P1(C).

There are two topologies that one usually considers on P1
K . The first is the

weak topology : it is the weakest topology so that the maps P1
K 3 ζ 7→ [G]ζ

are continuous for all G ∈ K[X,Y ]. In this topology, P1
K is a compact

connected space, though it is not in general metrizable. The strong topology
arises from a metric σ defined on H1

K := P1
K \ P1(K) (and extended to all

of P1
K by setting σ(x, y) = ∞ whenever x ∈ P1(K) and y ∈ P1

K\{x}). In
the strong topology, P1

K is no longer compact, but it carries the structure
of an R-tree. Consequently, P1

K is uniquely path connected.
The tangent space at a point ζ ∈ P1

K consists of equivalence classes of
paths emanating from ζ; it is denoted by Tζ , and since P1

K is uniquely path
connected its elements are in bijection with P1

K \ {ζ}. We will often write
Bζ(~v)− for the connected component corresponding to a given ~v ∈ Tζ . When
ζ has type II, Tζ is also in bijection with P1(k): if ζ = ζG this identification
can be realized by identifying the tangent directions with open subdiscs
D(a, 1)− ⊆ D(0, 1) or with the complement P1(K) \ D(0, 1).The general
case follows by change of coordinates. Having made such an identification,
we write ~va ∈ Tζ for the vector corresponding to a ∈ P1(k).

The automorphisms of P1(K) extend to automorphisms of P1
K ; more

generally, the action of a rational map ϕ on P1(K) extends to a proper,
continuous map ϕ : P1

K → P1
K . A description of this action can be found in

[2, Chapter 2].

4.2. Canonical measures. A rational map ϕ ∈ K(z) of degree d ≥ 2,
where K is either C or a complete algebraically closed non-Archimedean
field, induces an invariant measure µϕ on P1

K characterized by the pullback

1See [2, Section 2.2] for the precise definition of the equivalence relation.
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formula 1
dϕ
∗µϕ = µϕ and the fact that µϕ does not charge the exceptional

set of ϕ. It can be realized as the limit of the pullbacks 1
dn (ϕn)∗ν for any

probability measure ν on P1
K that does not charge the exceptional set ([6]

Théorème A).
DeMarco defined analogous measures for degenerate rational maps: work-

ing with homogeneous lifts Φ = [F,G], let A = gcd(F,G) and write Φ = Ã·ϕ̃
as above. When 0 < deg(ϕ̃) < d, the canonical invariant measure introduced
by DeMarco is

µϕm =
∞∑
n=0

1

dn+1

∑
ϕ̃n(z)=h
A(h)=0

δz ,

while if deg(ϕ̃) = 0 then

µϕm =
1

d

∑
A(h)=0

δh .

Both are probability measures on P1(K), and one can check that they satisfy
µϕm

n = µϕm provided ϕm 6∈ I(d). DeMarco shows

Lemma 4.1. [4, Propositions 3.2, 3.3] Let ϕ be a (possibly degenerate)
rational map of degree at most d.

Suppose that d is even and ϕ 6∈ I(d). Then ϕn is stable for all n ≥ 1 if
and only if µϕm({z}) ≤ 1

2 for all z ∈ P1(K).
Suppose that d is odd and ϕ 6∈ I(d). Then ϕn is semistable for all n ≥ 1 if

and only if µϕm({z}) ≤ 1
2 for all z ∈ P1(K). Furthermore, if µϕm({z}) < 1

2

for all z ∈ P1(K), then ϕn is stable for all n ≥ 1.

We reiterate that although [4, Proposition 3.2, 3.3] were originally stated
for rational maps over C, they hold over an arbitrary algebraically closed
field.

4.3. Reduced measures. Let ϕ ∈ K(z) have degree d ≥ 2, where K is a
complete, algebraically closed non-Archimedean field. Let µϕ be the canon-
ical invariant measure on P1

K described above. Throughout this section,
assume that ϕ fails to have good reduction. In this case, µϕ induces a mea-
sure on P1(k) as follows: identifying tangent directions ~va ∈ TζG with points
a ∈ P1(k), let

µ̃ϕ({a}) := µϕ(BζG(~va)
−) .

Note that this is a special case of a Γ-measure, which were introduced by
DeMarco-Faber [5]; here, Γ = {ζG}.

The map ϕ induces another measure on P1(k): since ϕ does not have
good reduction, ϕm is a degenerate rational map defined over k, and the
corresponding measure µϕm for degenerate maps introduced in the previous
section is a probability measure on P1(k).
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Proposition 4.2. [5, Theorem C and Proposition 5.1] Suppose ϕ does not
have good reduction. If ϕm 6∈ I(d), then µ̃ϕ = µϕm.

Proof. By [5, Proposition 5.1], ϕm 6∈ I(d) is equivalent to saying that the
pair (ϕ, {ζG}) is analytically stable (see [5] for a definition of analytically
stable). This, together with the assumption that ϕ does not have good re-
duction, allows us to apply [5, Theorem C]. As DeMarco and Faber point out
just after Proposition 5.1, the stationary measure arising from the Markov
process in Theorem C recovers the formula for µϕm . �

4.4. Barycenters and semi-stability. Given a probability measure ν on
P1
K , where K is a complete, algebraicaly closed non-Archimedean valued

field, Rivera-Letelier defined the barycenter of ν to be

Bary(ν) = {ζ ∈ P1
K : ν(Bζ(~v)−) ≤ 1

2
for all ~v ∈ Tζ} .

This set is always non-empty, and will either be a point or a segment [7,
Proposition 6].

Another distinguished subset of P1
K is the minimal resultant locus of a

rational map ϕ. If ϕ ∈ K(z) has degree d ≥ 2, the minimal resultant locus
can be defined2 as

MinResLoc(ϕ) =

{ζ ∈ P1
K : ζ = γ(ζG) for γ ∈ PGL2(K) and ϕγ has semistable reduction} ,

where the closure is with respect to the strong topology. Rumely has shown
that, as was the case with the barycenter, MinResLoc(ϕ) is always either a
point or a segment. The first author has shown that the minimal resultant
loci accumulate on the barycenter of µϕ:

Proposition 4.3. [7, Proposition 5] For any ε > 0, there exists N so that

MinResLoc(ϕn) ⊆ {ζ ∈ P1
K : σ(ζ,Bary(µϕ)) < ε}

for all n ≥ N .

We are now ready to prove Theorem 1.2, which we recall here:

Theorem. The following are equivalent:

(1) The minimal resultant iteration formula

1

d(d− 1)
·R[ϕ] =

1

dn(dn − 1)
·R[ϕn]

holds for all n.
(2) The minimal resultant iteration formula holds infinitely often.
(3) There exists a point ζ ∈ Bary(µϕ) for which ζ = γ(ζG) and (ϕγ)m 6∈

I(d).

2This is different from, but equivalent to, Rumely’s original definition of MinResLoc(ϕ).
See [9, Theorem 7.4]
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Proof. First, if ϕ has potential good reduction the result is immediate. So
we assume that ϕ does not have potential good reduction.

The first condition clearly implies the second. Suppose now that the
minimal resultant iteration formula holds infinitely often. Applying The-
orem 1.1, if ζ = γ(ζG) is any type II point with semistable reduction,
we have that (ϕγ)m 6∈ I(d) and for infinitely many n, (ϕγ)n has semi-
stable reduction as well. Geometrically, the latter condition says that ζ ∈
MinResLoc(ϕ) ∩MinResLoc(ϕn) for infinitely many n. By Proposition 4.3
this implies that ζ ∈ Bary(µϕ), and hence (3) is established.

To show (3) implies (1), suppose that ζ ∈ Bary(µϕ), that ζ = γ(ζG)
for some γ ∈ PGL2(K), and that (ϕγ)m 6∈ I(d). Replacing ϕ by ϕγ , we
may assume that ζ = ζG and that ϕm 6∈ I(d). The assumption that ζG ∈
Bary(µϕ) implies that µϕ(BζG(~v)−) ≤ 1

2 for all ~v ∈ TζG ; by Proposition 4.2

this in turn implies that µϕm({z}) ≤ 1
2 for all z ∈ P1(k). The assumption

that ϕm 6∈ I(d) allows us to apply Lemma 4.1, which tells us that ϕm has
semistable reduction for all n. In particular Theorem 1.1 confirms that the
minimal resultant iteration formula holds for all n. �

5. An application to potential theory

If the equivalent conditions of Theorem 1.2 are satisfied, we are able to
obtain a formula for the minimal value of the diagonal Arakelov-Green’s
function gϕ(x, x).

Given a probability measure ν on P1
K , the (normalized) Arakelov-Green’s

function attached to ν is

gν(x, y) =

∫
P1
K

− log δ(x, y)ζdν(ζ) + C ;

here, δ(x, y)ζ is the Hsia kernel which measures the distance between x and
y relative to the basepoint ζ (see [2] Chapter 4 for the definition of the Hsia
kernel, and [2] Chapter 8 for a discussion of the Arakelov-Green’s function
on P1

K).The constant C is chosen so that∫∫
gν(x, y)dν(x)dν(y) = 0 .

In the case that ν = µϕ is the equilibrium measure associated to ϕ, we
simply write gϕ(x, y) = gµϕ(x, y).

The Arakelov-Green’s function gϕ is the dynamical analogue of the Arakelov-
Green’s function associated to Haar measure on an elliptic curve. Baker [1]
has used this function to show the finiteness of the set of points of small
dynamical height for non-isotrivial maps defined over function fields. One
of the key ingredients is a positivity result for the diagonal values in the case
that ϕ does not have potential good reduction (see [1] Corollary 3.15). Our
Corollary 1.3 gives an effective way to compute a lower bound for gϕ(x, x)
under the assumptions of Theorem 1.2.
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Proof of Corollary 1.3. If ϕ satisfies the equivalent conditions of Theo-
rem 1.2, then

1

dn(dn − 1)
R[ϕn] =

1

d(d− 1)
R[ϕ] .

By [7, Corollary 3], we find that

min
x∈P1

K

gϕ(x, x) = lim
n→∞

1

dn(dn − 1)
R[ϕn]

=
1

d(d− 1)
R[ϕ] .

�

6. Examples

In this section we collect several examples illustrating the main Theorems.

Example 1. Let K be any complete, non-Archimedean valued field with
residue characteristic not equal to 2, and let ϕc(z) = z2 + c for |c| > 1.
For such maps, one can show that the support of the measure µϕc lies
in two directions away from ζ0,|c|1/2 , each direction having equal mass 1

2 ;

consequently ζ0,|c|1/2 ∈ Bary(µϕc). Conjugating by z 7→ c1/2z gives

ψc(z) = c1/2z2 + c1/2 .

A direct computation shows that (ψc)m 6∈ I(2), and so by Theorem 1.2
we know that the minimal resultant iteration formula holds for all n. One
can show (e.g., by the algorithm in [8, Section 4]) that ψc has semistable
reduction, so that

R[ϕc] = Rψc = log |c| ,

and hence R[ϕnc ]
= 2n(2n−1)

2 log |c|. One can also verify this formula directly
using Rumely’s crucial measures, but the calculations are more involved.

Example 2. (See [8, Example 2.3]) Let p ≥ 3 be a prime number and let
K = Cp be the p-adic complex numbers. Define

ϕ(z) =
zp − z
p

.

It is known that µϕ is Haar measure on Zp, and hence Bary(µϕ) = {ζG}. A
direct computation shows that ϕm 6∈ I(p), so that by Theorem 1.2 the min-
imal resultant iteration formula will hold for all n. One can also check that
ϕ has semi-stable reduction; since the minimal resultant iteration formula
holds for all n, it follows that ϕn has semi-stable reduction for all n.

Example 3. A forthcoming article by the first author shows exactly how
the minimal resultant for Lattès maps transforms under iteration:
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Theorem 6.1. Suppose that K is a complete, algebraically closed, non-
Archimedean valued field with residue characteristic not equal to 2 or 3. Let
ψm be the multiplication-by-m Lattès map associated to a Tate curve E with
uniformizing parameter q satisfying 0 < |q| < 1. Then

R[ψm] =

{
−m2(m2−1)

24 log |q| , m odd(
m5+m4−2m3

8(m+1) − m2(m2−1)
6

)
log |q| , m even

. (6.1)

In particular, the iteration formula R[(ψm)n] =
(mn)2((mn)2−1)

m2(m2−1) R[ψm] holds

if and only if m is odd.
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