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Arithmetic properties of quadratic
exponential polynomials

Igor E. Shparlinski and Umberto Zannier

Abstract. Given 3n algebraic integers αi,ν , i = 1, . . . , n , ν = 0, 1, 2,
and an integer ideal q in an algebraic number field K , we obtain sev-
eral new bounds on the number of solutions to the congruence with a
quadratic exponential polynomial

n∑
i=1

2∏
ν=0

αx
ν

i,ν ≡ 0 (mod q), 1 ≤ x ≤ N.

We then apply these bounds to studying arithmetic properties of values
of linear recurrence sequences on squares.
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1. Introduction

Motivated by the wealth of results of arithmetic properties of linear recur-
rence sequences (see [6, Chapter 6] and also [2, 12] for more recent results)
we consider more general exponential polynomials. In particular, the class
of sequences we study includes linear recurrence sequences evaluated on
polynomial values of the argument.
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Let n ≥ 3 and let

U(x) =
n∑
i=1

2∏
ν=0

αx
ν

i,ν (1.1)

be a quadratic exponential polynomial, where αi,ν ∈ ZK , i = 1, . . . , n ,
ν = 0, 1, 2, are elements from the ring ZK of algebraic integers in a fixed
number field K . We note that αi,0 serve as coefficients, while αi,1 and αi,2
are bases of exponential and quadratic exponential functions, respectively,
i = 1, . . . , n .

For an integer ideal q of ZK and an integer N we denote

Q(N, q) = #{1 ≤ x ≤ N : U(x) ≡ 0 (mod q)}.
We are interested in obtaining upper bounds of Q(N, q) and similar quan-

tities. A similar question has been extensively studied in a simpler context of
congruences with linear recurrence sequences; see, for example, [1, Lemma
6], [4, Lemma 9], [7, Lemma 6], [3, Lemma 6], [5, Proposition A.1], [10,
Lemma 2], [11, Theorem 1]. Some, but not all, of these works are also
summarised in [6, Section 5.4].

We also note some bounds on the number of zeros of general exponential
polynomials modulo a high power of a prime ideal are given in [9, Theo-
rem 2]. However, the method of [9] does not appear to extend to congruences
modulo a prime ideal of large norm.

Here we first obtain a nontrivial bound on the number of zeros of re-
ductions of quadratic exponential polynomials (1.1) over a number field K
modulo integer ideals of this field. We then apply this bound to establish
some arithmetic properties of such polynomials, such as lower bounds on
the number of prime and integer divisors in the case when U(x) is defined
over Z . We also obtain an upper bound, with a power saving on the number
of zeros of quadratic exponential polynomial defined over finite fields. This
appears to be the first known result of this kind.

Perhaps one of the most interesting examples of quadratic exponential
polynomials (1.1) is given by u(x2), where u(x) is a linear recurrence se-
quence. See for example, Corollary 2.4 below.

We also recall that some arithmetic properties of linear recurrence se-
quences at square positions have been considered in [8].

Throughout the paper, relations of the form A = O(B), A � B , and
B � A are used with their usual meaning that |A| ≤ cB , where the constant
c can depend on n . Furthermore, in some results the constant c can also
depend on the coefficients of the exponential polynomial U(x), in which
case we write A = OU (B), A �U B , and B �U A , and similarly with
other sequences.

2. Congruences with exponential polynomials

Let Nm q denote the norm of q . We state two results in this section and
will prove them later in the paper.
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Theorem 2.1. Suppose αi,ν ∈ ZK , i = 1, . . . , n, ν = 0, 1, 2 are all rela-
tively prime to q and

αi,ν , i = 1, . . . , n, ν = 1, 2,

are multiplicatively independent. Then

Q(N, q)�U
N

(log Nm q)1/(n+2)
+Nn/(n+1).

Obviously, for a prime ideal q = p , the co-primality condition of Theo-
rem 2.1 may be weakened (since the implied constants may depend on the
sequence U we can assume that Nm p is large enough and so the desired
co-primality condition follows).

Corollary 2.2. If αi,ν ∈ ZK , i = 1, . . . , n, ν = 0, 1, 2, do not vanish and

αi,ν , i = 1, . . . , n, ν = 1, 2,

are multiplicatively independent, then

Q(N, p)�U
N

(log Nm p)1/(n+2)
+Nn/(n+1).

We also obtain a different bound which depends on a certain parameter
which generalises the smallest multiplicative order modulo q of ratios of
roots of the characteristic polynomial of a linear recurrence sequence, which
has been used in many previous results, see, for example Lemma 4.2 below.
In fact, we can now formulate our result in the situation where the sequence
is defined over a finite field Fq of q elements. In particular, we define

QFq(N) = #{1 ≤ x ≤ N : U(x) = 0}.

Theorem 2.3. Let αi,ν ∈ F∗q , i = 1, . . . , n, ν = 0, 1, 2, and let τ be such
that no relation

n∏
i=1

α
ki,1
i,1 =

n∏
i=1

α
ki,2
i,2

is possible with integer exponents ki,ν for which

0 < max
i=1,...,n

{|ki,1|, |ki,2|} ≤ τ.

Then

QFq(N)� N
(
N−1/((n+1)!−n−1) + τ−1/((n+1)!−n)

)
.

It is also important to note that the implied constant in Theorem 2.3
depends only on n . The condition αi,ν ∈ F∗q , i = 1, . . . , n , that eliminates
short multiplicative relations between them is generically satisfied with any
τ < q1/(2n+1)−ε for any fixed ε > 0 and sufficiently large q .

Corollary 2.4. Let

u(x) =
n∑
i=1

αiβ
x
i
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be a linear recurrence sequence with αi, βi ∈ F∗q , i = 1, . . . , n, such that for
the roots β1, . . . , βn of the characteristic polynomial we have

n∏
i=1

βkii 6= 1, 0 < max
i=1,...,n

|ki| ≤ τ.

Then

#{1 ≤ x ≤ N : u(x2) = 0} �u N
(
N−1/((n+1)!−n−1) + τ−1/((n+1)!−n)

)
.

3. Prime and integer divisors of exponential polynomials

We now give some arithmetic applications of Theorem 2.1 to prime divi-
sors of quadratic exponential polynomials (1.1) defined over Z . We denote
by ω(k) the number of distinct prime divisors of an integer k 6= 0. The
proofs of the following theorems are also deferred.

Theorem 3.1. Let αi, βi, γi ∈ Z, i = 1, . . . , n, be such that

gcd (α1β1γ1, . . . , αnβnγn) = 1 and max {|γ1|, . . . , |γn|} > 1.

Then for

V (x) =
n∑
i=1

αiβ
x
i γ

x2

i

we have

ω

(
N∏
x=1

max {1, |V (x)|}

)
�V N1/(n+1).

Note that the lower bound of Theorem 3.1 is of the right logarithmic order
as we have the trivial upper bound OV (N3/ logN) on the same quantity.
One can also extend Theorem 3.1 to count prime ideal divisors of sequences
of algebraic integers.

We now use τ(k) to denote the number of positive integer divisors of an
integer k 6= 0. Clearly the bound of Theorem 3.1 implies that

τ

(
N∏
x=1

max {1, |V (x)|}

)
≥ exp

(
cN1/(n+1)

)
for some constant c > 0 depending on the sequence V (x). Here we are able
to obtain a slightly stronger bound.

Theorem 3.2. Let αi, βi, γi ∈ Z, i = 1, . . . , n, be such that

gcd(α1β1γ1, . . . , αnβnγn) = 1 and max{|γ1|, . . . , |γn|) > 1.

Then for

V (x) =
n∑
i=1

αiβ
x
i γ

x2

i
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we have

τ

(
N∏
x=1

max{1, |V (x)|

)
�V exp

(
cN1/(n+1) logN

)
for some constant c > 0 depending on the sequence V (x).

We remark that the argument of the proof of Theorem 3.2 can also be
applied to linear recurrence sequences u(x) and leads to a new result in this
case as well; see (9.3) below.

4. Congruences with linear recurrence sequences

Let

u(x) =

m∑
h=1

µhλ
x
h (4.1)

be a linear recurrence sequence of order m ≥ 2, where λh and µh , i =
1, . . . ,m , are nonzero algebraic integers in ZK .

We define the determinants

D(x1, . . . , xm) = det(λxkh )1≤h,k≤m.

For a prime ideal q of ZK , let T (q) be the largest nonnegative integer T
with the property that

q -
∏

0≤x2,...,xm≤T
max{1, |NmD(0, x2, . . . , xm)|},

where Nm z is the norm of z ∈ ZK . Clearly, if Nm q is large enough then
such T always exists and we have

T (q)� log Nm q

logH
, (4.2)

where H is the largest absolute value of λ1, . . . , λm and their conjugates
over Q , and the implied constant depends only on m .

The parameter T (q) appears in the bound on the number R(N, q) of
solutions to the congruence u(x) ≡ 0 (mod q), 1 ≤ x ≤ N , given by [11,
Lemma 1]; see also [6, Theorem 5.11].

More precisely, by [11, Lemma 1] we have:

Lemma 4.1. Assume that λh, µh , h = 1, . . . ,m, are relatively prime to q
and the ratios λh/λk , 1 ≤ h < k ≤ m, are not roots of unity. There exists
a constant c(m), depending only on m, such that

R(N, q) ≤ c(m)

(
N

T (q)
+ 1

)
.

We now assume that the sequence (4.1) is defined over a finite field Fq of q
elements, that is, we have λh, µh ∈ F∗q , i = 1, . . . ,m . Thus, we use RFq(N)
to denote the number of solutions of the equation u(x) = 0, 1 ≤ x ≤ N .
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Let ρh,k denote the largest multiplicative order of the ratio λh/λk , 1 ≤
k < h ≤ m . For m = 2 we set, ρ = ρ12 and for m ≥ 3 we set

ρ = max
1≤`≤m

min
1≤k<h≤m
h6=`,k 6=`

ρh,k.

Then the following result is implied by [1, Lemma 6].

Lemma 4.2. We have

RFq(N) ≤ (15/4)m−2N
(
N−1/(m−1) + ρ−1/(m−1)

)
.

Note that

ρ ≥ min
1≤k<h≤m

ρh,k

and this is how we use Lemma 4.2.

5. Proof of Theorem 2.1

Define η = Q(N, q)/N as the density of the solutions. We then set

D =
⌈
2(n− 1)η−1

⌉
and consider the L+ 1 intervals

Iν = [νD + 1, (ν + 1)D], ν = 0, . . . , L,

where L = bN/Dc .
Let J be the number of intervals Iν with at least n solutions to the

congruence

U(x) ≡ 0 (mod q), x ∈ Iν .
Then

DJ + (n− 1)(L+ 1− J) ≥ Q(D(L+ 1), q) ≥ Q(N, q).

Using the trivial inequality J ≥ 0, we simplify it as

DJ ≥ Q(N, q)− (n− 1)(L+ 1)

or

J ≥ Q(N, q)− (n− 1)(L+ 1)

D
. (5.1)

Because η ≤ 1, we have the inequalities

D − 1 ≤ 2(n− 1)η−1 ≤ D ≤ 2(n− 1)η−1 + 1 ≤ (2n− 1)η−1. (5.2)

In particular,

L ≤ N/D ≤ 1

2(n− 1)
ηN. (5.3)

Hence, assuming that η > N−1/3 as otherwise there is noting to prove, we
see from (5.1) and then from (5.2) and (5.3) that

J ≥ ηN − (n− 1)(L+ 1)

(2n− 1)η−1
≥ 0.5ηN − n− 1

(2n− 1)η−1
≥ 1

4n
η2N, (5.4)
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provided that N is large enough. In each of these J intervals with at least
n solutions we choose an n-tuple of n smallest solutions, just getting J
distinct n-tuples of solutions (y+d1, y+d2, . . . , y+dn) with 0 = d1 < d2 <
. . . < dn < D .

We now choose the most frequent n-tuple, which occurs amongst these
n-tuples (y+ d1, y+ d2, . . . , y+ dn), which we call (e1, e2, . . . , en) (where as
before e1 = 0). In particular,

U(y + ej) ≡ 0 (mod q), ν = 1, . . . , n,

for at least

M ≥ J
(
D − 1

n− 1

)−1
≥ J(n− 1)!

(D − 2) . . . (D − n)
(5.5)

values of y in such n-tuples (y + e1, . . . , y + en). Since by (5.2) we have

(D − 2) . . . (D − n) < (D − 1)n−1 ≤ (2n− 2)n−1ηn−1,

combining this with (5.4) and (5.5) yields

M ≥ (n− 1)!

2n+1(n− 1)n−1n
ηn+1N. (5.6)

We now see that each of the above n-tuples (y + e1, . . . , y + en) leads to a
non-zero modulo q solution

(z1, . . . , zn) =
(
α1,0α

y2

1,2, . . . , αn,0α
y2

n,2

)
of the homogeneous systems of congruences

n∑
i=1

ziβi,jγ
y
i,ν ≡ 0 (mod q), j = 1, . . . , n,

where

βi,j = α
ej
i,1α

e2j
i,2 and γi,j = αi,1α

2ej
i,2 .

Hence, we have

det
(
βi,jγ

y
i,j

)n
i,j=1

≡ 0 (mod q). (5.7)

Clearly, the determinant of the left hand side of (5.7), for y = 1, 2, . . . ,
forms a linear recurrence sequence of order n! . Since the αi,ν , i = 1, . . . , n ,
ν = 1, 2, are multiplicatively independent, this sequence is non-degenerate.
So we can use the bound of Lemma 4.1 and note that we have

logH �U D � η−1

in the bound (4.2). Hence, combining this with (5.6), we obtain

ηn+1N �U
η−1N

log Nm q
+ 1 (5.8)

and the desired result follows.
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6. Proof of Theorem 2.3

We define η = QFq(N)/N and proceed as in the proof of Theorem 2.1.
In particular, instead of the congruence (5.7) we get a determinant equation
in Fq

det
(
βi,jγ

y
i,j

)n
i,j=1

= 0

with similarly defined βi,j and γi,j , i, j = 1, . . . , n . From the definition of τ
we see that we can apply Lemma 4.2 with ρ� τ/D � τη , getting instead
of (5.8) the inequality

ηn+1N � (15/4)n−2N
(
N−1/(n!−1) + (τη)−1/(n!−1)

)
.

7. Proof of Theorem 3.1

Let M = bN/2c and consider the product

W (N) =
N∏

x=M+1

|V (x)|.

Assume that N is large enough so that for n ≥M we have V (n)� γn
2
,

where

γ = max {|γ1|, . . . , |γn|} > 1.

In particular

logW (N)�V N3. (7.1)

Let p be a prime power. Then for any integer k ≥ 1, by Theorem 2.1 we
have

#
{
x ∈ [M + 1, N ] : V (x) ≡ 0 (mod pk)

}
�V

N

(log q)1/(n+2)
+Nn/(n+1),

(7.2)

where q = min
{
pk, pM

2
}

(note that the term pM
2

can be omitted if p -
γ1 . . . γn ).

Let ordpw be the p-adic order of an integer w 6= 0. Denoting by κp(N)
the largest p-adic order of V (n), M+1 ≤ n ≤ N , and by µp(N) the p-adic
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order of W (N), we derive from (7.2)

µp(N) =

κp(N)∑
k=1

#
{
x ∈ [M + 1, N ] : V (x) ≡ 0 (mod pk)

}

�V
N

(log p)1/(n+2)

κp(N)∑
k=1

1

min
{
k1/(n+2),M2/(n+2)

}
+ κp(N)Nn/(n+1)

�V
N

(log p)1/(n+2)

κp(N)∑
k=1

(
1

k1/(n+2)
+

1

M2/(n+2)

)
+ κp(N)Nn/(n+1)

�V
κp(N)1−1/(n+2)N

(log p)1/(n+2)
+
κp(N)Nn/(n+2)

(log p)1/(n+2)
+ κp(N)Nn/(n+1).

Since the second term never dominates, we see that

µp(N)�V
κp(N)1−1/(n+2)N

(log p)1/(n+2)
+ κp(N)Nn/(n+1). (7.3)

Substituting the trivial bound κp �V N2/ log p in (7.3), we obtain

µp(N)�V
N3−1/(n+1)

log p
. (7.4)

Writing

W (N) =
∏

p|W (N)

pµp(N)

and combining (7.1) and (7.4) we obtain the desired result.

8. Proof of Theorem 3.2

We define W (N) and µp(N) as in the proof of Theorem 3.1.
We also choose some parameter K ≥ 1 and denote P and Q be the sets

of primes with

1 ≤ µp(N) ≤ K and µp(N) > K,

respectively. In particular,∏
p∈P

pµp(N)
∏
p∈Q

pµp(N) = W (N).

We consider the two cases ∏
p∈P

pµp(N) > W (N)1/2 (8.1)
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and ∏
p∈Q

pµp(N) > W (N)1/2 (8.2)

separately.
Obviously, µp(N) > 0 implies log p �V N2 . Hence, if (8.1) holds, then

we have ∏
p∈P

log p ≥ logW (N)

2K
�V

N3

2K
,

which in turn yields

#P � N/K.

Thus

τ

(
N∏
x=1

max{1, |V (x)|

)
≥ 2#P ≥ exp (c1N/K) , (8.3)

for some constant c1 > 0, depending only on the sequence V (x).
On the other hand, if (8.2) holds, then using the same argument as in the

the proof of Theorem 3.1, we obtain

#Q �V N1/(n+1).

Thus

τ

(
N∏
x=1

max{1, |V (x)|

)
≥ K#Q ≥ exp

(
c2N

1/(n+1)
)

(8.4)

for some constant c2 > 0, depending only on the sequence V (x).

Taking K = N1/2 and combining (8.3) and (8.4), we conclude the proof.

9. Comments

It is certainly natural to ask about analogues of our results for exponential
polynomials U(x) of the form

U(x) =
n∑
i=1

s∏
ν=0

αx
ν

i,ν (9.1)

with an integer s ≥ 2, which we call the degree of U(x).
The initial part of our argument generalises to this case without any

difficulties. Namely, for integers k ≥ h ≥ 0 we set

c(k, h) =

(
k

h

)
.

Hence for any integer d we have

U(x+ d) =
n∑
i=1

s∏
ν=0

α
(x+d)ν

i,ν =
n∑
i=1

s∏
ν=0

γx
ν

i,ν ,
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where

γi,ν =
s∏

j=ν

α
c(ν,j)dj−ν

i,j .

The determinant argument applied with solutions

(z1, . . . , zn) =
(
α1,0α

ys

1,s, . . . , αn,0α
ys

n,s

)
leads to a congruence with exponential polynomials of the type (9.1) with
a larger value of n however of degree at most s − 1. This, at least in
principle, enables an inductive argument. However, the problem now is to
control the multiplicative independence of new parameters γi,ν , i = 1, . . . , n ,
ν = 1, . . . , s .

It is also interesting to obtain analogues of our results for doubly expo-
nential polynomials W (x) of the shape

W (x) =
n∑
i=1

αiβ
exi
i . (9.2)

The p-adic approach of [9] is likely to work for both polynomials U(x) as
in (9.1) and polynomials W (x) as in (9.2). However, estimating the number
of solutions to congruences modulo a prime or an arbitrary integer seems to
be more diffficult.

On the other hand, the co-primality condition of Theorem 3.1 can be
relaxed in several different ways.

Finally, we mention that the argument of the proof of Theorem 3.1 seems
to be new and can also be applied to the integer linear recurrence sequences
u(x), giving a lower bound on the number on integer divisors of their prod-
ucts

τ

(
N∏
x=1

max{1, |u(x)|

)
≥ exp (c0N) , (9.3)

with some constant c0 > 0, depending on the sequence u(x), which is better
than the one following directly from the bound

ω

(
N∏
x=1

max {1, |u(x)|}

)
�u

N

logN

provided by [11, Theorem 3].
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