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Abstract. A noncommutative solenoid is a twisted group C*-algebra

C∗
(
Z
[

1
N

]2
, σ

)
where Z

[
1
N

]
is the group of the N -adic rationals and σ

is a multiplier of Z
[

1
N

]2
. In this paper, we use techniques from noncom-

mutative topology to classify these C*-algebras up to *-isomorphism in

terms of the multipliers of Z
[

1
N

]2
. We also establish a necessary and

sufficient condition for simplicity of noncommutative solenoids, com-
pute their K-theory and show that the K0 groups of noncommutative
solenoids are given by the extensions of Z by Z

[
1
N

]
. We give a concrete

description of non-simple noncommutative solenoids as bundle of matri-
ces over solenoid groups, and we show that irrational noncommutative
solenoids are real rank zero AT C*-algebras.
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1. Introduction

Since the early 1960’s, the specific form of transformation group C∗-
algebras given by the action of Z on the circle generated through a rotation
that was an irrational multiple of 2π has sparked interest in the classifica-
tion problem for C∗-algebras in particular and the theory of C∗-algebras in
general. When first introduced by Effros and Hahn in [9], it was thought
that these C∗-algebras had no non-trivial projections. This was shown not
to be the case by M. Rieffel in the late 1970’s [19], when he constructed
a whole family of projections in these C∗-algebras, and these projections
played a key role in Pimsner’s and Voiculescu’s method of classifying these
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C∗-algebras up to ∗-isomorphism, achieved in 1980 ([18]) by means of K-
theory. Since then these C∗-algebras were placed into the wider class of
twisted Zn-algebras by M. Rieffel in the mid 1980’s ([20]) and from this
point of view were relabeled as non-commutative tori. The Zn-analogs have
played a key role in the non-commutative geometry of A. Connes [3], and
the class of C∗-algebras has been widened to include twisted C∗-algebras as-
sociated to arbitrary compactly generated locally compact Abelian groups
[8]. However, up to this point, the study of twisted group C∗-algebras as-
sociated to Abelian groups that are not compactly generated has been left
somewhat untouched.

There are a variety of reasons for this lack of study, perhaps the foremost
being that Abelian groups that cannot be written as products of Lie groups
Rn and finitely generated Abelian groups are much more complicated and
best understood by algebraists; furthermore, the study of extensions of such
groups can touch on logical conundrums. One could also make the related
point that such groups require more technical algebraic expertise and are of
less overall interest in applications than their compactly generated counter-
parts. On the other hand, it can also be said that discrete Abelian groups
that are not finitely generated have begun to appear more frequently in the
literature, including in algebra in the study of the two-relation Baumslag-
Solitar groups, where they appear as normal Abelian subgroups, in the study
of wavelets, where these groups and their duals, the solenoids, have appeared
increasingly often in the study of wavelets [6, 7, 5, 1, 2]. We thus believe

it is timely to study the twisted C*-algebras of the groups Z
[

1
N

]2
where

Z
[

1
N

]
is the group of N -adic rational numbers for an arbitrary natural

number N > 1 and in homage to M. Rieffel, we call such C∗-algebras non-
commutative solenoids.

In this paper, we present the classification of noncommutative solenoids
up to ∗-isomorphism using methods from noncommutative topology. They
are interesting examples of noncommutative spaces, and in particular, they
can be seen as noncommutative orbit spaces for some actions of the N -adic
rationals on solenoids, some of them minimal. Thus, our classification pro-
vides a noncommutative topological approach to the classification of these
actions as well. Our work is a first step in the study of the topology of
these new noncommutative spaces. Our classification result is based on the
computation of the K-theory of noncommutative solenoids. We prove that
the K0 groups of noncommutative solenoids are exactly the groups given
by Abelian extensions of Z by Z

[
1
N

]
, which follows from a careful analysis

of such extensions. We relate the class of noncommutative solenoids with
the group Ext(Z

[
1
N

]
,Z), which is isomorphic to ZN/Z where ZN is the

additive group of N -adic integers [12], and we make explicit the connection
between N -adic integers and our classification problem. We also partition
the class of noncommutative solenoids into three distinct subclasses, based
upon their defining twisting bicharacter: rational periodic noncommutative
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solenoids, which are the nonsimple noncommutative solenoids, and the only
ones of type I, and are fully described as bundles of matrices over a solenoid
group; irrational noncommutative solenoids, which we show to be simple and
real rank zero AT-algebras in the sense of Elliott; and last rational aperiodic
noncommutative solenoids, which give very intriguing examples.

We build our work from the following family of groups:

Definition 1.1. Let N ∈ N with N > 1. The group of N -adic rationals is
the group:

(1.1) Z

[
1

N

]
=
{ p

Nk
∈ Q : p ∈ Z, k ∈ N

}
endowed with the discrete topology.

An alternative description of the group Z
[

1
N

]
is given as the inductive

limit of the sequence:

(1.2) Z
z 7→Nz−−−−→ Z

z 7→Nz−−−−→ Z
z 7→Nz−−−−→ Z

z 7→Nz−−−−→ · · · .
From this latter description, we obtain the following result. We denote by
T the unit circle {z ∈ C : |z| = 1} in the field C of complex numbers.

Proposition 1.2. Let N ∈ N with N > 1. The Pontryagin dual of the
group Z

[
1
N

]
is the N -solenoid group, given by:

SN =
{

(zn)n∈N ∈ TN : ∀n ∈ N zNn+1 = zn
}

,

endowed with the induced topology from the injection SN ↪→ TN. The dual
pairing between Z

[
1
N

]
and SN is given by:

〈 p
Nk , (zn)n∈N

〉
= zpk, where

p
Nk ∈ Z

[
1
N

]
and (zn)n∈N ∈ SN .

Proof. The Pontryagin dual of Z
[

1
N

]
is given by taking the projective limit

of the sequence:

(1.3) · · · z 7→zN−−−−→ T
z 7→zN−−−−→ T

z 7→zN−−−−→ T
z 7→zN−−−−→ T,

using the co-functoriality of Pontryagin duality and Sequence (1.2). We
check that this limit is (up to a group isomorphism) the group SN , and the
pairing is easily computed. �

Using Proposition (1.2), we start this paper with the computation of the

second cohomology group of Z
[

1
N

]2
.

We then compute the symmetrizer group for any skew-bicharacter of

Z
[

1
N

]2
, as it is the fundamental tool for establishing simplicity of twisted

group C*-algebras. The second section of this paper studies the basic struc-

ture of quantum solenoids, defined as C∗
(
Z
[

1
N

]2
, σ
)

for σ ∈ H2
(
Z
[

1
N

]2)
.

We thus establish conditions for simplicity, and isolate the three subclasses
of noncommutative solenoids. We then compute the K-theory of noncom-
mutative solenoids and show that they are given exactly by all possible
Abelian extensions of Z by Z

[
1
N

]
.
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We then compute an explicit presentation of rational noncommutative
solenoids.

In our last section, we classify all noncommutative solenoids in terms of
their defining T-valued 2-cocycles. Our technique, inspired by the work
of [21] on rational rotation C*-algebras, uses noncommutative topologi-
cal methods, namely our computation of the K-theory of noncommutative
solenoids. We also connect the theory of Abelian extensions of Z by Z

[
1
N

]
with our *-isomorphism problem.

Our work is a first step in the process of analyzing noncommutative
solenoids. Questions abound, including queries about Rieffel-Morita equiv-
alence of noncommutative solenoids and the structure of their category of
modules, additional structure theory for aperiodic rational noncommutative
solenoids, higher dimensional noncommutative solenoids and to what extent
Connes’ noncommutative geometry can be extended to these noncommuta-
tive solenoids.

2. Multipliers of the N -adic rationals

We first compute the second cohomology group of Z
[

1
N

]2
. We shall

apply the work of Kleppner [15] to determine the group H2
(
Z
[

1
N

]2)
for

N ∈ N, N > 1.

Theorem 2.1. Let N ∈ N, N > 1. We let ΞN :

{(νn) : ν0 ∈ [0, 1) ∧ (∀n ∈ N ∃k ∈ {0, . . . , N − 1} Nνn+1 = νn + k)} .

The set ΞN is a group for the pointwise modulo-one addition operation. As
a group, ΞN is isomorphic to SN via the map α ∈ ΞN 7→

(
e2iπαk

)
k∈N. Let

B(2)
(
Z
[

1
N

]2)
be the group of skew-symmetrized bicharacters defined by:{

(x, y) ∈ Z
[

1

N

]2

×Z
[

1

N

]2

7→ ϕ(x, y)ϕ(y, x)−1 : ϕ ∈ B

(
Z

[
1

N

]2
)}

where B
(
Z
[

1
N

]2)
is the group of bicharacters of Z

[
1
N

]2
.

Then ϕ ∈ B(2)
(
Z
[

1
N

]2)
if and only if there exists α ∈ ΞN such that, for

all p1, p2, p3, p4 ∈ Z and for all k1, k2, k3, k4 ∈ N, we have

ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= exp(2iπ(α(k1+k4)p1p4 − α(k2+k3)p2p3)).

Moreover, α is uniquely determined by ϕ.

Proof. If α ∈ ΞN then αk ∈ [0, 1) for all k ∈ N. Indeed α0 ∈ [0, 1) and if

αk ∈ [0, 1) then αk+1 = αk+j
N with 0 ≤ j ≤ N − 1 so 0 ≤ αk+1 < 1, so our

claim holds by induction. With this observation, it becomes straightforward
to check that ΞN is a group for the operation of entry-wise addition modulo
one. By definition of ΞN , the map e : ΞN 7→ SN defined by e(α)k =
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exp(2iπαk) for any α ∈ ΞN is a bijection, which is easily checked to be a
group isomorphism. Following [15], let B be the group of bicharacters of

Z
[

1
N

]2
and denote the group B(2)

(
Z
[

1
N

]2)
simply by B(2).

The motivation for this computation is that, as a group, B(2)
(
Z
[

1
N

]2)
is

isomorphic to H2
(
Z
[

1
N

]2)
by [15, Theorem 7.1] since Z

[
1
N

]
is discrete and

countable. However, we will find a more convenient form of H2
(
Z
[

1
N

]2)
in our next theorem using the following computation:

Let Ψ ∈ B(2)
(
Z
[

1
N

]2)
. Fix ϕ ∈ B such that:

Ψ : (x, y) ∈ Z
[

1

N

]2

×Z
[

1

N

]2

7−→ ϕ(x, y)ϕ(y, x)−1.

Now, the dual of Z
[

1
N

]2
is S 2

N with pairing given in Proposition (1.2). The
map:

p

Nk
∈ Z

[
1

N

]
7−→ ϕ

(
(1, 0),

( p

Nk
, 0
))

is a character of Z
[

1
N

]
, so there exists a unique ζ ∈ SN such that

ϕ
(

(1, 0),
( p

Nk
, 0
))

= ζpk

for all p ∈ Z, k ∈ N. Similarly, there exist η, χ, ξ ∈ SN such that for all
p ∈ Z, k ∈ N we have:

ϕ
(

(0, 1),
( p

Nk
, 0
))

= ηpk ,ϕ
(

(0, 1),
(

0,
p

Nk

))
= χpk and

ϕ
(

(1, 0),
(

0,
p

Nk

))
= ξpk.

Using the bicharacter property of ϕ again, we arrive at:

ϕ
(

(p1, p2) ,
( p3

Nk3
,
p4

Nk4

))
= ζp1p3k3

ηp2p3k3
χp2p4k4

ξp1p4k4
.

Now, since:

ϕ

((
1

Nk
, 0

)
,
( p

Nk3
, 0
))(Nk)

= ϕ
(

(1, 0),
( p

Nk3
, 0
))

,

there exists ν(k3, p) ∈ SN with ν0(p, k3) = 1 such that:

ϕ

((
1

Nk
, 0

)
,
( p

Nk3
, 0
))

= νk(p, k3)ζpk+k3
,

where we use the property that ζ
(Nk)
k+k3

= ζk3 . It is easy to check that for

fixed k, k3 ∈ N, the map p ∈ Z 7→ νk(p, k3) is a group morphism. Assume
now that for some k ∈ N we have, for all k3 ∈ N, that νk(p, k3) = 1. Note
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that this assumption holds for k = 0 by construction. Using the bicharcter
property of ϕ, we have, for any k3 ∈ N:

νk(p, k3 + 1)ζpk+k3+1 = ϕ

((
1

Nk+1
, 0

)
,
( p

Nk3+1
, 0
))N

= νk+1(p, k3)ζpk+1+k3

hence νk+1(p, k3) = νk(p, k3 + 1) for all k3 ∈ N. By our assumption,
νk+1(p, k3) = 1 for all k3 ∈ N. Hence, by induction, νk(p, k3) = 1 for
all k, k3 ∈ N, and p ∈ Z. Hence:

ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= ζp1p3k1+k3

ηp2p3k2+k3
χp2p4k2+k4

ξp1p4k1+k4
.

Now, by setting all but one of p1, p2, p3, p4 to zero, we see that ϕ determines
(η, ζ, χ, ξ) ∈ S 4

N uniquely. Thus, we have defined an injection ι from the

group of bicharacters of Z
[

1
N

]2
into S 4

N by setting, with the above notation:
ι(ϕ) = (ζ, ξ, η, χ). It is straightforward that this map is a bijection.

Thus, ϑ : ι−1 ◦ e⊗4 : Ξ4
N → B

(
Z
[

1
N

]2)
is a bijection, so there exists a

unique (β, γ, µ, ρ) ∈ Ξ4
N such that for all p1, p2, p3, p4 ∈ Z and k1, k2, k3, k4 ∈

N:

(2.1) ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ βk1+k3 γk1+k4

µk2+k3 ρk2+k4

] [
p3

p4

])
.

Hence:

(2.2) Ψ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ 0 (γ − µ)(k1+k4)

(µ− γ)(k2+k3) 0

] [
p3

p4

])
though it is not in our chosen canonical form, i.e. γ−µ may not lie in ΞN —
it takes values in (−1, 1) instead of [0, 1). Let us find the unique element of
Ξ4
N which is mapped by ϑ to Ψ. Observe that we can add any integer to the

entries of the matrix in Expression (2.2) without changing Ψ. Let n ∈ N.
Set εn to be 1 if γn−νn < 0, or to be 0 otherwise. Let ω1

n = εn+γn−µn and
ω2
n = (1− εn) + µn − γn. We check that ω1, ω2 ∈ ΞN and that ω1

n + ω2
n = 1

for all n ∈ N. We can moreover write:

(2.3) Ψ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ 0 (ω1)(k1+k4)

(ω2)(k2+k3) 0

] [
p3

p4

])
i.e. Ψ = ϑ(0, ω1, ω2, 0). Since ω1 + ω2 is the constant sequence (1)n∈N, we

have in fact constructed a bijection from ΞN onto B2
(
Z
[

1
N

]2)
as desired.
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The form for Ψ proposed in the Theorem is more convenient. We obtain
it by simply subtracting 1 from ω2

n for all n ∈ N, which does not change the
value of Expression(2.3). We thus get:

(2.4) Ψ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ 0 α(k1+k4)

−α(k2+k3) 0

] [
p3

p4

])
.

This concludes our proof. �

While [15] shows that, as groups, B(2)
(
Z
[

1
N

]2)
and H2

(
Z
[

1
N

]2)
are

isomorphic, a point of subtlety is that several elements of B(2)
(
Z
[

1
N

]2)
may be cohomologous, i.e. there are in general two non-cohomologous mul-

tipliers of Z
[

1
N

]2
which are mapped by this isomorphism to two distinct

but cohomologous multipliers in B(2)
(
Z
[

1
N

]2)
.

Example 2.2. If N = 3, then one checks that α =
(

1
2

)
n∈N ∈ Ξ3. This element

corresponds to the element (−1)n∈N in S3. Now, if ϕ is given by Theorem

(2.1), then ϕ ∈ B(2)
(
Z
[

1
3

]2)
is symmetric. Hence it is cohomologous to the

trivial multiplier 1 ∈ B(2)
(
Z
[

1
3

]2)
. However, there exists two multipliers

σ1, σ2 of Z
[

1
3

]2
which are not cohomologous, and map, respectively, to ϕ

and 1, since [15] shows that there is a bijection from H2
(
Z
[

1
3

]2)
onto

B(2)
(
Z
[

1
3

]2)
.

This is quite inconvenient, and we prefer, for this reason, the description

of multipliers of Z
[

1
N

]2
up to equivalence given by our next Theorem (2.3).

Theorem 2.3. Let N ∈ N, N > 1. There exists a group isomorphism

ρ : H2(Z
[

1
N

]2
) → ΞN such that if σ ∈ H2

(
Z
[

1
N

]2)
and α = ρ(σ), and if

f is a multiplier of class σ, then f is cohomologous to:

Ψα :
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
7→ exp(2iπα(k1+k4)p1p4).

Proof. Let δ : B
(
Z
[

1
N

]2) → B(2)
(
Z
[

1
N

]2)
be the epimorphism from

the group of bicharacters of Z
[

1
N

]2
onto B(2)

(
Z
[

1
N

]2)
defined by δ(ϕ) :

(x, y) ∈ Z
[

1
N

]2 7→ ϕ(x, y)ϕ(y, x)−1 for all ϕ ∈ B
(
Z
[

1
N

]2)
. We shall define

a cross-section µ : B(2)
(
Z
[

1
N

]2)→ B
(
Z
[

1
N

]2)
, i.e. a map such that δ ◦ µ

is the identity on B(2)
(
Z
[

1
N

]2)
. For ϕ ∈ B(2)

(
Z
[

1
N

]2)
, by Theorem (2.1)
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there exists a unique α ∈ ΞN such that:

(2.5) ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ 0 α(k1+k4)

−α(k2+k3) 0

] [
p3

p4

])
.

Define µ(ϕ) = Ψα. We then check immediately that δ ◦ µ is the identity.

Now, denote by ζ : H2
(
Z
[

1
N

]2) → B(2)
(
Z
[

1
N

]2)
the isomorphism

from [15]. If f and g are two multipliers of Z
[

1
N

]2
, then ζ(f) = ζ(g) ∈

B(2)
(
Z
[

1
N

]2)
if and only if f, g are cohomologous. So µ(ζ(f)) is cohomol-

ogous to f as desired. �

We thus have shown that H2
(
Z
[

1
N

]2)
is isomorphic to SN for all N ∈

N, N > 1. However, we shall see that the range of the traces on noncommu-
tative solenoids is more easily described in terms of the groups ΞN , so we

shall favor working with the identification between H2
(
Z
[

1
N

]2)
and ΞN .

The simplicity of twisted group C*-algebras is related to the symmetrizer
subgroup of the twisting bicharacter. We thus establish, using the notations
introduced in Theorem (2.1), a necessary and sufficient condition for the
triviality of the symmetrizer group of multipliers of Z

[
1
N

]
for N ∈ N, N > 1.

As our work will show, it is in fact fruitful to invest some effort in working
with a generalization of the group ΞN based upon certain sequences of prime
numbers.

Definition 2.4. The set of all sequences of prime numbers with finite range
is denoted by P.

As a matter of notation, if Λ ∈P then its nth entry is denoted by Λn, so
that Λ = (Λn)n∈N.

Definition 2.5. Let Λ ∈ P. For all k ∈ N, k > 0 we define πk(Λ) as∏k−1
j=0 Λj , and π0(Λ) = 1. The set {πk(Λ) : k ∈ N} is denoted by Π(Λ).

Periodic sequences form a subset of P, and we can use it to define a
natural embedding of N \ {0, 1} in P. Given two integers n and m, the
remainder for the Euclidean division of n by m in Z is denoted by n mod m.
On the other hand, given two Abelian groups H and G with H C G and
x, y ∈ G, then x ≡ y mod H means that x and y are in the same H-coset
in G.

Definition 2.6. Let Λ ∈ P be a periodic sequence. If T is the minimal
period of Λ ∈ P, we define ν(Λ) to be the natural number πT−1(Λ) =∏T−1
n=0 Λn. Conversely, if N ∈ N and N > 1, we define Λ(N) ∈ P as

the sequence (λn mod Ω(N))n∈N where Ω(N) is the number of primes in the

decomposition of N , λ0 ≤ . . . ≤ λΩ(N)−1 are prime and N =
∏Ω(N)−1
j=0 λj .

Thus in particular, ν(Λ(N)) = N .
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We now introduce a new description of the groups defined in Theorem
(2.1):

Definition 2.7. Let Λ ∈P. The group ΞΛ is defined as a set by:

ΞΛ = {(αn)n∈N ⊂ [0, 1)N : ∀n ∈ N ∃k ∈ {0, . . . ,Λn−1} Λnαn+1 = αn+k},
and with the operation of pointwise addition modulo 1.

Proposition 2.8. Let N ∈ N with N > 1. Let Ω(N) be the minimal period
of Λ(N), i.e. the number of prime factors in the decomposition of N . The
map:

ω : (νn)n∈N ∈ ΞΛ(N) 7→ (νnΩ(N))n∈N ∈ ΞN

is a group isomorphism.

Proof. Let α ∈ ΞΛ(N). Define ω(α)k = αkΩ(N) for all k ∈ N. It is immediate
to check that ω(α) ∈ ΞN and, thus defined, ω is a group monomorphism.
We shall now prove it is also surjective. Let us denote Λ(N) simply by Λ.

Let (νn∈N) ∈ ΞN . Let ηnΩ(N) = νn for all n ∈ N. Let n ∈ N. By
definition of ΞN , there exists m ∈ {0, . . . , N−1} such that Nνn+1 = νn+m.
Let r0,m0 be the remainder and quotient for the Euclidean division of m by
Λ0. More generally, we construct mj+1, rj+1 as respectively the quotient and
remainder of The Euclidean division of mj by Λj for j = 0, . . . ,Ω(N) − 1.
Set:

ηnΩ(N)+j = ΛjηnΩ(N)+j+1 − rj
for all j = 0, . . . ,Ω(N) − 1. We have given two definitions of ηnΩ(N) and
need to check they give the same values:

Nη(n+1)Ω(N) = Λ0 · · ·ΛΩ(N)−1η(n+1)Ω(N)

= Λ0 · · ·ΛΩ(N)−2(η(n+1)Ω(N)−1 + rΩ(N)−1)

· · · = ηnΩ + r0 + Λ0(r1 + Λ1(r2 + · · · )) = ηnΩ(N) + k

so our construction leads to a coherent result. Now, by construction, η ∈
ΞΛ(N), and ω(η) = ν. Hence ω is a group isomorphism. This completes our
proof. �

We are now ready to establish a necessary and sufficient condition for the
symmetrizer group of a given multiplier to be nontrivial.

Theorem 2.9. Let N ∈ N, N > 1. Let α ∈ ΞN . The symmetrizer subgroup

in Z
[

1
N

]2
for Ψα is defined by:

Sα =

{
g =

( p1

Nk1
,
p2

Nk2

)
∈ Z

[
1

N

]2

: Ψα(g, ·) = Ψα(·, g)

}
.

The following assertions are equivalent:

(1) the symmetrizer group Sα is non-trivial,
(2) the sequence α has finite range (i.e. {αn : n ∈ N} is finite).
(3) there exists j < k ∈ N such that αj = αk,
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(4) there exists k ∈ N such that (Nk − 1)α0 ∈ Z,
(5) the sequence α is periodic.

(6) the group Sα is either Z
[

1
N

]2
(which is equivalent to α = 0) or there

exists a nonzero b ∈ N such that:

Sα =

{(
p1b

Nm
,
p2b

Nn

)
: p1, p2 ∈ Z, n,m ∈ N

}
.

Proof. Let us assume that Sα is nontrivial and prove that the range of α
is finite. The result is trivial if α = (0)n∈N, so we assume that there exists
s ∈ N such that αs 6= 0. By definition of ΞΛ, we then have αn 6= 0 for all
n ≥ s.

Let

Θα : (x, y) ∈ Z
[

1

N

]2

×Z
[

1

N

]2

7→ Ψα(x, y)Ψα(y, x)−1.

Given p1, p2, p3, p4 ∈ Z and k1, k2, k3, k4 ∈ N, we have

Θα

(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= exp

(
2iπ

(
α(k1+k4)p1p4 − α(k2+k3)p2p3

))
.

The symmetrizer group Sα is now given by:{
g =

( p1

Nk1
,
p2

Nk2

)
∈ Z

[
1

N

]2

: Θα(g, ·) = 1

}
.

Fix
(

n
Nk1

, m
Nk2

)
∈ Sα, so that for all

(
p3
Nk3

, p4
Nk4

)
∈ Z

[
1
N

]2
we have

Θα

(( n

Nk1
,
m

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= 1.

Then, by Theorem (2.3), for all p3, p4 ∈ Z and k3, k4 ∈ N:

(2.6) α(k1+k4)np4 ≡ α(k2+k3)mp3 mod Z.

Since Congruence (2.6) only depends on k1 + k4 and must be true for all
k4 ∈ N, we can and shall henceforth assume that k1 ≥ s. Without loss
of generality, we assume n 6= 0 (if n = 0, then m 6= 0 and the following
argument can be easily adapted).

Denote by β the unique extension of α in ΞΛ(N) and denote Λ(N) simply
by Λ. Congruence (2.6) implies that for all k3, k4 ∈ N:

(2.7) βΩ(N)(k1+k4)np4 ≡ βΩ(N)(k2+k3)mp3 mod Z.

Note that for 1 ≤ r ≤ Ω(N)− 1 we have by definition of ΞΛ(N)

βΩ(N)(k1+k4)−r ≡
Ω(N)−1∏
j=r−1

ΛjβΩ(N)(k1+k4) mod Z
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so that

βΩ(N)(k1+k4)−rnp4 ≡
Ω(N)−1∏
j=r−1

ΛjβΩ(N)(k1+k4)np4 mod Z.

Similarly, for 1 ≤ r ≤ Ω(N)− 1 we have:

βΩ(N)(k2+k3)−rmp3 ≡
Ω(N)−1∏
j=r−1

ΛjβΩ(N)(k2+k3)mp3 mod Z.

Using these facts together with Equation 2.7, we obtain that for any k3, k4 ∈
Z we have

(2.8) βΩ(N)(k1)+k4np4 ≡ βΩ(N)(k2)+k3mp3 mod Z,

or, more generally, for any l1 ≥ Ω(N)k1, we have:

(2.9) βl1+k4np4 ≡ βΩ(N)(k2)+k3mp3 mod Z,

for all k3, k4 ∈ N. We shall now modify Λ and β so that we may assume
that n in Congruence (2.9) may be chosen so that n is relatively prime with
N .

To do so, we write n = n1Q with n1 ∈ Z relatively prime with N and
the set of prime factors of Q ∈ N is a subset of the set of prime factors of
N . Let k ∈ N be the smallest integer such that Q divides πkΩ(N)(Λ) and
k ≥ k1. Such a natural number exists by definition of Q and Λ. Let j1 <
j2 < · · · < jr ∈ N such that jr < Ω(N)k and Q =

∏r
l=1 Λjl : such a choice of

integers j1, . . . , jr exists by definition of k. We also note that r = Ω(Q)− 1.
Let z1 < z2 < · · · < zt ∈ N be chosen so that {z1, . . . , zt, j1, . . . , jr} =
{0, . . . ,Ω(N)k − 1}.

We now define the following permutation of N:

s : x ∈ N −→

 Ω(N)k − l if x = jl
l if x = zl
x otherwise.

Let Λ′ ∈ P be defined by Λ′j = Λs(j) for all j ∈ N. By construction,

Λ and Λ′ agree for indices greater or equal than Ω(N)k. Let α′ be the
unique sequence in ΞΛ′ such that α′kΩ(N)+j = βkΩ(N)+j for all j ∈ N. By

construction, for all k3, k4 ∈ N, we have:

(2.10) α′Ω(N)k+k4
np4 ≡ βΩ(N)(k2)+k3mp3 mod Z.

Yet n = n1Q and by construction, α′Ω(N)k+k4
Q ≡ α′Ω(N)k+k4−rn1 mod Z.

Thus, we have shown that if Sα is not trivial, then there exists Λ′ ∈ P
and a supersequence α′ ∈ ΞΛ′ of (a truncated subsequence of) α, as well as
n1 ∈ Z with the set of prime factors of n1 disjoint from the range of Λ′ and
k, k2 ∈ N, such that for all j, j′ ∈ N and p, q ∈ Z, we have:

(2.11) α′k+jn1p ≡ α′k2+j′mq mod Z.
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We now set q = 0. This relation can only be satisfied if α′k ∈ Q, in which
equivalent to α′j ∈ Q for all j ∈ N by definition of ΞΛ′ . Since Congruence

(2.11) implies that α′kn ∈ Z, we write α′k = a
b with for some b ∈ Z such that

b | n1 and b ∧ a = 1, where a ∈ {1, . . . , b− 1}.
Now, by definition of ΞΛ′ , there exists x ∈ {0, . . . ,Λ′k − 1} such that:

α′k+1 =
α′k + x

Λ′k
=
a+ xb

bΛ′k
.

We now must have α′k+1n1 = a+bx
Λ′k

n1
b ∈ Z which implies a+bx

Λ′k
∈ N since

Λ′k and n1 are relatively prime. Hence we have α′k+1 ∈
{

1
b , . . . ,

b−1
b

}
. By

induction, using the same argument as above, we thus get that we must
have:

(2.12) {α′k+j : j ∈ N} ⊆
{

1

b
, . . . ,

b− 1

b

}
.

Hence if Sα is nontrivial, then α′ (and therefore α) must have finite range.

Remark 2.10. Condition (2.12) implies that in fact, there exists b, k ∈ N
such that for all n ≥ k, there exists a ∈ {1, . . . , b − 1} with a ∧ b = 1 such
that α′n = a

b . Indeed, since α′ has finite range, there exists K ∈ N such that
α′m occurs infinitely often in α′ for all m > K. Let r = max{K, k} and write
α′r = a

b for some a, b ∈ N with a ∧ b = 1. if for any n > r, we have α′n = a
b′

with a ∧ b′ = 1 and b′ | b, then Condition (2.12) implies that b′α′m ∈ Z for
all m > n. By assumption on r, α′r occurs again for some r′ > n. Condition
(2.12) then implies that b | b′, so b = b′.

Let us now prove that if α has finite range, then there exists k ∈ N
such that (Nk − 1)αj ∈ Z, for all j ∈ N. Let the distinct entries of α be
{a1, a2, · · · , am}. Let Γi = {n ≥ 0 : αn = ai}. It is clear that tni=1Γi = N.
Thus, there exists i0 such that Γi0 is infinite. We claim that Γi0 must be of
the form {s+ kj : j ∈ N}, where s is the minimal element in Γi0 , and s+ k
is the minimal element of Γi0\{s}. Indeed, because αs = αs+k = ai0 , and
since αt−1 is uniquely determined by αt+1 for all t ∈ N, it must be the case
that if αt = αs, and if t ≥ k, then αt−k = αs. For the same reason, all the
entries between αs+kj and αs+k(j+1) cannot be equal to αs. It follows that
Γi0 is of the form {s + kj : j ∈ N}. Note also that the values of all entries
between αs+kj and αs+k(j+1) are determined by the value of αs+k(j+1), so
that all the other Γi must be of the form Γi0 + n = {s + kj + n : j ∈ N},
where −s ≤ n < k + s. Equivalently, α is a periodic sequence with period
k. Thus αj = αj+k for all j ≥ 0, so that we have Nkαj ≡ αj mod Z for all

j ∈ N. Thus (Nk − 1)αj ∈ Z, for all j ∈ N.
Let us now assume that there exists k ∈ N such that (Nk − 1)αj ∈ Z for

all j ∈ N, and show that α is periodic. By definition of ΞN , we have the
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formula

αn =
α0 +

∑n−1
j=0 N

jkj

Nn
, kj ∈ {0, 1, · · · , N − 1}, n ∈ N.

In particular αk = (α0 +
∑k−1

j=0 N
jkj)/N

k, so that Nkαk = α0 +
∑k−1

j=0 N
jkj .

Since (Nk − 1)αk is an integer, it follows that α0 +
∑k−1

j=0 N
jkj − αk must

be an integer. Since it is evident that
∑k−1

j=0 N
jkj is an integer, it follows

that α0 − αk ∈ Z. Since α ∈ [0, 1)N, we must have α0 = αk. Using a similar
argument, we have αjk = α0 for all j ∈ N. By the same reasoning as in the
proof of (2) implies (3), α must then be periodic.

We now assume that α is periodic, which of course implies α0 = a
b for

some relatively prime a, b ∈ Z, or α = 0. In the former case, we simply
have:

Ψα

(( n

Nk1
,
m

Nk2

)
,
( p2

Nk3
,
q2

Nk4

))
= exp

(
2iπ

b
ak1+k4nq2

)
where αj =

aj
b for aj ∈ {1, . . . , b − 1} and all j ∈ N, using Remark (2.10).

The computation of Sα is now trivial. It is also immediate, of course, if
α = 0. In particular, this computation shows that Sα is not trivial if α is
periodic, which concludes our equivalence. �

We note that if the symmetrizer group of the multiplier Ψα for α ∈ ΞN
is nontrivial, then α is rational valued. The converse is false, as it is easy to
construct an aperiodic α ∈ ΞN which is rational valued: for instance, given
any N > 1 we can set αn = 1

Nn for all n ∈ N. Then sα = {0}.

Example 2.11. For an example of a periodic multiplier, one can choose N = 5
and α =

(
1
62 ,

25
62 ,

5
62 ,

1
62 , . . .

)
. The symmetrizer group is then given by:{(

62n

5p
,
62m

5q

)
: n,m ∈ Z, p, q ∈ N

}
.

3. The noncommutative solenoid C∗-algebras

We now start the analysis of the noncommutative solenoids, defined by:

Definition 3.1. Let N ∈ N with N > 1 and let α ∈ ΞN . Let Ψα be the
skew bicharacter defined in Theorem (2.3). The twisted group C*-algebra

C∗
(
Z
[

1
N

]2
,Ψα

)
is called a noncommutative solenoid and is denoted by

A S
α .

The main purpose of this and the next section is to provide a classification
result for noncommutative solenoids based upon their defining multipliers.
The key ingredient for this analysis is the computation of the K-theory of
noncommutative solenoids, which will occupy most of this section. However,
we start with a set of basic properties one can read about noncommutative
solenoids from their defining multipliers.
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It is useful to introduce the following notations, and provide an alternative
description of our noncommutative solenoids.

Notation 3.2. Let α ∈ ΞN for some N ∈ N, N > 1. By definition, A S
α is

the universal C*-algebra for the relations

W p1

Nk1
,
p2

Nk2

W p3

Nk3
,
p4

Nk4

= Ψα

(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
W p1

Nk1
+

p3

Nk3
,
p2

Nk2
+

p4

Nk4

where Wx,y are unitaries for all (x, y) ∈ Z
[

1
N

]2
, for all p1, p2, p3, p4 ∈ Z and

for all k1, k2, k3, k4 ∈ N.

Proposition 3.3. Let N ∈ N, N > 1 and α ∈ ΞN . Let θα be the action of
Z
[

1
N

]
on SN defined by:

θαp
Nk

((zn)n∈N) = (exp(2iπαk+np)zn)n∈N .

The C*-crossed-product C(SN ) oθα Z
[

1
N

]
is *-isomorphic to A S

α .

Proof. The C*-algebra C(SN ) of continuous functions on SN is the group
C*-algebra of the dual of SN , i.e. it is generated by unitaries Up for
p ∈ Z

[
1
N

]
such that UpUp′ = Up+p′ . Equivalently, it is the universal C*-

algebra generated by unitaries un such that uNn+1 = un, with the natural

*-isomorphism ϕ extending
(
∀n ∈ N un 7→ U 1

Nn

)
.

The C*-crossed-product C(SN ) oθα Z
[

1
N

]
is generated by a copy of

C(SN ) and unitaries Vq, for q ∈ Z
[

1
N

]
, such that VqunV

∗
q = θα1

Nq

(
1
Nn

)
un.

Thus:

V p1

Nk1

U p2

Nk2

= θαp1
Nk1

( p2

Nk2

)
U p2

Nk2

V p1

Nk1

= exp(2iπαk1+k2p1p2)U p2

Nk2

V p1

Nk1

for all p1, p2 ∈ Z and k1, k2 ∈ N. Now, the following map (using Notation
(3.2)):

∀p ∈ Z, k ∈ N

{
U p

Nk
7−→ W0, p

Nk

V p

Nk
7−→ W p

Nk
,0

can be extended into a *-epimorphism using the universal property of the C*-
crossed product C(SN ) oθα Z

[
1
N

]
. The universal property of A S

α implies
that this *-morphism is a *-isomorphism, by showing the inverse of this
*-epimorphism is a well-defined *-epimorphism. �

Let N ∈ N, N > 1 and α ∈ ΞN . The action θ of Z
[

1
N

]
on SN defined in

Proposition (3.3) is minimal if and only if α is irrational-valued. However,
if α has infinite range, the orbit space of θ is still a single topological point.

We start our study of noncommutative solenoids by establishing when
these C*-algebras are simple:
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Theorem 3.4. Let N ∈ N with N > 1. Let α ∈ ΞN . The following
statements are equivalent:

(1) The C*-algebra A S
α is simple,

(2) The set {αn : n ∈ N} is infinite,
(3) For all k ∈ N with k > 0, there exists j ∈ N such that (Nk − 1)αj 6∈

Z,
(4) Given any j, k ∈ N with j 6= k we have αj 6= αk.

Proof. The symmetrizer group Sα of Ψα is trivial if and only if any of the
asserted conditions (2), (3) or (4) holds, by Theorem (2.9). If Sα is trivial,

since Z
[

1
N

]2
is Abelian, and since the dual of Sα is trivial, the action of

Z
[

1
N

]2/
Z
[

1
N

] ∼= Z
[

1
N

]
on Ẑ

[
1
N

]
= SN is free and minimal. Thus A S

α is

simple by [17, Theorem 1.5]. Conversely, if A S
α is simple, then the action of

Z
[

1
N

]2/
Z
[

1
N

] ∼= Z
[

1
N

]
on Ẑ

[
1
N

]
= SN is minimal, and thus Sα is trivial.

This concludes our theorem. �

As our next observation, we note that noncommutative solenoids carry a
trace, which will be a useful tool for their classification.

Theorem 3.5. Let N ∈ N, N > 1 and α ∈ ΞN . The C*-algebra A S
α has

an invariant tracial state for the dual action of S 2
N . Moreover, if A S

α is

simple, then this is the only tracial state of A S
α .

Proof. For any α ∈ ΞN for N ∈ N, N > 1, the group S 2
N acts ergodically

and strongly continuously on A S
α by setting, for all (z, w) ∈ SN and (x, y) ∈

Z
[

1
N

]2
:

(z, w) ·Wx,y = 〈z, x〉 〈w, y〉Wx,y

and extending · by universality of A S
α , using Notation (3.2). This is of

course the dual action of S 2
N on C∗

(
Z
[

1
N

]2
,Ψα

)
. Since S 2

N is compact,

the existence of an invariant tracial state τ is due to [13]. Moreover, A S
α is

simple if and only if Ψ2
α(g, ·) = 1 only for g = 0, by Theorem (3.4). If τ ′ is

any tracial state on A S
α , we must have (using Notation (3.2)):

τ ′(WgWh) = Ψ2
α(g, h)τ ′(WhWg)

for all g, h ∈ Z
[

1
N

]2
. Hence if A S

α is simple, we have τ(WgWh) = 0 for all

g, h ∈ Z
[

1
N

]2
, except for h ∈ {g, g−1}. So ker τ = ker τ ′ and τ(1) = 1 =

τ ′(1), so τ = τ ′ as desired. �

As our next observation, the C*-algebras A S
α (α ∈ ΞN , N ∈ N, N > 1)

are inductive limit of rotation algebras. Rotation C*-algebras have been
extensively studied, with [19, 10] being a very incomplete list of references.
We recall that given θ ∈ [0, 1), the rotation C*-algebra Aθ is the universal
C*-algebra for the relation V U = exp(2iπθ)UV with U, V unitaries. It is the
twisted group C*-algebra C∗(Z2,Θ) where Θ((n,m), (p, q)) = exp(iπθ(nq−
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mp)). The unitaries associated to (1, 0) and (0, 1) in C∗(Z2,Θ) will be
denoted by Uθ and Vθ and referred to as the canonical unitaries of Aθ. Of
course, {Uθ, Vθ} is a minimal generating set of Aθ. We now have:

Theorem 3.6. Let N ∈ N with N > 1 and α ∈ ΞN. For all n ∈ N, let ϕn
be the unique *-morphism from Aα2n into Aα2n+2 extending:{

Uα2n 7−→ UNα2n+2

Vα2n 7−→ V N
α2n+2

Then:

Aα0

ϕ0−−−−→ Aα2

ϕ1−−−−→ Aα4

ϕ2−−−−→ · · ·
converges to A S

α , where Aθ is the rotation C*-algebra for the rotation of
angle 2iπθ.

Proof. We use Notations (3.2). Consider the given sequence of irrational
C*-algebra. Fix k ∈ N. Define the map:

υk :

{
Uα2k

7→ W 1

Nk
,0

Vα2k
7→ W0, 1

Nk

By definition of Ψα, we have W0, 1

Nk
W 1

Nk
,0 = e2iπα2kW 1

Nk
,0W0, 1

Nk
.

By universality of Aα2k
, the map υk extends to a unique *-morphism,

which we still denote υk, from Aα2k
into A S

α . It is straightforward to check
that the diagram:

Aα0

ϕ0−−−−→ Aα2

ϕ1−−−−→ Aα4

ϕ2−−−−→ · · ·yυ0 yυ1 yυ2 · · ·

A S
α A S

α A S
α · · ·

commute. So by universality of the inductive limit, there is a morphism
from lim−→(Aα2k

, ϕk)k∈N to A S
α . Now, since A S

α is in fact generated by⋃
k∈N υk(Aα2k

), we conclude that A S
α is in fact lim−→(Aα2k

, ϕk)k∈N, as desired.
�

We can use Theorem (3.6) to compute the K-theory of the C*-algebras
A S
α for N ∈ N, α ∈ ΞN .

Theorem 3.7. Let N ∈ N with N > 1, and let α ∈ ΞN . Define the subgroup

Kα of Z
[

1
N

]2
by:

Kα =

{(
z +

pJαk
Nk

,
p

Nk

)
: z, p ∈ Z, k ∈ N

}
where (Jαk )k∈N = (Nkαk−α0)k∈N and by convention, Jk = 0 for k ≤ 0. We
then have:

K0(A S
α ) = Kα, and K1(A S

α ) = Z

[
1

N

]2

.
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Moreover, if τ is a tracial state of A S
α , then we have:

(3.1) K0(τ) :

(
z +

pJαk
Nk

,
p

Nk

)
∈ Kα 7−→ z + pαk.

In particular, all tracial states of A S
α lift to the same state of K0(A S

α )
given by ( 3.1).

Proof. Define jαn ∈ {0, . . . , N − 1} for n ∈ N by Nαn+1 = αn + jαn . Thus

Jαn =
∑n−1

k=0 N
kjαk by definition. To ease notations, we also introduce for

all n ∈ N the integer rαn ∈ {0, . . . , N2 − 1} such that N2α2n+2 = α2n + rαn .

Thus rαn = Njα2n+1 + jα2n and Jα2n =
∑n−1

k=0 N
2krαk for all n ∈ N.

As a preliminary step, we check that Kα is a group. It is a nonempty

subset of Z
[

1
N

]2
since it contains (0, 0). Now, let:(
z +

pJαk
Nk

,
p

Jαk

)
,

(
y +

qJαr
N r

,
q

N r

)
∈ Kα.

Let n = max(k, r), and m1,m2 ∈ N be given so that Nkm1 = Nn and
N rm2 = Nn. We then have:

(3.2)

(
z +

pJαk
Nk

,
p

Nk

)
−
(
y +

qJαr
N r

,
q

N r

)
=

(
z − y +

m1pJ
α
k −m2qJ

α
r

Nn
,
m1p−m2q

Nn

)
.

Now, assume k < n, so r = n. By definition, Jαn = Jαk + Nkjαk + · · · +
Nn−1jαn−1 so m1J

α
k = m1J

α
n − (Nnjαk + Nn+1jαk+1 + · · · + N2n−1jαn−1), so

m1pJαk
Nn = −jαk − · · · − Nn−1jαn−1 + m1pJαn

Nn . In this case, Expression (3.2)
becomes:(

z − y − jαk − · · · −Nn−1jαn−1 +
(m1p−m2q)J

α
n

Nn
,
m1p−m2q

Nn

)
which lies in Kα. The computations are similar if we assume instead r < n

and k = n. Thus Kα is a subgroup of Z
[

1
N

]2
. We remark here that the

sequences (jk)k∈N and (Jk)k∈N are closely related to the group of N -adic
integers ZN ; we shall discuss this relationship in detail at the conclusion of
the proof.

We simplify our notations in this proof and denote the canonical unitaries
of the rotation C*-algebra Aα2k

as Uk and Vk for all k ∈ N. It is well known
that K0(Aα2k

) = Z2 and K1(Aα2k
) = Z2. Moreover, K0(Aα2k

) is generated
by the classes of the identity and a Rieffel projection P of trace α2k, which
we denote by (1, 0) and (0, 1) respectively. We also know that K1(Aα2k

) is
generated by the classes of Uk and Vk, denoted respectively by (1, 0) and
(0, 1).

We start with a key observation. Let P be a Rieffel projection of trace
α2k in Aα2k

, then it is of the form g(Uk)Vk + f(Uk) +h(Uk)V
∗
k with f, g, h ∈
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C(T) and α2k =
∫
T
f . Hence P is mapped by ϕk to the Rieffel projection

g(UNk+1)V N
k+1 + f(UNk+1) + h(UNk+1)V N

k+1 whose trace is again α2k. We recall

that with our notation, N2α2k+2 = α2k + rαk , where we note that α2k+2

is the trace of the generator of K0(A2k+2). Let k ∈ N and let ϕk be the
*-morphism defined in Theorem (3.6). The maps K0(ϕk) and K1(ϕk) are
thus completely determined, as morphisms of Z2, by the relations:

K1(ϕk) :

{
(1, 0) 7→ (N, 0)
(0, 1) 7→ (0, N)

and K0(ϕk) :

{
(1, 0) 7→ (1, 0)
(0, 1) 7→ (rα2k, N)

We now use the continuity of K-theory groups to conclude:

K1(A S
α ) = lim−→

(
Z2

K1(ϕ0) //Z2
K1(ϕ2) //Z2

K1(ϕ2) // · · ·
)

= Z

[
1

N

]2

,

and

K0(A S
α ) = lim−→

(
Z2

K0(ϕ0) //Z2
K0(ϕ2) //Z2

K0(ϕ2) // · · ·
)

= lim−→

Z2

[
1 rα0
0 N2

]
//Z2

[
1 rα1
0 N2

]
//Z2

[
1 rα2
0 N2

]
// · · ·

 .

We claim that the group K0(A S
α ) is Kα. For k ∈ N we define υk : Z2 → K

to be the multiplication by the matrix:[
1 − Jαk

N2k

0 1
N2k

]
=

k∏
n=0

[
1 rαn−k
0 N2

]−1

.

We now check the following diagram is commutative:

Z2

[
1 rα0
0 N2

]
//

υ0
��

Z2

[
1 rα1
0 N2

]
//

υ1
��

Z2

[
1 rα2
0 N2

]
//

υ2
��

· · ·

Kα Kα Kα · · ·

It is now easy to check that K is indeed K0(A S
α ).

Let τ be a tracial state of A S
α . First, we note that (1, 0) ∈ K is the image

of (1, 0) ∈ Z2 for all υk, with k ∈ N. Since τ(1) = 1 in A2k for all k ∈ N, we

conclude that K0(τ)(1, 0) = 1. On the other hand, the element
(
Jα2k
N2k ,

1
N2k

)
is the image of (0, 1) ∈ Z2 by υk. The generator (0, 1) of K0(Aα2k

) has trace
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α2k, so K0(τ)
(
Jα2k
N2k ,

1
N2k

)
= α2k for all k ∈ N. Now, since:(

J2k−1

N2k−1
,

1

N2k−1

)
=

(
−jα2k−1 +

J2kN

N2k−1
,

N

N2k−1

)
and since K0(τ) is a group morphism, we get:

K0(τ)

(
J2k−1

N2k−1
,

1

N2k−1

)
= −jα2k−1 +Nα2k = α2k−1

for all k ∈ N, k > 1. In summary, K0(τ) maps
(
Jk
Nk ,

1
Nk

)
to αk for all

k ∈ N. Using the morphism property of K0(τ) again, we obtain the desired
formula. �

The group Kα defined in Theorem (3.7) is in fact an extension of Z
[

1
N

]
given by:

(3.3) 0 −−−−→ Z
ι−−−−→ Kα

π−−−−→ Z
[

1
N

]
−−−−→ 0,

where ι : z ∈ Z 7→ (z, 0) is the canonical injection and π :
(
z +

pJαk
Nk ,

p
Nk

)
7→

p
Nk is easily checked to be a group morphism such that the above sequence is

exact. The class of this extension in H2(Z
[

1
N

]
,Z) is however not in general

an invariant of the *-isomorphism problem for noncommutative solenoids:
as we shall explain in the next section, we must consider a weaker form
of equivalence for Abelian extensions to construct such an invariant. It will
translate into an equivalence relation on Ext(Z

[
1
N

]
,ZN ) to be detailed after

Theorem (4.2).
We now proceed to provide a description of the Z-valued 2-cocycle of

Z
[

1
N

]
associated to Extension (3.3) and provide a different, more standard

picture for Kα. Remarkably, we shall see that every element of the group
Ext(Z

[
1
N

]
,Z) is given by the K-theory of A S

α for some α ∈ ΞN . As a first
indication of this connection, we note that for a given α ∈ ΞN , the sequence
(Jαk )k∈N can be seen an element of the group ZN of N -adic integers [14].
For our purpose, we choose the following description of ZN :

Definition 3.8 ([14]). Let N ∈ N, N > 1. Set:

ZN =

{
(Jk)k∈N : ∧

{
J0 = 0,
∀k ∈ N ∃j ∈ {0, . . . , N − 1} Jk+1 = Jk +Nkj

}
.

This set is made into a group with the following operation. If J,K ∈ ZN then
J +K is the sequence (Lk)k∈N where Lk is the remainder of the Euclidean
division of Jk +Kk by Nk for all k ∈ N. This group is the group of N -adic
integers.

The connection between ΞN (or equivalently, SN ), ZN , Ext(Z
[

1
N

]
,Z)

and K0 groups of noncommutative solenoids is the matter of the next few
theorems. We start by observing that the following is a short exact sequence:

0 −−−−→ ZN
ι−−−−→ ΞN

q−−−−→ T −−−−→ 0
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where q : α ∈ ΞN 7→ exp(2iπα0) and ι is the natural inclusion given by
ι : (Jn)n∈N ∈ ZN 7−→

(
Jn
Nn

)
n∈N . Thus, for any element α of ΞN , the

sequence (Jαk )k∈N of Theorem (3.7) associated to α is easily checked to be
the unique element in ZN such that αk = q(α) + Jαk for all k ∈ N.

We shall use the following terminology:

Definition 3.9. Let N ∈ N, N > 1. The N -reduced form of q ∈ Z
[

1
N

]
is (p,Nk) ∈ Z × N such that q = p

Nk where k is the smallest element of

{n ∈ N : ∃p ∈ Z q = q
Nn }. By standard abuse of terminology, we say that

p
Nk is q written in its reduced form.

A fraction in N -reduced form in Z
[

1
N

]
may not be irreducible in Q, so

this notion depends on our choice of N . Namely, even if Z
[

1
N

]
= Z

[
1
M

]
for N 6= M , and p

Nk ∈ Z
[

1
N

]
is in N -reduced form, it may not be in M -

reduced form. We shall however drop the prefix N when the context allows
it without introducing any confusion.

We now prove the following lemma:

Lemma 3.10. Let N ∈ N, N > 1 and α ∈ ΞN . Let J = (Jk)k∈N ∈ ZN .
Writing all elements of Z

[
1
N

]
in their N -reduced form only, the map:

ξJ :
( p1

Nk1
,
p2

Nk2

)
∈ Z

[
1

N

]2

7−→
− p1
Nk1

(Jk2 − Jk1) if k2 > k1

− p2
Nk2

(Jk1 − Jk2) if k1 > k2

q
Nr (Jk1 − Jr) if ∧

{
k1 = k2
p1
Nk1

+ p2
Nk2

= q
Nr

is a Z-valued symmetric 2-cocycle of Z
[

1
N

]
.

Proof. We introduce some useful notations for this proof. We define jk ∈
{0, . . . , N−1} for all k ∈ N by Jk+1−Jk = Nkjk. We also define Jk,m for all

m, k ∈ N,m > k by Jk,k = 0∧Jk,m =
∑m−1

r=k N
r−kjr. Note that Jk−Jr

Nr = Jr,k
for all r ≤ k by definition.

With this definition, we have ξJ

(
p1
Nk1

, p2
Nk2

)
equal to −p1Jk1,k2 if k1 < k2,

to −p2Jk2,k1 when k2 < k1 and qJr,k1 if k1 = k2 and p1 + p2 = Nk1−rq, with
q and N relatively prime, and with all fractions written in their reduced
form in Z

[
1
N

]
.

By construction, ξJ is a symmetric function. Let x, y, z ∈ Z
[

1
N

]
. We

wish to show that:

(3.4) ξJ(x+ y, z) + ξJ(x, y) = ξJ(y + z, x) + ξJ(y, z).

Let us write x = px
Nkx

in its reduced form, and use similar notations for y
and z. We proceed by checking various cases.
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Case 3.10.1. Assume x, y, z have the same denominator Nk in their reduced
form, and that x + y = q

Nr in its reduced form, with r < k. Then by
definition, ξJ(x, y) = qJr,k and ξJ(x+ y, z) = −qJr,k so the left hand side of

Identity (3.4) is zero. Let y + z = q′

Nn in its reduced form. If, again, n < k,
the right hand side of Identity (3.4) is zero again and we have shown that
Identity (3.4) holds. If n = k then ξJ(y, z) = 0 by definition. Moreover,
x+ y+ z must have denominator Nk in its reduced form. Indeed, since x, y
have the same denominator Nk in reduced form, yet their sum does not,
px + py is a multiple of N . If moreover, px + py + pz is also a multiple of N ,
then pz is a multiple of N , which contradicts the definition of reduced form.
Hence, x+y+z has denominator Nk in its reduced form and ξJ(x, y+z) = 0
by definition.

Case 3.10.2. Assume now that kx > ky > kz. Then by definition:

(3.5) ξJ(x, y) + ξJ(x+ y, z) = −pyJky ,kx − pzJkz ,kx
while

(3.6) ξJ(y, z) + ξJ(y + z, x) = −pzJkz ,ky − (Nky−kzpz + py)Jky ,kx .

By definition, Jkz ,ky +Nky−kzJky ,kx = Jkz ,kx . We then easily check that the
left and right hand side of Identity (3.4) which are given by Identities (3.5)
and (3.6) agree.

This case also handles the situation kz > ky > kz by switching the left
and right hand side of Identity (3.4).

Case 3.10.3. Assume now that ky > kx > kz. Then the left hand side of
Identity (3.4) is given by:

ξJ(x, y) + ξJ(x+ y, z) = −pxJkx,ky − pzJkz ,ky
On the other hand, the right hand side becomes:

ξJ(y, z) + ξJ(y + z, x) = −pzJkz ,ky − pxJkx,ky
and thus Identity (3.4) is satisfied again. We also get by symmetry the case
ky > kx > kz.

One similarly verifies that ξJ is a cocycle for the cases kx > kz > ky,
kz > kx > ky, ky > kx > kz, kx > kz > ky, kx = ky > kz and kx = ky > kz.

Comment 3.11. For this version of our paper, we include these case:

Case 3.11.1. Assume kx > kz > ky. Then the left hand side of Identity (3.4)
is:

ξJ(x, y) + ξJ(x+ y, z) = −pyJky ,kx − pzJkz ,kx
while the right hand side is:

ξJ(y, z) + ξJ(y + z, x) = −pyJky ,kz − (Nkz−kypy + pz)Jkz ,kx

and as in Case 1, both side agree. The last possible strict inequality kz >
kx > ky is handle by symmetry again.
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Case 3.11.2. Assume now kx = ky < kz and px + py is not a multiple of N .
We have:

ξJ(x, y) + ξJ(x+ y, z) = 0− (px + py)Jkx,kz

while

ξJ(y, z) + ξJ(y + z, x) = −pyJky ,kz − pxJkx,kz
so again, Identity (3.4) is satisfied. This also accounts for the case when
kx = ky > kz by replacing Jkx,kz with Jkz ,kz . We also get similarly ky =
kz 6= kx when py + pz is not a multiple of N .

Case 3.11.3. Assume now kx = ky < kz and px + py is a multiple of N .
Write x+ y = q

Nr in its reduced form. Then:

ξJ(x, y)+ξJ(x+y, z) = qJkr,kx−qJkr,kz = −px + py
Nkx−r N

kx−rJkx,kz = −(px+py)Jkx,kz

while

ξJ(y, z) + ξJ(y + z, x) = −pyJky ,kz − pxJkx,kz
where we used the relation Nkx−rq = px + py. So we have the desired
equality. Again, we cover kx = ky > kz with px + py multiple of N the same
way, and we also get ky = kz 6= kx and py + pz is a multiple of N .

Case 3.11.4. Our last cases is kx = kz > ky and kx = kz < ky. We prove
that Identity (3.4) holds in the latter case as we can then deduce the first
by symmetry. We have:

ξJ(x, y) + ξJ(x+ y, z) = −pxJkx,ky − pzJkx,kz
while

ξJ(y, z) + ξJ(y + z, x) = −pzJkz ,ky − pxJkx,ky
which are equal by assumption.

We thus have shown that ξJ is a Z-valued 2-cocycle of Z
[

1
N

]
.

�

Theorem 3.12. Let N ∈ N, N > 1 and α ∈ ΞN . Let ξα be the Z-valued
2-cocycle of Z

[
1
N

]
given by ξJα as defined in Lemma ( 3.10), where Jαk =

Nkαk − α0 for all k ∈ N.
Let us define the group Qα as the set Z×Z

[
1
N

]
together with the opera-

tion: (
z,

p1

Nk1

)
�
(
y,

p2

Nk2

)
=
(
z + y + ξα

( p1

Nk1
,
p2

Nk2

)
,
p1

Nk1
+

p2

Nk2

)
for all z, y, p1, p2 ∈ Z, k1, k2 ∈ N. The map:

ω

∣∣∣∣∣ Qα −→ Kα(
z, p

Nk

)
7−→

(
z +

pJαk
Nk ,

p
Nk

)
.
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is a group isomorphism. Thus K0(A S
α ) is isomorphic to Qα and, using ω

to identify these groups, we have:

K0(τ) : (1, 0) 7→ 1,

(
0,

1

Nk

)
7→ αk.

Proof. It is immediate that ω is a bijection. It remains to show that it is
a group morphism. Let x = px

Nkx
, y =

py
Nky

with px, py ∈ Z, kx, ky ∈ N. Let

z, t ∈ Z. We consider three distinct cases.

Case 3.12.1. The easiest case is when kx = ky and px + py is not a multiple
of N . Then ξα(x, y) = 0 so � reduces to the usual addition and we have:

ω(z, x) +ω(t, y) = (z+x, x) + (t+ y, y) = ω(z+ t, x+ y) = ω((z, x)� (t, y)),

as needed.

Case 3.12.2. Now, assume kx = ky yet px + py = Nk−rq for some q not
divisible by N and some r ∈ N, r > 0. Then:

ω(z, x)+ω(t, y) =

(
z + t+

(px + py)J
α
kx

Nkx
,
px + py
Nkx

)
=

(
z + t+

qJαkx
N r

,
q

N r

)
.

Now, Jαkx = Jαr + N rJαr,kx by definition, as given in Theorem (3.7) and

Lemma (3.10). Hence:

ω(z, x) + ω(t, y) =

(
z + t+ qJr,kx +

qJαr
N r

,
q

N r

)
=
(
z + t+ ξα

( px
Nkx

,
py
Nky

)
+

q

N r
,
q

N r

)
= ω((z, x)� (t, y)),

as desired.

Case 3.12.3. Last, assume kx 6= ky. Without loss of generality, since our
groups are Abelian, we may assume kx < ky. Now:

ω(z, x) + ω(y, t)

=

(
z + t+

pxJ
α
kx

Nkx
+
pyJ

α
ky

Nky
,
pxN

ky−kx + py
Nky

)
=

(
z + t+

pxN
ky−kxJαkx
Nky

+
pyJ

α
ky

Nky
,
pxN

ky−kx + py
Nky

)

=

(
z + t+

pxN
ky−kx(Jαky −N

kxJαkx,ky)

Nky
+
pyJ

α
ky

Nky
,
pxN

ky−kx + py
Nky

)

=

(
z + t− pxJαkx,ky +

(
pxN

ky−kx + py
)
Jαky

Nky
,
pxN

ky−kx + py
Nky

)
= ω((z, x)� (t, y)),

as expected.
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This completes the proof that ω is an isomorphism. Now, ω(1, 0) = (1, 0)
and ω

(
0, 1

Nk

)
=
(

1
Nk ,

1
Nk

)
for all k ∈ N. Using Theorem (3.7), we conclude

that tracial states lift to the given map in our theorem. �

Thus, to α ∈ ΞN , we can associate a cocycle ξα in H2(Z
[

1
N

]
,Z) such

that K0(A S
α ) is given by the extension of Z

[
1
N

]
by Z associated with ξα.

It is natural to ask how much information the class of ξα in H2(Z
[

1
N

]
,Z)

contains about noncommutative solenoids. This question will be fully an-
swered in the next section, yet we start here by showing that the map
J ∈ ZN 7→ [ξJ ] ∈ Ext(Z

[
1
N

]
,Z) is surjective with kernel Z, where [ξ] is the

class of the extensions of Z
[

1
N

]
by Z (which is Abelian for our cocycles) for

the equivalence of extension relation.
First, we recall:

Lemma 3.13. For any N ∈ N, N > 1, there exists a group monomorphism
ι : Z→ ZN .

Proof. For any z ∈ Z, let ι(z) be the sequence (zn)n∈N where zn is the
nonnegative remainder of the Euclidean division of z by Nn. By [14], the
map ι is a group monomorphism. �

We now compute the cohomology relation for our Z-valued cocycles given
by K0 groups of noncommutative solenoids:

Theorem 3.14. Let N ∈ N, N > 1. Let J = (Jk)k∈N ∈ ZN and R =
(Rk)k∈N ∈ ZN . Let ι : Z → ZN be the monomorphism of Lemma ( 3.13).
Let ξJ , ξR be the respective Z-valued 2-cocycle of Z

[
1
N

]
given by Lemma

( 3.10). Then the following assertions are equivalent:

(1) ξJ and ξR are cohomologous,
(2) J −R ∈ ι(Z),
(3) one of the following assertions hold:

• there exists M ∈ N such that Jn − Rn = Nn−1(N − 1) for all
n ≥M ,
• there exists M ∈ N such that Jn − Rn = Nn−1(1 − N) for all
n ≥M ,
• there exists M ∈ N such that Jn = Rn for all n ≥M .

In particular, if N > 1 then there exists nontrivial cocycles of the form ξα
for some α ∈ ΞN .

Proof. Let σ = ξJ − ξR. For all n ∈ N, we define jn and rn as the unique
integers in {0, . . . , N − 1} such that Nnjn = Jn+1− Jn and Nnrn = Rn+1−
Rn. Assume there exists ψ : Z

[
1
N

]
→ Z such that for all x, y ∈ Z

[
1
N

]
, we

have σ(x, y) = ψ(x+ y)− ψ(x)− ψ(y).
Note that σ

( p
Nk ,

q
Nk

)
= 0 if p + q is not a multiple of N , with all frac-

tions written in reduced form in Z
[

1
N

]
. Hence, under this condition, we

have ψ
( p
Nk + q

Nk

)
= ψ

( p
Nk

)
+ ψ

( q
Nk

)
. We now get −jk + rk = ψ

(
1
Nk

)
−
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Nψ
(

1
Nk+1

)
, so

jk−rk−ψ
(

1

Nk

)
N = ψ

(
1

Nk+1

)
∈ Z for all k ∈ N. Hence, for all

k ∈ N we have ψ(1) + (Jk−Rk) ∈ NkZ. Now Jk−Rk =
∑k−1

n=0N
n(jn− rn).

Since J1 = j0 < N and if Jk < Nk then Jk+1 = Jk + Nkjk < Nk +
Nk+1 −Nk = Nk+1, we conclude by induction that Jk < Nk for all k ∈ N.
Hence, ψ(1) + Jk − Rk ∈ Zk implies that either ψ(1) + Jk − Rk = 0 or
|ψ(1) + Jk −Rk| ≥ Nk.

Case 3.14.1. Assume first that for all m ∈ N there exists k ∈ N with
k > m such that ψ(1) + Jk − Rk ≥ Nk. Then, for all k ∈ N such that
ψ(1) + Jk −Rk ≥ Nk:

(3.7) ψ(1) ≥ Nk − Jk +Rk = 1 +

k−1∑
n=0

Nn(−jn + rn +N − 1)

for infinitely many k ∈ N. Since −jn+rn > −N , we have −jn+rn+N−1 ≥
0. If −jn + rn + N − 1 > 0 then the right hand side of Inequality (3.7) is
unbounded as k is allowed to go to infinity, which is absurd since the left
hand side is ψ(1). This implies that there exists M ∈ N such that for all
k ≥M , we have jk−rk = N−1. Conversely, if there exists M ∈ N such that
jn−rn = N−1 for all n ≥M , then set ψ(1) = 1+

∑M−1
n=0 Nn(N−1−jn+rn).

We then have:

ψ(1) + Jk −Rk = 1 +

M−1∑
n=0

Nn(N − 1− jn + rn) +

M−1∑
n=0

Nn(jn − rn)

+
k−1∑
n=M

Nn(N − 1)

= 1 +
k−1∑
n=0

(
Nk+1 −Nk

)
= Nk

as desired.

The case when ψ(1) + Jk −Rk ≤ Nk for infinitely many k ∈ N is proved
similarly.

Comment 3.15. For this version, we include the proof of these case.

Case 3.15.1. Assume now that ψ(1) + Jk − Rk ≤ Nk for infinitely many
k ∈ N. We then deduce that there must exists M ∈ N such that for all
k ≥M such that jk−rk = 1−N . Conversely, if there exists such an M ∈ N
then we set ψ(1) = −1 +

∑M−1
n=0 Nn(1 − N − jn + rn) and check that it

satisfies the desired property.

Case 3.15.2. Last, assume that ψ(1) = Rk − Jk for infinitely many k ∈ N.
Let n ∈ N be the smallest k ∈ N such that ψ(1) = Rk − Jk. By definition
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of J,R, we then have, for any k > m such that ψ(1) = Rk − Jk, that:

0 = Jk −Rk − (Jn −Rn) =

k−1∑
m=n+1

Nm(jm − rm)

so jm = rm for all n < m < k. Since k can be arbitrarily large, this implies,
in turn, that Jm − Rm = ψ(1) for all m ≥ k and in particular, jm = rm for
m > k. Conversely, if there exists M ∈ N such that jm = rm for all m > M
then it is easy to construct ψ(1) to have the required identity.

This proves our result.

�

Let α ∈ ΞN be given such that there exists ψ ∈ Z such that ψ+ Jk = Nk

for all k ∈ N with the notation of Theorem (3.12). The map
(
z, p

Nk

)
∈

Z × Z
[

1
N

]
7→
(
z − pψ + pJk

Nk ,
p
Nk

)
∈ Kα is easily checked to be a group

isomorphism, where Kα is the group defined in Theorem (3.7). Similar
constructions may be used for the other two cases of Theorem (3.14).

The following theorem shows that K0 groups of noncommutative solenoids
give all possible Abelian extensions of Z

[
1
N

]
by Z.

Theorem 3.16. Given any Abelian extension:

(3.8) 0 −−−−→ Z −−−−→ Q −−−−→ Z
[

1
N

]
−−−−→ 0,

there exists J ∈ ZN such that the extension of Z by Z
[

1
N

]
given by the

cocycle ξJ of Lemma ( 3.10) is equivalent to Extension ( 3.8). In particular,
fixing any c ∈ [0, 1), there exists α ∈ ΞN with α0 = c and such that Q is
isomorphic as a group to K0(A S

α ).

Proof. The Pontryagin dual of ZN is given by the Prüfer N -group Z(N∞)
defined as the subgroup of T of all elements of order a power of N :

Z (N∞) =
{

exp
(

2iπ
p

Nk

)
: p ∈ Z, k ∈ N

}
endowed with the discrete topology. Z(N∞) is also the inductive limit of:

Z/NZ ⊂ Z/N2Z ⊂ Z/N3Z ⊂ · · ·

and its dual pairing with ZN is given by
〈
J, p

Nk

〉
= exp

(
2iπ p(Jk)

Nk

)
, where

J ∈ ZN and p
Nk ∈ Z(N∞). We note that from the theory of infinite Abelian

groups [12, p. 219], to the short exact sequence of Abelian groups:

0 −−−−→ Z −−−−→ Z
[

1
N

]
−−−−→ Z(N∞) −−−−→ 0,
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there corresponds the Cartan-Eilenberg long exact sequence in Ext theory
for groups:

Hom(Z(N∞),Z) // Hom(Z
[

1
N

]
,Z) // Hom(Z,Z)

rr
Ext(Z(N∞),Z) // Ext(Z

[
1
N

]
,Z) // Ext(Z,Z).

Since Hom(Z
[

1
N

]
,Z) = 0 and Ext(Z,Z) = 0, we deduce that we have a

short exact sequence:

0 // Hom(Z,Z) // Ext(Z(N∞),Z) // Ext(Z
[

1
N

]
,Z) // 0.

Since Z(N∞) is a torsion group, the group Ext(Z(N∞),Z) can be identified

with Hom(Z(N∞),Q/Z) ∼= Ẑ(N∞) [12, p. 224], which in turn can be iden-
tified with the Pontryagin dual of Z(N∞), namely ZN . The identification
between Hom(Z(N∞),Q/Z) and Ext(Z(N∞),Z) is constructed as follows.
Let s be a cross-section of π∗ with s(0) = 0Q in the short exact sequence

0 −−−−→ Z −−−−→ Q
π∗−−−−→ Q/Z −−−−→ 0 where π∗ is the natural pro-

jection. Any such choice will do, and we take s(z) = x with x ∈ Q ∩ [0, 1)
uniquely defined by x ≡ z mod Z. We can then define the two-cocycle:

ω : (z1, z2) ∈ Q/Z×Q/Z 7−→ s(z1) + s(z2)− s(z1 + z2) ∈ Z.

We can now identifyZN and Ext(Z(N∞),Z) as follows: for J = (Jn)n∈N,n>0,

we define the Z-valued 2-cocycle of Z
[

1
N

]
by:

ζJ :
( p1

Nk1
,
p2

Nk2

)
∈ Z

[
1

N

]2

7−→ ω
(
J
[
π∗

( p1

Nk1

)]
, J
[
π∗

( p2

Nk2

)])
.

We then compute that s ◦ π∗(x) = [x] mod 1, x ∈ Q, where for x ∈
Q, [x] mod 1 is defined to be that unique element of [0, 1) congruent to x
modulo 1.

Let us now fix J ∈ ZN . As before, we define (jn)n∈N by requiring for all

n ∈ N, n > 0 that Jn =
∑n−1

k=0 N
kjk and jn ∈ {0, 1, · · · , N − 1}. We now

calculate that the two-cocycle ζJ is given as follows:

ζJ

( p1

Nk1
,
p2

Nk2

)
= ZJ

( p1

Nk1
,
p2

Nk2

)
−


(p2Nk1−k2+p1)

Nk1
Jk1 mod 1 if k1 > k2,

(p1Nk2−k1+p2)

Nk2
Jk2 mod 1 if k1 < k2,

p1+p2
Nk Jk mod 1 if k1 = k2 = k

where ZJ
(

p1
Nk1

, p2
Nk2

)
=
[
p1Jk1
Nk1

mod 1
]

+
[
p2Jk2
Nk2

mod 1
]
. We remark that

although each term in the expression defining the cocycle may not be an
integer, the combination turns into an integer. We now claim that if J ∈ ZN
is in the image of ι : Z → ZN described in the Lemma (3.13), then ζJ is
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a coboundary. This is to be expected from the short exact sequence giving
Ext(Z

[
1
N

]
,Z) as a quotient of Ext(Z(N∞),Z). In this case, we recall that

for (Jn)n∈N,n>0 = ι(P ) for P ≥ 0, there is M ∈ N such that Jn = P for all
n ≥M . In that case for all k1, k2 ≥M and p1, p2 ∈ Z:

ζJ

( p1

Nk1
,
p2

Nk2

)
=

[
p1P

Nk1
mod 1

]
+

[
p2P

Nk2
mod 1

]
−
[( p1

Nk1
+

p2

Nk2

)
P mod 1

]
.

But this eventually constant sequence is a coboundary, since defining µJ :
Z
[

1
N

]
→ Z by:

µJ :
p

Nk
7→
[
pP

Nk
mod 1

]
− pP

Nk
,

we check that:

µJ

( p1

Nk1

)
+ µJ

( p2

Nk2

)
− µJ

( p1

Nk1
+

p2

Nk2

)
= ζJ

( p1

Nk1
,
p2

Nk2

)
for all p1

Nk1
, p2
Nk2
∈ Z

[
1
N

]
. Similarly if J = ι(P ) for a negative integer P , the

statement of Lemma (3.13) shows that jn = N − 1 for all n ≥ M, and one
proves in a similar fashion that ζJ is a coboundary.

We now claim that the two-cocycle of Lemma (3.10) (denoted hereafter
by ξJ) is cohomologous to ζJ . Recall that ξJ is defined by :

ξJ :
( p1

Nk1
,
p2

Nk2

)
∈ Z

[
1

N

]2

7−→
− p1
Nk1

(Jk2 − Jk1) if k2 > k1

− p2
Nk2

(Jk1 − Jk2) if k1 > k2

q
Nr (Jk1 − Jr) if ∧

{
k1 = k2
p1
Nk1

+ p2
Nk2

= q
Nr

To establish this, we first remark that for all p
Nk ∈ Z

[
1
N

]
and for all m ≥ 0,

we have
[ p
Nk · Jk mod 1

]
=
[
pNm

Nk+m · Jk+m mod 1
]
. We establish this by

recalling that each Jk =
∑k−1

i=0 jiN
i so that Jk+m =

∑k+m−1
i=0 jiN

i, and the
result is an easy computation.

Now consider the following one-cochain, generalizing our definition given
earlier on this page:

µJ :
p

Nk
∈ Z

[
1

N

]
−→

[ p

Nk
Jk mod 1

]
− p

Nk
Jk

where the p
Nk is taken in reduced form. Then the cobounding map takes

−µJ to the following two-coboundary δ(−µJ) on Z
[

1
N

]
×Z

[
1
N

]
→ Z given
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by:

(3.9) δ(−µJ)
( p1

Nk1
,
p2

Nk2

)
=

p1

Nk1
Jk1 −

[ p1

Nk1
Jk1 mod 1

]
+

p2

Nk2
Jk2 −

[ p2

Nk2
Jk2 mod 1

]
−
( p1

Nk1
+

p2

Nk2

)
Jr +

[( p1

Nk1
+

p2

Nk2

)
Jr mod 1

]
,

where we want p1
Nk1

+ p2
Nk2

= q
Nr in reduced form. Then one verifies that

ζJδ(−µJ) = ξJ , so that the cocycles ζJ and ξJ are cohomologous. �

Using Theorem (3.16) and Theorem (3.14), we have shown that the group
Ext(Z

[
1
N

]
,Z) is isomorphic to ZN /Z where we identified Z with ι(Z) ⊆

ZN .
We now turn our attention to some properties of the C*-algebras A S

α for
some special classes of α. There are three distinct subclasses of noncommu-
tative solenoids based upon their basic structure:

Definition 3.17. Let N ∈ N, N > 1. Let α ∈ ΞN .

(1) If α is a periodic sequence (and thus in particular rational), we call
A S
α a periodic rational noncommutative solenoid. These are exactly

the nonsimple noncommutative solenoids.
(2) If α is a sequence of rationals, though not periodic, then we call A S

α

an aperiodic rational noncommutative solenoid.
(3) If α is a sequence of irrationals (and thus can never be periodic),

then we call A S
α an irrational noncommutative solenoid.

We start with the case where α is irrational. We use the following well
known result [11] (see also [4] for a similar argument used for AF-algebras),
whose proof is included for the reader’s convenience. We refer to [16] for
the foundation of the theory of AT-algebras. An AT-algebra is an inductive
limit of direct sums of circle algebras, which in turn are C*-algebras of matrix
valued functions over some connected subsets of T.

Lemma 3.18. The inductive limit of AT-algebras is AT.

Proof. Let (An)n∈N be a sequence of AT-algebras with inductive limit A.
To simplify notations, we identify An with a subalgebra of A for all n ∈ N,
and we write ‖ · ‖ for the norm of A. Let ε > 0, k ∈ N with n > 0 and
a1, . . . , ak ∈ A. Since A is an inductive limit, there exists K ∈ N and
b1, . . . , bk ∈ AK such that ‖aj − bj‖ ≤ 1

2ε for j = 1, . . . , k. Now, since
AK is an AT-algebra, there exists L ∈ N, a finite direct sum C of circle
algebras, and c1, . . . , ck ∈ C such that ‖bj − cj‖ < 1

2ε for j = 1, . . . , k.
Hence, ‖aj − cj‖ < ε. By [16, Theorem 4.1.5], the C*-algebra A is an
AT-algebra. �

Proposition 3.19. Let N ∈ N, N > 1 and α ∈ ΞN . If α0 6∈ Q (or equiv-
alently, if there exists k ∈ N such that αk 6∈ Q), then A S

α is a simple
AT-algebra of real rank 0.
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Proof. Irrational noncommutative solenoids are inductive limits of irra-
tional rotation algebras by Theorem (3.6), which are AT by [10] and of real
rank zero, and thus our proposition is proven by [16] and Lemma (3.18). �

We now consider α ∈ ΞN (N ∈ N, N > 1) with α0 rational periodic. By
Theorem (3.4), A S

α is not simple. It is possible to provide a full descrip-
tion of the C*-algebra A S

α . We denote by Mq(C) the C*-algebra of q × q
matrices with complex entries, and we denote by C(X,A) the C*-algebra of
continuous functions from a compact space X to a C*-algebra A.

Theorem 3.20. Let N ∈ N with N > 1 and α ∈ ΞN . Let α0 = p
q with

p, q ∈ N, nonzero, p and q relatively prime. Assume there exists k ∈ N
nonzero such that (Nk − 1)α0 ∈ Z, and that k is the smallest such nonzero

natural. Let λ = exp
(

2iπ pq

)
. We define the following two unitaries:

uλ =


1

λ
λ2

. . . λq−1

 vλ =


0 · · · 0 1
1 0 · · · 0

0
. . . 0

0 · · · 1


and observe that vλuλ = λuλvλ. Then A S

α is the C*-algebra of continuous
sections of a bundle with base space S 2

Nk and fiber Mq(C). More precisely,

A S
α is the fixed point C*-algebra of C(S 2

Nk ,Mq(C)) for the action ρ of

Z/qZ2 given by:

ρ(n,m)(ζ) : (z, w) ∈ S 2
N 7→ v−mλ u−nλ ζ(λ−nz, λ−mw)unλv

m
λ

for (n,m) ∈ (Z/qZ)2 and ζ ∈ C(S 2
Nk ,Mq(C)).

Proof. By Theorem (2.9), our assumption implies that α is k-periodic. Let
β = (α0)n∈N ∈ ΞNk . Let θk = ϕnk ◦ . . . ϕ(n+1)k−1 for all n ∈ N where

we use the notations of Theorem (3.6). We have A S
α = lim−→(Aα2k

, ϕk) =

lim−→(Aβ2k , θk) = A S
β as desired. We shall henceforth write β, by abuse of

language, to mean the constant value the sequence β takes — namely α0.
Let E = C(S 2

Nk ,Mq(C)) and let Eτ be the fixed point C*-subalgebra of E

for the action τ of (Z/qZ)2. It is well known that the fixed point C*-algebra
Eτ of τ is *-isomorphic to Aβ.

Let ϕ : E → E be defined by setting ϕ(ζ) : (z, w) ∈ T2 7→ ζ(z(Nk), w(Nk))

for all ζ ∈ E. Now, using our assumption that (Nk−1)α0 ∈ Z so λ(Nk) = 1,
we show that ϕ and τ commute:

τ(1,0)(ϕ(f ⊗A)) : (z, w) ∈ T2 7→ f((λ−1z)(Nk), w(Nk))⊗A

= f(λ−1z(Nk), w(Nk))⊗A
= ϕ(τ(1,0)(f ⊗A)),
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for all f ∈ C(T2) and A ∈ Mq(C). Hence τ(1,0) ◦ ϕ = ϕ ◦ τ(1,0) ◦ ϕ by
extending (3) linearly and by continuity. A similar computation would show
that τ(0,1) ◦ ϕ = ϕ ◦ τ(0,1). Hence, ϕ restricts to an endomorphism of Eτ .
Now, the inductive limit of:

E
ϕ−−−−→ E

ϕ−−−−→ E
ϕ−−−−→ · · ·

is C(S 2
Nk ,Mq(C)). Since ϕ and τ commute, the action τ extends to the

inductive limit by:

ρ(p,q)(ζ) : (z, w) ∈ S 2
N 7→ v−qλ u−pλ ζ(λ−pz, λ−qw)upλv

q
λ

for all ζ ∈ C(S 2
Nk ,Mq(C)) and moreover, the inductive limit of:

Aα = Eτ
ϕ−−−−→ Aα

ϕ−−−−→ Aα
ϕ−−−−→ · · ·

which is A S
α by Theorem (3.6) is also the fixed point of C(S 2

Nk ,Mq(C)) by

the action ρ of (Z/qZ)2 on C(S 2
Nk ,Mq(C)). Hence our theorem. �

We note that the proof of Theorem (3.20) shows that the embeddings from
Theorem (3.6) map from and to the centers of the rotation C*-algebras. This
is in contrast with the situation when α0 is rational but α is not pseudo-
periodic, which illustrates why the associated noncommutative solenoids are
simple.

4. The isomorphism problem

Our classification of noncommutative solenoids is based on our computa-
tion of their K-theory. We start with the following simple observation:

Lemma 4.1. Let σ : Z
[

1
N

]
→ Z

[
1
N

]
be a group isomorphism. Then there

exists p ∈ Z with p | N and p 6∈ {−N,N} and k ∈ N such that σ(1) = p
Nk .

Consequently σ
(

1
Nr

)
= p

Nk+r for all r ∈ N.

Proof. Let us write σ(1) = pq
Nk in its reduced form, with q relatively prime

with N and nonnegative. Note that as σ is an isomorphism, pq 6= 0 and
moreover, there exists x ∈ Z

[
1
N

]
such that σ(x) = p

Nk and we must have
qx = 1. This contradicts the relative primality of N and q. �

We now obtain the main result of our paper. We fully characterize the
isomorphism classes of noncommutative solenoids based on the multipliers
of adic rationals.

Theorem 4.2. Let N,M ∈ N with N > 1 and M > 1. Let α ∈ ΞN and
β ∈ ΞM . The following assertions are equivalent:

(1) The C*-algebras A S
α and A S

β are *-isomorphic,

(2) The following conditions hold together:
• N and M have the same set of prime factors,
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• Let R be the greatest common divisor of N and M and set, for
all n ∈ N:

α′n = ναn and β′n = µβn

where N = νR and M = µR, so that α′, β′ ∈ ΞR. Then there
exist Λ ∈P and a sequence γ ∈ ΞΛ such that, at once:

– α′ and γ have a common subsequence,
– β′ or −β′ = (1− β′n)n∈N has a common subsequence with
γ,

– {Λn : n ∈ N} is the set of prime factors of R.

Proof. Assume that there exists Λ ∈ P and γ ∈ ΞΛ such that α and
β have subsequences which are also subsequences of γ. Then a standard
intertwining argument shows that A S

α and A S
β are *-isomorphic to A S

γ .

Moreover, for any irrational rotation algebra Aθ, we have that Aθ is *-
isomorphic to A−θ. Hence, A S

β and A S
−β are *-isomorphic as well.

Now, let N = µR and assume the set of prime factors in µ is a subset of
the set of prime factors of N . Set α′n = µnαn for all n ∈ N.

First, it is straightforward to show that if N and R have the same set of
prime factors, then Z

[
1
N

]
and Z

[
1
R

]
are isomorphic. Second, for all n ∈ N

we have:

Rα′n+1 ≡ Rµn+1αn+1 mod Z ≡ µnNαn+1 mod Z ≡ µnαn mod Z

≡ α′n mod Z Hence α′ ∈ ΞR.

Third, given
pj

Rkj
=

pjµ
kj

Nkj
∈ Z

[
1
R

]
for j = 1, 2, 3, 4, we have:

Ψα′

(( p1

Rk1
,
p2

Rk2

)
,
( p3

Rk3
,
p4

Rk4

))
= exp

(
2iπ

(
α′k1+k4p1p4

))
= exp

(
2iπ

(
αk1+k4(µk1p1µ

k4p4

))
= Ψα

((
p1µ

k1

Nk1
,
p2µ

k2

Nk2

)
,

(
p3µ

k3

Nk3
,
p4µ

k4

Nk4

))
.

Hence, Ψα = Ψ′α. Consequently, A S
α′ = A S

α . This concludes the proof that
(2) implies (1).

Conversely, let θ : A S
α → A S

β be a *-isomorphism. We shall use the

notations introduced in Theorem (3.7). If τ is a tracial state of A S
β then

τ ◦ θ is a tracial state on A S
α . Denote, respectively, by τα and τβ the lift of

a tracial state of A S
α and A S

β , and note that by Theorem (3.5), the choices
of tracial state is irrelevant.



NONCOMMUTATIVE SOLENOIDS 187

By functoriality of K-theory, we obtain the following commutative dia-
gram:

(4.1) K0(A S
α )

K0(θ) //

τα
##

K0(A S
β )

τβ
{{

R

where K0(θ) is the group isomorphism induced by θ. To ease notations, let
us write σ = K0(θ).

Our first observation is that τβ ◦σ(1, 0) = τα(1, 0) = 1, which implies that
σ(1, 0) = (1, 0).

Let πβ : Kβ → Z
[

1
M

]
be defined by πβ

(
z +

pJβk
Mk ,

p
Mk

)
= p

Mk . It is

easily checked that πβ is a group epimorphism. Moreover, kerπβ = {(z, 0) :

z ∈ Z}. Consequently, if z, z′ ∈ Z, since σ
(
z +

pJαk
Nk ,

p
Nk

)
= σ(z, 0) +

σ
(
pJαk
Nk ,

p
Nk

)
, we observe that:

πβ

(
σ

(
z +

pJαk
Nk

,
p

Nk

)
− σ

(
z′ +

pJαk
Nk

,
p

Nk

))
= 0.

Consequently, we have the following commuting diagram:

Kα
σ //

πα
��

Kβ

πβ
��

Z
[

1
N

] f // Z
[

1
M

]
.

with f : Z
[

1
N

]
→ Z

[
1
M

]
defined by setting f

( p
Nk

)
= πβ ◦ σ

(
pJαk
Nk ,

p
Nk

)
. In

particular, f is a group isomorphism, so the set of prime factors of N and M
are the same andZ

[
1
N

]
= Z

[
1
M

]
. As we showed in the first half of this proof,

and using the definition of our Theorem, α′, β′ ∈ ΞR and Z
[

1
N

]
= Z

[
1
R

]
where R is the greatest common divisor of N,M and A S

α′ = A S
α while

A S
β′ = A S

β . We shall henceforth work within Z
[

1
R

]
with α′ and β′.

Let p ∈ Z, k ∈ N be defined so that f(1) = p
Rk

and p
Rk

is in reduced form,
with p | R and p 6∈ {−R,R} by Lemma (4.1) . Since f is an isomorphism,
we have f

(
1
Rn

)
= p

Rk+n
for all n ∈ N. Using the notation Ω(R) for the

number of prime factors of R, let Λ ∈P be defined as a periodic sequence
of period Ω(R) such that ΛΩ(R)−1−j = Λ(p)Ω(R)−1−j for j = 0, . . . ,Ω(p)− 1
and πΩ(R)(Λ) = R. Any of the (Ω(R) − Ω(p))! possible choices of order for
the first Ω(R) − Ω(p) values of Λ can be used, and we assume we pick one
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in the rest of this proof. We can visualize Λ as:

Λ =

Λ0,Λ1, · · · ,
product = p︷ ︸︸ ︷

ΛΩ(R)−Ω(p), · · · ,ΛΩ(R)−1︸ ︷︷ ︸
product = R

, ΛΩ(R), · · · ,Λ2Ω(R)−1︸ ︷︷ ︸
equal to previous Ω(R) terms

, · · ·


Let γ be the (unique) extensions of β′ to ΞΛ. Thus γΩ(R)n = β′n for all

n ∈ N. Now, for any n ∈ N, there exists pn ∈ Z such that

σ

(
Jα
′

n

Rn
,

1

Rn

)
=

(
pn +

pJβ
′

n+k

Rn+k
,

p

Rn+k

)
.

Using the computation of the traces on K0 in Theorem (3.7) and the com-
mutative diagram (4.1), and noting that if r = Ω(p) then pβ′n = pγnΩ(R) =
γnΩ(R)−r by definition of p, Λ and γ, we thus have:

α′n = pβ′n+k + pn ≡ sign(p)γ(n+k)Ω(N)−r mod Z.

Thus, sign(p)α′ is a subsequence of γ, and β is a subsequence of γ by
construction. This concludes the proof of (1) implies (2). �

Corollary 4.3. Let N,M be prime numbers. Let α ∈ ΞN and β ∈ ΞM .
Then the following assertions are equivalent:

(1) The noncommutative solenoids A S
α and A S

β are *-isomorphic,

(2) We have N = M and one of the sequence α or β is a truncated
subsequence of the other.

Proof. If N = M and α is a truncated subsequence of β then A S
α and αβ

are trivially *-isomorphic. The same holds if β is a truncated subsequence
of α.

Conversely, assume A S
α and A S

β are *-isomorphic. Then as N and M

are prime, so by Theorem (4.2) we have N = M . Moreover, there exists a
sequence γ ∈ ΞN such that both α and β are subsequences of γ. Now, since
α, β, γ ∈ ΞN , this implies that for some n, n′ ∈ N we have αj = γn+j and
βj = γn′+j for all j ∈ N. This shows that either α is a truncated subsequence
of β (if n′ ≤ n) or β is a truncated subsequence of α. �

Theorem (4.2) relies on the invariant A S
α (α ∈ ΞN ) 7→

(
K0(A S

α ), τα
)

where τα is the unique map given by lifting any tracial state of A S
α to its

K0 group. We would like to add an observation regarding the information
on noncommutative solenoids one can read from the K0 group seen as an
Abelian extension of Z by Z

[
1
N

]
rather than as a group alone. We fix

N ∈ N, N > 1.
First, note that given α ∈ ΞN , the pair (K0(A S

α ), [1]), where [1] is the
K0-class of the identity of A S

α , we can construct an Abelian extension of
Z by Z

[
1
N

]
by defining ι : z ∈ Z 7→ z[1] and noting that K0(A S

α )/i(Z) is

isomorphic to Z
[

1
N

]
.
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Now, consider α, β ∈ ΞN such that there exists a (unital) *-isomorphism
ψ : A S

α → A S
β . Then the following diagram commutes:

(4.2) 0 // Z
ι// Qα = K0(A S

α ) //

K0(ψ)

��

Z
[

1
N

]
//

σ

��

0

0 // Z
ι// Qβ = K0(A S

β ) // Z
[

1
N

]
// 0

since ψ is unital, and where the arrow σ is defined and proven to be an
isomorphism by standard diagram chasing arguments.

Conversely, we say that two Abelian extensions of Z by Z
[

1
N

]
such that

there exists a commutative diagram of the form Diagram (4.2) are weakly
equivalent (note that Theorem (3.16) shows that any such extension can
be obtained using the K-theory of noncommutative solenoids). Note that
weakly equivalent extensions are isomorphic but not necessarily equivalent
as extensions. The difference is that we allow for an automorphism σ of
Z
[

1
N

]
. This reflects, informally, that according to Theorem (4.2), the non-

commutative solenoid A S
α only partially determines α.

Now, given two equivalent Abelian extensions of Z by Z
[

1
N

]
, if one is

weakly equivalent to some other extension, then so is the other. Hence,
weak equivalence defines an equivalence relation ≡ on Ext(Z

[
1
N

]
,Z) such

that if α, β ∈ ΞN give rise to *-isomorphic noncommutative solenoids, then
the associated Abelian extensions of cocycle ξα and ξα (see Lemma (3.10))
in Ext(Z

[
1
N

]
,Z) are equivalent for ≡. According to Theorem (3.16), the

group Ext(Z
[

1
N

]
,Z) is isomorphic to the quotient ZN/Z of the group ZN

of N -adic integers by the group Z of integers. Using Theorem (4.2), and for
N prime, we easily see that the relation induced by ≡ on ZN/Z is given by:

[Jn]n∈N ≡ [Rn]n∈N ⇐⇒ ∃k ∈ N
(
NkJ −R ∈ Z

)
∨
(
NkR− J ∈ Z

)
where [J ] is the class of J ∈ ZN in ZN/Z, while NkJ is the sequence
(NkJn)n∈N for any J ∈ ZN .

Hence, in conclusion, for a given α ∈ ΞN , the data
(
K0(A S

α ), [1], α0

)
where α0 is the trace of any Rieffel-Powers projection in A S

α , is a com-
plete invariant for A S

α . Indeed, (K0(A S
α ), [1]) determines a cocycle ξJ in

H2(Z
[

1
N

]
,Z), up to the equivalence ≡, and we can recover α up to a shift

using the value α0.
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