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Boundaries, bundles, and trace algebras

Erin Griesenauer, Paul S. Muhly and Baruch Solel

To the memory of Bill Arveson

Abstract. We describe how noncommutative function algebras built
from noncommutative functions in the sense of Dmitry S. Kaliuzhnyi-
Verbovetskyi and Victor Vinnikov may be studied as subalgebras of
homogeneous C*-algebras.
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1. Introduction

This note grew out of efforts to apply Arveson’s boundary theory [2, 4,
6, 5] to operator algebras that arise naturally in free analysis. They are
built from the representation theory of free algebras, but our point of view
was inspired to a great extent by the recent book and perspective of D.
Kaliuzhnyi-Verbovetskyi and V. Vinnikov [16]. In a sense, our purpose is to
present “a proof of concept”. The problem which drew us to the topics dis-
cussed here remains unsolved. We will discuss it in the final section, Section
6. Our efforts to solve this problem led us to methods from algebraic geom-
etry, geometric invariant theory and polynomial identity algebras - subjects
largely unfamiliar to us. Nevertheless, we hope to show that these subjects
carry useful information for free analysis and its associated operator alge-
bras. We have not striven for maximal generality in the theorems and proofs
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presented in this paper. Rather, we have tried to present a story whose pur-
pose is to stimulate interest among the operator algebra community in the
algebras described here and to stimulate future research. Consequently, the
Introduction is the bulk of the paper. It carries most of the narrative and
the statements of the main theorems. Most proofs and details are relegated
to subsequent (shorter) sections.

The fundamental feature of the functions that we want to exploit is that
they are (holomorphic) matrix concomitants. Various algebras they generate
will be identified as subalgebras of homogeneous C∗-algebras. To describe
the functions and algebras, we need to develop notation and provide back-
ground information. Throughout this note G will denote the projective
linear group, PGL(n,C), which will be viewed as the group of automor-
phisms of the full algebra of complex n×n matrices, Mn(C). The subgroup
of G that preserves the usual ∗-structure on Mn(C) is the projective unitary
group, PU(n,C). It will be denoted by K. We frequently identify G with
GL(n,C) and write s−1as, a ∈Mn(C), s ∈ G, for what should be written as
a·s or s−1 ·a. This should cause no confusion since when GL(n,C) appears in
this note, it always acts through conjugation of matrices. We study actions
of G on d-tuples of n×n matrices, Mn(C)d, via the “diagonal” action. That
is, we write elements of Mn(C)d as z = (Z1, Z2, · · · , Zd), with Zi ∈ Mn(C),
and we write z · s = s−1zs for (s−1Z1s, s

−1Z2s, · · · , s−1Zds), s ∈ G. We
are interested in domains D ⊆ Mn(C)d that are invariant under this action
of G. A function f defined on such a domain D and mapping to Mn(C) is
called a matrix concomitant if f satisfies the equation

(1.1) f(s−1zs) = s−1f(z)s,

for all s ∈ G and all z ∈ D. The collection of all holomorphic matrix con-
comitants defined on a domain D will be denoted Hol(D,Mn(C))G. These
are the principal objects of study in this note. Unless explicitly stated oth-
erwise d and n will be assumed to be at least 2 when discussing d-tuples of
n× n matrices.

Examples of holomorphic matrix concomitants are easy to come by. For
i = 1, 2, · · · , d, we let Zi denote the function on Mn(C)d defined by

Zi(z) := Zi, z = (Z1, Z2, · · · , Zd).
That is, the Zi are just the matrix coordinate functions defined on Mn(C)d.
Clearly, each Zi is a holomorphic matrix concomitant. Since matrix con-
comitants form an algebra under pointwise sums and products, the algebra
generated by the Zi consists of holomorphic matrix concomitants. This
algebra is denoted G0(d, n) and is called the algebra of d generic n × n
matrices. Evidently, it is the image of the free algebra on d variables,
C〈X1, X2, · · · , Xd〉 under the map that takes Xi to Zi, i = 1, 2, · · · , d. An-
other important algebra of holomorphic matrix concomitants is built from
the algebra polynomial matrix invariants, I0(d, n), which is the set of all
polynomial functions p : Mn(C)d → C such that p(s−1zs) = p(z), s ∈ G,
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z ∈ Mn(C)d. We identify p ∈ I0(d, n) with the matrix-valued function
z → p(z)In, obtaining a polynomial matrix concomitant. The algebra gen-
erated by G0(d, n) and I0(d, n) is denoted S0(d, n) and is called the trace
algebra of the generic matrices. In [24, Theorem 2.1], Procesi proved that
S0(d, n) is precisely the set of all polynomial matrix concomitants. That is,
S0(d, n) consists of all the matrix concomitants whose entries are polynomial
functions of dn2 variables, organized as d-tuples of n× n matrices.

Lemma 1.1. Hol(Mn(C)d,Mn(C))G is the closure of S0(d, n) in topology
of uniform convergence on compact subsets of Mn(C)d.

Proof. This is an easy application of Weyl’s unitarian trick, which is often
regarded as the assertion that the maximal compact subgroup of a reductive
algebraic group is Zariski dense in the algebraic group [25, Page 224 ff]. In
our situation, it means that any polynomial function on Mn(C)d that is
invariant under the action of K is automatically invariant under the action
of G. Given f ∈ Hol(Mn(C)d,Mn(C))G choose a sequence {pl}l≥1 of n× n
matrices, whose entries are polynomial functions on Mn(C)d, that converges
to f uniformly on compact subsets of Mn(C)d, and define

p̃l(z) =

∫
K
kpl(k

−1zk)k−1 dk,

where “dk” denotes Haar measure on K. Then easy estimates show that the
p̃l converge to f uniformly on compact subsets of Mn(C)d. The p̃l satisfy
the equation p̃l(k

−1zk) = k−1p̃(z)k for all k ∈ K. Since the p̃l are all
polynomials, they are matrix concomitants by Weyl’s unitarian trick, and
Procesi’s theorem (loc. cit.) completes the proof. �

Procesi also proved in [24, Theorem 3.4a] that I0(d, n) is generated by
the traces tr(Zi1Zi2 · · · , Zis), where s ≤ 2n − 1. Thus I0(d, n) is finitely
generated. We may therefore consider the spectrum of I0(d, n), Q(d, n), as
an abstract affine algebraic variety defined over C. The inclusion of I0(d, n)
in the polynomial functions mappingMn(C)d to C induces, by way of duality,
a (regular) map π0 from Mn(C)d onto Q(d, n).

If V(d, n) denotes the set of all z = (Z1, Z2, · · · , Zd) ∈ Mn(C)d such
that Z1, Z2, · · · , Zd generate Mn(C) as an algebra over C, then V(d, n) is
a G-invariant, Zariski-open subset of Mn(C)d, which we call the set of ir-
reducible points of Mn(C)d. Another fundamental theorem of Procesi [23,
Theorem 5.10] asserts that the image of V(d, n) under π0, which we de-
note by Q0(d, n), is an open subset of the smooth points of Q(d, n) and that
(V(d, n), π0, Q0(d, n)) has the structure of a holomorphic principal G-bundle,
denoted here by V(d, n).

We write M(d, n) for the associated fibre bundle with fibre Mn(C), i.e.,
the bundle space of M(d, n) is V(d, n)×GMn(C), where G acts on V(d, n)×
Mn(C) via the formula (z, A) · s = (s−1zs, s−1As) = (z · s, s−1 · A). The
projection π : V(d, n)×GMn(C)→ Q0(d, n) is given by formula π([z, A]) =
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[z], in which we adopt the convention that when G acts on a set, say, X,
then the orbit of a point x ∈ X is written [x], i.e., [x] := {x · g | g ∈ G}.
Thus, in particular, π([z, A]) = π0(z).

Our first result identifies the holomorphic cross sections of Mn(d, n),
Γh(Q0(d, n),M(d, n)), with the holomorphic matrix concomitants on V(d, n).
While the proof will be presented in Section 2, it will be helpful to reflect
here on the connection between cross sections and concomitants. Everything
boils down to parsing this equation:

(1.2) σ([z]) = [z, φ(z)],

z ∈ V(d, n), where σ is a cross section of M(d, n) and φ is a matrix con-
comitant. The key for this is to note that if we are given u ∈ Q0(d, n)
and a ∈ M(d, n) such that π(a) = u, then once z ∈ V(d, n) is chosen so
that π0(z) = u, there is one and only one A ∈ Mn(C) such that a = [z, A].
Now let’s read (1.2) from left to right and suppose σ is a cross section
of M(d, n). If u ∈ Q0(d, n), then for z ∈ π−10 (u), there is one and only
one matrix φ(z) ∈ Mn(C) such that [z, φ(z)] = σ(u). This defines φ on
π−10 (u) for each u ∈ Q0(d, n), and so the Mn(C)-valued function, φ, is
well defined on all of V(d, n). On the other hand, π0(z · s) = u for any
s ∈ G. So π([z · s, φ(z · s)]) = u, too. But by definition of the action of
G on V(d, n) × Mn(C), [z · s, φ(z · s)] = [z, s · φ(z · s)], which shows that
s · φ(z · s) = φ(z), i.e., φ(z · s) = s−1φ(z)s. Reading (1.2) from right to
left, suppose φ is a matrix concomitant on V(d, n). Then [z, φ(z)] is an el-
ement in M(d, n) such that π([z, φ(z)]) = π0(z) = [z]. But for each s ∈ G,
π([z·s, φ(z·s)]) = π0(z·s) = [z], too, and [z·s, φ(z·s)] = [z, s·φ(z·s)] = [z, φ(z)]
because φ is a concomitant. Therefore, if we set σ([z]) = [z, φ(z)], then σ is
well defined.

Henceforth, then, given a matrix concomitant φ, we shall write σφ for
the cross section of M(d, n) determined by φ via (1.2) and conversely, given
a cross section σ of M(d, n), we shall write φσ for the matrix concomitant
defined through (1.2).

Theorem 1.2. For d ≥ 2 and n ≥ 2, the correspondence φ→ σφ defines an

algebra isomorphism Ψ : Hol(V(d, n),Mn(C))G → Γh(Q0(d, n),M(d, n)),
with inverse given by σ → φσ. If, in addition, d or n is greater than 2,
then every concomitant in Hol(V(d, n),Mn(C))G admits a unique exten-
sion to a concomitant in Hol(Mn(C)d,Mn(C))G. The domain V(2, 2), on
the other hand, is a domain of holomorphy and there are concomitants in
Hol(V(2, 2),M2(C))G that do not extend to M2(C)2.

Theorem 1.2 gives a faithful representation of Hol(V(d, n),Mn(C))G as a
space of functions on the space of similarity classes of its irreducible matrix
representations. It has the following immediate corollary.

Corollary 1.3. The bundle M(d, n) is not trivial when (d, n) 6= (2, 2).
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Proof. By [19, Proposition 4.4], Hol(Mn(C)d,Mn(C))G has no zero divi-
sors. Since Hol(Mn(C)d,Mn(C))G and Γh(Q0(d, n),M(d, n)) are isomorphic
when (d, n) 6= (2, 2), neither does Γh(Q0(d, n),M(d, n)) in this case. How-
ever, if M(d, n) were trivial, Γh(Q0(d, n),M(d, n)) would be isomorphic to
the n × n matrices over the space of holomorphic functions on Q0(d, n),
which has plenty of zero divisors. �

The bundle M(2, 2) is also nontrivial, but a different proof seems to be
required. We will present one in Proposition 2.2.

Our focus then turns to domains D such that D is a compact subset
of Q0(d, n). Since Q(d, n) is the spectrum of I0(d, n), the image of I0(d, n)
under Ψ coincides with the algebra of regular C-valued functions on Q(d, n).
That is, if w ∈ Q(d, n) and if z ∈ Mn(C)d is such that π0(z) = w, then for
f ∈ I0(d, n), we get Ψ(f)(w) = f(z), identified with the cross section of
M(d, n) that f determines. That is, Ψ(f)([z]) = [z, f(z)]. We let I(D; d, n)
denote the closure of {Ψ(f) | f ∈ I0(d, n)} in the space of continuous C-
valued functions on D, C(D). Since I0(d, n) contains the constant functions
and separates the points of Q(d, n), I(D; d, n) is a function algebra on D,
consisting of functions that are continuous on D and holomorphic on D.
Although D need not be the maximal ideal space of I(D; d, n), D contains
the Shilov boundary of the maximal ideal space, which we denote by ∂D.
(This is the case simply because I(D; d, n) is a function algebra on D.) The
extreme boundary, or Choquet boundary of D, will be denoted ∂eD. It
is a dense subset of ∂D that consists of all points in D that have unique
representing measures for I(D; d, n) supported in D.

We are interested both in the holomorphic cross sections of M(d, n) and in
its continuous cross sections, Γc(Q0(d, n),M(d, n)). The problem we face is
that there is no evident natural involution on M(d, n) with respect to which
Γc(X,M(d, n)) is a C∗-algebra for every compact subset X ⊆ Q0(d, n). This
is because V(d, n) is a principal G-bundle and so in a coordinate represen-
tation of V(d, n) the transition functions need not take their values in K.
In fact, Γc(X,M(d, n)) does not carry a canonical Banach algebra struc-
ture. Nevertheless, there are many ad hoc Banach algebra structures on
Γc(X,M(d, n)), which may be constructed as follows. Take a locally fi-
nite open cover U of Q0(d, n) with an associated set of transition functions
{gUV }U,V ∈U that define V(d, n) as a principal bundle. Then take isomor-
phisms FU : M(d, n)|U → U ×Mn(C) that allow one to identify continuous
cross sections of M(d, n) over U with continuous Mn(C)-valued functions
fU on U that satisfy fU (u) = gUV (u) ◦ fV (u) on U ∩ V . For a given com-
pact subset X ⊆ Q0(d, n) one can then define a Banach algebra norm on
Γc(X,M(d, n)) by setting

(1.3) ‖σ‖U := sup
x∈X

sup
x∈U
‖FU (σ)(x)‖, σ ∈ Γc(X,M(d, n)).
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Here the norm ‖FU (σ)(x)‖ refers to the Hilbert space operator norm one
obtains by viewing Mn(C) as operators on Cn in the usual way. Different
systems of data (U , {gUV }U,V ∈U , {FU}U∈U ) give different norms, but the
norms are all equivalent, i.e., the Banach algebras constructed are mutually
isomorphic, and they all yield the compact-open topology on Γc(X,M(d, n))
for any compact set X ⊆ Q0(d, n).

It may come as a pleasant surprise, therefore, to learn that there is a
way to put a C∗-algebra strcture on Γc(X,M(d, n)) for each compact set
X ⊆ Q0(d, n). In fact, any two C∗-algebra structures on Γc(X,M(d, n)) are
∗-isomorphic. We must emphasize the difference between ‘isomorphic’ and
‘equal’ here because the isomorphisms involved almost always map some
holomorphic sections to non-holomorphic sections. Each C∗-structure on
Γc(X,M(d, n)) is obtained from a reduction P of V(d, n) to a principal K-
bundle over X1. For our purposes, this means that P is a principal K bundle
obtained from a K-invariant subset P of V(d, n) that π maps onto X in such
a way that π induces a homeomorphism of P/K with X. From a coordinate
point of view, the transition functions defining P take their values in K and
so the associated Mn(C)-fibre bundle, which we denote by M∗(P; d, n), has a
natural, fibre-wise-defined involution. The bundles M(d, n) and M∗(P; d, n)
are isomorphic as topological bundles [15, Theorem 6.3.1]. Therefore for any
compact subset X of Q0(d, n), Γc(X,M

∗(P; d, n)) and Γc(X,M(d, n)) are
isomorphic Banach algebras, where Γc(X,M(d, n)) is given any of the norms
‖ · ‖U defined in (1.3) using a choice of the data (U , {gUV }U,V ∈U , {FU}U∈U ).

In the norm on Γc(D,M(d, n)), elements in Γh(D,M(d, n)) achieve their
maximums on ∂D. However, it is easy to construct examples of reductions
P of V(d, n) such that the image of an element from Γh(D,M(d, n)) in
Γc(D,M∗(P; d, n)) need not take its maximum norm on ∂D. For this reason,
we adjust our focus and concentrate directly on Γc(∂D,M∗(P; d, n)).

Definition 1.4. The closure of Ψ(S0(d, n)) in Γc(∂D,M∗(P; d, n)) will be
denoted S(D,P; d, n) and will be called the tracial function algebra of D
determined by P and S0(d, n).

Observe that when n = 1, G = K is the trivial group; V(d, n), P, and
Q0(d, n) become identified with Cd\{0}; M(d, n) = M∗(P; d, n) is the trivial
line bundle on Cd; and the algebras I(D; d, n) and S(D,P; d, n) are identified
with P(D), the sup-norm closure of the polynomial functions on Cd in the
continuous functions on D. Of course, P(D) is a much studied algebra in
complex analysis (see, e.g. [32]), but there does not seem to be a universally
accepted term for it. Our current thinking is that S(D,P; d, n) is the natural
generalization of P(D).

We note that the center of S(D,P; d, n) may be identified in a natural
fashion with I(D; d, n), no matter what reduction is chosen. We shall give

1We follow Steenrod [30] in the use of the term “reduction”. Husemoller uses the term
“restriction”.
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a proof of this fact in Section 3. The reason the assertion is true is that
elements of I(D; d, n) are identified with sections whose values are scalar
multiples of the identity and these are unaffected by the transition func-
tions that describe the bundles. The fact that the center of S(D,P; d, n)
is I(D; d, n) shows in particular that S(D,P; d, n) is a proper subalgebra of
Γc(∂D,M∗(P; d, n)). This is not evident, a priori.

The C∗-algebra Γc(∂D,M∗(P; d, n)) is an n-homogeneous C∗-algebra [33,
Theorem 8] and each irreducible representation of it is given, essentially,
by evaluation at a unique point of ∂D. In more detail, note that for u ∈
Q0(d, n), π−1(u) = {[z, A] ∈ P×KMn(C) | π0(z) = u, A ∈Mn(C)}. So, once
z is chosen so that π0(z) = u the map A→ [z, A] is a unital ∗-homomorphism
ρ of Mn(C) into π−1(u). Since Mn(C) is simple, the map is injective. It is
surjective because if [w, B] lies in π−1(u), then there is a unique s ∈ K
such that w = z · s and we may write: [w, B] = [z · s,B] = [z, s · B], which
is in the image of ρ. Thus, if for each u ∈ ∂D, we write evu for the ∗-
homomorphism from Γc(∂D,M∗(P; d, n)) into π−1(u) defined by evaluating
a section in Γc(∂D,M∗(P; d, n)) at u, then ρ−1 ◦ evu is an irreducible rep-
resentation of Γc(∂D,M∗(P; d, n)) and every irreducible representation of
Γc(∂D,M∗(P; d, n)) is unitarily equivalent to ρ−1 ◦ evu for a unique u ∈ ∂D
by [11, Corollary 10.4.4].

The two principal theorems of this note are Theorems 1.6 and 1.9, below.
For the first, and its corollary, Corollary 1.7, we need to recall Arveson’s
definition of a boundary representation, and related ideas.

Definition 1.5. [2, Definition 2.1.1] If B is a unital C∗-algebra and if A
is a norm-closed subalgebra of B that contains the unit of B and generates
B as a C∗-algebra, then an irreducible representation π : B → B(Hπ) is a
boundary representation for A in case π is the only unital completely positive
map ω : B → B(Hπ) such that π|A = ω|A.

Theorem 1.6. For every u ∈ ∂eD, the evaluation representation evu is a
boundary representation of Γc(∂D,M∗(P; d, n)) for S(D,P; d, n).

In the setting of Definition 1.5, an ideal I in B is called a boundary ideal
in case the restriction to A of the quotient map q : B → B/I is completely
isometric. The intersection of the kernels of the boundary representations
of B for A is the largest boundary ideal, which is called the Shilov bound-
ary ideal of B for A2. The quotient of B by the Shilov boundary ideal is
unique up to C∗-isomorphism in a very strong sense [2, Theorem 2.2.6]. The
quotient is called the C∗-envelope of A.

Corollary 1.7. For each reduction P of V(d, n) and for each domain D with
D contained in Q0(d, n), the Shilov boundary ideal of Γc(∂D,M∗(P; d, n))

2When [2] was written, it was not known if boundary representations always exist and
the Shilov boundary ideal was defined differently; the existence of the Shilov boundary
ideal was problematic. Today, thanks to [4] and [8], it is known that in every setting there
are sufficiently many boundary representations to determine the Shilov boundary ideal.
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for S(D,P; d, n) vanishes. Consequently, Γc(∂D,M∗(P; d, n)) is the C∗-
envelope of S(D,P; d, n).

The pair (Q(d, n), I0(d, n)) is an example of what Rickart calls a natural
function algebra [28], where Q(d, n) is considered with its analytic topology.
If X ⊆ Q(d, n) is a compact subset, then the I0(d, n)-convex hull of X,

X̂, is defined to be {z ∈ Q(d, n) | |f(z)| ≤ ‖f‖X , f ∈ I0(d, n)}, where

‖f‖X := supz∈X |f(z)|. If X = X̂, then X is called I0(d, n)-convex. The

maximal ideal space of the closure of I0(d, n) in C(X) is X̂.
We note in passing that when d = n = 2, I0(d, n) is isomorphic to the

polynomial algebra in five variables; so Q(2, 2) may be identified with C5

(see, e.g., [18, P. 14 ff]). Thus, in this case, the I0(2, 2)-convex hull of
a compact set X coincides with its polynomially convex hull. In general,
however, I0(d, n) is more complicated and still largely mysterious. It is
worth noting that when d = n = 2, the identification of Q(2, 2) with C5 is
through the map

(Z1, Z2)→ (tr(Z1), tr(Z2), det(Z1), det(Z2), tr(Z1Z2)).

So even in this setting, the interaction of the map with the norms involved
is unclear. The situation is further complicated by the fact that generators
of I0(2, 2) are not uniquely determined and it is not at all clear which ones
are best for, or even well adapted to, analysis.

Definition 1.8. A unital algebra A with center Z is called an Azumaya
algebra in case

(1) As a right module over Z, A is projective, and
(2) The map from A⊗ZA

op to End(AZ) defined by identifying a⊗b with
the endomorphism

a⊗ b(c) := acb, c ∈ A,

is an isomorphism.

This is one of many equivalent definitions. For further background on
such algebras, see [9]. The importance of these algebras for us is that they
are algebraic versions of n-homogeneous C∗-algebras by [1, Theorem 8.3].
Specifically, Artin proved in his Theorem 8.3 (specialized to algebras over
C) that if A is a unital C-algebra, then A is an Azumaya algebra of rank n2

over its center if and only if A satisfies the identities of the n × n matrices
and A has no (unital) representations in Mr(C) for r � n. (To say in this
setting that A has rank n2 over its center means that for each maximal 2-
sided ideal m of A, A/m 'Mn(C).) Equivalently, under the hypothesis that
A satisfies the identities of the n×n matrices, the theorem asserts that A is
an Azumaya algebra if and only if each (algebraically) irreducible represen-
tation of A is n-dimensional. Artin was inspired, in part, by Tomiyama and
Takesaki’s representation of an n-homogeneous C∗-algebra as the continuous
cross sections of a matrix bundle in [33]. Thus, in one sense, the following
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theorem may easily be anticipated, given that the algebra in question is
a subalgebra of an n homogeneous C∗-algebra. However, the proof may
not seem immediate. Further, the theorem has consequences that appear
difficult to establish without it, e.g., Corollary 1.10.

Theorem 1.9. If D is I0(d, n)-convex, then the algebra S(D,P; d, n) is a
rank n2 Azumaya algebra over I(D; d, n).

Corollary 1.10. If D is I0(d, n)-convex, then there is a bijective correspon-
dence between ideals a of I(D; d, n) and ideals A of S(D,P; d, n) given by
a→ aS(D,P; d, n) and A→ A ∩ I(D; d, n).

Proof. This is an application of Corollary II.3.7 of [9], which is valid for
any Azumaya algebra. �

2. The concomitants and cross sections

The map we call Ψ in Theorem 1.2 is a special case of the bijection de-
scribed in [15, Theorem 4.8.1]. There, Husemoller deals with general fibre
bundles associated to principal bundles. However, when specialized to our
setting it is clear that Ψ is a bijection that takes continuous concomitants
to continuous cross sections. It also clearly preserves the algebraic struc-
tures involved. So to prove Theorem 1.2, it suffices to show that Ψ maps
holomorphic concomitants to holomorphic cross sections and that Ψ−1 maps
holomorphic cross sections to holomorphic concomitants.

Since the property of being holomorphic is a local property, we may re-
strict our attention to an open subset U ⊆ Q0(d, n) over which V(d, n) is
trivial. We let V0 = π−10 (U), so V0 is an open, G-invariant subset of V(d, n),
and we fix a biholomorphic bundle isomorphism F : U × G → V0. Thus
F is G-equivariant and π0 ◦ F = π1, where π1 is the projection of U × G
onto the first factor. (This implies that u → F (u, e) is a holomorphic sec-
tion of V(d, n)|U , and conversely, each holomorphic section f of V(d, n)|U
determines a biholomorphic bundle isomorphism from U × G onto V0 via
the formula F (u, g) = f(u)g.) The isomorphism F , in turn, induces a bi-

holomorphic bundle isomorphism F̂ : U ×Mn(C) → V0 ×G Mn(C) via the

formula F̂ (u, A) = [F (u, e), A].
Suppose that φ : V(d, n)→Mn(C) is a holomorphic matrix concomitant.

Then the restriction to U of the section σφ defined above is given by the
formula

σφ(u) = [z, φ(z)], u ∈ U,

where z ∈ V0 is any point such that π0(z) = u. To show σφ is holomorphic on

U , it suffices to show that F̂−1 ◦ σφ is holomorphic on U . To get a formula

for F̂−1 ◦ σφ, fix both u ∈ U and z ∈ V0 such that π0(z) = u. Then there is a
unique g ∈ G such that F (u, g) = z. Since we also have F (u, g) = F (u, e)g,
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we arrive at the following equation,

F̂−1 ◦ σφ(u) = F̂−1([z, φ(z)]) = F̂−1([F (u, g), φ(z)])

= F̂−1([F (u, e), g · φ(z)]) = F̂−1(F̂ (u, φ(z · g−1)))
= (u, φ(z · g−1)) = (u, φ ◦ F (u, e)),

which shows that F̂−1 ◦ σφ is holomorphic on U , since u → (u, φ ◦ F (u, e))
is certainly holomorphic.

If σ is a holomorphic section of M(d, n), then to show that φσ is holo-
morphic, it suffices to show that the restruction of φσ to V0 is holomorphic;
and for this, it suffices to show that φσ ◦ F is holomorphic on U ×G. Since

M(d, n) is trivial over U and σ|U is a section of M(d, n)|U , F̂−1 ◦ σ|U a
section of the product bundle U ×Mn(C) over U . Consequently, there is a

function f : U →Mn(C) such that F̂−1 ◦ σ(u) = (u, f(u)). The assumption
that σ is holomorphic guarentees that f is holomorphic, too. On the other
hand, the matrix concomitant φσ determined by σ satisfies (1.2). Therefore,

(u, f(u)) = F̂−1 ◦ σ(u) = F̂−1([z, φσ(z)]) for any z such that π0(z) = u. So,

F̂ (u, f(u)) = [z, φσ(z)].

However, by definition of F̂ in terms of F , we may rewrite the left-hand side
of this equation as

F̂ (u, f(u)) = [F (u, e), f(u)]

= [F (u, e) · g, g−1 · f(u)] = [F (u, g), g−1 · f(u)].

If we write z = F (u, g), these two equations yield

[F (u, g), g−1 · f(u)] = F̂ (u, f(u)) = [F (u, g), φσ(F (u, g))].

Hence, there is an h ∈ G such F (u, g) · h = F (u, g) and h−1 · g−1 · f(u) =
φσ(F (u, g)). However, since G acts freely on V(d, n), we conclude that h = e,
proving that

φσ ◦ F (u, g) = g−1 · f(u).

Since f is holomorphic on U and the action of G on Mn(C) is holomorphic,
we see that φσ ◦ F is holomorphic on U × G, as required. This completes
the proof of the first assertion in Theorem 1.2.

Turning to the second, we begin with the following theorem. It, or some-
thing akin to it, seems to have been known to Luminet [19, Remark 4.14].
However, no proof or reference was given. We are grateful to Zinovy Reich-
stein for the formulation of the theorem and for allowing us to include his
proof here.

Theorem 2.1. Suppose d, n ≥ 2 and for k = 1, 2, · · · , n − 1, let Xk be the
set of all (A1, A2, · · · , Ad) ∈ Mn(C)d such that the Ai have a common k-
dimensional invariant subspace. Then Xk is an irreducible algebraic variety
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of dimension dn2 − (d− 1)k(n− k), and

∪n−1k=1Xk = Mn(C)d\V(d, n).

Proof. Evidently, the union of the Xk is Mn(C)d\V(d, n). Let Gr(k, n)
denote the Grassmannian consisting of all k-dimensional subspaces of Cn
and let

Yk = {(A1, A2, · · · , Ad;W ) ∈Mn(C)d ×Gr(k, n) | AiW ⊆W, 1 ≤ i ≤ d}.

Clearly, Yk is an algebraic subvariety of Mn(C)d ×Gr(k, n). Let π2k : Yk →
Gr(k, n) be the projection onto the last component. Then π2k is surjective,
and its fibres are vector spaces of block-upper triangular matrices (in appro-
priate bases), with blocks of size k and n − k. So the fibres are irreducible
varieties of the same dimension, viz., d(n2−k(n−k)). By the fibre dimension
theorem [29, Theorem I.6.7, p.76], the Yk are irreducible and

dimYk = d(n2 − k(n− k)) + dim Gr(k, n) = dn2 − (d− 1)k(n− k).

Consider the map π1k : Yk → Mn(C)d which projects onto the first d com-
ponents. The image of π1k is Xk. Therefore, Xk is irreducible. Further,
the set of (A1, A2, · · · , Ad) ∈ Xk such that A1 has distinct eigenvalues is a
Zariski open subset of Xk and so dimXk = dimYk = dn2 − (d− 1)k(n− k),
as claimed. �

If (d, n) 6= (2, 2), the complement of V(d, n) in Mn(C)d is the finite union
of algebraic varieties of codimension ≥ 2 by Theorem (2.1). Consequently,
by [14, Theorem K.1] every function that is holomorphic on V(d, n) extends
uniquely to a function that is holomorphic on all of Mn(C)d.

Suppose, finally, (d, n) = (2, 2), and consider the commutator [Z1, Z2]
in G0(2, 2). It is well known in some circles that V(2, 2) = {z = (Z1, Z2) |
[Z1, Z2] is invertible}. Since we don’t have an explicit reference for this, here
is a simple proof: One may assume, without loss of generality, that Z1 is in
Jordan canonical form and that Z1 either has distinct eigenvalues or is the

Jordan cell,

[
0 1
0 0

]
. If Z1 has distinct eigenvalues, say a and c, then we may

write

[Z1, Z2] =

[[
a 0
0 c

]
,

[
w x
y z

]]
=

[
0 (a− c)x

(c− a)y 0

]
.

If Z1 =

[
0 1
0 0

]
, then

[Z1, Z2] =

[[
0 1
0 0

]
,

[
w x
y z

]]
=

[
−y w − z
0 y

]
.

In either case, it is clear that [Z1, Z2] is invertible if and only Z1 and Z2

have no common invariant subspace. Thus det[Z1, Z2] is a polynomial in
I(2, 2) whose zero set is M2(C)2\V(2, 2). Thus f(z) := (det[Z1, Z2])

−1is
a holomorphic matrix concomitant on V(2, 2) that cannot be analytically
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extended beyond V(2, 2). Thus V(2, 2) is a domain of holomorphy in M2(C)2

and the proof of Theorem 1.2 is complete.
As a corollary of the calculation in the previous paragraph, we may for-

mulate the following proposition whose proof is a slight modification of an
argument shown to us by Ben Williams.

Proposition 2.2. The bundles V(2, 2) and M(2, 2) are nontrivial both as
topological bundles and as holomorphic bundles.

Proof. It suffices to focus on V(2, 2). Recall that the bundle space of V(2, 2)
is V(2, 2) = {z = (Z1, Z2) | [Z1, Z2] is invertible} and note that the comple-
ment of V(2, 2) is the hypersurface in M2(C)2 ' C8 given by the equation
det[Z1, Z2] = 0. By [10, Corollary 1.4 on page 103], then, the first inte-
gral homology group of V(2, 2) is Zk, where k is the number of irreducible
components of its complement. (The hypersurface is actually irreducible,
but we don’t need that here.) On the other hand, if V(2, 2) were trivial,
the first integral homology of V(2, 2) would contain the first integral homol-
ogy of PGL(2,C) as a direct summand. But this homology group is Z/2Z,
and so we would contradict the fact that the first integral homology group
of V(2, 2) is Zk. The fact that the homology of PGL(2,C) is Z/2Z seems
to be well known in some circles. However, we lack an explicit reference
in the literature. For completeness, we note that in general PGL(n,C) is
contractible to PU(n,C). Then, as Tomiyama and Takesaki argue in the
paragraph before the Remark on page 517 of [33], the fundamental group of
PU(n,C) is Z/nZ. Since PU(n,C) is connected and its fundamental group
is abelian, the first integral homology group of PU(n,C) is the same as its
fundamental group, i.e., Z/nZ. �

3. Function theory in bundles

Our first objective is to show that the center of S(D,P; d, n) is I(D; d, n)
independent of the reduction P. Of course, I(D; d, n) is contained in the
center. The problem is the reverse inclusion. It is easy to see that every
element in the center of S(D,P; d, n) is the restriction to ∂D of a continuous
function on D that is holomorphic on D, but why must it be in I(D; d, n)?
The reason is due, really, to Procesi who shows that the center of S0(d, n)
is I0(d, n) [22, Page 94].

First, note that the cross section ε in Γc(∂D,M∗(P; d, n)) defined by
the formula ε([z]) := [z, In], where In is the identity n × n matrix, is the
identity of Γc(∂D,M∗(P; d, n)). Further, the center of Γc(∂D,M∗(P; d, n)),
ZΓc(∂D,M∗(P; d, n)), is the set of all cross sections σ of the form σ([z]) =
[z, c([z])In], where c : ∂D → C is a continuous complex-valued function. We
shall usually write such a section as c · ε, and we shall identify the center,
ZΓc(∂D,M∗(P; d, n)), with C(∂D) through the isomorphism c → c · ε. We
shall write τ0 for the normalized trace on Mn(C), i.e., τ0(In) = 1, and we
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shall define τ : M∗(P; d, n) → C by τ([z, A]) := τ0(A). Then τ is a well-
defined continuous function on M∗(P; d, n). We now define

T : Γc(∂D,M∗(P; d, n))→ ZΓc(∂D,M∗(P; d, n))

by the formula,

T (σ) := τ ◦ σ · ε, σ ∈ Γc(∂D,M∗(P; d, n)).

Then it is straightforward to verify that T is a conditional expectation from
Γc(∂D,M∗(P; d, n)) onto ZΓc(∂D,M∗(P; d, n)) that also satisfies the equa-
tion

T (Ψ(φ))([z]) = τ0(φ(z))ε([z]), φ ∈ S0(d, n), z ∈ V(d, n).

Theorem 3.1. T maps S(D,P; d, n) onto I(D; d, n) and I(D; d, n) is the
center of S(D,P; d, n).

Proof. Since T (Ψ(φ))([z]) = τ0(φ(z))ε([z]) for every φ ∈ S0(d, n) and since
z→ τ0(φ(z)) is a G-invariant polynomial function, the image of T restricted
to S(D,P; d, n) is contained in I(D; d, n). If σ is a section in the center of
S(D,P; d, n), then σ([z]) lies in the center of the fibre of M∗(P; d, n) over
[z], π−1([z]), which is (isomorphic to) Mn(C). Thus σ([z]) is a multiple of
[z, In]. Hence, σ ∈ ZΓc(∂D,M∗(P; d, n)). Since σ ∈ S(D,P; d, n), there is a
sequence {φn}n≥1 in S0(d, n) such that Ψ(φn) → σ in Γc(∂D,M∗(P; d, n)),
by definition of S(D,P; d, n). But then T (Ψ(φn)) → T (σ) = σ and each
T (Ψ(φn)) ∈ I(D; d, n). Thus σ ∈ I(D; d, n). �

Corollary 3.2. S(D,P; d, n) is a proper subalgebra of Γc(∂D,M∗(P; d, n)).

4. Boundary representations

In this section, we prove Theorem 1.6. It rests on a simple observation
of Kleski [17, Remark 3.4], which is a corollary of his deep Theorem 3.1.
Recall Arveson’s definition of a peaking representation.

Definition 4.1. [6, Definition 7.1] Suppose A is a norm closed subalgebra
of a unital C∗-algebra B that generates B as a C∗-algebra and contains
the unit of B. An irreducible C∗-representation π : B → B(Hπ) is called a
peaking representation for A if there is an integer n ≥ 1 and an n×n matrix
(aij) ∈Mn(A) such that

‖(π(aij))‖ 
 ‖(σ(aij))‖

for every irreducible representation σ for B that is not unitarily equivalent
to π. We also say that π peaks at (aij).

Arveson defines the notion of a peaking representation in the context
of operator systems, i.e., unital, closed, and self-adjoint subspaces of C∗-
algebras. However, thanks to [2, Proposition 1.2.8], if a representation is
peaking in the sense of our Definition 4.1 it is a peaking representation with
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respect to the operator system generated by A, i.e., the norm-closure of
A+A∗.

In [17, Thereom 3.1], Kleski proves that if (aij) is any element in Mn(A)
then there is a boundary representation π0 of B for A such that

(4.1) ‖(aij)‖ = ‖(π0(aij))‖.

As Kleski observes in [17, Remark 3.4], this implies that a peaking represen-
tation is a boundary representation. Indeed, if π is an irreducble represen-
tation of B that peaks at (aij), then we would have ‖(aij)‖ ≥ ‖(π(aij))‖ 

‖(π0(aij))‖ if π0 � π, which would contradict (4.1). Thus π ∼ π0 and
therefore π is a boundary representation.

Proof of Theorem 1.6. To apply these remarks to the situation of Theo-
rem 1.6 is very easy. Our B is Γc(∂D,M∗(P; d, n)) and our A is S(D,P; d, n).
Our hypothesis is that u ∈ ∂eD - the extreme boundary of D. Since Q0(d, n)
is metrizable, so is D. Therefore u is a peak point in the function algebra
sense [31, Theorem 1.7.26], i.e., there is a function f ∈ I(D; d, n) such that
f(u) = 1, but |f(v)| � 1 for all v 6= u. But then, we may simply view f as
a 1 × 1 matrix over S(D,P; d, n) and conclude that evu peaks at f . Hence
evu is a boundary representation of Γc(∂D,P; d, n) for S(D,P; d, n). �

Proof of Corollary 1.7. Any section σ ∈ Γc(∂D,M∗(P; d, n)) in the ker-
nel of evu vanishes at u. So any section in ∩u∈∂eD ker(evu) vanishes on ∂eD.
Since ∂eD is dense in ∂D [31, Theorem I.7.24], any such section is the zero
section. Therefore, by Theorem 1.6, the intersection of the kernels of the
boundary representations, which is the Shilov boundary ideal, must be zero,
i.e., Γc(∂D,M∗(P; d, n)) is the C∗-envelope of S(∂D,P; d, n). �

5. Azumaya algebras

The proof of Theorem 1.9 is an application of Procesi’s extension [22, The-
orem VIII.2.1] of Artin’s theorem that was discussed earlier. A d-variable
central polynomial for the n × n matrices is a nonzero polynomial p in the
center of G0(d, n) that is without constant term. It is not evident, a priori,
that such polynomials exist. However, they do - for every d - thanks to
the work of Formanek [13] and Razmyslov [26]. Procesi’s theorem asserts
(among many things) that if R is a ring satisfying the identities of the n×n
matrices then R is an Azumaya algebra if and only if R = F (R)R - the ideal
generated by the Formanek center, F (R). The Formanek center, in turn, is
the collection of elements in R obtained by evaluating all the central poly-
nomials for the d generic n× n matrices for all d at all d-tuples of elements
of R. Here, of course, when forming F (R), we are viewing a d-variable cen-
tral polynomial p as an element C〈X1, X2, · · · , Xd〉. Notice, too, that when
R = S(D,P; d, n), then a p ∈ G0(d, n) ⊆ S(D,P; d, n) may be identified with
its evaluation at the d coordinate functions Zi, i.e., p = p(Z1,Z2, · · · ,Zd),
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where, recall, Zi(z) = Zi, if z = (Z1, Z2, · · · , Zd). We require the follow-
ing special case of a lemma of Reichstein and Vonessen [27, Lemma 2.10]:
For every z ∈ V(d, n) there is a d-variable central polynomial p such that
p(z) = In.

Proof of Theorem 1.9. Now S(D,P; d, n) certainly satisfies the identities
of the n×n matrices and our hypothesis on D is that D is the maximal ideal
space of I(D; d, n). Also, our Theorem 3.1 tells us that I(D; d, n) is the center
of S(D,P; d, n). So given any point u ∈ D, we choose a z in the bundle space
P of P such that π(z) = u. Then, using the Reichstein-Vonessen lemma,
we choose a d-variable central polynomial p such that p(z) = In. Since a
central polynomial certainly is invariant, we may view p as a function on
Q(d, n) that is 1 at u. So, by the compactness of D we may choose a finite
number of central polynomials, p1, p2, · · · , pN , that have no common zero on
D. It follows that p1I(D; d, n) + p2I(D; d, n) + · · ·+ pN I(D; d, n) = I(D; d, n)
and, a fortiori, that F (S(D,P; d, n))S(D,P; d, n) = S(D,P; d, n). Thus,
S(D,P; d, n) is an Azumaya algebra. �

6. Concluding remarks

One may wonder about the extent of our results. How comprehensive
are the examples they cover? While we have formulated our analysis in the
context of the trace algebra of the algebra of generic matrices, everything
we have written goes over without significant changes to the more general
situation of what Reichstein and Vonessen call n-varieties.

Definition 6.1. [27, Definition 3.1] An n-variety is a G-invariant subset X
of V(d, n), for some d ≥ 2, with the property that X = X ∩ V(d, n) where
X denotes the Zariski closure of X in Mn(C)d.

When passing from V(d, n) to an n-variety, one replaces G0(d, n) by
G0(d, n)/I(X), where I(X) := {p ∈ G0(d, n) | p(z) = 0, z ∈ X}. The quo-
tient G0(d, n)/I(X) is a noncommutative analogue of the coordinate ring of
an algebraic variety and the thrust of [27] is that noncommutative algebraic
geometry should take place in the context of n-varieties, their coordinate
rings, and associated noncommutative function fields. These latter are cen-
tral simple algebras and each can be written as the algebra of rational matrix
concomitants mapping X into Mn(C). Further, by [27, Lemma 8.1], every
irreducible algebraic variety on which G acts freely on a Zariski open set is
birational to an irreducible n-variety. Thus, with technical adjustments, the
results we have discussed make sense at this level.

In another direction, which we are currently investigating, the results
of [21] suggest how to replace PGL(n,C) with certain more complicated
reductive groups and formulate a function theory on quiver varieties and
other structures that can be built from C∗-correspondences.

The work of Craw, Raeburn and Taylor [7] was also a source of inspiration
for us. They introduced the notion of a Banach Azumaya algebra over
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a commutative Banach algebra. Their purpose was to use the theory of
Azumaya algebras to illuminate the topological properties of the maximal
ideal space of the commutative Banach algebra. However, it seems difficult
to identify naturally occurring Azumaya Banach algebras “in the wild”.
Our results, coupled with their Proposition 2.6, show that such algebras
arise quite naturally and quite frequently.

The specific problem which led us to the results we have presented here
stems from [20] and [21]. In [20] we identified the completely contractive
representations of the tensor algebra of a C∗-correspondence. When the
correspondence is specialized to complex d-space Cd, one finds that the
completely contractive n-dimensional representations of the tensor algebra,
T+(Cd), are parametrized by the closed “disc”, D(d, n), where D(d, n) = {z ∈
Mn(C)d | ‖zz∗‖ < 1}. When viewed simply as a subset of the complex space

Cdn2
, D(d, n) is a classical symmetric domain. If G(d, n) (resp. S(d, n)) is

the closure of G0(d, n) (resp. S0(d, n)) in C(D(d, n),Mn(C)), then G(d, n)

is precisely the sup-norm closure of the algebra of functions on D(d, n) that

one obtains from evaluating the elements of T+(Cd) on D(d, n). (Note that
Arveson [3] showed that in general G(d, n) is strictly larger than the algebra
of evaluations from T+(Cd).) The elements of G(d, n) and S(d, n) are con-

tinuous Mn(C)-valued functions on D(d, n) that are analytic on D(d, n) and

for each f ∈ S(d, n), the maximum of ‖f(z)‖, for z ∈ D(d, n), is taken on the
Shilov boundary of D(d, n), ∂eD(d, n). The question which motivated this
paper is “What are the boundary representations for G(d, n) and S(d, n) and
what are the C∗-envelopes of these algebras?” For this, we need to know
how to describe the C∗-algebras they generate.

The functions in S(d, n) are K-concomitants, i.e., f(k−1zk) = k−1f(z)k

for all z ∈ D(d, n) and all k ∈ K. Therefore, the natural place to study them

is on the quotient space D(d, n)/K, which is a compact Hausdorff space on

which all the continuous K-concomitants, C(D(d, n),Mn(C))K , naturally
live. This algebra, in turn, is naturally isomorphic to the C∗-algebra of
continuous cross sections of a certain C∗-bundle of finite dimensional C∗-
algebras over D(d, n)/K, by [12, Lemma 2.2]. However, it is not a homoge-

neous C∗-algebra because K does not act freely on D(d, n). There are some

obvious candidates for the boundary representations of C(D(d, n),Mn(C))K

for S(d, n), but we do not yet know how to check them. Problems with
isotropy prevent us from applying the ideas that we have presented above.
Nevertheless, the algebra S(d, n) seems to have a lot in common with the
algebras S(D,P; d, n) that we have discussed here. We focused on these first
because we could avoid difficulty with isotropy. The algebras S(D,P; d, n)
turn out to be quite interesting in their own right, however, and they deserve
further exploration.
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