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Bounding heights uniformly in families of
hyperbolic varieties

Kenneth Ascher and Ariyan Javanpeykar

Abstract. We show, assuming Vojta’s height conjecture, the height of
a rational point on an algebraically hyperbolic variety can be bounded
“uniformly” in families. This generalizes a result of Su-Ion Ih for curves
of genus at least two to higher-dimensional varieties. As an application,
we show that, assuming Vojta’s height conjecture, the height of a ratio-
nal point on a curve of general type is uniformly bounded. Finally, we
prove a similar result for smooth hyperbolic surfaces with c21 > c2.
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1. Introduction

The celebrated work of Caporaso, Harris, and Mazur [CHM97], sparked
an interest in discovering implications of Lang’s conjecture for rational points
on varieties of general type. In fact, they show that Lang’s conjecture implies
a uniform bound, based solely on k and the genus, of the number of k-points
on a curve of general type defined over a number field k (cf. [AV96, Has96]).
As Vojta’s height conjecture (Conjecture 3.3) implies the conjecture of Lang,
the aforementioned results show that Vojta’s height conjecture also implies
a uniform version of Lang’s conjecture. In particular, it seems reasonable to
suspect that Vojta’s height conjecture also has consequences for “uniform”
height bounds.

However, one cannot expect uniform height bounds in the naive sense.
Indeed, for all P ∈ P2(Q) and all d ≥ 4, there is a smooth curve X of degree
d in P2

Q with P ∈ X(Q). Thus, for all d ≥ 4, there is no real number c > 0

depending only on d such that for all smooth degree d hypersurfaces X ⊂ P2
Q

and all P ∈ X(Q) the inequality h(P ) ≤ c holds. In particular, there is no
real number c > 0 such that for all smooth quartic hypersurfaces X ⊂ P2

Q
and all P ∈ X(Q) the inequality h(P ) ≤ c holds.

Thus, it is at first sight not clear what is meant by “uniform” height
bounds. However, Su-Ion Ih has shown [Ih02] that Vojta’s height conjecture
implies that the height of a rational point on a smooth proper curve of
general type is bounded uniformly in families with the bound depending
linearly on the height of the curve. Ih later showed in [Ih06] that the same
is true for integral points on elliptic curves.

The goal of this paper is to generalize Ih’s results in [Ih02] by investigat-
ing consequences of Vojta’s height conjecture for families of (algebraically)
hyperbolic varieties of general type. In this paper, a proper scheme X over
a field k is called (algebraically) hyperbolic if all integral subvarieties of X
are of general type; see Definition 2.2.

In the statement of our main result we consider morphisms of algebraic
stacks f : X → Y which are representable by schemes, i.e., for all schemes
S and all morphisms S → Y , the algebraic stack X ×Y S is (representable
by) a scheme. Furthermore, a substack of an algebraic stack is constructible
if it is a finite union of locally closed substacks. Moreover, we will use the
relative discriminant dk(TP ) of a point on an algebraic stack over a number
field k; we refer the reader to Section 3.4.2 for a precise definition of the
relative discriminant dk(TP ). Also, to state our theorem, we will use heights
on stacks as discussed in Section 3.4.3.

Theorem 1.1. Let k be a number field and let f : X → Y be a proper
surjective morphism of proper Deligne–Mumford stacks over k which is rep-
resentable by schemes. Let h be a height function on X and let hY be a
height function on Y associated to an ample divisor with hY ≥ 1. Assume
Vojta’s height conjecture (Conjecture 3.3). Let U ⊂ Y be a constructible
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substack such that, for all t ∈ U , the variety Xt is smooth and hyperbolic.
Then there is a real number c > 0 depending only on k, Y , X, and f such
that, for all P in X(k) with f(P ) in U , the following inequality holds:

h(P ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
.

Note that Ih proves Theorem 1.1 under the additional assumptions that
the fibres are one-dimensional, and Y is a scheme; see [Ih02, Theorem 1.0.1].
If one assumes that Y is a scheme, then the discriminant term dk(TP ) can
be omitted (as it equals zero).

Ih’s theorem for families of curves is slightly more general than Theo-
rem 1.1, as he treats points of bounded degree, and not merely rational
points. To keep the proofs slightly more transparent, we have restricted our
attention to rational points. However, the transition from rational points to
points of bounded degree can be made easily. Furthermore, the generaliza-
tion of Ih’s theorem to stacks is unavoidable if one desires applications to all
curves simultaneously; see Theorem 1.2 below, and the discussion following
it.

One cannot expect a stronger uniformity type statement for heights on
(not necessarily hyperbolic) varieties of general type. Indeed, if k is a number
field and f : X → Y is a smooth proper morphism of k-schemes whose
geometric fibres are varieties of general type and t is a point in Y such that
Xt contains a copy of P1

k(t), then there is no real number c > 0 such that for

all P ∈ Xt, the inequality h(P ) ≤ c · hY (f(P )) holds.
Our proof of Theorem 1.1 uses the recent [AV17], which shows that Vojta’s

conjecture actually implies a version of the conjecture for stacks. Moreover,
to prove Theorem 1.1 we follow the strategy of Ih. Indeed, we combine an
induction argument with an application of Vojta’s conjecture to a desingu-
larization of X (Proposition 4.1). This line of reasoning was also used in
Ih’s work [Ih02, Ih06].

We argue that it is more natural to work in the stacks setting, as this
allows us to apply our results to moduli stacks of hyperbolic varieties, thus
obtaining more concrete results. In fact, as a first corollary of Theorem 1.1
we obtain the following uniformity statement for curves.

Theorem 1.2. Assume Conjecture 3.3. Let g ≥ 2 be an integer and let
k be a number field. There is a real number c depending only on g and k
satisfying the following. For all smooth projective curves X of genus g over
k, and all P in X(k), the following inequality holds

h(P ) ≤ c(g, k) ·
(
h(X) + dk(TX)

)
.

The discriminant term dk(TX) can not be omitted in Theorem 1.2 (and
neither in Theorem 1.1). To explain this, for an integer n ≥ 1, define
dn := n5 + 1 and define the genus 2 curve Cn by dny

2 = x5 + 1. Note that
the height of Cn is equal to the height of C1, as Cn,Q

∼= C1,Q and the height

is a “geometric” invariant. Let Pn := (1, n) ∈ Q2 and note that Pn defines
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a Q-rational point of Cn. Since h(Pn) tends to infinity as n gets larger, we
can not omit the discriminant term in Theorem 1.2.

It is not clear how to deduce Theorem 1.2 from Ih’s results, as Ih’s results
only apply to families of curves parametrized by schemes.

Finally, we also obtain a uniformity statement for certain hyperbolic sur-
faces.

Theorem 1.3. Assume Conjecture 3.3. Fix an even integer a and a number
field k. There is a real number c depending only on a and k satisfying the
following. For all smooth hyperbolic surfaces S over k with

c2
1(S) = a > c2(S)

and all P in S(k), the following inequality holds

h(P ) ≤ c ·
(
h(S) + dk(TS)

)
.

We refer the reader to Section 6 for precise definitions of the height func-
tions appearing in Theorems 1.2 and 1.3. We prove Theorems 1.2 and 1.3 by
applying Theorem 1.1 to the universal family of the moduli space of curves
and the moduli space of surfaces of general type, respectively. The technical
difficulty in applying Theorem 1.1 is to prove the constructibility of the lo-
cus of points corresponding to hyperbolic varieties. In the setting of curves
(Theorem 1.2) this is simple, whereas the case of surfaces (Theorem 1.3)
requires deep results of Bogomolov and Miyaoka [Bog77, Miy08].

Theorem 1.1 applies to any family of varieties of general type for which
the locus of hyperbolic varieties is constructible on the base. However, as
we show in Section 6, verifying the constructibility of the latter locus is not
straightforward.

We note that a conjecture of Lang (see [Lan86]) asserts that our notion of
hyperbolicity for X is equivalent to being Brody hyperbolic, i.e., that there
are no nonconstant holomorphic maps f : C → X(C). In particular, as
the property of being Brody hyperbolic is open in the analytic topology
[Bro78], Lang’s conjecture implies that the property of being hyperbolic is
open in the analytic topology. In particular, assuming Lang’s conjecture,
if the locus of smooth projective hyperbolic surfaces is constructible in the
moduli stack of smooth canonically polarized surfaces, then [SGA03, Exposé
XII, Corollaire 2.3] implies that it is (Zariski) open.

Acknowledgements. We would like to thank Dan Abramovich, Dori Bej-
leri, Aaron Levin, Marco Maculan, and Siddharth Mathur for useful com-
ments and suggestions. We are most grateful to the referee for many com-
ments and remarks which helped improve this paper.

2. Hyperbolicity

In this section the base field k is a field of arbitrary characteristic.
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Definition 2.1. Let X be a proper Deligne–Mumford stack of dimension n
over k. A divisor D on X is big if h0(X,OX(mD)) > c ·mn for some c > 0
and m� 1.

Recall that a projective geometrically irreducible variety X over k is of

general type if for a desingularization X̃ → Xred of the reduced scheme Xred,

the sheaf ω
X̃

is big. Note that, if X is of general type and X̃ → Xred is any
desingularization, then ω

X̃
is big.

Definition 2.2. A projective scheme X over k is hyperbolic (over k) if for
all its closed subschemes Z, any irreducible component of Zk is of general
type.

Note that, if X is a hyperbolic projective scheme over k, then X and
all of its closed subvarieties are of general type. Moreover, if L/k is a field
extension, then X is hyperbolic over k if and only if XL is hyperbolic over
L.

For example, a smooth proper geometrically connected curve X over k is
hyperbolic if and only if the genus of X is at least two. If X is a smooth
projective scheme over C such that the associated complex manifold Xan

admits an immersive period map (i.e., there exists a polarized variation of
Z-Hodge structures over Xan whose differential is injective at all points),
then X is hyperbolic. This follows from the proof of [JL17, Lemma 6.3]
which uses Zuo’s theorem [Zuo00] (cf. [Bru]). Finally, let X be a smooth
projective scheme over C and suppose that there exists a smooth proper
morphism Y → X whose fibres have ample canonical bundle such that, for
all a in X(C), the set of b in X(C) with Xa

∼= Xb is finite. Then X is
hyperbolic. This is a consequence of Viehweg’s conjecture for “compact”
base varieties [Pat12].

2.1. Kodaira’s criterion for bigness. We assume in this section that
k is of characteristic zero. Recall that for a big divisor D on a projective
variety, there exists a positive integer n such that nD ∼Q A + E, where A
is ample and E is effective [KM98, Lemma 2.60]. We state a generalization
of this statement (see Lemma 2.4) which is presumably known; we include
a proof for lack of reference.

Lemma 2.3. Let π : X → Y be a quasi-finite morphism of proper Deligne–
Mumford stacks over k. Let D be a divisor on Y . The divisor D is big on
Y if and only if π∗D is big on X.

Proof. This follows from the definition of bigness, and the fact that π∗π
∗D

is linearly equivalent to mD, where m ≥ 1 is some integer. �

If D is a divisor on a finite type separated Deligne–Mumford stack X over
k with coarse space X → X c, then D is ample (resp. effective) on X if there
exists a positive integer n such that nD is the pull-back of an ample (resp.
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effective) divisor on X c. Note that, if X has an ample divisor, then X c is a
quasi-projective scheme over k.

Lemma 2.4. Let X be a proper Deligne–Mumford stack over k with pro-
jective coarse moduli space X c. If D is a big divisor on X , then there exists
a positive integer n such that nD ∼Q A + E, where A is ample and E is
effective.

Proof. Let π : X → X c denote the morphism from X to its coarse moduli
space X c. It follows from [Ols02, Proposition 6.1] that there exists a positive
integer m such that mD is Q-linearly equivalent to the pullback of a divisor
D0 on X c. As mD is a big divisor on X , the divisor D0 is big on X c (Lem-
ma 2.3). By Kodaira’s criterion for bigness, there exists a positive integer
m2 such that m2D0 is Q-linearly equivalent to A+E, where A is an ample
divisor on X c and E is an effective divisor on X c. Write n = m ·m2. We
now see that nD = m ·m2 ·D ∼Q π

∗m2D0 ∼Q π
∗(A+E). Since A := π∗A is

ample, and E := π∗E is effective, this concludes the proof of the lemma. �

3. Vojta’s conjecture for varieties and stacks

In this section, we let k be a number field. We begin by recalling Vojta’s
conjecture for heights of points on schemes, using [AV17] and [Voj98]. Our
statement of the conjecture is perhaps not the most standard, but is more
natural for our setting as we will need the extension of the conjecture to
algebraic stacks.

3.1. Discriminants of fields. Before defining the conjecture, we recall
discriminants of fields following Section 2 of [AV17]. Given a finite extension
E/k, define the relative logarithmic discriminant to be:

dk(E) =
1

[E : k]
log |Disc(OE)| − log |Disc(Ok)|(3.1)

=
1

[E : k]
deg(ΩOE/Ok),

where the second equality follows from the equality of ideals

(Disc(Ok)) = Nk/Q det ΩOk/Z.

3.2. Heights. In this paper we will use logarithmic (Weil) heights. For
more details, we refer the reader to [BG06, HS00].

Definition 3.1. Let d be the degree of k over Q and let Mk be a complete
set of normalized absolute values on k. The (logarithmic) height of a point
P = [x0 : · · · : xn] ∈ Pn(k) is defined to be:

hk(P ) =
1

d

∑
v∈Mk

log

(
max

0≤i≤n
{‖xi‖v}

)
.
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If X is a projective variety with a projective embedding φ : X ↪→ Pn, we
can define a height function hφ : X → R given by

hφ(P ) = h(φ(P )).

More generally, given a very ample divisor D on X, we define hD(P ) =
h(φD(P )), where φD is the natural embedding of X in Pn given by D. (We
stress that hD is well-defined, up to a bounded function.)

Proposition 3.2. The following statements hold.

(1) If f : X → Y is a morphism, then hX,f∗D = hY,D +O(1).
(2) If D and E are both divisors, then hD+E = hD + hE +O(1).
(3) If D is effective, hD ≥ O(1) for all points not in the base locus of D.

Proof. See [HS00, Theorems B.3.2.b, B.3.2.c, and B.3.2.e]. �

3.3. Vojta’s conjecture. We now state Vojta’s conjecture for schemes.
We stress that this conjecture (Conjecture 3.3) implies a version for stacks;
see Proposition 3.4.

Conjecture 3.3 (Vojta [Voj98, Conjecture 2.3]). Let X be a smooth pro-
jective scheme over k. Let H be a big line bundle on X, let r be a positive
integer, and fix δ > 0. Then there exists a proper Zariski closed subset
Z ⊂ X such that, for all closed points x ∈ X with x 6∈ Z and [k(x) : k] ≤ r,

hKX (x)− δhH(x) ≤ dk(k(x)) +O(1).

Note that the discriminant term dk(k(x)) equals zero when x is a k-
rational point of X.

3.4. Vojta’s conjecture for stacks. Before stating the version of Vojta’s
conjecture for Deligne–Mumford stacks, we introduce some preliminaries,
following Section 3 of [AV17]. If S is a finite set of finite places of k, we let
Ok,S be the ring of S-integers in k.

3.4.1. The stacky discriminant. Let X → Spec(Ok,S) be a finite type
separated Deligne–Mumford stack with generic fibre X → Spec k. Given a
point x ∈ X (k) = X(k), we define Tx → X to be the normalization of the
closure of x in X . Note that Tx is a normal proper Deligne–Mumford stack
over Ok,S whose coarse moduli scheme is Spec(Ok(x),Sk(x)). Here Sk(x) is the

set of finite places of k(x) lying over S.

3.4.2. Relative discriminants for stacks. Let E be a finite field exten-
sion of k, and let T be a normal separated Deligne–Mumford stack over OE
whose coarse moduli scheme is SpecOE . We define the relative discriminant
of T over Ok as follows:

dk(T ) =
1

deg(T /Ok)
deg(ΩT / Spec(Ok)).(3.2)

Note that dk(T ) is a well-defined real number, and that exp(dk(T )) is a
rational number.
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3.4.3. Heights on stacks. Let X be a finite type Deligne–Mumford stack
over k with finite inertia whose coarse space Xc is a quasi-projective scheme
over k. Fix a finite set of finite places S of k and a finite type separated
Deligne–Mumford stack X → Spec(Ok,S) such that Xk ∼= X. Let H be a
divisor on X. Let n ≥ 1 be an integer such that nH is the pull-back of a
divisor Hc on Xc. Fix a height function hHc for Hc on Xc. We define the
height function hH on X(k) with respect to H to be

hH(x) :=
1

n
hHc(π(x)).

Note that hH is a well-defined function on X(k) which is independent of the
choice of n and Hc.

We now give another way to compute the height function, under suit-
able assumptions on X. By [KV04, Theorem 2.1], a finite type sepa-
rated Deligne–Mumford stack over k which is a quotient stack and has a
quasi-projective coarse moduli space admits a finite flat surjective morphism
f : Y → X , where Y is a quasi-projective scheme. Fix a height function hf∗H
on Y . We define the height hH(x) of x ∈ X (k) as follows. If x ∈ X (k), then
we choose y ∈ Y (k) to be a point over x, and we define

hH(x) := hf∗(H)(y).

It follows from the projection formula (which holds for Deligne–Mumford
stacks, in particular see the introduction of [Vis89]) that hH is a well-defined
function on X (k). Moreover, if H is ample, for all d ≥ 1 and C ∈ R, the
set of isomorphism classes of k-points x of X such that hH(x) ≤ C and
[k(x) : k] ≤ d is finite. The analogous finiteness statement for k-isomorphism
classes can fail. However, the set of k-isomorphism classes of k-points x of
X such that hH(x) + dk(Tx) ≤ C and [k(x) : k] ≤ d is finite. In particular,
as hH(x)+dk(Tx) has the Northcott property, the expression hH(x)+dk(Tx)
can be considered as “the” height of x [AV17].

Proposition 3.4 (Vojta’s Conjecture for stacks). Assume Conjecture 3.3
holds and fix δ > 0. Let S be a finite set of finite places of k. Let X be a
smooth proper Deligne–Mumford stack over Ok,S whose generic fibre X = Xk
is geometrically irreducible over k and has a projective coarse space. Let H
be a big line bundle on X. Then, there is a proper Zariski closed substack
Z ⊂ X such that, for all x ∈ (X \ Z)(k) the following inequality holds

hKX (x)− δhH(x) ≤ dk(Tx) +O(1).

Proof. This is [AV17, Proposition 3.2]. �

4. Applying the stacky Vojta conjecture

We prove a generalization of [Ih06, Proposition 2.5.1] to morphisms of
proper Deligne–Mumford stacks, under suitable assumptions. We stress
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that our reasoning follows Ih’s arguments in loc. cit. in several parts of the
proof.

Let k be a number field, and let f : X → Y be a proper morphism of
proper integral Deligne–Mumford stacks over B = SpecOk,S , where X is
smooth with a projective coarse moduli space. Let h be a height function
on X and let hY be a height function on Y associated to an ample divisor
such that hY ≥ 1. Let η be the generic point of Y, let Xη be the generic
fibre of f : X → Y, and let Xk be the generic fibre of X → B. Note that Xk
is a smooth proper Deligne–Mumford stack over k with a projective coarse
space.

Proposition 4.1. Assume Conjecture 3.3. Suppose that the morphism f is
representable by schemes, and that Xη is smooth and of general type. Then
there exists a real number c(k, S,Y, f) and a proper Zariski closed substack
Z ⊂ X such that, for all P in X (B) \ Z, the following inequality holds:

h(P ) ≤ c(k,Y, f) ·
(
dk(TP ) + hY(f(P ))

)
.

Proof. Let ∆ be an ample divisor on X such that the associated height h∆

on X satisfies h∆ ≥ 1. Note that the push-forward of ∆ to the coarse space is
ample. Recall that Xk denotes the generic fibre of X → B. Moreover, Vojta’s
conjecture (Conjecture 3.3) implies Vojta’s conjecture for stacks (Proposi-
tion 3.4). Therefore, by Vojta’s conjecture for stacks (Proposition 3.4) ap-
plied to Xk, there exists a proper Zariski closed substack Z ⊂ Xk such that,
for all P ∈ Xk(k) \ Z, the following inequality

hKXk (P )− 1

2
εh∆(P ) ≤ dk(TP ) +O(1)

holds, where we compute all invariants with respect to the model X for Xk
over B. In particular, there exists a proper closed substack Z of X (namely,
the closure of Z in X ) such that, for all P in X (B) not in Z, the following
inequality holds

hKX (P )− 1

2
εh∆(P ) ≤ dk(TP ) +O(1).(4.1)

Since f is representable, Xη is a scheme. Moreover, since Xη is smooth
and of general type, by the Kodaira criterion for bigness (Lemma 2.4), there
exists an ample divisor A on Xη, an effective divisor E on Xη, and a positive
integer n such that

n(KXη) ∼Q A+ E.

For a small enough ε ∈ Q>0, we can rewrite

(KX − ε∆)|η = KXη − ε∆|η ∼Q

(
1

n
A+

1

n
E

)
− ε∆|η

=

(
1

n
A− ε∆|η

)
+

1

n
E.
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Thus, there exists an effective divisor E′ on Xη and a positive integer m
such that

m

((
1

n
A− ε∆|η

)
+

1

n
E

)
∼Q E

′.

Taking Zariski closures of these divisors in X , it follows that there exists a
vertical Q-divisor F on X and an effective divisor E on X such that

KX − ε∆ + F ∼Q
1

m
E .

Since F is a vertical divisor on X , there is an effective divisor G on Y
such that F ≤ f∗G. Therefore, by Proposition 3.2, the inequality

hF ≤ hf∗G +O(1)

holds, outside of Supp (f∗G), and hf∗G = (hG ◦ f) + O(1). In particular,
since hY is a height associated to an ample divisor, we see that hG ≤ O(hY)
by [Lan83, Proposition 5.4]. Therefore, for all points t in Y(k) and all
P ∈ Xt(B) \ Supp(f∗G), the inequality

hF (P ) ≤ hf∗G(P ) +O(1) = hG(f(P )) +O(1) ≤ O
(
hY(f(P ))

)
+O(1)

holds, outside of Supp (f∗G). In particular, replacing Z by the union of Z
with Supp(f∗G), it follows that

hF ≤ O(hY ◦ f) +O(1)(4.2)

outside Z. Since KX − ε∆ + F is effective, it follows that, replacing Z by a
larger proper closed substack of X if necessary, the inequality

hKX−ε∆+F ≥ O(1)(4.3)

holds outside Z by Proposition 3.2 (3).
Let dk(T ) be the function that assigns to a point P in X (k) the real

number dk(TP ). In particular, we obtain that

O(1) ≤ hKX−ε∆+F ≤ (hKX −
1

2
εh∆)− 1

2
εh∆ + hF +O(1)

≤ (hKX −
1

2
εh∆)− 1

2
εh∆ +O(hY ◦ f) +O(1)

≤ dk(T )− 1

2
εh∆ +O(hY ◦ f) +O(1),

where the inequalities follow from Equation (4.3), Proposition 3.2(2), Equa-
tion (4.2), and Vojta’s conjecture (4.1) respectively.

We conclude that, for all t in Y(B) and all P in Xt(B) \ Z the inequality

1

2
εh∆(P ) ≤ dk(TP ) +O(hY(t)) +O(1)

holds. Therefore, there is a real number c > 0 such that, for all t in Y(t)
and all P in Xt not in Z, the inequality

h∆(P ) ≤ c ·
(
dk(TP ) +O

(
hY(t)

))
+O(1)
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holds. In particular, replacing c by a larger real number if necessary, we
conclude that

h∆(P ) ≤ c ·
(
dk(TP ) + hY(t)

)
+O(1).

As ∆ is ample and h∆ ≥ 1, we conclude that, using [Lan83, Proposition 5.4]
and replacing c by a larger real number if necessary, for all t in Y(t) and all
P in Xt not in Z, the inequality

h(P ) ≤ O
(
h∆(P )

)
≤ c ·

(
dk(TP ) + hY(f(P ))

)
+O(1)

holds. In particular, replacing c by a larger real number c(k,Y, f) if neces-
sary, we conclude that the following inequality

h(P ) ≤ c(k,Y, f) · (dk(TP ) + hY(f(P )))

holds. �

5. Uniformity results

Let k be a number field. In this section we prove Theorem 1.1.

Lemma 5.1. Let f : X → Y be a proper surjective morphism of proper
Deligne–Mumford stacks over k which is representable by schemes. Let h be
a height function on X and let hY be a height function on Y associated to
an ample divisor with hY ≥ 1. Assume Conjecture 3.3. Suppose that the
generic fibre Xη of f : X → Y is smooth and of general type. There exists
a proper Zariski closed substack Z ⊂ X and a real number c depending only
on k, X, Y , and f , such that, for all P in X(k)\Z, the following inequality
holds

h(P ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
.

Proof. We may and do assume that X and Y are geometrically integral
over k.

Let µ : X̃ → X be a desingularization of X; see [Tem12, Theorem 5.3.2].

Note that f̃ : X̃ → Y is a proper surjective morphism of proper Deligne–
Mumford stacks whose generic fibre is of general type. Define Xexc ⊂ X to

be the exceptional locus of µ : X̃ → X, so that µ induces an isomorphism of

stacks from X̃ \ µ−1(Xexc) to X \ Xexc. Note that Xexc is a proper closed
substack of X, as X is reduced.

Let h̃ be the height function on X̃ associated to h, so that, for all P̃ in X̃,

we have h̃(P̃ ) = h(P ). As we are assuming Conjecture 3.3, it follows from

Proposition 4.1 that there exists a proper Zariski closed substack Z̃ ⊂ X̃

such that, for all P̃ in X̃(k) \ Z̃, the following inequality

h̃(P ) ≤ c ·
(
hY (f̃(P )) + dk(TP )

)
holds, where c is a real number depending only on k, Y , X, and f . (Here

we use that X̃ → X only depends on X.)
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Define Z to be the closed substack µ(Z̃)∪Xexc in X. Note that µ induces

an isomorphism from X̃ \µ−1(Z) to X \Z. Therefore, we conclude that, for
all P in X(k) \ Z, the inequality

h(P ) = h̃(P̃ ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
holds, where P̃ is the unique point in X̃ mapping to X. �

Proof of Theorem 1.1. Since U is constructible, we have that U = ∪ni=1Ui
is a finite union of locally closed substacks Ui ⊂ Y . Let Yi be the closure of
Ui in Y , let Xi = X×Y Yi, and let fi : Xi → Yi be the associated morphism.
Note that Ui is open in Yi. In particular, to prove the theorem, replacing X
by Xi, Y by Yi, U by Ui, and f : X → Y by fi : Xi → Yi if necessary, we
may and do assume that U is open in Y .

We now argue by induction on dimX. If dimX = 0, then the statement
is clear.

As we are assuming Conjecture 3.3, it follows from Lemma 5.1 that there
exist a proper Zariski closed substack Z ⊂ X and a real number c0 > 0
depending only on k, X, Y , and f such that, for all P in X(k) \ Z, the
inequality

h(P ) ≤ c0 ·
(
hY (f(P )) + dk(TP )

)
(5.1)

holds.
Let X1, . . . , Xs ⊂ Z be the irreducible components of Z. Let Yi = f(Xi)

be the image of Xi in Y , i ∈ {1, . . . , s}. Note that fi := f |Xi : Xi → Yi
is a proper morphism of proper integral Deligne–Mumford stacks which is
representable by schemes. Moreover, for t in the open subscheme Yi ∩ U of
Yi, the proper variety Xi,t is hyperbolic, as Xi,t is a closed subvariety of the
hyperbolic variety Xt. Let hi be the restriction of h to Xi, and let hYi be
the restriction of hY to Yi.

Since Xi is a proper Zariski closed substack of X, it follows that dimXi <
dimX. Therefore, by the induction hypothesis, we conclude that there is a
real number ci > 0 depending only on k, Xi, Yi, and fi such that, for all P
in Xi(k), the following inequality

h(P ) = hi(P ) ≤ ci ·
(
hYi(fi(P )) + dk(TP )

)
(5.2)

= ci ·
(
hY (f(P )) + dk(TP )

)
.

holds. Let c′ := max(c1, . . . , cs). By (5.2), we conclude that, for all P in
Z(k), the inequality

h(P ) ≤ c′ ·
(
hY (f(P )) + dk(TP )

)
(5.3)

holds.
Combining (5.1) and (5.3), we conclude the proof of the theorem with

c := max(c0, c
′). �
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Lemma 5.2. Let f : X → Y be a proper surjective morphism of proper
Deligne–Mumford stacks over OK which is representable by schemes. If
P ∈ X (k), then dk(TP ) = dk(Tf(P ))).

Proof. Since the normalization morphism of an integral algebraic stack
is representable and X → Y is representable, we see that the morphism
TP → Tf(P ) is representable. Therefore, we see that TP → Tf(P ) is proper
surjective and representable by schemes. Moreover, it is birational, and it
has a section generically. This implies that the morphism TP → Tf(P ) is a
proper birational quasi-finite representable morphism. Since Tf(P ) is normal,
the lemma follows from Zariski’s Main Theorem for stacks. �

Corollary 5.3. Let f : X → Y be a proper surjective morphism of proper
Deligne–Mumford stacks over Z which is representable by schemes. Let X :=
XQ and Y := YQ. Let h be a height function on X and let hY be a height
function on Y associated to an ample divisor with hY ≥ 1. Assume Vojta’s
height conjecture (Conjecture 3.3). Let U ⊂ Y be a constructible substack
such that, for all t ∈ U , the variety Xt is smooth and hyperbolic. Then there
is a real number c > 0 depending only on k, Y , X, and f such that, for all
P in X(k) with f(P ) in U , the following inequality holds

h(P ) ≤ c ·
(
hY (f(P )) + dk(Tf(P ))

)
.

Proof. Combine Theorem 1.1 and Lemma 5.2. �

6. Applications

In this section we apply our main result (Theorem 1.1) to some explicit
families of hyperbolic varieties, and prove Theorems 1.2 and 1.3.

6.1. Application to curves. For g ≥ 2 an integer, let Mg be the stack

over Z of smooth proper genus g curves. Let Mg be the stack of stable

genus g curves. Note that Mg and Mg are smooth finite type separated

Deligne–Mumford stacks. Moreover, Mg →Mg is an open immersion, and

Mg is proper over Z with a projective coarse space [Kol90, Theorem 5.1].

These properties of Mg and Mg are proven in [DM69]. We fix an ample

divisor H on Mg.
If X is a smooth projective curve of genus at least two over a number

field k, we let h : X(k) → R be the height with respect to the canonical

embedding X → P5g−6
k . Moreover, we define the height of X to be the

height of the corresponding k-rational point ofMg with respect to the fixed

ample divisor H on Mg (following Section 3.4.3).
If X is a smooth projective curve of genus at least two over k and P is a

k-rational point of X, then the pair (X,P ) defines a point on the universal
curve Mg,1 over Mg. We let dk(T(X,P )) denote the discriminant of this
point, as defined in Section 3.4.2.
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Proof of Theorem 1.2. Since U :=Mg is open in Y :=Mg, we can apply
Corollary 5.3 to the universal family of stable genus g curves f : X → Y . �

Remark 6.1. In Theorem 1.2, one can also use the (stable) Faltings height
hFal(X) of X (instead of the height h introduced above). Indeed, it follows
from [Fal91, Paz12] that the Faltings height hFal(X) is bounded by h(X)+c,
where c is a real number depending only on the genus of X.

6.2. Hyperbolic surfaces. Recall that, if S is a smooth projective surface,
then c2

1(S) = K2
S and c2(S) = e(S) is the topological Euler characteristic.

Moreover, by Noether’s lemma, they are related by the following equality:

χ(S,OS) =
c1(S)2 + c2(S)2

12
.

In particular, the information of K2
S and χ(S) is equivalent to the data of

c1(S) and c2(S). Finally, we note that c2(S) ≥ 1 for any surface of general
type S [Bea96, X.1 and X.4].

A smooth proper morphism f : X → Y of schemes is a canonically
polarized smooth surface over Y if, for all y in Y , the scheme Xy is a
connected two-dimensional scheme and ωXy/k(y) is ample. If a and b are
integers, we let Ma,b over Z be the stack of smooth canonically polarized
surfaces S with c1(S)2 = a and c2(S) = b. Note that Ma,b is a finite type
algebraic stack over Z with finite diagonal (cf. [MM64, Tan72]).

Lemma 6.2. If S is a smooth projective hyperbolic surface over a field k,
then S is canonically polarized.

Proof. If S is a (smooth) minimal surface of general type, then the canonical
model Sc is obtained by contracting all rational curves with self intersection
−2 [Liu02, Chapter 9]. Consequently, the singularities on a singular surface
inMa,b(k) are rational double points arising from the contraction of these−2
curves. As having a −2 rational curve would contradict S being hyperbolic,
we see that Sc must be smooth, and thus equal to S. As the canonical
bundle on Sc is ample, we conclude that S is canonically polarized. �

LetMh
a,b ⊂Ma,b be the substack of hyperbolic surfaces, i.e., for a scheme

S, the objects f : X → S of the full subcategoryMh
a,b(S) ofMa,b(S) satisfy

the property that, for all s in S, the surface Xs is hyperbolic (Definition 2.2).
We do not know of any result on the algebraicity ofMh

a,b (nor the algebraic-

ity of Mh
a,b ×Z SpecC). However, if S is a minimal projective surface of

general type over C and c2
1(S) > c2(S), then Bogomolov proved [Bog77]

that S contains only a finite number of curves of bounded genus, and thus
S contains only finitely many rational and elliptic curves. In [Miy08, The-
orem 1.1] Miyaoka proved a more effective version of Bogomolov’s result,
showing that in fact the canonical degree of such curves is bounded in terms
of c2

1 and c2. Using these results we are able to prove the following.
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Lemma 6.3. If a > b, then Mh
a,b ×Z SpecC is a constructible substack of

Ma,b ×Z SpecC.

Proof. Let a and b be integers such that a > b. Let N be an integer
such that, for all S in Ma,b(C), the ample line bundle ω⊗NS/C is very ample.

In particular, S is embedded in Pn ∼= P(H0(S, ω⊗NS/C)). Let Hilba,b be the

Hilbert scheme of N -canonically embedded smooth surfaces, and note that
Ma,b = [Hilba,b/PGLn+1].

Let Hd be the Hilbert scheme of (possibly singular) curves of canonical
degree d in Pn. Let Hint

d be the subfunctor of geometrically integral curves.
Since the universal family over Hd is flat and proper, the subfunctor Hint

d is
an open subscheme of Hd; see [GW10, Appendix E.1.(12)].

Let Wa,b,d ⊂ Hint
d × Hilba,b be the incidence correspondence subscheme

parametrizing parametrizing pairs (C, S) where the curve C is inside the
surface S. (Note that Wa,b,d is a closed subscheme of Hint

d ×Hilba,b.)
By Miyaoka’s theorem [Miy08, Theorem 1.1], there exist integers d1, . . . ,

dm which depend only on a and b with the following property. A surface
S ∈ Ma,b(C) is hyperbolic if and only if, for all i = 1, . . . ,m, it does not
contain an integral curve of degree di.

Note that, by Chevalley’s theorem, for all d ∈ Z, the image of the com-
posed morphism

Wa,b,d ⊂ Hd ×Hilba,b → Hilba,b →Ma,b

is constructible. LetMa,b,di be the stack-theoretic image ofWa,b,di inMa,b.
Since a finite union of constructible substacks is constructible, the union⋃m
i=1Ma,b,di is a constructible substack of Ma,b.
Finally, by construction, a surface S inMa,b(C) is hyperbolic if and only if

it is not (isomorphic to an object) in the constructible substack
⋃m
i=1Ma,b,di .

As the complement of a constructible substack is constructible, we conclude
that Ma,b ×Z SpecC is a constructible substack of Ma,b ×Z C. �

Let Ua,b → Ma,b denote the universal family. We let Ma,b,Q be a com-
pactification of Ma,b,Q with a projective coarse moduli space; see [Hac12,
Section 2.5] (or [Kol90, Corollary 5.6]) for an explicit construction of such
a compactification. (As the stack of smooth canonically polarized surfaces
is open in the stack of canonical models, it suffices to compactify the lat-
ter, as is achieved in loc. cit. for all a and b.) We now choose Ma,b to be

a compactification of Ma,b over Z whose generic fibre Ma,b ×Z SpecQ is

isomorphic to Ma,b,Q, and we also choose a representable proper morphism

Ua,b →Ma,b extending the universal family over Ma,b compatibly with the

universal family over Ma,b,Q.
If S is a smooth projective canonically polarized hyperbolic surface over

a number field k, we let h : S(k)→ R be the height with respect to the very
ample divisor ω⊗34

S/k (see [Tan72]). Moreover, we define the height of S in
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Ma,b,Q(k) to be the height of the corresponding k-rational point ofMa,b with

respect to some fixed ample divisor H on Ma,b,Q (following Section 3.4.3).
If S is a smooth projective surface and P is a k-rational point of S, then

the pair (S, P ) defines a point on the universal surface Ua,b overMa,b. We let
dk(T(S,P )) denote the discriminant of this point, as defined in Section 3.4.2.

Proof of Theorem 1.3. By Lemma 6.3 and standard descent arguments
(cf. [Sta15, Tag 02YJ]), we conclude thatMh

a,b×Z SpecQ is a constructible
substack ofMa,b×ZSpecQ. Also, a smooth hyperbolic surface is canonically
polarized by Lemma 6.2. Therefore, the result follows from an application
of Corollary 5.3 to the universal family over Y :=Ma,b, with Y :=Ma,b,Q,

and the constructible substack U :=Mh
a,b,Q in Y . �

Remark 6.4. There are many examples of surfaces of general type with
c2

1 > c2. Some of the simplest examples are surfaces S with ample canonical
bundle such that there exist a smooth proper curve C and a smooth proper
morphism S → C (see for instance [Kod67]).
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