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Sheaves of nonlinear generalized function
spaces

Andreas Debrouwere and Eduard A. Nigsch

Abstract. We provide a framework for the construction of diffeomor-
phism invariant sheaves of nonlinear generalized functions spaces. As
applications, global algebras of generalized functions for distributions
on manifolds and diffeomorphism invariant algebras of generalized func-
tions for ultradistributions are constructed.
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1. Introduction

The theory of generalized functions developed by L. Schwartz [24] suffers
from the fact that in general one cannot define nonlinear operations (like
multiplication) on distributions, so the use of this theory for nonlinear prob-
lems is limited. In the 1980s, differential algebras of nonlinear generalized
functions were developed by J. F. Colombeau [4, 5] in order to study nonlin-
ear PDEs with singular data or coefficients. These Colombeau algebras have
found numerous applications for instance in connection with PDEs involving
singular data and/or coefficients, singular differential geometry and general
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relativity. In particular, a diffeomorphism invariant formulation of the the-
ory was developed in [12, 14] and recently extended to the vector-valued
setting in [21].

Spaces of nonlinear generalized ultradistributions were studied in [1, 7, 8,
11, 23]. The most recent variant, developed in [6], is optimal in the sense
that the embedding of ultradistributions of class Mp into these spaces pre-
serves the product of all ultradifferentiable functions of class Mp; this is an
improvement over the previous variants where only the product of ultrad-
ifferentiable functions of a strictly more regular class had been preserved.
The setting of [6] is that of special Colombeau algebras, which allows for a
simpler development of the theory but makes it impossible to obtain diffeo-
morphism invariance (cf. [13, Chapter 2]). Full Colombeau algebras, on the
other hand, are technically more involved but allow for an embedding of dis-
tributions that is diffeomorphism invariant and in addition commutes with
arbitrary derivatives (cf. [12, 14, 20]). Hence, for applications in a geometric
context it is essential that a formulation of the theory in the full setting is
obtained.

As a continuation of the development of [20, 19] and [6] we work out the
abstract formulation of the construction of sheaves of nonlinear generalized
function spaces. In particular, it turns out that very little structure is needed
on the underlying spaces of generalized functions as the respective arguments
mainly concern the sheaf structure.

Our construction applies at the same time to distributions and to ultradis-
tributions, both of Beurling and Roumieu type, which leads to the following
results.

Theorem 6.1. Let M be a paracompact Hausdorff manifold. There is an
associative commutative algebra Gloc(M) with unit containing D′(M) injec-
tively as a linear subspace and C∞(M) as a subalgebra. Gloc(M) is a dif-

ferential algebra, where the derivations L̂X extend the usual Lie derivatives
from D′(M) to Gloc(M), and Gloc is a fine sheaf of algebras over M .

As customary, we write ∗ instead of (Mp) or {Mp} to treat the Beurling
and Roumieu case simultaneously. For the following theorem, let Mp be a
weight sequence satisfying (M.1), (M.2), and (M.3′).

Theorem 7.6. For each open set Ω ⊆ Rd there is an associative com-
mutative algebra with unit G∗loc(Ω) containing D∗′(Ω) injectively as a linear
subspace and E∗(Ω) as a subalgebra. G∗loc(Ω) is a differential algebra, where

the partial derivatives ∂̂i, i = 1, . . . , d, extend the usual partial derivatives
from D∗′(Ω) to G∗loc(Ω), and G∗loc is a fine sheaf of algebras over Ω. More-
over, the construction is invariant under real-analytic coordinate changes,
i.e., if µ : Ω′ → Ω is a real-analytic diffeomorphism then there is a map
µ̂ : G∗loc(Ω

′)→ G∗loc(Ω) compatible with the canonical embeddings ι and σ.

The structure of this article is as follows.
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• We collect some preliminary notions in Section 2.
• The basic spaces containing the representatives of nonlinear gener-

alized functions are introduced in Section 3.
• The quotient construction, ensuring that the product of smooth or

of ultradifferentiable functions is preserved, is detailed in Section 4.
• Sheaf properties of the quotient space are established in Section 5.
• The construction of diffeomorphism invariant differential algebras

of distributions and ultradistributions is given in Section 6 and Sec-
tion 7, respectively.

2. Preliminaries

Our general references are [24] for distribution theory, [15, 16, 17] for
ultradistributions, [2, 10] for sheaf theory and [4, 5, 22, 13] for Colombeau
algebras.

We set I = (0, 1], R+ = [0,∞), and N = {0, 1, 2, . . . }. Given a set M , idM
(or simply id if the set is clear from the context) denotes the identity mapping
onM . For an element λ ∈ (R+)I we write λ(ε) = λε. Furthermore, Landau’s
O-notations are always meant for ε→ 0+. Given two locally convex spaces
E and F , Lb(E,F ) denotes the space of continuous linear mappings from E
into F endowed with the topology of bounded convergence. Lσ(E,F ) is this
space endowed with the weak topology instead. We denote by csn(E) the
set of continuous seminorms on E. An algebra always means an associative
commutative algebra over C, and a locally convex algebra is an algebra
endowed with a locally convex topology such that its multiplication is jointly
continuous. C∞(E,F ) is the space of smooth functions E → F in the sense
of convenient calculus [18], with C∞(E) := C∞(E,C); in this context, dkf
denotes the kth differential of a mapping f ∈ C∞(E,F ).

Colombeau algebras are usually defined by means of a quotient construc-
tion employing certain asymptotic scales. Most frequently a polynomial
scale is used for this purpose, but we will employ more general scales based
on [9] instead, which increases the flexibility regarding applications.

Definition 2.1. A set A ⊆ (R+)I is said to be an asymptotic growth scale
if

(i) ∀λ, µ ∈ A ∃ν ∈ A: λε + µε = O(νε),
(ii) ∀λ, µ ∈ A ∃ν ∈ A: λεµε = O(νε),
(iii) ∃λ ∈ A: lim inf

ε→0+
λε > 0.

A set I ⊆ (R+)I is said to be an asymptotic decay scale if

(iv) ∀λ ∈ I ∃µ, ν ∈ I: µε + νε = O(λε),
(v) ∀λ ∈ I ∃µ, ν ∈ I: µενε = O(λε),

(vi) ∃λ ∈ I: lim
ε→0+

λε = 0.



1754 ANDREAS DEBROUWERE AND EDUARD A. NIGSCH

We call a pair (A, I) an admissible pair of scales ifA is an asymptotic growth
scale, I is an asymptotic decay scale, and the following two properties are
satisfied:

(vii) ∀λ ∈ I ∀µ ∈ A ∃ν ∈ I: µενε = O(λε),
(viii) ∃λ ∈ A ∃µ ∈ I: µε = O(λε).

The prototypical scale to keep in mind is given by the polynomial scale

(2.1) A = I = { ε 7→ εk | k ∈ Z },
which is easily verified to give an admissible pair. For a detailed study of
asymptotic scales we refer to [8, 9].

3. The basic space

A main principle behind Colombeau algebras is to represent singular func-
tions by regular ones and thus define classical operations like multiplication
on the former through the latter. Usually the roles of singular and regular
functions are played by D′ and C∞, respectively, but for our considerations
we will replace these spaces by a more general pair of locally convex spaces
E and F . Such a pair (E,F ) is called a test pair if F ⊆ E and the topology
on F is finer than the one induced by E. Throughout this section we fix a
test pair (E,F ).

Definition 3.1. We define the basic space as

E(E,F ) := C∞(Lb(E,F ), F )

and the canonical linear embeddings of E and F into E(E,F ) via

ι : E → E(E,F ), ι(u)(Φ) := Φ(u),

σ : F → E(E,F ), σ(ϕ)(Φ) := ϕ.

The main example of a test pair to keep in mind is furnished by E = D′(Ω)
and F = C∞(Ω).

There are three common ways of transferring classical operations T on E
and F to elements R of the basic space E(E,F ). These are, in brief, given
as follows:

(T̃R)(Φ) := T (R(Φ)),

(T∗R)(Φ) := T (R(T−1 ◦ Φ ◦ T )),

(T̂R)(Φ) := −dR(Φ)(T ◦ Φ− Φ ◦ T ) + T (R(Φ)).

We will now specify in which situation they are well-defined on the basic
space, and when each variant is employed.

The first one amounts to applying an operation on F after inserting the
parameter Φ ∈ L(E,F ). This defines the vector space structure of E(E,F )
and its algebra structure if F is a locally convex algebra. Moreover, this
is used for extending directional derivatives and especially the covariant
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derivative in geometry (see [21]). For multilinear mappings it is formulated
as follows:

Lemma 3.2. Let T : F × · · · × F → F be a jointly continuous multilinear

mapping. Then, the mapping T̃ : E(E,F ) × · · · × E(E,F ) → E(E,F ) given
by

(3.1) T̃ (R1, . . . , Rn)(Φ) := T (R1(Φ), . . . , Rn(Φ))

commutes with the embedding σ in the sense that

T̃ (σ(ϕ1), . . . , σ(ϕn)) = σ(T (ϕ1, . . . , ϕn)).

Corollary 3.3. Suppose that F is a locally convex algebra. Then, E(E,F )
is an algebra with multiplication given by

(3.2) (R1 ·R2)(Φ) := R1(Φ) ·R2(Φ)

and σ is an algebra homomorphism.

The second variant of extending operations to the basic space applies to
isomorphisms on E which restrict to isomorphisms on F . This will be used
for isomorphisms on distribution spaces coming from diffeomorphisms of the
respective domains.

Lemma 3.4. Let (E1, F1) and (E2, F2) be two test pairs. Suppose that
f : E1 → E2 is a linear topological isomorphism such that also the restric-
tion f |F1 is a linear topological isomorphism F1 → F2. Then, the mapping
f∗ : E(E1, F1)→ E(E2, F2) given by

(3.3) (f∗R)(Φ) := f(R(f−1 ◦ Φ ◦ f))

is a vector space isomorphism that makes the following diagrams commuta-
tive:

E1
f //

ι
��

E2

ι
��

E(E1, F1)
f // E(E2, F2)

F1
f //

σ
��

F2

σ
��

E(E1, F1)
f // E(E2, F2).

Finally, the third variant of extending operations to the basic space applies
to the extension of derivatives to E(E,F ). In the following lemma, the
notation RO stands for “regularization operator”.

Lemma 3.5. Let T ∈ L(E,E) with T |F ∈ L(F, F ). Then, the mapping

TRO : L(E,F )→ L(E,F ),

Φ 7→ T ◦ Φ− Φ ◦ T

is linear and continuous, and the mapping T̂ : E(E,F )→ E(E,F ) given by

(3.4) (T̂R)(Φ) := T (R(Φ))− dR(Φ)(TROΦ)
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is a well-defined linear mapping that makes the following diagrams commu-
tative:

E
T //

ι
��

E

ι
��

E(E,F )
T̂ // E(E,F )

F
T //

σ
��

F

σ
��

E(E,F )
T̂ // E(E,F ).

4. The quotient construction

Colombeau algebras are defined as the quotient of moderate by negligible
functions, which permits the product of regular functions to be preserved.
While originally these properties were determined by inserting translated
and scaled test functions into the representatives of generalized functions,
the functional analytic formulation of the theory makes it possible to give
a very elegant formulation of this testing procedure in more general terms.
Our next goal is to give a proper definition of moderateness and negligibility
of elements of the basic space in our setting. We start by introducing test
objects for a test pair (E,F ).

Definition 4.1. Let S = (A, I) be an admissible pair of scales. We define
TO(E,F,S) as the set consisting of all (Φε)ε ∈ L(E,F )I that satisfy

(TO1) ∀p ∈ csn(Lσ(E,F ))∃λ ∈ A : p(Φε) = O(λε),
(TO2) ∀p ∈ csn(Lσ(F, F ))∀λ ∈ I : p(Φε|F − idF ) = O(λε),
(TO3) Φε → idE in Lσ(E,E).

Elements of TO(E,F,S) are called test objects (with respect to S). If S is
clear from the context, we shall simply write TO(E,F,S) = TO(E,F ).

Similarly, we define TO0(E,F ) = TO0(E,F,S) as the set consisting of
all (Ψε)ε ∈ L(E,F )I that satisfy

(TO0
1) ∀p ∈ csn(Lσ(E,F ))∃λ ∈ A : p(Ψε) = O(λε),

(TO0
2) ∀p ∈ csn(Lσ(F, F ))∀λ ∈ I : p(Ψε|F ) = O(λε),

(TO0
3) Ψε → 0 in Lσ(E,E).

Elements of TO0(E,F,S) are called 0-test objects (with respect to S).

We shall need the following result later on.

Lemma 4.2.

(i) Let Ti ∈ L(E,E), i = 0, . . . , N , N ∈ N, be given such that

Ti|F ∈ L(F, F ) and
N∑
i=0

Ti = id .

Then,
(∑N

i=0 Ti ◦ Φi,ε

)
ε
∈ TO(E,F ) for all (Φi,ε)ε ∈ TO(E,F ),

i = 0, . . . , N .
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(ii) Let T ∈ L(E,E) be such that T |F ∈ L(F, F ). Then,

(T ◦ Φε)ε ∈ TO0(E,F )

for all (Φε)ε ∈ TO0(E,F ).
(iii) Let T ∈ L(E,E) with T |F ∈ L(F, F ). Then,

(T ◦ Φε − Φε ◦ T )ε ∈ TO0(E,F )

for all (Φε)ε ∈ TO(E,F ) ∪ TO0(E,F ).

Having test objects at our disposal, we are now able to define moderate-
ness and negligibility.

Definition 4.3. Let S = (A, I) be an admissible pair of scales and let Λ ⊆
TO(E,F,S), Λ0 ⊆ TO0(E,F,S) be nonempty. An element R ∈ E(E,F ) is
called moderate (with respect to Λ, Λ0, and S) if

∀p ∈ csn(F ) ∀l ∈ N ∀(Φε)ε ∈ Λ ∀(Ψ1,ε)ε, . . . , (Ψl,ε)ε ∈ Λ0 ∃λ ∈ A :

p(dlR(Φε)(Ψ1,ε, . . . ,Ψl,ε)) = O(λε),

and negligible (with respect to Λ, Λ0, and S) if

∀p ∈ csn(F ) ∀l ∈ N ∀(Φε)ε ∈ Λ ∀(Ψ1,ε)ε, . . . , (Ψl,ε)ε ∈ Λ0 ∀λ ∈ I :

p(dlR(Φε)(Ψ1,ε, . . . ,Ψl,ε)) = O(λε).

The set of all moderate (negligible, respectively) elements is denoted by
EM(E,F ) = EM(E,F,Λ,Λ0,S) (EN (E,F ) = EN (E,F,Λ,Λ0,S), respec-
tively).

The following important properties follow immediately from our defini-
tions. In fact, we chose our definitions in such a way precisely for these
properties to hold.

Proposition 4.4.

(i) EM(E,F ) is a vector space and EN (E,F ) is a subspace of EM(E,F ).
(ii) ι(E) ⊆ EM(E,F ), σ(F ) ⊆ EM(E,F ).

(iii) ι(E) ∩ EN (E,F ) = {0}, σ(F ) ∩ EN (E,F ) = {0}.
(iv) (ι− σ)(F ) ⊆ EN (E,F ).

We now construct the quotient.

Definition 4.5. Let S = (A, I) be an admissible pair of scales and let
Λ ⊆ TO(E,F,S), Λ0 ⊆ TO0(E,F,S) be nonempty. The nonlinear extension
of the test pair (E,F ) (with respect to Λ, Λ0, and S) is defined as

G(E,F ) = G(E,F,Λ,Λ0,S) := EM(E,F,Λ,Λ0,S)/EN (E,F,Λ,Λ0,S).

The equivalence class of R ∈ EM(E,F ) is denoted by [R].
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Proposition 4.4 implies that

ι : E → G(E,F ), ι(u) := [ι(u)],

σ : F → G(E,F ), σ(ϕ) := [σ(ϕ)],

are linear embeddings such that ι|F = σ. The name “nonlinear extension”
is justified by the following lemma.

Lemma 4.6. Let T : F × · · · × F → F be a jointly continuous multilinear
mapping and consider the multilinear mapping

T̃ : E(E,F )× · · · × E(E,F )→ E(E,F )

given by (3.1). Then, T̃ preserves moderateness, i.e.,

T̃ (EM(E,F ), . . . , EM(E,F )) ⊆ EM(E,F ),

and T̃ (R1, . . . , Rn) is negligible if at least one of the Ri is negligible. Con-
sequently,

T̃ : G(E,F )× . . .× G(E,F )→ G(E,F )

T̃ ([R1], . . . , [Rn]) := [T (R1, . . . , Rn)]

is a well-defined multilinear mapping such that

T̃ (σ(ϕ1), . . . , σ(ϕn)) = σ(T (ϕ1, . . . , ϕn)).

Proof. This follows from Lemma 3.2 and the continuity of T . �

Corollary 4.7. Suppose that F is a locally convex algebra. Then, EM(E,F )
is an algebra with multiplication given by (3.2) and EN (E,F ) is an ideal of
EM(E,F ). Consequently, G(E,F ) is an algebra with multiplication given by

[R1] · [R2] := [R1 ·R2]

and σ is an algebra homomorphism.

Lemma 4.8. Let (E1, F1) and (E2, F2) be two test pairs. Suppose that
f : E1 → E2 is a linear topological isomorphism such that also the restriction
f |F1 is a linear topological isomorphism F1 → F2. Let S = (A, I) be an
admissible pair of scales and let Λi ⊆ TO(Ei, Fi,S), Λ0

i ⊆ TO0(Ei, Fi,S) be
nonempty for i = 1, 2 such that

(f−1 ◦ Φε ◦ f)ε ∈ Λ1 ∀(Φε)ε ∈ Λ2,

(f−1 ◦Ψε ◦ f)ε ∈ Λ0
1 ∀(Ψε)ε ∈ Λ0

2,

and

(f ◦ Φε ◦ f−1)ε ∈ Λ2 ∀(Φε)ε ∈ Λ1,

(f ◦Ψε ◦ f−1)ε ∈ Λ0
2 ∀(Ψε)ε ∈ Λ0

1.
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Consider the mapping f∗ : E(E1, F1)→ E(E2, F2) given by (3.3). Set

EM(Ei, Fi) = EM(Ei, Fi,Λi,Λ
0
i ,S),

EN (Ei, Fi) = EN (Ei, Fi,Λi,Λ
0
i ,S),

for i = 1, 2. Then, f∗ preserves moderateness and neglibility. As a conse-
quence, the mapping f∗ : G(E1, F1)→ G(E2, F2) given by

f∗([R]) := [f∗(R)]

is an isomorphism that makes the following diagram commutative.

E1
f //

ι
��

E2

ι
��

G(E1, E2)
f // G(E2, F2).

Proof. This follows from Lemma 3.4 and the continuity of f . �

Lemma 4.9. Let T ∈ L(E,E) with T |F ∈ L(F, F ). Consider the mapping

T̂ : E(E,F )→ E(E,F ) given by (3.4). Then, T̂ preserves moderateness and

negligibility. Consequently, the mapping T̂ : G(E,F )→ G(E,F ) given by

T̂ ([R]) := [T̂ (R)]

is a well-defined linear mapping that makes the following diagram commu-
tative:

E
T //

ι
��

E

ι
��

G(E,F )
T̂ // G(E,F ).

Proof. This follows from Lemma 3.5 and continuity of T . �

5. Sheaf properties

In this section we study the sheaf theoretic properties of our generalized
function spaces. After introducing the necessary terminology, we first look
in detail at test objects. Satisfying a certain localizability condition, the
spaces of test objects and 0-test objects themselves form sheaves. This is
used for showing the existence of global test objects by gluing together local
ones, and for extending and restricting test objects in the proof of the sheaf
property of the Colombeau quotient.

5.1. Locally convex sheaves. LetX be a Hausdorff locally compact para-
compact topological space. For open subsets V,U ⊆ X we write V b U to
indicate that V ⊂ U and V is relatively compact in X. We shall only use
this notation for open sets.

A presheaf (of vector spaces) E assigns to each open set U ⊆ X a vector
space E(U) and gives, for every inclusion of open sets V ⊆ U , a linear
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mapping ρV,U : E(U) → E(V ) such that for all W ⊆ V ⊆ U the identities
ρW,U = ρW,V ◦ ρV,U and ρU,U = id hold. The elements of E(U) are called
sections of E over U and the mappings ρV,U restriction mappings.

A presheaf E is a sheaf if for all open subsets U ⊆ X and all open
coverings (Ui)i of U the following properties are satisfied:

(S1) If u ∈ E(U) satisfies ρUi,U (u) = 0 for all i then u = 0.
(S2) If ui ∈ E(Ui) are given such that ρUi∩Uj ,Ui(ui) = ρUi∩Uj ,Uj (uj) for

all i, j then there exists u ∈ E(U) such that ρUi,U (u) = ui for all i.

A section u ∈ E(U) is said to vanish on an open set V ⊆ U if ρV,U (u) = 0.
The support of u, denoted by suppu, is defined as the complement in U of
the union of all open sets on which u vanishes. The restriction of the sheaf
E to an open set U ⊆ X is denoted by E|U .

A locally convex sheaf E (see, e.g., [3]) is a sheaf E such that E(U) is a
locally convex space for each open set U ⊆ X, the restriction mappings are
continuous, and for all open sets U ⊆ X and all open coverings (Ui)i of U
the following property is satisfied:

(S3) the topology on E(U) coincides with the projective topology on
E(U) with respect to the mappings ρUi,U .

Property (S3) and the fact that X is locally compact imply the canonical
isomorphism of locally convex spaces

(5.1) E(U) ∼= lim←−
WbU

E(W ),

where the projective limit is taken with respect to the restriction mappings.
Notice that the algebraic isomorphism in (5.1) holds because of (S1) and
(S2).

Let E1 and E2 be (locally convex) sheaves. A sheaf morphism µ : E1 → E2

consists of (continuous) linear mappings µU : E1(U)→ E2(U) for each open
set U ⊆ X such that, for every inclusion of open sets V ⊆ U , the identity
ρV,U ◦ µU = µV ◦ ρV,U holds. The set of all sheaf morphisms from E1 into
E2 is denoted by Hom(E1, E2). The assignment U → Hom(E1|U , E2|U )
together with the canonical restriction mappings is a sheaf. By abuse of
notation we shall also denote this sheaf by Hom(E1, E2). More generally,
let E1, . . . , En, E be (locally convex) sheaves on X. A multilinear sheaf
morphism T : E1×· · ·×En → E consists of (jointly continuous) multilinear
mappings TU : E1(U)× · · · ×En(U)→ E(U) for each open set U ⊆ X such
that, for every inclusion of open sets V ⊆ U , we have

ρV,U (TU (u1, . . . , un)) = TV (ρV,U (u1), . . . , ρV,U (un))

if ui ∈ Ei(U) for i = 1, . . . , n.
A (locally convex) sheaf E is called a (locally convex) sheaf of algebras if

for each open set U ⊆ X the space E(U) is a (locally convex) algebra and
the multiplication is a bilinear sheaf morphism.
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A (locally convex) sheaf E is called fine if for all closed subsets A,B of X
with A∩B = ∅ there is µ ∈ Hom(E,E) and open neighbourhoods U and V
of A and B, respectively, such that µU = id and µV = 0. Or, equivalently, if
for every open covering (Ui)i of X there is a family (ηi)i ⊂ Hom(E,E) such
that the family of supports of the ηi is locally finite, supp ηi ⊆ Ui for all i,
and

∑
i η
i = id. The family (ηi)i is called a partition of unity subordinate to

the covering (Ui)i. We shall often use the following extension principle for
(locally convex) fine sheaves E: Let U, V,W be open subsets of X such that
W ⊂ V ⊆ U . Then, there is a (continuous) linear mapping τ : E(V )→ E(U)
such that ρW,V = ρW,U ◦ τ . In fact, choose µ ∈ Hom(E,E) such that µ = id

on a neighborhood of W and µ = 0 on a neighborhood of the complement
of V ; then for any f ∈ E(V ), the extension of µV f by zero to U gives the
desired extension τf .

5.2. Localizing regularization operators. Let X be a Hausdorff locally
compact paracompact topological space and E and F locally convex sheaves.
We call (E,F ) a test pair of sheaves if the following three properties are
satisfied:

(i) F is a subsheaf of E.
(ii) (E(U), F (U)) is a test pair for each open set U ⊆ X.

Given a sheaf morphism µ ∈ Hom(E,E) we write µ|F for its restriction
to F . Hence µ|F ∈ Hom(F, F ) means that µU |F (U) is a continuous linear
operator from F (U) into itself for each open set U ⊆ X. The third property
can then be formulated as follows:

(iii) For all open sets U ⊆ X and all closed subsets A,B of U with
A ∩B = ∅ there is µ ∈ Hom(E|U , E|U ) with µ|F ∈ Hom(F |U , F |U )
such that µV = id and µW = 0 for some open neighbourhoods V
and W (in U) of A and B, respectively. Or, equivalently, to the
fact that for any open set U of X and any open covering (Ui)i of U
there is a partition of unity (ηi)i ⊂ Hom(E|U , E|U ) subordinate to
(Ui)i such that ηi|F |U ∈ Hom(F |U , F |U ) for all i.

In particular, property (iii) implies that E|U and F |U are fine sheaves for all
open sets U ⊆ X. Moreover, it implies that for all open subsets U, V,W of
X with W ⊂ V ⊆ U there is τ ∈ L(E(V ), E(U)) such that ρW,V = ρW,U ◦ τ
and τ |F (V ) ∈ L(F (V ), F (U)) .

Since F is a subsheaf of E, there is no need to make a distinction between
the restriction mappings on E and F , respectively. These mappings will
be denoted by ρU,V . Furthermore, we introduce the shorthand notation
RO(U) = L(E(U), F (U)), where RO stands for “regularization operator”.

Definition 5.1. Let U ⊆ X be open. An element (Φε)ε ∈ RO(U)I is called
localizing if

(∀V, V0 ⊆ X : V b V0 b U) (∃ε0 ∈ I) (∀ε < ε0) (∀u ∈ E(U))

(ρV0,U (u) = 0⇒ ρV,U (Φε(u)) = 0).
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We write ROloc(U) for the set of all localizing elements in RO(U)I . Fur-
thermore, we define

TOloc(U) = TOloc(U,S) := TO(E(U), F (U),S) ∩ ROloc(U),

TO0
loc(U) = TO0

loc(U,S) := TO0(E(U), F (U),S) ∩ ROloc(U),

where S is an admissible pair of scales.

Remark 5.2. Throughout this subsection we shall always assume that the
space TOloc(U) is nonempty.

Definition 5.3. Let U ⊆ X be open. We define NO(U) as the vector
space consisting of all (Φε)ε ∈ RO(U)I such that for all V b U we have
ρV,U ◦ Φε = 0 for ε small enough. Define

R̃Oloc(U) := ROloc(U)/NO(U), T̃O
0

loc(U) := TO0
loc(U)/NO(U).

For (Φε)ε, (Φ
′
ε)ε ∈ RO(U)I we write (Φε)ε ∼ (Φ′ε)ε if (Φε − Φ′ε)ε ∈ NO(U).

Set

T̃Oloc(U) := TOloc(U)/∼.

The main goal of this subsection is to show that one can define a natural

sheaf structure on U → R̃Oloc(U). We start with defining the restriction
mappings.

Lemma 5.4. Let U, V be open subsets of X with V ⊆ U . There is a
linear mapping ρRO

V,U : RO(U) → RO(V ) which is continuous for the strong

topologies on RO(U) and RO(V ) and such that for all (Φε)ε ∈ ROloc(U) the
following properties hold:

(i) We have that

(∀W,W0 ⊆ X : W bW0 b V ) (∃ε0 ∈ I) (∀ε < ε0) (∀u ∈ E(U)) (∀v ∈ E(V ))

(ρW0,U (u) = ρW0,V (v)⇒ ρW,V (ρRO
V,U (Φε)(v)) = ρW,U (Φε(u))).

(ii) For all W b V and all τ ∈ L(E(V ), E(U)) with ρW0,U ◦ τ = ρW0,V

for some W bW0 b V we have that

ρW,U ◦ Φε ◦ τ = ρW,V ◦ ρRO
V,U (Φε)

for ε small enough.
(iii) For all W b V we have that

ρW,V ◦ ρRO
V,U (Φε) ◦ ρV,U = ρW,U ◦ Φε

for ε small enough.
(iv) For all W b V and Φ1,Φ2 ∈ RO(U) that satisfy

ρW,U ◦ Φ1 = ρW,U ◦ Φ2

we have that

ρW,V ◦ ρRO
V,U (Φ1) = ρW,V ◦ ρRO

V,U (Φ2).
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Proof. Let (Vi)i be an open covering of V such that Vi b V for all i. Let
(ηi)i ⊂ Hom(F |V , F |V ) be a partition of unity subordinate to (Vi)i and
choose τi ∈ L(E(V ), E(U)) such that ρVi,V = ρVi,U ◦ τi for all i. We define

ρRO
V,U (Φ) :=

∑
i

ηiV ◦ ρV,U ◦ Φ ◦ τi.

For all W b V it holds that supp ηi ∩W = ∅ except for i belonging to some
finite index set J . Hence

(5.2) ρW,V ◦ ρRO
V,U (Φ) =

∑
i∈J

ηiW ◦ ρW,U ◦ Φ ◦ τi,

By (5.1) we then have that ρRO
V,U (Φ) ∈ RO(V ). The linearity and continuity

of ρRO
V,U and also (iv) are clear from this expression. We now show (i). Let

W b V and W b W0 b V be arbitrary. Suppose that the representation
(5.2) holds for some finite index set J . Choose V ′i b Vi with supp ηi ⊂ V ′i .
Since (Φε)ε is localizing, there is ε0 ∈ I such that for all i ∈ J , ε < ε0, and
u ∈ E(U) it holds that

(5.3) ρW0∩Vi,U (u) = 0⇒ ρW∩V ′i ,U (Φε(u)) = 0.

Assume that u ∈ E(U) and v ∈ E(V ) are given such that

ρW0,U (u) = ρW0,V (v).

Since

ρW,U ◦ Φε =
∑
i∈J

ηiW ◦ ρW,U ◦ Φε

and supp ηi ⊂ V ′i it suffices to show that

ρW∩V ′i ,U (Φε(u− τi(v))) = 0

for all i ∈ J . This follows from (5.3) and our choice of τi. Properties (ii)
and (iii) are special cases of (i). �

Lemma 5.5. Let U, V be open subsets of X with V ⊆ U . Then, for all
(Φε)ε ∈ ROloc(U) it holds that

(i) (ρRO
V,U (Φε))ε ∈ ROloc(V ),

(ii) if (Φε)ε ∼ 0, then (ρRO
V,U (Φε))ε ∼ 0,

(iii) for W ⊆ V ⊆ U it holds that ((ρRO
W,V ◦ ρRO

V,U )(Φε))ε ∼ (ρRO
W,U (Φε))ε.

Proof. (i) Let W b V and W b W0 b V be arbitrary. Since (Φε)ε is
localizing there is ε1 ∈ I such that such that for all ε < ε1 and all u ∈ E(U)
it holds that

(5.4) ρW0,U (u) = 0⇒ ρW,U (Φε(u)) = 0.

Choose τ ∈ L(E(V ), E(U)) such that ρW0,U ◦ τ = ρW0,V . By Lemma 5.4(ii)
there is ε2 ∈ I such that

ρW,V ◦ ρRO
V,U (Φε) = ρW,U ◦ Φε ◦ τ
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for all ε < ε2. Set ε0 = min(ε1, ε2). Let v ∈ E(V ) be such that ρW0,V (v) = 0.
Hence

ρW,V (ρRO
V,U (Φε)(v)) = ρW,U (Φε(τ(v))) = 0

for all ε < ε0.
(ii) Let W b V be arbitrary. Choose τ ∈ L(E(V ), E(U)) such that

ρW0,U ◦ τ = ρW0,V . By Lemma 5.4(ii) we have that

ρW,V ◦ ρRO
V,U (Φε) = ρW,U ◦ Φε ◦ τ = 0

for ε small enough because (Φε)ε ∼ 0.
(iii) Let W0 bW be arbitrary. Fix an open set W ′0 such that

W0 bW
′
0 bW.

Choose τ ∈ L(E(V ), E(U)) such that ρW ′0,U ◦ τ = ρW ′0,V and choose τ ′ ∈
L(E(W ), E(V )) such that ρW ′0,V ◦τ

′ = ρW ′0,W . Hence τ◦τ ′ ∈ L(E(W ), E(U))
and

ρW ′0,U ◦ τ ◦ τ
′ = ρW ′0,W .

By Lemma 5.4(ii) we have that

ρW0,W ◦ ρRO
W,V (ρRO

V,U (Φε)) = ρW0,V ◦ ρRO
V,U (Φε) ◦ τ = ρW0,U ◦ Φε ◦ τ ′ ◦ τ

= ρW0,W ◦ ρRO
W,U (Φε)

for ε small enough. �

Lemma 5.5 implies that the mappings

ρRO
V,U ([(Φε)ε]) := [(ρRO

V,U (Φε))ε]

define a presheaf structure on U → R̃Oloc(U). We now show that it is in
fact a sheaf.

Proposition 5.6. R̃Oloc is a sheaf of vector spaces.

Proof. Let U ⊆ X be open and let (Ui)i be an open covering of U .

(S1) Suppose that [(Φε)ε] ∈ R̃Oloc(U) such that

ρRO
Ui,U ([(Φε)ε]) = 0

for all i. We need to show that (Φε)ε ∼ 0. Let W b U be arbitrary. We may
assume without loss of generality that W b Ui for some i. By Lemma 5.4(iii)
and our assumption we have that

ρW,U ◦ Φε = ρW,Ui ◦ ρRO
Ui,U (Φε) ◦ ρUi,U = 0

for ε small enough.
(S2) Since X is locally compact we may assume without loss of generality

that Ui b U for all i. Suppose that [(Φi,ε)ε] ∈ R̃Oloc(Ui) are given such that

ρRO
Ui∩Uj ,Ui

([(Φi,ε)ε]) = ρRO
Ui∩Uj ,Uj

([(Φj,ε)ε])
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for all i, j. Let (ηi)i ⊂ Hom(F |U , F |U ) be a partition of unity subordinate to
the covering (Ui)i. Choose τi ∈ L(F (Ui), F (U)) such that ρVi,U ◦ τi = ρVi,Ui

for some Vi b Ui with supp ηi ⊂ Vi. We define

Φε =
∑
i

ηiU ◦ τi ◦ Φi,ε ◦ ρUi,U

for all ε ∈ I. Notice that Φε ∈ RO(U) because of (5.1) and the fact that
the family of supports of the ηi is locally finite. We now show that (Φε)ε
is localizing. Let W b U and W b W0 b U be arbitrary and suppose that
supp ηi ∩W = ∅ except for i belonging to some finite index set J . Choose
V ′i b Ui such that Vi b V ′i . Since the (Φi,ε)ε are localizing there is ε0 ∈ I
such that for all i ∈ J , ε < ε0, and u ∈ E(Ui) it holds that

(5.5) ρW0∩V ′i ,Ui
(u) = 0⇒ ρW∩Vi,Ui(Φi,ε(u)) = 0.

Now suppose that u ∈ E(U) satisfies ρW0,U (u) = 0. Since

ρW,U (Φε(u)) =
∑
i∈J

ηiW (ρW,U (τi(Φi,ε(ρUi,U (u)))))

and supp ηi ⊂ Vi it suffices to show that

ρW∩Vi,U (τi(Φi,ε(ρUi,U (u)))) = ρW∩Vi,Ui(Φi,ε(ρUi,U (u))) = 0

for all i ∈ J . This follows from (5.5). Finally, we show that

ρRO
Ui,U ([(Φε)ε]) = [(Φi,ε)ε]

for all i. Let W b Ui be arbitrary and suppose that supp ηj ∩W = ∅ except
for j belonging to some finite index set J . Let τ ∈ L(E(Ui), E(U)) be such
that ρW0,U ◦ τ = ρW0,Ui where W0 is some open set such that W bW0 b Ui.
Lemma 5.4(ii) yields that

ρW,Ui ◦ ρRO
Ui,U (Φε)− ρW,Ui ◦ Φi,ε

= ρW,U ◦ Φε ◦ τ − ρW,Ui ◦ Φi,ε

=
∑
j∈J

ηjW ◦ (ρW,U ◦ τj ◦ Φj,ε ◦ ρUj ,U ◦ τ − ρW,Ui ◦ Φi,ε).

Since supp ηj ⊂ Vj it suffices to show that

ρW∩Vj ,U ◦ τj ◦ Φj,ε ◦ ρUj ,U ◦ τ − ρW∩Vj ,Ui ◦ Φi,ε = 0

for all j ∈ J and ε small enough. Our choice of τj and Lemma 5.4(ii) and
(iii) imply that

ρW∩Vj ,U ◦ τj ◦ Φj,ε ◦ ρUj ,U ◦ τ − ρW∩Vj ,Ui ◦ Φi,ε

= ρW∩Vj ,Uj ◦ Φj,ε ◦ ρUj ,U ◦ τ − ρW∩Vj ,Ui ◦ Φi,ε

= ρW∩Vj ,Ui∩Uj ◦ ρRO
Ui∩Uj ,Uj

(Φj,ε) ◦ ρUi∩Uj ,U ◦ τ − ρW∩Vj ,Ui ◦ Φi,ε

= ρW∩Vj ,Ui∩Uj ◦ ρRO
Ui∩Uj ,Ui

(Φi,ε) ◦ ρUi∩Uj ,U ◦ τ − ρW∩Vj ,Ui ◦ Φi,ε

= ρW∩Vj ,Ui ◦ Φi,ε ◦ ρUi,U ◦ τ − ρW∩Vj ,Ui ◦ Φi,ε
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which equals zero for ε small enough because (Φi,ε)ε is localizing. �

Lemma 5.7. Every sheaf morphism µ ∈ Hom(F, F ) induces a sheaf mor-

phism µ ∈ Hom(R̃Oloc, R̃Oloc) via

(5.6) µU ([(Φε)ε]) := [(µU ◦ Φε)ε],

with U an open subset of X.

Proof. Clearly, µU : R̃Oloc(U)→ R̃Oloc(U) is a well-defined linear mapping
for each U ⊆ X open. We now show that µ is a sheaf morphism. Let V,U be
open subsets of X such that V ⊆ U . It suffices to show that for all W b V
and all (Φε)ε ∈ ROloc(U) it holds that

ρW,V ◦ ρRO
V,U (µU ◦ Φε) = ρW,V ◦ µV ◦ ρRO

V,U (Φε)

for ε small enough. Let τ ∈ L(E(V ), E(U)) be such that ρW0,U ◦ τ = ρW0,V

for some open set W0 such that W bW0 b V . By Lemma 5.4(ii) we have

ρW,V ◦ ρRO
V,U (µU ◦ Φε) = ρW,U ◦ µU ◦ Φε ◦ τ

= µW ◦ ρW,U ◦ Φε ◦ τ
= µW ◦ ρW,V ◦ ρRO

V,U (Φε)

= ρW,V ◦ µV ◦ ρRO
V,U (Φε)

for ε small enough. �

We now turn our attention to spaces of test objects.

Lemma 5.8. Let U ⊆ X be open and let (Ui)i be an open covering of U .
Let (Φε)ε ∈ ROloc(U). Then, (Φε)ε ∈ TOloc(U) ((Φε)ε ∈ TO0

loc(U), respec-
tively) if and only if (ρRO

Ui,U
(Φε))ε ∈ TOloc(Ui) ((ρRO

Ui,U
(Φε))ε ∈ TO0

loc(Ui),

respectively) for all i.

Proof. We only show the statement for TOloc, the proof for TO0
loc is similar.

Let (Φε)ε ∈ ROloc(U). We first assume that (Φε)ε satisfies (TO1)–(TO3),
and prove that (ρRO

Ui,U
(Φε))ε does so as well.

(TO1): It suffices to show that for all u ∈ E(Ui) and all p ∈ csn(F (W )),
with W b Ui arbitrary, there is λ ∈ A such that

p(ρW,Ui(ρ
RO
Ui,U (Φε)(u))) = O(λε).

Let τ ∈ L(E(Ui), E(U)) such that ρW0,U ◦ τ = ρW0,Ui where W0 is an open
set such that W bW0 b Ui. By Lemma 5.4(ii) we have that

ρW,Ui(ρ
RO
Ui,U (Φε)(u)) = ρW,U (Φε(τ(u)))

for ε small enough. The result now follows from our assumption and the
fact that ρW,U ∈ L(F (U), F (V )).

(TO2): It suffices to show that for all ϕ ∈ F (Ui), all p ∈ csn(F (W )), with
W b Ui arbitrary, and all λ ∈ I it holds that

p(ρW,Ui(ρ
RO
Ui,U (Φε)(ϕ)− ϕ)) = O(λε).
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Let τ ∈ L(F (Ui), F (U)) such that ρW0,U ◦ τ = ρW0,Ui where W0 is an open
set such that W bW0 b Ui. By Lemma 5.4(ii) we have that

ρW,Ui(ρ
RO
Ui,U (Φε)(ϕ)− ϕ) = ρW,U (Φε(τ(ϕ))− τ(ϕ))

for ε small enough. The result now follows from our assumption and the
fact that ρW,U ∈ L(F (U), F (W )).

(TO3): It suffices to show that for all u ∈ E(Ui) and all p ∈ csn(E(W )),
with W b Ui arbitrary, it holds that

p(ρW,Ui(ρ
RO
Ui,U (Φε)(u)− u))→ 0.

Let τ ∈ L(E(Ui), E(U)) such that ρW0,U ◦ τ = ρW0,Ui where W0 is an open
set such that W bW0 b Ui. By Lemma 5.4(ii) we have that

ρW,Ui(ρ
RO
Ui,U (Φε)(u)− u) = ρW,U (Φε(τ(u))− τ(u))

for ε small enough. The result now follows from our assumption and the
fact that ρW,U ∈ L(E(U), E(V )).

Conversely, assume that (ρRO
Ui,U

(Φε))ε satisfies (TO1)–(TO3) for each i.

We will prove that (Φε)ε does so as well.
(TO1): It suffices to show that for all u ∈ E(U) and all p ∈ csn(F (W )),

with W b Ui (for some i) arbitrary, there is λ ∈ A such that

p(ρW,U ((Φε(u)))) = O(λε).

By Lemma 5.4(iii) we have that

ρW,U (Φε)(u) = ρW,Ui(ρ
RO
Ui,U (Φε)(ρUi,U (u)))

for ε small enough and the result follows from our assumption and the fact
that ρW,Ui ∈ L(F (Ui), F (W )).

(TO2): It suffices to show that for all ϕ ∈ F (U) and all p ∈ csn(F (W )),
with W b Ui (for some i) arbitrary, and all λ ∈ I it holds that

p(ρW,U ((Φε)(ϕ)− ϕ)) = O(λε).

By Lemma 5.4(iii) we have that

ρW,U ((Φε)(ϕ)− ϕ) = ρW,Ui(ρ
RO
Ui,U (Φε)(ρUi,U (ϕ))− ρUi,U (ϕ))

for ε small enough and the result follows from our assumption and the fact
that ρW,Ui ∈ L(F (Ui), F (W )).

(TO3): It suffices to show that for all u ∈ E(U) and all p ∈ csn(E(W )),
with W b U arbitrary, it holds that

p(ρW,U ((Φε)(u)− u))→ 0.

By Lemma 5.4(iii) we have that

ρW,U ((Φε)(u)− u) = ρW,Ui(ρ
RO
Ui,U (Φε)(ρUi,U (u))− ρUi,U (u))

for ε small enough and the result follows from our assumption and the fact
that ρW,Ui ∈ L(E(Ui), E(W )). �
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The following result is an immediate consequence of Lemma 4.2 and
Lemma 5.7.

Lemma 5.9.

(i) Let µi ∈ Hom(E,E), i = 0, . . . , N , N ∈ N, be such that

µi|F ∈ Hom(F, F ) and

N∑
i=0

µi = id .

Then,
(∑N

i=0 µ
i
U ◦ Φi,ε

)
ε
∈ TOloc(U) for all (Φi,ε)ε ∈ TOloc(U),

i = 0, . . . , N .
(ii) Let µ ∈ Hom(E,E), be such that µ|F ∈ Hom(F, F ). Then,

(µU ◦ Φε)ε ∈ TO0
loc(U)

for all (Φε)ε ∈ TO0
loc(U).

(iii) Let µ ∈ Hom(E,E) be such that µ|F ∈ Hom(F, F ). Then,

(µU ◦ Φε − Φε ◦ µU )ε ∈ TO0
loc(U)

for all (Φε)ε ∈ TOloc(U) ∪ TO0
loc(U).

We conclude this subsection with a lemma that will be very useful later
on.

Lemma 5.10. Let W,V,U be open sets in X such that W b V ⊆ U . For
every (Φε)ε ∈ ROloc(V ) ((Φε)ε ∈ TOloc(V ),(Φε)ε ∈ TO0

loc(V ), respectively)
there is (Φ′ε)ε ∈ ROloc(U) ((Φ′ε)ε ∈ TOloc(U),(Φ′ε)ε ∈ TO0

loc(U), respec-
tively) such that

ρW,V ◦ Φε ◦ ρV,U = ρW,U ◦ Φ′ε
for ε small enough.

Proof. We only show the statement for (Φε)ε ∈ TOloc(V ), the other cases
can be treated similarly. Choose open sets W0,W1 such that

W bW0 bW1 b V

and let µ ∈ Hom(E,E) be such that µ|F ∈ Hom(F, F ), µW0 = id, and
µU\W1

= 0. Furthermore, pick an arbitrary element (Φ′′ε)ε ∈ TOloc(U). By

Lemma 5.8 we have that

ρRO
U\W1,U

([(Φ′′ε)ε]) ∈ T̃Oloc(U\W1),

and by Lemma 5.9 it holds that

µV ([(Φε)ε]) + (id−µ)V (ρRO
V,U ([(Φ′′ε)ε])) ∈ T̃Oloc(V ).

Since

ρRO
U\W1∩V,U\W1

(ρRO
U\W1,U

([(Φ′′ε)ε]))

= ρRO
U\W1∩V,V

(µV ([(Φε)ε]) + (id−µ)V (ρRO
V,U ([(Φ′′ε)ε]))),
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Proposition 5.6 and Lemma 5.8 imply there is an element (Φ′ε)ε ∈ TOloc(U)
such that

ρRO
W0,U ([(Φ′ε)ε]) = ρRO

W0,V (µV ([(Φε)ε]) + (id−µ)V (ρRO
V,U ([(Φ′′ε)ε])))

= ρRO
W0,V ([(Φε)ε]).

The result now follows from Lemma 5.4(iii). �

5.3. Sheaves of nonlinear extensions. For a test pair (E,F ) of sheaves,
write E(U) = E(E(U), F (U)).

Definition 5.11. R ∈ E(U) is called local if for all V ⊆ U and all Φ1,Φ2 ∈
RO(U) the implication

(ρV,U ◦ Φ1 = ρV,U ◦ Φ2) =⇒ (ρV,U (R(Φ1)) = ρV,U (R(Φ2)))

holds. The set of all local elements of E(U) is denoted by Eloc(U).

Remark 5.12. If R ∈ E(U) is local then the identities

ρV,U ◦ Φ1 = ρV,U ◦ Φ2, ρV,U ◦Ψi,1 = ρV,U ◦Ψi,2,

with Φ1,Φ2,Ψ1,i,Ψ2,i ∈ RO(U) for i = 1, . . . , l imply that

ρV,U (dlR(Φ1)(Ψ1,1, . . . ,Ψl,1)) = ρV,U ((dlR)(Φ2)(Ψ1,2, . . . ,Ψl,2)).

Next, we define a restriction mapping on Eloc.

Lemma 5.13. Let U, V be open subsets of X with V ⊆ U . There is a unique
linear mapping ρEV,U : Eloc(U)→ Eloc(V ) such that

(i) for all W b V , Φ ∈ RO(V ), and Φ′ ∈ RO(U) which satisfy

ρW,V ◦ Φ ◦ ρV,U = ρW,U ◦ Φ′,

we have

ρW,V (ρEV,U (R)(Φ)) = ρW,U (R(Φ′)).

Moreover, the following properties are satisfied:

(ii) For all l ∈ N and all W b V it holds that if Φ ∈ RO(V ), Φ′ ∈
RO(U) and Ψi ∈ RO(V ), Ψ′i ∈ RO(U), i = 0, . . . , l, satisfy

ρW,V ◦ Φ ◦ ρV,U = ρW,U ◦ Φ′, ρW,V ◦Ψi ◦ ρV,U = ρW,U ◦Ψ′i

for all i = 1, . . . , l, then

ρW,V ((dl(ρEV,U (R)))(Φ)(Ψ1, . . . ,Ψl)) = ρW,U ((dlR)(Φ′)(Ψ′1, . . . ,Ψ
′
l)).

(iii) For W ⊆ V ⊆ U it holds that ρEW,V ◦ ρEV,U = ρEW,U .

Proof. Let (Vi)i be an open covering of V such that Vi b V for all i and let
(ηi)i ⊂ Hom(F |V , F |V ) be a partition of unity subordinate to (Vi)i. Choose
τi ∈ L(F (V ), F (U)) such that ρVi,U ◦ τi = ρVi,V . For each i we define the
mapping fi ∈ L(RO(V ),RO(U)) via

fi(Φ) := τi ◦ Φ ◦ ρV,U .
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Note that

(5.7) ρVi,U ◦ fi(Φ) = ρVi,V ◦ Φ ◦ ρV,U .

We set

ρEV,U (R) :=
∑
i

ηiV ◦ ρV,U ◦R ◦ fi.

We start by showing that ρEV,U (R) is smooth. By [18, Lemma 3.8] it suffices

to show that ρW,V ◦ ρEV,U (R) : RO(V ) → F (W ) is smooth for all W b V .
Since

(5.8) ρW,V ◦ ρEV,U (R) =
∑
i∈J

ηiW ◦ ρW,U ◦R ◦ fi

for some finite index set J , this follows from the fact that ηiW , ρW,U , and

fi are continuous linear mappings. Next, we show that ρEV,U (R) is local. It
suffices to show that for all W b V ,

ρW,V ◦ Φ1 = ρW,V ◦ Φ2, Φ1,Φ2 ∈ RO(V ),

implies

ρW,V (ρEV,U (R)(Φ1)) = ρW,V (ρEV,U (R)(Φ2)).

The mapping ρW,V ◦ρEV,U (R) can be represented as (5.8) for some finite index

set J . Since supp ηi ⊂ Vi it suffices to show that

ρW∩Vi,U (R(fi(Φ1))) = ρW∩Vi,U (R(fi(Φ2)))

for all i ∈ J . By locality of R this follows from (5.7) and our assumption.
The linearity of the mapping ρEV,U is clear. We now show (i). Given W b V ,

the mapping ρW,V ◦ρEV,U (R) can be represented as (5.8) for some finite index
set J . Since

ρW,U (R(Φ′)) =
∑
i∈J

ηiW (ρW,U (R(Φ′)))

and supp ηi ⊂ Vi it is enough to show that

ρW∩Vi,U (R(fi(Φ))) = ρW∩Vi,U (R(Φ′))

for all i ∈ J . Again, by locality of R this follows from (5.7) and our as-
sumption. The mapping ρEV,U is unique because for any W b V and any

Φ ∈ RO(V ) one can find Φ′ ∈ RO(U) such that ρW,V ◦Φ ◦ ρV,U = ρW,U ◦Φ′;
this follows from the fact that F is fine. We continue with showing (ii). We
use induction on l. The case l = 0 has been treated in (i). Now suppose
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that the statement holds for l − 1 and let us show it for l.

ρW,V ((dl(ρEV,U (R)))(Φ)(Ψ1, . . . ,Ψl))

= ρW,V

(
d

dt

∣∣∣∣
t=0

(dl−1(ρEV,U (R)))(Φ + tΨ1)(Ψ2, . . . ,Ψl)

)
=

d

dt

∣∣∣∣
t=0

ρW,V ((dl−1(ρEV,U (R)))(Φ + tΨ1)(Ψ2, . . . ,Ψl))

=
d

dt

∣∣∣∣
t=0

ρW,V ((dl−1(ρEV,U (R)))(Φ′ + tΨ′1)(Ψ′2, . . . ,Ψ
′
l))

= ρW,V

(
d

dt

∣∣∣∣
t=0

(dl−1(ρEV,U (R)))(Φ′ + tΨ′1)(Ψ′2, . . . ,Ψ
′
l)

)
= ρW,V ((dl(ρEV,U (R)))(Φ′)(Ψ′1, . . . ,Ψ

′
l)).

Finally, we prove (iii). Let R ∈ Eloc(U) be arbitrary. It suffices to show that
for all Φ ∈ RO(W ) and all W0 bW it holds that

ρW0,W (ρEW,V (ρEV,U (R))(Φ)) = ρW0,W (ρEW,U (R)(Φ)).

Choose Φ′ ∈ RO(V ) such that

ρW0,W ◦ Φ ◦ ρW,V = ρW0,V ◦ Φ′

and Φ′′ ∈ RO(U) such that

ρW0,V ◦ Φ′ ◦ ρV,U = ρW0,U ◦ Φ′′.

Hence also

ρW0,W ◦ Φ ◦ ρW,U = ρW0,U ◦ Φ′′.

Therefore (i) implies that

ρW0,W (ρEW,V (ρEV,U (R))(Φ)) = ρW0,V (ρEV,U (R)(Φ′))

= ρW0,U (R(Φ′′))

= ρW0,W (ρEW,U (R)(Φ)). �

We now discuss the extension of sheaf morphisms to E .

Lemma 5.14. Let T : F × · · · × F → F be a multilinear sheaf morphism.
For each open subset U ⊆ X consider the mapping

T̃U : E(U)× · · · × E(U)→ E(U)

given by T̃U := T̃U as in (3.1). Then, T̃ preserves locality, i.e.,

T̃U (Eloc(U), . . . , Eloc(U)) ⊆ Eloc(U)

and

ρEV,U (T̃U (R1, . . . , Rn)) = T̃V (ρEV,U (R1), . . . , ρEV,U (Rn))

for all open subsets U, V of X with V ⊆ U .
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Proof. The mappings T̃U are well-defined by Lemma 3.2. Moreover, the

fact that the T̃U preserve locality is clear from their definition. In order to
show the last property it suffices to show that

ρW,V (ρEV,U (T̃U (R1, . . . , Rn))(Φ)) = ρW,V (T̃V (ρEV,U (R1), . . . , ρEV,U (Rn))(Φ))

for all Φ ∈ RO(V ) and all W b V . Choose Φ′ ∈ RO(U) such that

ρW,V ◦ Φ ◦ ρV,U = ρW,U ◦ Φ′.

Lemma 5.13(i) implies that

ρW,V (ρEV,U (T̃U (R1, . . . , Rn))(Φ)) = ρW,U (T̃U (R1, . . . , Rn)(Φ′))

= ρW,U (T̃U (R1(Φ′), . . . , Rn(Φ′)))

= T̃W (ρW,U (R1(Φ′)), . . . , ρW,U (Rn(Φ′)))

= T̃W (ρW,V (ρEV,U (R1)(Φ)), . . . , ρW,V (ρEV,U (Rn)(Φ)))

= ρW,V (T̃V (ρEV,U (R1)(Φ), . . . , ρEV,U (Rn)(Φ)))

= ρW,V (T̃V (ρEV,U (R1), . . . , ρEV,U (Rn))(Φ)). �

Lemma 5.15. Let (E1, F1), (E2, F2) be test pairs of sheaves. Suppose we
are given a sheaf isomorphism µ : E1 → E2 such that its restriction to F1 is
a sheaf isomorphism µ : F1 → F2. For each open subset U ⊆ X consider the
mapping

(µ∗)U : E(E1(U), F1(U))→ E(E2(U), F2(U))

given by (µ∗)U := (µU )∗ as in (3.3). Then, µ∗ preserves locality and

ρEV,U ((µ∗)UR) = (µ∗)V (ρEV,U (R)).

Proof. Suppose we are given open subsets V,U ⊆ X with V ⊆ U , R ∈
Eloc(E1(U), F1(U)) and Φ1,Φ2 ∈ RO(U) with ρV,U ◦Φ1 = ρV,U ◦Φ2. We first
need to show that

ρV,U (((µ∗)UR)(Φ1)) = ρV,U (((µ∗)UR)(Φ2)).

For this we notice that

ρV,U (µU (R(µ−1
U ◦ Φ1 ◦ µU ))) = µV (ρV,U (R(µ−1

U ◦ Φ1 ◦ µU )))

= µV (ρV,U (R(µ−1
U ◦ Φ2 ◦ µU )))

= ρV,U (µU (R(µ−1
U ◦ Φ2 ◦ µU )))

because R is local and

ρV,U ◦ µ−1
U ◦ Φ1 ◦ µU = µ−1

V ◦ ρV,U ◦ Φ1 ◦ µU
= µ−1

V ◦ ρV,U ◦ Φ2 ◦ µU
= ρV,U ◦ µ−1

U ◦ Φ2 ◦ µU .
For the second statement it suffices to show that

ρW,V (ρEV,U ((µ∗)UR)(Φ)) = ρW,V ((µ∗)V (ρEV,U (R))(Φ))
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for all W b V and all Φ ∈ RO(V ). Choose Φ′ ∈ RO(U) such that

ρW,V ◦ Φ ◦ ρV,U = ρW,U ◦ Φ′.

Then,

ρW,V (ρEV,U ((µ∗)UR)(Φ)) = ρW,U (((µ∗)UR)(Φ′))

= ρW,U (µU (R(µ−1
U ◦ Φ′ ◦ µU )))

= µW (ρW,U (R(µ−1
U ◦ Φ′ ◦ µU )))

= µW (ρW,V ((ρEV,UR)(µ−1
V ◦ Φ ◦ µV )))

= ρW,V ((µ∗)V (ρEV,U (R))(Φ))

where we used that

ρW,V ◦ (µ−1
V ◦ Φ ◦ µV ) ◦ ρV,U = ρW,U ◦ (µ−1

U ◦ Φ′ ◦ µU ). �

Lemma 5.16. Let T : E → E be a sheaf morphism such that T |F : F → F
is a sheaf morphism. For any open subset U ⊆ X consider the mapping

T̂U : E(U)→ E(U)

given by T̂U := T̂U as in (3.4). Then, T̂ preserves locality and ρEV,U (T̂U (R)) =

T̂V (ρEV,U (R)).

Proof. Suppose we are given open sets U, V with V ⊆ U , R ∈ Eloc(U) and
Φ1,Φ2 ∈ RO(U) with ρV,U ◦ Φ1 = ρV,U ◦ Φ2. We see that

ρV,U ((T̂UR)(Φ1)) = ρV,U (TU (R(Φ1))− dR(Φ1)(TU ◦ Φ1 − Φ1 ◦ TU ))

= TV (ρV,U (R(Φ1)))− ρV,U (dR(Φ1)(TU ◦ Φ1 − Φ1 ◦ TU ))

= TV (ρV,U (R(Φ2)))− ρV,U (dR(Φ2)(TU ◦ Φ2 − Φ2 ◦ TU ))

= ρV,U ((T̂UR)(Φ2))

because

ρV,U ◦ (TU ◦ Φ1 − Φ1 ◦ TU ) = TV ◦ ρV,U ◦ Φ1 − ρV,U ◦ Φ1 ◦ TU
= TV ◦ ρV,U ◦ Φ2 − ρV,U ◦ Φ2 ◦ TU
= ρV,U ◦ (TU ◦ Φ2 − Φ2 ◦ TU ).

For the second statement, let W b V and Φ ∈ RO(V ). Choose Φ′ ∈ RO(U)
such that ρW,V ◦ Φ ◦ ρV,U = ρW,U ◦ Φ′. Then,

ρW,V (ρEV,U (T̂U (R))(Φ))

= ρW,U (T̂U (R)(Φ′))

= ρW,U (TU (R(Φ′))− dR(Φ′)(TU ◦ Φ′ − Φ′ ◦ TU ))

= TW (ρW,U (R(Φ′)))− ρW,V (d(ρEV,UR)(Φ)(TV ◦ Φ− Φ ◦ TV ))

= ρW,V (TV ((ρEV,UR)(Φ))− d(ρEV,UR)(Φ)(TV ◦ Φ− Φ ◦ TV ))

= ρW,V (T̂V (ρEV,UR)(Φ)). �
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We now turn to the quotient construction (see Definition 4.5).

Definition 5.17. Let S be an admissible pair of scales. For any open subset
U ⊆ X we define the space of moderate elements of Eloc(U) (with respect
to S) as

EM,loc(U) = EM,loc(U,S)

:= EM(E(U), F (U),TOloc(U),TO0
loc(U),S) ∩ Eloc(U),

and the space of negligible elements (with respect to S) as

EN ,loc(U) = EN ,loc(U,S)

:= EN (E(U), F (U),TOloc(U),TO0
loc(U),S) ∩ Eloc(U).

We set Gloc(U) = Gloc(U,S) := EM,loc(U)/EN ,loc(U).

Lemma 5.18. Let U ⊆ X be open and let (Ui)i be an open covering. Let
R ∈ Eloc(U). Then, R is moderate (negligible, respectively) if and only if
ρEUi,U

(R) is moderate (negligible, respectively) for all i.

Proof. Let R ∈ Eloc(U) be moderate or negligible. The moderateness or
negligibility of ρEUi,U

(R) is determined by

p(ρW,Ui((d
l(ρEUi,U (R)))(Φε)(Ψ1,ε, . . . ,Ψl,ε)))

for ε small enough, where l ∈ N, Φε ∈ TOloc(Ui), Ψj,ε ∈ TO0
loc(Ui) for

j = 1, . . . , l, W b Ui, and p ∈ csn(F (W )) are arbitrary. By Lemma 5.10
there are (Φ′ε) ∈ TOloc(U) and Ψ′j,ε ∈ TO0

loc(U) such that

ρW,Ui ◦ Φε ◦ ρUi,U = ρW,U ◦ Φ′ε, ρW,Ui ◦Ψj,ε ◦ ρUi,U = ρW,U ◦Ψ′j,ε

for all j = 1, . . . , l and ε small enough. Hence Lemma 5.13(ii) implies that

ρW,Ui((d
l(ρEUi,U (R)))(Φε)(Ψ1,ε, . . . ,Ψl,ε))

= ρW,U ((dl(R))(Φ′ε)(Ψ
′
1,ε, . . . ,Ψ

′
l,ε))

for ε small enough. The moderateness or negligibility of ρEUi,U
(R) therefore

follows from the corresponding property of R and the continuity of ρW,U .

Conversely, suppose that ρEUi,U
(R) is moderate or negligible for all i. The

moderateness of R is determined by

p(ρW,U ((dlR)(Φε)(Ψ1,ε, . . . ,Ψl,ε)))

for ε small enough, where l ∈ N, Φε ∈ TOloc(U), Ψj,ε ∈ TO0
loc(U) for

j = 1, . . . , l, W b Ui (for some i), and p ∈ csn(F (W )) are arbitrary. Lem-
ma 5.4(iii) and Lemma 5.13(ii) imply that

ρW,U ((dlR)(Φε)(Ψ1,ε, . . . ,Ψl,ε))

= ρW,Ui((d
l(ρEUi,U (R)))(ρRO

Ui,U (Φε))(ρ
RO
Ui,U (Ψ1,ε), . . . , ρ

RO
Ui,U (Ψl,ε)))

for ε small enough. The moderateness or negligibility of R therefore follows
from the corresponding property of ρEUi,U

(R) and the continuity of ρW,Ui . �
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Lemma 5.13 and Lemma 5.18 imply that the mappings

ρGV,U ([R]) := [ρEV,U (R)]

define a presheaf structure on U → Gloc(U). We now show that it is in fact
a sheaf.

Proposition 5.19. Gloc is a sheaf of vector spaces.

Proof. (S1) Immediate consequence of Lemma 5.18.
(S2) Let U ⊆ X be open and let (Ui)i be an open covering of U . Since

X is locally compact we may assume without loss of generality that Ui b U
for all i. Suppose that [Ri] ∈ Gloc(Ui) are given such that

ρGUi∩Uj ,Ui
([Ri]) = ρGUi∩Uj ,Uj

([Rj ])

for all i, j. Let (ηi)i ⊂ Hom(F |U , F |U ) be a partition of unity subordinate
to (Ui)i. Choose τi ∈ L(F (Ui), F (U)) such that ρVi,U ◦ τi = ρVi,Ui for some
Vi b Ui with supp ηi ⊂ Vi. We define

R :=
∑
i

ηiU ◦ τi ◦Ri ◦ ρRO
Ui,U .

We start with showing that R ∈ C∞(RO(U), F (U)). By [18, Lemma 3.8] it
suffices to show that ρW,U ◦ R : RO(U) → F (W ) is smooth for all W b U .
Since

(5.9) ρW,U ◦R =
∑
i∈J

ηiW ◦ ρW,U ◦ τi ◦Ri ◦ ρRO
Ui,U

for some finite index set J , this follows from the fact that the linear mappings
ηiW , ρW,U , τi, and ρRO

Ui,U
are continuous (see Lemma 5.4). Next, we show that

R is local. We need to show that for all W b U the equality

ρW,U ◦ Φ1 = ρW,U ◦ Φ2, Φ1,Φ2 ∈ RO(U),

implies

ρW,U (R(Φ1)) = ρW,U (R(Φ2)).

The mapping ρW,U ◦R can be represented as (5.9) for some finite index set
J . Since supp ηi ⊂ Vi and ρVi,U ◦ τi = ρVi,Ui , it suffices to show that

ρW∩Vi,Ui(Ri(ρ
RO
Ui,U (Φ1))) = ρW∩Vi,Ui(Ri(ρ

RO
Ui,U (Φ2)))

for all i ∈ J . By locality of Ri this follows from Lemma 5.4(iv) and our as-
sumption. We continue with showing that R is moderate. The moderateness
of R is determined by

p(ρW,U ((dlR)(Φε)(Ψ1,ε, . . . ,Ψl,ε)))
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for ε small enough, where l ∈ N, Φε ∈ TOloc(U), Ψj,ε ∈ TO0
loc(U) for

j = 1, . . . , l, W b U , and p ∈ csn(F (W )) are arbitrary. Since

ρW,U ((dlR)(Φε)(Ψ1,ε, . . . ,Ψl,ε))

= (dl(ρW,U ◦R))(Φε)(Ψ1,ε, . . . ,Ψl,ε)

=

(
dl

(∑
i∈J

ηiW ◦ ρW,U ◦ τi ◦Ri ◦ ρRO
Ui,U

))
(Φε)(Ψ1,ε, . . . ,Ψl,ε)

=
∑
i∈J

(ηiW ◦ ρW,U ◦ τi)((dlRi)(ρRO
Ui,U (Φε))(ρ

RO
Ui,U (Ψ1,ε), . . . , ρ

RO
Ui,U (Ψl,ε)))

for some finite index set J , the moderateness of R follows from the continuity
of the mapping ηiW ◦ ρW,U ◦ τi and the moderateness of the Ri. Finally, we

show that ρGUi,U
([R]) = [Ri] for all i. We need to show that ρEUi,U

(R)−Ri is
negligible. The negligibility is determined by

p(ρW,Ui((d
l(ρEUi,U (R)−Ri))(Φε)(Ψ1,ε, . . . ,Ψl,ε)))

for ε small enough, where l ∈ N, Φε ∈ TOloc(Ui), Ψj,ε ∈ TO0
loc(Ui) for

j = 1, . . . , l, W b Ui, and p ∈ csn(F (W )) are arbitrary. By Lemma 5.10
there are Φ′ε ∈ TOloc(U), Ψ′j,ε ∈ TO0

loc(U) for j = 1, . . . , l such that

ρW,Ui ◦ Φε ◦ ρUi,U = ρW,U ◦ Φ′ε, ρW,Ui ◦Ψj,ε ◦ ρUi,U = ρW,U ◦Ψ′j,ε

for all j = 1, . . . , l and ε small enough. Hence Lemma 5.4(ii) yields that

ρW,Ui((d
l(ρEUi,U (R)))(Φε)(Ψ1,ε, . . . ,Ψl,ε))

= ρW,U ((dlR)(Φ′ε)(Ψ
′
1,ε, . . . ,Ψ

′
l,ε))

= (dl(ρW,U ◦R))(Φ′ε)(Ψ
′
1,ε, . . . ,Ψ

′
l,ε)

=

dl

∑
j∈J

ηjW ◦ ρW,U ◦ τj ◦Rj ◦ ρ
RO
Uj ,U

 (Φ′ε)(Ψ
′
1,ε, . . . ,Ψ

′
l,ε)

=
∑
j∈J

ηjW (ρW,U (τj((d
lRj)(ρ

RO
Uj ,U (Φ′ε))(ρ

RO
Uj ,U (Ψ′1,ε), . . . , ρ

RO
Uj ,U (Ψ′l,ε)))))

for ε small enough. On the other hand, Lemma 5.4(ii) and the fact that
(Φε)ε is localizing imply that

ρW,Ui ◦ Φε = ρW,Ui ◦ ρRO
Ui,U (Φ′ε), ρW,Ui ◦Ψj,ε = ρW,Ui ◦ ρRO

Ui,U (Ψ′j,ε)

for all j = 1, . . . , l and ε small enough. By Remark 5.12 we obtain that

ρW,Ui((d
lRi)(Φε)(Ψ1,ε, . . . ,Ψl,ε))

= ρW,Ui((d
lRi)(ρ

RO
Ui,U (Φ′ε))(ρ

RO
Ui,U (Ψ′1,ε), . . . , ρ

RO
Ui,U (Ψ′l,ε)))

=
∑
j∈J

ηjW (ρW,Ui((d
lRi)(ρ

RO
Ui,U (Φ′ε))(ρ

RO
Ui,U (Ψ′1,ε), . . . , ρ

RO
Ui,U (Ψ′l,ε))))
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for ε small enough. Since supp ηj ⊂ Vj and ρVj ,U ◦ τj = ρVj ,Uj , it suffices to
estimate

ρW∩Vj ,Uj ((d
lRj)(ρ

RO
Uj ,U (Φ′ε))(ρ

RO
Uj ,U (Ψ′1,ε), . . . , ρ

RO
Uj ,U (Ψ′l,ε)))

− ρW∩Vj ,Ui((d
lRi)(ρ

RO
Ui,U (Φ′ε))(ρ

RO
Ui,U (Ψ′1,ε), . . . , ρ

RO
Ui,U (Ψ′l,ε)))

for all j ∈ J . By Lemma 5.13(ii) we have that

ρW∩Vj ,Uj ((d
lRj)(ρ

RO
Uj ,U (Φ′ε))(ρ

RO
Uj ,U (Ψ′1,ε), . . . , ρ

RO
Uj ,U (Ψ′l,ε)))

= ρW∩Vj ,Ui∩Uj

(
(dl(ρEUi∩Uj ,Uj

(Rj)))(ρ
RO
Ui∩Uj ,U (Φ′ε))

· (ρRO
Ui∩Uj ,U (Ψ′1,ε), . . . , ρ

RO
Ui∩Uj ,U (Ψ′l,ε))

)
and

ρW∩Vj ,Ui((d
lRi)(ρ

RO
Ui,U (Φ′ε))(ρ

RO
Ui,U (Ψ′1,ε), . . . , ρ

RO
Ui,U (Ψ′l,ε)))

= ρW∩Vj ,Ui∩Uj

(
(dl(ρEUi∩Uj ,Ui

(Ri)))(ρ
RO
Ui∩Uj ,U (Φ′ε))

· (ρRO
Ui∩Uj ,U (Ψ′1,ε), . . . , ρ

RO
Ui∩Uj ,U (Ψ′l,ε))

)
.

The negligibility now follows from the assumption. �

Next, we discuss the embedding of E into Gloc. For U ⊆ X open consider
the canonical embeddings (see Definition 3.1)

ιU : E(U)→ E(U), σU : F (U)→ E(U).

Clearly, ιU (E(U)) ⊆ Eloc(U) and σU (F (U)) ⊆ Eloc(U). Hence Proposi-
tion 4.4 implies that the mappings

ιU : E(U)→ Gloc(U), ι(u) := [ι(u)]

σ : F (U)→ Gloc(U), σ(ϕ) := [σ(ϕ)]

are linear embeddings such that ιU |F (U) = σU .

Proposition 5.20. The embeddings ι : E → Gloc and σ : F → Gloc are sheaf
morphisms, and ι|F = σ.

Proof. We already noticed that ιU |F (U) = σU for all U ⊆ X open. Since F
is a subsheaf of E it therefore suffices to show that ι is a sheaf morphism.
Let U, V be open subsets of X such that V ⊆ U . We need to show that for
all u ∈ E(U) it holds that

ρEV,U (ιU (u))− ιV (ρV,U (u))

is negligible. It suffices to show that for all W b V and all (Φε)ε ∈ ROloc(V )
it holds that

ρW,V (ρEV,U (ιU (u))(Φε)) = ρW,V (ιV (ρV,U (u))(Φε))

for ε small enough. By Lemma 5.10 there is (Φ′ε)ε ∈ ROloc(U) such that

ρW,V ◦ Φε ◦ ρV,U = ρW,U ◦ Φ′ε.
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Hence Lemma 5.13(i) yields that

ρW,V (ρEV,U (ιU (u))(Φε)) = ρW,U (ιU (u)(Φ′ε))

= ρW,U (Φ′ε(u)) = ρW,V (Φε(ρV,U (u)))

= ρW,V (ιV (ρV,U (u))(Φε))

for ε small enough. �

We end this section by showing how one can extend sheaf morphisms to
Gloc.

Lemma 5.21. Let T : F × · · · × F → F be a multilinear sheaf morphism.

The mappings T̃U : Gloc(U)× · · · × Gloc(U)→ Gloc(U) given by

T̃U ([R1], . . . [Rn]) := [T̃U (R1, . . . , Rn)]

are well-defined and multilinear such that

T̃U (σU (ϕ1), . . . , σU (ϕn)) = σU (TU (ϕ1, . . . , ϕn)).

Moreover, T is a multilinear sheaf morphism.

Lemma 5.22. Let (E1, F1), (E2, F2) be test pairs of sheaves. Suppose we
are given a sheaf isomorphism µ : E1 → E2 such that its restriction to F1 is
a sheaf isomorphism F1 → F2. The mappings

(µ∗)U : Gloc(E1(U), F1(U))→ Gloc(E2(U), F2(U))

given by (µ∗)U [R] := [(µ∗)UR] are well-defined such that (µ∗)U ◦ιU = ιU ◦µU
and (µ∗)U ◦ σU = σU ◦ µU .

Lemma 5.23. Let T : E → E be a sheaf morphism such that T |F : F → F

is a sheaf morphism. Then, the mappings T̂U : Gloc(U) → Gloc(U) given by

T̂U [R] := [T̂UR] are well-defined such that

T̂U ◦ ιU = ιU ◦ T̂U and T̂U ◦ σU = σU ◦ T̂U .

We obtain the following two important corollaries.

Corollary 5.24. For every open set U in X the sheaf Gloc|U is fine.

Proof. Let A and B be closed sets in U such that A ∩ B = ∅. Let
τ ∈ Hom(F |U , F |U ) be such that τV = id and τW = 0 for some open
neighbourhoods V and W (in U) of A and B, respectively. Consider the
associated sheaf morphism τ ∈ Hom(Gloc|U ,Gloc|U ). Then,

τV ([R]) = [τV (R)] = [τV ◦R] = [R]

for all [R] ∈ Gloc(V ). Similarly, one can show that τW = 0. �

Corollary 5.25. Suppose that F is a locally convex sheaf of algebras. Then,
Gloc is a sheaf of algebras and the σ-embedding is a sheaf homomorphism of
algebras.



SHEAVES OF NONLINEAR GENERALIZED FUNCTION SPACES 1779

6. Diffeomorphism invariant algebras of distributions

The space of distributions on a paracompact Hausdorff manifold M is
defined as

D′(M) := (Γc(M,Vol(M)))′

where Γc(M,Vol(M)) denotes the space of compactly supported sections of
the volume bundle Vol(M), endowed with its natural (LF)-topology (see [13,
Section 3.1]). It is well known that D′ and C∞ are locally convex sheaves
on M , so (D′, C∞) is a test pair of sheaves.

Given any open subset U ⊆ M , the space TOloc(U) is nonempty —
we refer to [21] for the concrete construction of localizing test objects for
(D′, C∞), which is done by convolution with smooth mollifiers in local charts.

Fix the asymptotic scale to be the polynomial scale (2.1). By the previous
section we obtain a fine sheaf Gloc of algebras such that σ : C∞ → Gloc is
a sheaf homomorphism of algebras and ι : D′ → Gloc is an injective sheaf
homomorphism of vector spaces. Given any vector field X on M , the Lie
derivative LX of distributions and smooth functions satisfies the assumptions
of Lemma 3.5, so it defines a mapping

L̂X : Gloc(M)→ Gloc(M)

which commutes with ι.
Moreover, given any diffeomorphism µ : M → N (which can be inter-

preted as a functor between the categories of open sets on M and N , re-
spectively) we apply Lemma 5.22 to the functors E1 = D′, E2 = D′ ◦ µ,
F1 = C∞, F2 = C∞ ◦ µ, which gives an induced action

µ∗ : Gloc(M)→ Gloc(N)

which commutes with ι.
Hence, we have easily obtained the following result of [14]:

Theorem 6.1. Let M be a paracompact Hausdorff manifold. There is an
associative commutative algebra Gloc(M) with unit containing D′(M) injec-
tively as a linear subspace and C∞(M) as a subalgebra. Gloc(M) is a dif-

ferential algebra, where the derivations L̂X extend the usual Lie derivatives
from D′(M) to Gloc(M), and Gloc is a fine sheaf of algebras over M .

7. Diffeomorphism invariant algebras of ultradistributions

7.1. Spaces of ultradifferentiable functions and their duals. Let
(Mp)p∈N be a sequence of positive reals (with M0 = 1). We will make
use of the following conditions:

(M.1) M2
p ≤Mp−1Mp+1, p ∈ Z+,

(M.2) Mp+q ≤ AHp+qMpMq, p, q ∈ N, for some A,H ≥ 1,

(M.3′)
∞∑
p=1

Mp−1

Mp
<∞.
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We refer to [15] for the meaning of these conditions. For α ∈ Nd we write
Mα = M|α|. As usual, the relation Mp ⊂ Np between two weight sequences
means that there are C, h > 0 such that Mp ≤ ChpNp, p ∈ N. The stronger
relation Mp ≺ Np means that the latter inequality remains valid for every
h > 0 and a suitable C = Ch > 0. The associated function of Mp is defined
as

M(t) := sup
p∈N

log
tp

Mp
, t > 0,

and M(0) := 0. We define M on Rd as the radial function M(x) = M(|x|),
x ∈ Rd. Under (M.1), the assumption (M.2) holds [15, Prop 3.6] if and only
if

2M(t) ≤M(Ht) + logA, t > 0.

Unless otherwise explicitly stated, Mp will always stand for a weight se-
quence satisfying (M.1), (M.2), (M.3′).

For a regular compact set K in Rd and h > 0 we write EMp,h(K) for the
Banach space consisting of all ϕ ∈ C∞(K) such that

(7.1) ‖ϕ‖K,h := sup
α∈Nd

sup
x∈K

|ϕ(α)(x)|
h|α|M|α|

<∞.

The space DMp,h
K consists of all ϕ ∈ C∞(Rd) with support in K that satisfy

(7.1). Let Ω ⊆ Rd be open. We define

E(Mp)(Ω) = lim←−
KbΩ

lim←−
h→0+

EMp,h(K), E{Mp}(Ω) = lim←−
KbΩ

lim−→
h→∞

EMp,h(K),

and

D(Mp)(Ω) = lim−→
KbΩ

lim←−
h→0+

DMp,h
K , D{Mp}(Ω) = lim−→

KbΩ

lim−→
h→∞

DMp,h
K .

Elements of E(Mp)(Ω) and E{Mp}(Ω) are called ultradifferentiable functions
of class (Mp) of Beurling type on Ω and ultradifferentiable functions of class
{Mp} of Roumieu type on Ω, respectively. These spaces are complete Mon-
tel locally convex algebras (under pointwise multiplication) [15, Th. 2.6,

Th. 5.12, Th. 2.8]. Elements of the dual spaces D′(Mp)(Ω) and D′{Mp}(Ω)
are called ultradistributions of class (Mp) of Beurling type on Ω and ultra-
distributions of class {Mp} of Roumieu type on Ω, respectively. We en-

dow these spaces with the strong topology. D′(Mp)(Ω) and D′{Mp}(Ω) are

complete Montel locally convex spaces [15, Th. 2.6] and Ω′ → D′(Mp)(Ω′),

Ω′ → D′{Mp}(Ω′) are locally convex sheaves on Ω [15, Th. 5.6].
We write R for the family of positive real sequences (rj)j∈N (with r0 = 1)

which increase to infinity. This set is partially ordered and directed by the
relation rj � sj , which means that there is a j0 ∈ N such that rj ≤ sj for

all j ≥ j0. By [17, Prop. 3.5] a function ϕ ∈ C∞(Ω) belongs to E{Mp}(Ω) if
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and only if

‖ϕ‖K,rj := sup
α∈Nd

sup
x∈K

|ϕ(α)(x)|
Mα

∏|α|
j=0 rj

<∞,

for all K b Ω and rj ∈ R. Moreover, the topology of E{Mp}(Ω) is generated
by the system of seminorms {‖ ‖K,rj : K b Ω, rj ∈ R}.

In the sequel we shall write ∗ instead of (Mp) or {Mp} if we want to treat
both cases simultaneously. In addition, we shall often first state assertions
for the Beurling case followed in parenthesis by the corresponding statements
for the Roumieu case.

7.2. Nonlinear extensions of spaces of ultradistributions. We ap-
ply the general theory developed in Section 3 and Section 5 to construct
algebras containing spaces of ultradistributions which are invariant under
real-analytic diffeomorphisms. Let us remark that this construction is a
novelty, as the previous construction in [6] was given in the context of spe-
cial Colombeau algebras and therefore cannot be diffeomorphism invariant.

In order to not having to develop the theory of ultradistributions on
manifolds here, we restrict the considerations to the local case, i.e., to open
subsets of Rd, where diffeomorphism invariance can be stated easily.

By the remarks in Section 7.1 and the existence of partitions of unity of
ultradifferentiable functions of class ∗ [15, Prop. 5.2] it is clear that the pair
(D′∗, E∗) is a test pair of sheaves on Rd, giving rise to the corresponding
presheaf Eloc of basic spaces (Definition 5.11).

We now choose appropriate asymptotic scales. Given rj ∈ R we write
Mrj for the associated function of the weight sequence Mp

∏p
j=0 rj .

Definition 7.1. We define

A(Mp) := {eM(λ/ε) : λ > 0}, I(Mp) := {e−M(λ/ε) : λ > 0},

A{Mp} := {eMrj (1/ε) : rj ∈ R}, I{Mp} := {e−Mrj (1/ε) : rj ∈ R}.

Condition (M.2) ensures that sc∗ := (A∗, I∗) are admissible pair of scales.1

For Ω ⊆ Rd open we set

TO∗loc(Ω) := TOloc(Ω,D′∗, E ′∗, sc∗), TO0,∗
loc(Ω) := TO0

loc(Ω,D′∗, E ′∗, sc∗).

Remark 7.2. By [6, Prop. 4.4] an element (Φε)ε ∈ L(D′{Mp}(Ω), E{Mp}(Ω))I

satisfies (TO1) and (TO2) (with respect to the scale sc{Mp}) if and only if

(i) ∀u ∈ D′{Mp}(Ω)∀K b Ω ∀λ > 0 ∃h > 0:

‖Φε(u)‖K,h = O(eM(λ/ε)),

(ii) ∀ϕ ∈ E{Mp}(Ω)∀K b Ω ∃λ > 0 ∃h > 0:

‖Φε(ϕ)− ϕ‖K,h = O(e−M(λ/ε)).

1We do not use the notation S∗ for the pair of scales (A∗, I∗) since this is the standard
notation for Gelfand–Shilov type spaces.
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In order to be able to apply the results from Section 5 we must show that
TO∗loc(Ω) is nonempty for every open set Ω ⊆ Rd. For this we shall need the
following lemma.

Lemma 7.3. Let Mp and Np be two weight sequences satisfying (M.1) such
that Np ≺ Mp and let M and N be the associated functions of Mp and Np,
respectively. Then, there is an increasing net (rε)ε of positive reals with
lim
ε→0+

rε = 0 such that for every λ > 0 there is ε0 > 0 such that for all ε < ε0

it holds that
M(t) ≤ N(rεt) +M(λ/ε), t > 0.

Proof. By [15, Lemma 3.10] there is a continuous function ρ : (0,∞) →
(0,∞) which is increasing and such that

lim
t→∞

ρ(t)

t
= 0

and M(t) = N(ρ(t)) for all t > 0. One can readily verify that

rε := sup
t≥1/

√
ε

ρ(t)

t

satisfies all requirements. �

By [15, Lemma 4.3] there is a weight sequence Np satisfying (M.1) and

(M.3′) such that Np ≺ Mp. Pick ψ ∈ D(Mp)(Rd) even with 0 ≤ ψ ≤
1, suppψ ⊂ B(0, 2), and ψ ≡ 1 on B(0, 1), and χ ∈ D(Np)(Rd) even
with suppχ ⊂ B(0, 2) and χ ≡ 1 on B(0, 1). Choose (rε)ε according to
Lemma 7.3. We define

θε(x) :=
1

εd
F−1(ψ)(x/ε)χ(x/rε), x ∈ Rd,

where we fix the constants in the Fourier transform as follows

F(ϕ)(ξ) = ϕ̂(ξ) :=

∫
Rd

ϕ(x)e−ixξ dx.

Next, let (Kn)n∈N be an exhaustion by compacts of Ω and choose κn ∈
D(Mp)(Ω) such that κn ≡ 1 on Kn. For ε ∈ I we set κε = κn if n ≤ ε−1 <
n+ 1. Finally, we define

Φε(u) := (κεu) ∗ θε = 〈u(x), κε(x)θε(· − x)〉, u ∈ D′∗(Ω).

Lemma 7.4. (Φε)ε ∈ TO∗loc(Ω).

The proof of Lemma 7.4 is based on the following growth estimates of the
Fourier transforms of the θε.
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Lemma 7.5.

(i) For all ε ∈ I it holds that

sup
ξ∈Rd

|θ̂ε(ξ)| ≤
1

(2π)d
‖χ̂‖L1(Rd),

(ii) for all h, λ > 0 there is ε0 > 0 such that

sup
ε<ε0

sup
|ξ|≥4/ε

|θ̂ε(ξ)|eM(ξ/h)−M(λ/ε) <∞.

(iii) for all λ > 0 there is ε0 > 0 such that

sup
ε<ε0

sup
|ξ|≤2/ε

|1− θ̂ε(ξ)|eM(λ/ε) <∞.

Proof. Property (i) is clear. We now show (ii). Let ε ∈ I be arbitrary. We
have that

|θ̂ε(ξ)| =
rdε

(2π)d

∣∣∣∣∫
Rd

ψ(εη)χ̂(rε(ξ − η))dη

∣∣∣∣
≤ rdε

(2π)d

∫
|η|≤ 2

ε

|χ̂(rε(ξ − η))|dη

=
1

(2π)d

∫
∣∣∣ξ− t

rε

∣∣∣≤ 2
ε

|χ̂(t)|dt.

By [15, Lemma 3.3] there is C > 0 such that

|χ̂(t)| ≤ Ce−N(2Ht/h) ≤ ACe−2N(2t/h), t ∈ Rd.

Furthermore, notice that for ξ, t ∈ Rd it holds that

|ξ| ≥ 4

ε
and

∣∣∣∣ξ − t

rε

∣∣∣∣ ≤ 2

ε
→ |t| ≥ rε|ξ|

2
.

Hence we obtain that

|θ̂ε(ξ)| ≤ C ′e−N(rε|ξ|/h), |ξ| ≥ 4

ε
,

where

C ′ =
AC

(2π)d

∫
Rd

e−N(2t/h)dt <∞.
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The result now follows from Lemma 7.3. Finally, we show (iii). Let ε ∈ I
be arbitrary. We have that

|1− θ̂ε(ξ)| =
∣∣∣∣1− rdε

(2π)d

∫
Rd

ψ(εη)χ̂(rε(ξ − η))dη

∣∣∣∣
=

∣∣∣∣ rdε
(2π)d

∫
Rd

(1− ψ(εη))χ̂(rε(ξ − η))dη

∣∣∣∣
≤ rdε

(2π)d

∫
|η|≥ 1

ε

|χ̂(rε(ξ − η))|dη

=
1

(2π)d

∫
∣∣∣ξ− t

rε

∣∣∣≥ 1
ε

|χ̂(t)|dt.

By [15, Lemma 3.3] there is C > 0 such that

|χ̂(t)| ≤ Ce−N(2H2λt) ≤ ACe−2N(2Hλt), t ∈ Rd.

Furthermore, notice that for ξ, t ∈ Rd it holds that

|ξ| ≤ 1

2ε
and

∣∣∣∣ξ − t

rε

∣∣∣∣ ≥ 1

ε
→ |t| ≥ rε

2ε
.

Hence we obtain that

|1− θ̂ε(ξ)| ≤ C ′e−N(Hλrε/ε), |ξ| ≤ 1

2ε
,

where

C ′ =
AC

(2π)d

∫
Rd

e−N(2Hλt)dt <∞.

By Lemma 7.3 there is ε0 > 0 such that

M(t) ≤ N(rεt) +M(λ/ε), t > 0,

for all ε < ε0. By setting t = Hλ/ε we obtain that

N(Hλrε/ε) ≥M(Hλ/ε)−M(λ/ε) ≥M(λ/ε)− logA,

for all ε < ε0 and the result follows. �

Proof of Lemma 7.4. For ε ∈ I fixed we have that Φε ∈ L(D′∗(Ω), E∗(Ω))
by [15, Prop. 6.10]. The fact that (Φε)ε is localizing follows easily from
lim
ε→0+

rε = 0. We now show that (Φε)ε satisfies (TO1)–(TO3). In the

Roumieu case we use Remark 7.2.
(TO1): We need to show that

∀u ∈ D′(Mp)(Ω)∀K b Ω ∀h > 0 ∃λ > 0 : ‖Φε(u)‖K,h = O(eM(λ/ε)),

(∀u ∈ D′{Mp}(Ω) ∀K b Ω ∀λ > 0 ∃h > 0 : ‖Φε(u)‖K,h = O(eM(λ/ε))).

There is N ∈ N such that

supp θε(x− ·) ⊆ KN , x ∈ K,
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for ε small enough. Hence

Φε(u)(x) = (κu ∗ θε)(x), x ∈ K,

where κ = κN , for ε small enough. By [15, Lemma 3.3] it suffices to show
that for all h > 0 there is λ > 0 (for all λ > 0 there is h > 0) such that∫

Rd

|κ̂u(ξ)||θ̂ε(ξ)|eM(ξ/h)dξ = O(eM(λ/ε)).

There are µ > 0 and C > 0 (for every µ > 0 there is C > 0) such that

|κ̂u(ξ)| ≤ CeM(µξ), ξ ∈ Rd.

Lemma 7.5(ii) implies that for all h, λ > 0 (both in the Beurling and
Roumieu case) ∫

|ξ|≥ 4
ε

|κ̂u(ξ)||θ̂ε(ξ)|eM(ξ/h)dξ = O(eM(λ/ε)).

On the other hand, by Lemma 7.5(i), we have that∫
|ξ|≤ 4

ε

|κ̂u(ξ)||θ̂ε(ξ)|eM(ξ/h)dξ

≤
AC‖χ̂‖L1(Rd)

(2π)d

∫
|ξ|≤ 4

ε

eM(µξ)+M(Hξ/h)−M(ξ/h)dξ

≤ C ′eM(λ0/ε)

where λ0 = 4H max(µ,H/h) and

C ′ =
AC‖χ̂‖L1(Rd)

(2π)d

∫
Rd

e−M(ξ/h)dξ <∞.

The Beurling case follows at once while the Roumieu case follows by noticing
that λ0 can be made as small as desired by choosing µ small enough and h
big enough.

(TO2): By [6, Prop. 4.2] it suffices to show that

∀ϕ ∈ E(Mp)(Ω) ∀K b Ω ∀λ > 0 : sup
x∈K
|Φε(ϕ)(x)− ϕ(x)| = O(e−M(λ/ε)),

(∀ϕ ∈ E{Mp}(Ω)∀K b Ω ∃λ > 0 : sup
x∈K
|Φε(ϕ)(x)− ϕ(x)| = O(e−M(λ/ε))).

There is N ∈ N such that

supp θε(x− ·) ⊆ KN , x ∈ K,

for ε small enough. Hence

Φε(ϕ)(x)− ϕ(x) = (κϕ ∗ θε)(x)− κ(x)ϕ(x), x ∈ K,
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where κ = κN , and, thus,

sup
x∈K
|Φε(ϕ)(x)− ϕ(x)| = sup

x∈K
|(κϕ ∗ θε)(x)− κ(x)ϕ(x)|

≤ 1

(2π)d

∫
Rd

|κ̂ϕ(ξ)||1− θ̂ε(ξ)|dξ

for ε small enough. Therefore it suffices to show that for all λ > 0 (for some
λ > 0) it holds that∫

Rd

|κ̂ϕ(ξ)||1− θ̂ε(ξ)|dξ = O(e−M(λ/ε)).

For every µ > 0 there is C > 0 (there are µ,C > 0) such that

|κ̂ϕ(ξ)| ≤ Ce−M(Hµξ) ≤ ACe−2M(µξ), ξ ∈ Rd.

Lemma 7.5(iii) implies that for all λ > 0 (both in the Beurling and Roumieu
case) ∫

|ξ|≤ 1
2ε

|κ̂ϕ(ξ)||1− θ̂ε(ξ)|dξ = O(e−M(λ/ε)).

On the other hand, by Lemma 7.5(i), we have that∫
|ξ|≥ 1

2ε

|κ̂ϕ(ξ)||1− θ̂ε(ξ)|dξ ≤ C ′e−M(µ/(2ε))

where

C ′ =

(
1 +
‖χ̂‖L1(Rd)

(2π)d

)
AC

∫
Rd

e−M(µξ)dξ <∞.

(TO3): Since the space D∗(Ω) is Montel it suffices to show that for all
u ∈ D′∗(Ω) it holds that

lim
ε→0+

∫
Rd

Φε(u)(x)ϕ(x)dx = 〈u, ϕ〉, ϕ ∈ D∗(Ω).

There is N ∈ N such that

supp θε(x− ·) ⊆ KN , x ∈ suppϕ,

for ε small enough. Hence, for κ = κN , we have that∫
Rd

Φε(u)(x)ϕ(x)dx =

∫
Rd

〈u(y), κ(y)θε(x− y)〉ϕ(x)dx

= 〈u(y), κ(y)

∫
Rd

θε(x− y)ϕ(x)dx〉

= 〈u(y), κ(y)Φε(ϕ)(y)〉

for ε small enough. The result now follows from (TO2) and the continuity
of u. �
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As in Section 6 we now obtain a fine sheaf G∗loc of algebras such that
σ : E∗ → G∗loc is a sheaf homomorphism of algebras and ι : D∗′ → G∗loc is a
sheaf homomorphism of vector spaces.

The partial derivative ∂i (for i = 1, . . . , d) satisfies the assumptions of
Lemma 3.5, so it defines a mapping

∂̂i : G∗loc(Ω)→ G∗loc(Ω)

which commutes with ι.
Moreover, as seen in [16, p. 626] real analytic coordinate transformations

induce continuous mappings on the spaces D∗′ and E∗, so by Lemma 4.8 we
obtain corresponding actions on the quotient spaces G∗loc.

Theorem 7.6. For each open set Ω ⊆ Rd there is an associative com-
mutative algebra with unit G∗loc(Ω) containing D∗′(Ω) injectively as a linear
subspace and E∗(Ω) as a subalgebra. G∗loc(Ω) is a differential algebra, where

the partial derivatives ∂̂i, i = 1, . . . , d, extend the usual partial derivatives
from D∗′(Ω) to G∗loc(Ω), and G∗loc is a fine sheaf of algebras over Ω. More-
over, the construction is invariant under real-analytic coordinate changes,
i.e., if µ : Ω′ → Ω is a real-analytic diffeomorphism then there is a map
µ̂ : G∗loc(Ω

′)→ G∗loc(Ω) compatible with the canonical embeddings ι and σ.
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