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The Jones polynomial of an almost
alternating link

Adam M. Lowrance and Dean Spyropoulos

ABSTRACT. A link is almost alternating if it is nonalternating and has
a diagram that can be transformed into an alternating diagram via one
crossing change. We give formulas for the first two and last two poten-
tial coefficients of the Jones polynomial of an almost alternating link.
Using these formulas, we show that the Jones polynomial of an almost
alternating link is nontrivial. We also show that either the first two or
last two coefficients of the Jones polynomial of an almost alternating
link alternate in sign. Finally, we describe conditions that ensure an
almost alternating diagram has the fewest number of crossings among
all almost alternating diagrams of the link.
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1. Introduction

A link diagram is alternating if the crossings alternate over, under, over,
under, etc. as one traverses each component of the link, and a link is alter-
nating if it has an alternating diagram. Otherwise, a link is nonalternating.
Alternating links form an important and well-studied class of links. Invari-
ants of alternating links often take on special forms, and the complement
of an alternating link has a particularly nice geometric structure [Men84].
Despite their diagram-dependent definition, alternating knots have recently
been shown to have topological characterizations [Grel7, How17].

Adams et al. [ABB192] generalized alternating links to the class of almost
alternating links. A link diagram is almost alternating if one crossing of the
diagram can be changed to transform it into an alternating diagram. A link
is almost alternating if it is nonalternating and has an almost alternating
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diagram. Following the topological characterization of alternating knots,
almost alternating knots were also shown to have topological characteriza-
tions [Ito16, Kim16].

Another generalization of alternating links are links of Turaev genus one.
Turaev [Tur87] gave an alternate proof that the span of the Jones polynomial
of a nonsplit alternating link equals its crossing number. In his proof, he
associated to each link diagram an oriented Heegaard surface on which the
link has an alternating projection, now known as the Turaev surface of the
link diagram. The genus of the Turaev surface of a connected link diagram
D is given by

gr(D) = 32+ (D) = 54(D) ~ s(D))

where ¢(D) is the number of crossings in D and sy(D) and sg(D) are
the number of components in the all-A and all-B Kauffman states of D
respectively. The Turaev genus gr(L) of a link L is

gr(L) = min{gp(D) | D is a diagram of L}.

Turaev [Tur87] proved that a link is alternating if and only if it is Turaev
genus zero (see also [DFK'08]). Armond and Lowrance [AL17] proved that
every link of Turaev genus one is mutant to an almost alternating link. In
this article, we study the Jones polynomial of a link that is almost alternating
or has Turaev genus one.

The Jones polynomial Vi,(¢) of a link L with ¢ components is a Laurent
polynomial, first discovered by Jones [Jon85]. A fundamental open question
about the Jones polynomial is whether it detects the unknot. Jones [Jon00]
conjectured that if a knot has the same Jones polynomial as the unknot,
then the knot is the unknot. The Jones unknotting conjecture has been ver-
ified in many cases. Kauffman [Kau87], Murasugi [Mur87], and Thistleth-
waite [Thi87] proved that the span of the Jones polynomial of a nonsplit
alternating link equals its crossing number, and thus for alternating knots,
the Jones unknotting conjecture holds. Lickorish and Thistlethwaite [LT88]
and Stoimenow [Stoll] showed that the Jones unknotting conjecture holds
for adequate and semi-adequate knots respectively. Computational results
by Hoste, Thistlethwaite, and Weeks [HosTW88|; Dasbach and Hougardy
[DHI7]; Yamada [Yam00]; and Tuzun and Sikora [T'S16] have verified the
Jones unknotting conjecture for all knots with at most 22 crossings.

Many authors have developed strategies to produce a nontrivial knot
with trivial Jones polynomial, so far without success. Bigelow [Big02] and
Ito [Itol5] proved that if the Burau representation of the four stranded
braid group is not faithful, then there exists a nontrivial knot with trivial
Jones polynomial. Anstee, Przytycki, and Rolfsen [APR89]; Jones and Rolf-
sen [JR94]; Rolfsen [Rol93]; and Przytycki [Prz95] used generalized forms
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of mutation to attempt to produce nontrivial knots with trivial Jones poly-
nomial. Kauffman [Kau99] produced virtual knots with trivial Jones poly-
nomial, and perhaps one of these examples could be classical. Cohen and
Krishnan [CoK15] proposed a probabilistic approach for showing that there
exists a nontrivial knot with trivial Jones polynomial, and they refined that
approach together with Even-Zohar [CoEZK16].

Although it is an open question whether the Jones polynomial detects
the unknot, it is known that for each ¢ > 2, there exists a nontrivial /-
component link whose Jones polynomial equals the Jones polynomial of the
¢-component unlink. Thistlethwaite [Thi01] found the first examples of non-
trivial links with trivial Jones polynomial via a computer tabulation. Eli-
ahou, Kauffman, and Thistlethwaite [EKTO03] later generated infinite fami-
lies of nontrivial /-component links with trivial Jones polynomials for each
¢ > 2. Despite these examples, for many well-studied classes of links (e.g.,
alternating, adequate, and semi-adequate links), every nontrivial link has a
nontrivial Jones polynomial.

The ¢-component unlink O U --- 1) has Jones polynomial

VQU...UQ(t) = (—t% — t7%>é_1 .

Our first main theorem is a slightly stronger version of the statement that
every almost alternating or Turaev genus one link has nontrivial Jones poly-
nomial.

Theorem 1.1. Let L be an £-component almost alternating link or a link
of Turaev genus one where £ > 1, and let V1,(t) be the Jones polynomial of
L. Then
1 1\ -1
Vi (t) # tF (—ﬁ — t*i)
for any k € Z. In particular, the Jones polynomial of L is different from the
Jones polynomial of the £-component unlink.

A consequence of Theorem 1.1 is that the examples of [EKTO03] whose

Jones polynomials equal t* (—tl/ 2 _ ¢V 2)6_1 cannot be almost alternating
and are of Turaev genus at least two.

Kauffman [Kau87] proved that the absolute values of the first and last
coeflicients of the Jones polynomial of an alternating link are one. Dasbach
and Lowrance [DL16] proved that at least one of the first or last coefficient
of the Jones polynomial of an almost alternating or Turaev genus one link
has absolute value one. Thistlethwaite [Thi87] proved that the coefficients
of the Jones polynomial of a nonsplit alternating link alternate in sign, that
is, the product of consecutive coefficients is at most zero. Our next theorem
is a partial generalization of Thistlethwaite’s result to almost alternating
and Turaev genus one links.
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Theorem 1.2. Let L be a nonsplit almost alternating link or a link of Turaev
genus one. Suppose that the Jones polynomial of L is given by

wheren € Zy, a; € Z, ag and a, are nonzero, and k € %Z. FEither

e |ag| =1 and apa; <0, or
e |ay| =1 and ap—1a, <0.

Dasbach and Lin [DL07] gave formulas for the second, third, antepenulti-
mate, and penultimate coefficients of the Jones polynomial of an alternating
link (see Theorem 2.1). In Theorem 3.1, we apply Dasbach and Lin’s result
to almost alternating links to obtain a formula for the first and last two
potential coefficients of the Jones polynomial. We say the coefficients are
potential coefficients since they are potentially zero. Theorem 3.1 is the
main technical tool used in our proofs of Theorems 1.1 and 1.2.

Theorem 3.3 addresses the question of when an almost alternating di-
agram has the fewest number of crossings among all almost alternating
diagrams of the link. We describe conditions that ensure that an almost
alternating diagram has the fewest number of crossings among all almost
alternating diagrams of the link. We also describe conditions that place
bounds on the fewest number of crossings an almost alternating diagram can
have, and those that ensure the link admits an almost alternating diagram
with fewer crossings distinct from the one that is given. We leave the com-
plete statement of Theorem 3.3 to Section 3 as the sets of conditions involve
quantities obtained from the checkerboard graphs of the diagram that have
not yet been defined. The related question, originally asked in [ABB92], of
whether there is an almost alternating diagram D of a link L that has the
fewest number of crossings among all diagrams of the link remains open.

This paper is organized as follows. In Section 2, we recall the construction
of the Jones polynomial via the Kauffman bracket and state results on the
Jones polynomial of an alternating link. In Section 3, we prove Theorem 3.1
giving a formula for the potential extreme coefficients of the Jones polyno-
mial of an almost alternating link. We also prove Theorems 1.2 and 3.3.
In Section 4, we prove Theorem 1.1, showing that almost alternating and
Turaev genus one links have nontrivial Jones polynomials.

1.0.1. Acknowledgement. The authors thank Oliver Dasbach and John
McCleary for their thoughts on a draft of this paper.

2. The Jones polynomial of an alternating link

In this section, we recall the construction of the Jones polynomial via
the Kauffman bracket. We also recall other results related to the Jones
polynomial of an alternating link.
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A X

D A-resolution B-resolution

FIGURE 1. A crossing in a link diagram D together with its
A-resolution and B-resolution. The trace of the A-resolution
is the blue line segment, and the trace of the B-resolution is
the red line segment.

The Kauffman bracket of a link diagram D, denoted by (D), is a Laurent
polynomial with integer coefficients in the formal variable A, i.e.,

(D) € Z[A, A7

It is defined recursively by the following three rules:

1) (=400 +A (X)),

(2) (DUQ ) = (=42 - A7%) (D),

3)(O)=1L
In rule (1), the diagram is only changed within a small neighborhood of
the pictured crossing. The first term in the sum is the A-resolution of
the crossing, and the second term is the B-resolution of the crossing; see
Figure 1. Rule (2) gives the method for removing a closed component of the
diagram without crossings. Finally, rule (3) sets the value of the Kauffman
bracket on the unknot.

An alternate formulation of the Kauffman bracket is via the Kauffman
state expansion of D. A Kauffman state is the collection of simple closed
curves obtained by choosing either an A-resolution or a B-resolution at each
crossing. When performing a resolution, we record where the crossing was
with a small line segment called the trace of the crossing; again see Figure 1.
The trace of a crossing is not considered part of the Kauffman state. For each
Kauffman state S, define a(S) and b(S) to be the number of A-resolutions
and the number of B-resolutions in S respectively. Define |S| to be the
number of components in the Kauffman state S. The Kauffman bracket can
be expressed as the sum

(2‘1) <D> _ ZAa(S)—b(S) (*AZ B A—2)|S|*1 .
S

Each crossing in an oriented link diagram is either positive ( > ) or neg-
ative ( "\ ). The writhe w(D) of an oriented link diagram is the difference
between the number of positive crossings and the number of negative cross-
ings in D. The Jones polynomial of an oriented link L with diagram D is
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A-edge B-edge

FIGURE 2. An A-edge and a B-edge in the checkerboard graphs.

defined as

3\—w(D
Vi(t) = (AP py|

Every link diagram D has two dual checkerboard graphs G and G. Shade
the complementary regions of the link diagram in a checkerboard fashion,
i.e., at each crossing the shading should look like ) or J/. The vertices of G
are in one-to-one correspondence with the shaded regions of the diagram D,
and the vertices of G are in one-to-one correspondence with the unshaded
regions of D (or vice versa). The edges of G are in one-to-one correspondence
with the crossings of D, and likewise, the edges of G are in one-to-one
correspondence with the crossings of D. An edge e in G (or G) is incident
to vertices v1 and vy in G (or é) if the regions associated with vy and wve
in D meet at the crossing associated to e. The graphs G and G are planar
duals of one another. For an example of the checkerboard graphs of a link
diagram see Figure 7.

An edge in G or G is labeled as an A-edge or a B-edge according to the
convention of Figure 2. In an alternating diagram, every edge in G is an
A-edge and every edge in G is a B-edge, or vice versa. A link diagram is
reduced if neither of its checkerboard graphs contain any loops.

The simplification G’ of a graph G is the graph obtained by deleting
all loops in G by replacing each set of multiple edges with a single edge.
When drawing a graph G or G with no loops, our convention is to draw the
simplifications G’ and G . If an edge e in G’ or G is incident to vertices v;
and v9, then we label it with the number of edges in G or G respectively
that are incident to v; and wvs.

Let D be a reduced alternating diagram. Let G be its checkerboard graph
with only A-edges, and let G’ be the simplification of G. Define v and e to
be the number of vertices and edges respectively of G’. Define i to be the
number of edges in G’ that correspond to multiple edges in G, and define 7 to
be the number of triangles (or 3-cycles) in G’. Similarly define v, €, i, and 7
for the checkerboard graph G containing only B-edges and its simplification
G'. Dasbach and Lin [DLO7] gave formulas for the first three and last three
terms in the Kauffman bracket of D.
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Theorem 2.1 (Dasbach, Lin). The Kauffman bracket of a reduced alter-
nating diagram D with ¢ crossings is given by

C
<D> _ Z ,yiAc+2v7274i
i=0
where

[\)

v = (1) <<v;1> —e(v—2)+p+ <6> —T> ,
Yoz = (=1)"7" ((U; 1) —e(v—2)+7+ <e) —r) :

Yeo1 = (=1)""2(e -7+ 1), and
Ye = (_1)5_1'

The coefficients vy and . in the above theorem were computed by Kauff-
man [Kau87]. Dasbach and Lin [DL06] and Stoimenow [Stoll] later ex-
tended this theorem to semi-adequate links. In Section 3, we use Theo-
rem 2.1 to give formulas for some of the coefficients of the Jones polynomial
of an almost alternating link.

[\

3. Jones polynomial formulas

In this section, we give formulas for the first two and last two potential
coefficients of the Jones polynomial of an almost alternating link. We recall
the relationship between almost alternating links and links of Turaev genus
one, and we prove that either the first two or last two coefficients of the
Jones polynomial of such links alternate in sign.

Let D be an almost alternating diagram as in Figure 3. The tangle R
is an alternating tangle; when a strand meeting R is labeled either “4” or
“—7 it indicates that the strand passes over or under respectively another
strand in the first crossing involving that strand inside R. The diagram
obtained by changing the depicted crossing (known as the dealternator) is
alternating. Throughout this section, G will be the checkerboard graph of
D containing the vertices u; and uo, while G will be the checkerboard graph
of D containing the vertices v; and vy. Every edge in G except for the edge
associated to the dealternator is an A-edge, and every edge in G except for
the edge associated to the dealternator is a B-edge. The edges in G and G
associated to the dealternator will be depicted by a dashed edge.

Our goal is to find an expression for the first and last two coefficients of
the Jones polynomial of an almost alternating link. Figure 4 shows that if
u1 and wuo are the same vertex or if u; and us are incident to an edge not
associated to the dealternator, then D is an almost alternating diagram of
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Uy

U2

FIGURE 3. A generic almost alternating diagram.

Bo-G3
B8

FiGURE 4. Top: If u; = weo, then a Reidemeister 1 move
transforms D into an alternating diagram. Bottom: If u; and
ug are incident to an edge not associated to the dealternator,
then a flype and a Reidemeister 2 move transform D into an
alternating diagram.

an alternating link. By a symmetric argument, if v; and vy are the same
or if v; and vy are incident to an edge not associated to the dealternator,
then D is an almost alternating diagram of an alternating link. Thus we
assume that u; and ue are distinct, v; and vy are distinct, the only edge in
G incident to u; and usg is associated to the dealternator, and the only edge
in G incident to v; and vy is associated to the dealternator. If an almost
alternating diagram satisfies these conditions and if G and G do not contain
any loops, then we call the diagram D a strongly reduced almost alternating
diagram.

The formulas for the first two and last two coefficients of the Jones poly-
nomial of an almost alternating link make heavy use of the checkerboard
graphs G and G of D. Define G/ and G to be the simplifications of G and
G respectively. Denote the number of vertices and edges in G’ and G by v,
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FIGURE 5. S and S are the counts of K, subgraphs of G’

and G respectively. The dashed edge indicates the edge that
is associated to the dealternator.

7, e, and € respectively. The circuit rank of a graph is the number of edges
not contained in a maximal spanning forest of the graph, or alternatively, it
is the first Betti number of the graph when thought of as a cellular complex.
Let 81 and 3; be the circuit ranks of G’ and G respectively. Since G’ and

G are connected, we have
fr=e—v+land B =e—v+1.

Let P denote the number of paths of length two between u; and us in G’,
and let P denote the number of paths of length two between v; and vy in
G. Fori= 0,1, and 2, define P; to be the number of paths of length two
between u; and wug such that ¢ of the edges in the path came from multiple
edges in G. Similarly define P; for i = 0,1, and 2. Let Q be the number
of paths of length three between w; and up in G’ such that no interior
vertex of the path is adjacent to both w1 and us. Similarly, define Q to be
the number of paths of length three between vy and vy in G such that no
interior vertex of the path is adjacent to both v; and ve. Finally, define S to
be the number of subgraphs of G’ containing u; and usy that are isomorphic
to the complete graph Ky on four vertices, and similarly define S to be the
number of subgraphs of G containing v; and wvg that are isomorphic to Kjy.
See Figure 5 for depictions of S and S.

The first and last two potential coefficients of the Jones polynomial of an
almost alternating link can be expressed using the above notation. The first
and last coefficients were computed in [DL16]. The fact that the span of the
Jones polynomial of an almost alternating link is at most ¢ — 3 was proved
in [ABB"92]. The main contribution of this theorem are the formulas for
the second and penultimate coefficients a; and a_4.
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Theorem 3.1. Let L be a link with strongly reduced almost alternating
diagram D with ¢ crossings as in Figure 3. The Kauffman bracket of D can
be expressed as

c—3
<D> _ Z aiAc+QU—8—4i
=0

where
ap = (=1)"(P - 1),

o = (=1)! (51(P—1)—< >+P2—P0+Q—S>,

vl e

Qe—g = (1)1 (m(P —-1)— <
Q3= (—1)"(P —-1).

>+P2—P0+Q—S>, ond

Proof. Let D be an almost alternating diagram as in Figure 3, and let D 4
and Dpg be the A and B resolutions of D at the dealternator. Then D4 and
Dp are reduced alternating diagrams where D4 is the denominator closure
of R and Dp is the numerator closure of R. We prove the formulas for ag
and «q. The proofs a._4 and a._3 are obtained by considering the mirror
image of D.

Let ca,v4, €4, pa, and 74 be the terms in Theorem 2.1 associated to the
first three coefficients of (D 4), and similarly let c¢p, vp, ep, up, and 75 be the
terms in Theorem 2.1 associated to the first three coefficients of (Dp). Define
G4 and G'4 to be the all-A checkerboard graph of D4 and its simplification,
and similarly define G4 and G AI to be the all-A checkerboard graph of Dp
and its simplification. -

The graph G4 is obtained from G4 by identifying the vertices u; and up
into a single vertex uio. Also, the graph G is obtained from G4 by adding
an edge between the vertices u; and us. Therefore v = vg = v4 + 1 and
e=ep—+1.

The Kauffman bracket of D is computed as

(D) = A{Da) + AH(Dp).

We use Theorem 2.1 to compute (D4) and (Dg). The top degree term of
A(Dy) is

(_1)UA71ACA+211A71 — (_1)v72A0+2v74.
The top degree term of A~1(Dp) is

(_l)vB—lAcB+2vB—1 — (_l)v—lAc+2v—4.
These terms cancel in (D), and so the coefficient of A“*2*~% in (D) is zero.

The penultimate terms in A(D,) and A=!(Dpg) are respectively given by

(—1)”‘472(614 — g+ 1)ACA+2’UA*5 — (—1)”73(614 —v+ 2)Ac+2v78
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and
(—1)1)}3—2(63 —vg + 1)ACB+2113—7 — (_l)v—Q(eB — v+ 1)AC+2U_8'

Recall that P is the number of paths of length two in G’ between the vertices
u1 and wuo. Since a path of length two in G4 between u; and us becomes a

multiple edge in G 4, it follows that e — e4 = P. Thus, the coefficient oy
of A°*?v=8in (D) is

ap=(—1)"2((eg —v+1) = (ea —v+2)) = (=1)%(P —1).
The antepenultimate terms in A(D4) and A~'(Dpg) are given by

(—1)ea~? <<UA2 1) —ea(va —2)+ <62A> T — TA) AcA+204—9
= (-1 ((” ; 2) —ea(v—3)+ <€2A) + pa— TA) Actzo—iz

and

(—1)v8=3 <<v32— 1) —ep(vp —2) + <€2B> s TB) Ac+2vp-11
= (-1 <(” 5 1) —ep(v—2)+ (623) +pB — TB) Actzomlz,

Therefore the coefficient of A°*2v=12 in (D) is

= (—1)vl<<”;1> _ (”;2> +ea(v—3) —ep(v—2)
+ <623> - <62A> +MB—MA+TA—TB>.

We handle the terms in «q in pairs. A straightforward computation shows
that

—1 -2
(3.1) (U2 >—<”2 ):v—z
The second pair of terms yields
(3.2) ea(v—3)—ep(v—2)=(es—ep)(v—2)—eqn
=—Pv—2)—eq.
The third pair of terms yields

(3.3) <e§> - <62A> = %(eQB —ep—e4 +ea)

1

= L(en — ea)len +e) — (en —ca))
1
1., 1
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Recall that p4 and pp count the number of edges in G'; and C?;;l respec-
tively that came from multiple edges in G4 and é:;, and recall that G 4 is
obtained from é; by identifying the vertices u; and ug. Suppose that e is
an edge in @:4/ that is not contained in a path of length two between u; and
ug. Then e is also an edge in GNA/ and e came from a multiple edge in G 4 if
and only if e came from a multiple edge in C/?:; Now suppose that e is an
edge in C/?:;/ that is contained in a path of length two between u; and wus.
If both edges in that path came from multiple edges in C’r‘:;, then that path
contributes two to up and one to p4. If exactly one edge in that path came
from multiple edges in é'\;;, then that path contributes one to pp and one to

ua. If no edges in the path came from multiple edges in G 4, then the path
contributes zero to up and one to pa. Hence

(3.4) pB — pa = P — P,

where P; is the number of paths of length two in G’ between 11 and uy such
that ¢ edges in the path come from multiple edges in G.
To analyze the final pair of terms in a3 we must find the difference in the

—~
number of triangles in G’y and G4 . The triangles in G, either come from a
-~/ -~/
triangle in G4 or from a path of length three between u; and ug in G4 . If
-~/
T is a triangle in G4 not containing the vertices u; or ug, then T is also a

triangle in G’;. Suppose T is a triangle in é:;l containing one of the vertices
u1 and ug, say ui. Let ug and ug be the other vertices in T'. If neither ug
nor uy are adjacent to usg, then the triangle consisting of the vertices w12,
u3, and ug in G’y comes from T and T alone. If exactly one of u3 or uy is
adjacent to uo, then the triangle consisting of the vertices uis, us, and uy in

'y comes from the triangle 7" and the path of length three containing the
vertices uq, ug,us, and uy. If both ug and ug are adjacent to usg, then there

-~/
is a triangle T" formed by the vertices us, u3, and ug in G4 . The trlangle in
G, consisting of the vertices u12,us, and uy comes from 7" and T in G4 A

Finally, let H be a path of length three between u; and ug in G4 A " such that
no interior vertex of H is adjacent to both w; and uo. After identifying wuy
and ug (and simplifying) to form G’, the path H becomes a triangle. See
Figure 6. Therefore

(3.5) TA—TB=Q — S,

where @ is the number of paths of length three between u; and us in G’
such that no interior vertex of the path is adjacent to both u; and ue and
S is the number of K4 subgraphs of G’ containing u; and us (see Figure 5).

Combining Equations 3.1 through 3.5 and ignoring an overall sign yields

1 1
al:v—2—P(v—2)—eA+§P2—§P+P6A+P2—P0+Q—S
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us Uy

3 §\l\s

us Uq

20_73
[\ =

)
>\

us Uy

SIS

U12

us3 /\m

l
A

U2

ug3 &w

!
A

U12

us Am

F1GURE 6. Top. A path of length three such that no interior

vertex is adjacent to both endpoints in G4 A adds a new a
triangle in G’y. Middle. A path of length three such that one

—~/
interior vertex is adjacent to both endpoints in G 4 preserves

the number of triangles in G/;.

Bottom. A path of length

three such that both interior vertices are adjacent to both

—~
endpoints in G4 decreases the number of triangles by one in

.

1 1
:ﬂ—m@—2ﬂ3+m+§ﬁ—§P+B—%+Q—S

1 1
=(1-P)v—1-e)+P-P*+_P* - _P+P,-PR+Q-S

2

:BI(P_l)_<§>+P2_PO+Q_Sa

1623
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________________________

............

6@ I
9 |

FIGURE 7. A diagram of an almost alternating link L, and
its checkerboard graphs G (in blue) and G (in red).

-
N m e m—————

-’

as desired.

It remains to show that the difference in exponent of the oy term and
the a._3 term is 4(c — 3). The diagram D can be considered as a 4-regular
planar graph whose vertices correspond to the crossings. The number of
vertices, edges, and faces of the link diagram considered as a graph are c,
2c¢, and v+ v respectively. Since this graph is planar, its Euler characteristic
is two, and v + v = ¢+ 2. The difference in exponent between the first and
last potential terms of (D) is

(c+2v—-8)—(—c—20+8)=2c+2(v+7)—16
=2c+2(c+2)—16
= 4(c — 3),
as desired. O
Example 3.2. Let L be the two-component almost alternating link with
diagram D as in Figure 7. For this diagram, we have v =7, P =Py = P, =
]732:5:077@:1761:476:57P:37P0:17P1:27P2:Q:O7
S =1, and 8; = 4. Theorem 3.1 implies that
apg=1, a1 =-3, q4=3, and a..3=—-2.
The values of the coefficients can be seen in the Jones polynomial of L:

Vi(t) =tV 72 347 15/2 gy 132 5= 11/2 4 5y =9/2 5T/ 4 34752 _9473/2,

Adams et al. [ABBT92] showed that the span of the Jones polynomial
gives a lower bound on the fewest number of crossings in an almost alter-
nating diagram of an almost alternating link, as reflected in Theorem 3.1. If
span Vz(t) = ¢(D) — 3, then D has the fewest number of crossings among all
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almost alternating diagrams of L. In the following theorem, we use the no-
tation from Theorem 3.1. Parts (1) and (4) are implicit, but never directly
stated, in [DL16].

Theorem 3.3. Let D be a strongly reduced almost alternating diagram of
the link L with ¢(D) crossings, as in Figure 3.
(1) If neither P nor P is one, then D has the fewest number of crossings

among all almost alternating diagrams of L.
(2) IfP=1, P#1 and
P—-FP+Q—-S#0,
then the fewest number of crossings among all almost alternating
diagrams of L is either ¢(D) or ¢(D) — 1.
(3) IfP#1,P=1 and
PQ_FO‘F@_g#Oa
then the fewest number of crossings among all almost alternating
diagrams of L is either ¢(D) or ¢(D) — 1.
(4) If both P and P are one, then L has another almost alternating
diagram D’ with two fewer crossings than D.

Proof. If neither P nor P is one, then Theorem 3.1 implies
span Vi (t) = ¢(D) — 3,

and thus D has the fewest number of crossings among all almost alternating
diagrams of L. In either cases (2) or (3), Theorem 3.1 implies

span Vp(t) = ¢(D) — 4

and the result follows.

Suppose both P and P = 1. Then D is the first diagram in Figure 8 where
each tangle R; is alternating. As shown in Figure 8, there is an isotopy of the
link starting with D and ending with another almost alternating diagram
with two fewer crossings. O

The following lemma will help us to compare the terms in Theorem 3.1.

Lemma 3.4. Let D be a strongly reduced almost alternating diagram with
the fewest number of crossings among all almost alternating diagrams of the
link. The following statements hold.

(1) At least one of P or P is contained in {0,2}.
(2) P+Q <pB1 and P+ Q < ;.

Proof. Suppose that P > 2, i.e., there are more than two paths of length
two between u; and us in G’. Each path from uq to us in G’ corresponds to
possibly more than one path from wu; to ug in G. Each edge in a path from
w1 to up in G is dual to an edge in G which then corresponds to an edge
in G . Therefore, the shortest path between v; and vy is at least length P,
and hence P = 0. Likewise, if P > 2, it follows that P = 0. Since D has
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FIGURE 8. If P = P = 1, then the diagram D has the form
of the diagram on the top left, where R;, Ro, and R3 are
alternating tangles. Two flypes lead to the second diagram.
A Reidemeister 3 move followed by a Reidemeister 2 move
yields the third diagram. The third diagram is almost alter-
nating and has two fewer crossings than D. The encircled
crossing is the dealternator.

the fewest number of crossings among all almost alternating diagrams of the
link, Theorem 3.3 implies that not both P and P can be one. Hence either
P or P is contained in {0, 2}.

The edge in G’ corresponding to the dealternator is incident to u; and
ug. Each path between u; and ue increases the circuit rank 1 by one. Since
the total number of paths between u; and ug in G’ is at least P + Q, it
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follows that P + @ < 1. The argument for the inequality P + Q < B, is
similar. ([

Turaev genus one links are closely related to almost alternating links. A
link is of Turaev genus one if and only if it is nonalternating and has a
diagram of Turaev genus one. An almost alternating link is always Turaev
genus one, but it is an open question whether there is a Turaev genus one
link that is not almost alternating; see [Low15] for more discussion. For a
more comprehensive review of the Turaev genus of a link, see Champanerkar
and Kofman’s recent survey [ChamK14].

Let L be a link, and let B be a ball whose boundary sphere transversely
intersects L in four points. The pair (LN B, B) forms a two-tangle. After an
isotopy of L, it can be assumed that the boundary of B is a round sphere and
that the intersection points L N 9B are permuted by any 180° rotation of B
about a coordinate axis. A mutation of L is the link obtained by removing
the ball B from S3, rotating it 180° about a coordinate axis, and gluing
it back into S3. Any link that can be obtained from L via a sequence of
mutations is a mutant of L. Armond and Lowrance [AL17] (see also [Kim15])
classified links of Turaev genus one and used these classifications to prove
the following theorem.

Theorem 3.5 (Armond, Lowrance). Every link of Turaev genus one is
mutant to an almost alternating link.

Theorem 1.2 now follows from Theorem 3.1 and Lemma 3.4.

Proof of Theorem 1.2. Suppose that D is a strongly reduced almost al-
ternating diagram of L. By Lemma 3.4 either P or P is contained in {0, 2}.
Without loss of generality, suppose that P € {0,2}. First, let P = 0. Then
Ph=P,=5=0,

Qo = (_1)v+17

ar = (=1)""1Q - B1).
By Lemma 3.4, we have that Q — 81 < 0, and thus aga; < 0.
Now suppose that P = 2. Then
ap = (—l)v,
ar=(-1)""1B-1+P—P+Q-59).
Since P = 2, it follows that —2 < P, — Py < 2, S € {0,1}, and 51 > 2.
Suppose S = 0. The quantity 51 —1+ P, — Py+ @ — .5 achieves its minimum
of —1 when 81 =2,P, =0,F) =2, and Q = 0. In this case, G is a 4-cycle
with an additional edge between u; and us, and D is a diagram of the two
component unlink, as shown in Figure 9. Hence if D is a diagram of an
almost alternating link and S =0, then 5 — 1+ P — P+ Q-S> 0.
Now suppose that S = 1. Then ;1 > 3. The quantity

bi—1+P-F+Q—-S
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FIGURE 9. If S = 0 and oy = (—1)", then G and D are
as above, and D is a diagram of the two component unlink.
Hence the link is alternating, rather than almost alternating.

G D Ty 1 U0

FIGURE 10. If S = 1 and ag = (—1)", then G and D are
as above, and D is a diagram of the disjoint union of the
(2,k + 1) torus knot T3 41 and the unknot. Hence the link
is alternating, rather than almost alternating.

achieves its minimum of —1 when 8 = 3, P, = 0,F) = 2 and @ = 0.
In this case, G’ is K4 and G is the graph in Figure 10. The diagram D
is a diagram of the (2,k + 1)-torus link disjoint union with an unknot.
Hence if D is a diagram of an almost alternating link and S = 1, then
Bi—1+P,—FP+Q—-S5>0.
In both cases where P =2 and S =0 or § =1, we have
agon = (-1)"(-1)" (B —1+ P — Py +Q — S)

(-)(B1—1+P—P+Q—S)
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FiGure 11. The knot 15n41133.

If P € {0,2}, then a symmetric argument implies o 4. 3 < 0. If L is
Turaev genus one, then Theorem 3.5 implies that L is mutant to an almost
alternating link. It is a well-known fact that mutant links have the same
Jones polynomial; see, for example, [Lic97]. Hence, the result follows. [

Let Vi (t) = aoth + aytF ™ 4 -« 4 ap 1P 4, t5+ for a knot K.
Dasbach and Lowrance [DL16] proved that if K is almost alternating, then
at least one of |ag| or |a,| is one, and Theorem 1.2 gives a stronger ob-
struction for a knot to be almost alternating. A computer search (using
the tables from [ChaL] and the Jones polynomial program from [BNMeal)
shows 1 knot with eleven crossings, 11 knots with twelve crossings, 70 knots
with thirteen crossings, 526 knots with fourteen crossings, and 3,787 knots
with fifteen crossings have Jones polynomials where neither the leading nor
trailing coefficients have absolute value one. However, knots whose Jones
polynomials have either a leading or trailing coefficient of absolute value one
but fail to satisfy the conditions of Theorem 1.2 are not as common in the
knot tables. There are no such knots with fourteen or fewer crossings and
15 such knots with fifteen crossings. Example 3.6 shows one of the fifteen
crossing examples.

Example 3.6. The knot K =15n41133 of Figure 11 has Jones polynomial
Vic(t) = t* +° = 3t0 +8¢7 — 1268 + 144 — 15¢10 4 13¢1 — 10#12 4-6¢13 — 2414,

Thus Theorem 1.2 implies that K is not almost alternating and has Turaev
genus at least two.

4. Nontriviality of the Jones polynomial

In this section we prove that the Jones polynomial of an almost alternating
or Turaev genus one link is not equal to any unit times the Jones polynomial
of an unlink. Theorems 1.2 and 3.1 are the main tools used in the proof,
but there are some exceptional cases not covered by those theorems.
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F1GURE 12. Top. A multiple edge in G corresponds to a
twist region in D. We use the shorthand of a box labeled
with the number of crossings in the twist region. Bottom. A

circle labeled with @ = (ay,. .., ax) corresponds to a series of
k edges in G’ or G and to the depicted alternating tangle in
D.

Throughout this section, D is a strongly reduced almost alternating di-
agram with the fewest number of crossings among all almost alternating
diagrams of the link. Furthermore, we assume that D is a prime diagram,
i.e., there is no simple closed curve v meeting D exactly twice away from the
crossings such that both the interior and exterior of v contain crossings. If
D is not prime, then one of its factors is alternating. Since the Jones poly-
nomial is multiplicative under connected sum and the Jones polynomial of a
nontrivial alternating link is nontrivial, it suffices to consider prime almost
alternating diagrams. Since D is a prime diagram, it follows that G and G
are two-connected, i.e., contain no cut vertices. We adopt the notation of
Theorem 3.1 and also use the diagrammatic notation of Figure 12.

Let I' be a connected graph, and suppose that I" has two vertices wy and
wg such that T' — {wy,wy} is disconnected. Then I' can be expressed as the
union of two connected subgraphs I' = T'; UT's where I't N Ty = {wq, wa}.
Consider 'y and Ty as distinct graphs. Temporarily let wi and wl be the
copies of wy and ws in I'7, and let w% and w% be the copies of wy and ws
in 'y, Define I be the graph obtained by gluing together wi and w3 and
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aog bo ao bo

Family 1 Family 2 Family 3

FIGURE 13. Three families of G when oy = 0, .4 = 0,
P=1,and P=0.
by gluing together w? and wi. The operation described above is called a
2-1somorphism, and any two graphs related by a sequence of 2-isomorphisms
are said to be 2-isomorphic.

A 2-isomorphism on the checkerboard graph of a link diagram corresponds
to a mutation of the link, and mutation does not affect the Jones polynomial.
In our setting, we will use 2-isomorphisms to permute the labels along a path
in G or G, which will decrease the number of cases we need to consider in
Lemmas 4.2 and 4.3 below.

A link diagram is A-adequate (respectively B-adequate) if no trace in its
all-A (respectively all-B) Kauffman state has both of its endpoints on the
same component of the Kauffman state. A link that has a diagram that is
either A-adequate or B-adequate is called semi-adequate. Stoimenow [Stol1]
proved the following theorem about the Jones polynomial of a semi-adequate
link.

Theorem 4.1 (Stoimenow). Let L be a semi-adequate link. If
-1
Vi(t) = t* (—t% - t—%)
for some k € Z, then k =0 and L is the £-component unlink.

Before proving Theorem 1.1, we need Lemmas 4.2 and 4.3.

Lemma 4.2. Let D be a strongly reduced almost alternating diagram. Sup-
pose that a1 =0, ey =0, P =1, and P = 0. After possibly relabeling v
and vy, the checkerboard graph G is 2-isomorphic to one of the three families
in Figure 13. Moreover, every link whose checkerboard graph is in any of
these families is semi-adequate.

Proof. We begin the proof by making observations that will apply to all
three families. Since P = 0, there are no paths of length two between v
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and vs in él, and thus Py = Py = S = 0. Theorem 3.1 implies that
a1 =(-1)""(Q - B1),

and because a._4 = 0, it follows that Q = ;. Furthermore, since the
number of paths P of length two between u; and us in G’ is one, it follows
that there are no K4 subgraphs of G’ containing u; and us, and hence S = 0.
Theorem 3.1 implies that a; = (—1)""1(Py — Py + Q). Because a; = 0, we
have Py = P> + Q. Since P; is the number of paths of length two in G’ with
1 edges coming from multiple edges in G, it follows that Py + P, < P = 1.
Therefore either Pp = P, =Q =0or Ph=@Q =1 and P, = 0.

We construct all graphs satisfying the specified conditions from an initial
graph that contains only the vertices v; and vy and a single edge incident
to both vertices. The edge is associated to the dealternator. From the
upcoming construction, it will be clear that all of the graphs will be 2-
isomorphic to a graph in one of Family 1, 2, or 3, where for Family 1, the
equation Py = P, = Q = 0 is satisfied, and for Families 2 and 3, either set
of equations (Py = P, =Q =0, or Py = @ = 1 and P, = 0) can be satisfied,
depending on the parameters. For the initial graph, we have Q = 3; = 0.
Fach time a path of length three between vy and vy is added to @/, both Q
and B3 increase by one. If a path of any length is added between any two
existing vertices is added to é/, then f3; increases by one. Therefore, every
graph satisfying a._4 = 0 and P = 0 can be obtained from our initial graph
by adding paths of length three between v; and vo. We consider two types
of path additions. A type 1 path addition adds a path between vy and vs
where both interior vertices in the new path do not exist in the previous
graph, and a type 2 path addition adds a path between v; and vy where
exactly one interior vertex in the new path does not exist in the previous
graph.

Any graph G where @ = f(; can be obtained from our initial graph
by first performing some number of type 1 additions, then performing some
number of type 2 additions. If more than two type 1 additions are performed,
then there cannot be a path of length two between u; and ue in the dual
graph. Hence the number of type 1 additions is one or two. Suppose the
number of type 1 additions is two, and let ug be the vertex in the dual graph
corresponding to the face between the two type 1 paths. Since P = 1, the
vertex ug is adjacent to both u; and us. Moreover, every path between u;
and us must contain the vertex ug. Hence @Q = 0, and thus Py = P, = 0
while P, = 1. Therefore two of the edges, say e; and es, along one of
the type 1 path additions must be labeled 1. A different choice for the
two edges labeled 1 yields a 2-isomorphic graph. Moreover, no type 2 path
additions can use any interior vertex incident to either e; or es. Thus all
type 2 additions must be performed along the existing path between vy and
v9 that does not contain e; and es. In order to ensure P = 1, all such type
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Family 3

F1GURE 14. The diagrams on the left are associated to the
graphs G in Families 1, 2, and 3. In each case, an isotopy
yields a B-adequate diagram. The dashed curves are the
all-B states.

2 additions must share an edge labeled 1. The resulting family of graphs is
Family 1.
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Now suppose there is only one type 1 path addition to obtain G'. Label the
interior vertices of this path v3 and v4 with vs adjacent to v; and v4 adjacent
to v9. One can perform an arbitrary number of type 2 path additions using
vertex vz but not vertex vy, and as long as the edge incident to v3 and vy
is suitably labeled, the condition P = 1 can still be satisfied. The resulting
family of graphs is Family 2.

Suppose one performs a type 2 path addition using vertex vs and another
type 2 path addition using vertex vs4. In order to keep P = 1, all the
remaining type 2 path additions must use either vs or v4, but not both. In
order to ensure P = 1, at least one edge incident to either v; or vy in the
original type 1 path must be labeled 1, and at least one edge in the solitary
type 2 addition must be labeled 1. As before, a different choice of edge to
label 1 results in a 2-isomorphic graph. The resulting family of graphs is
Family 3.

Figure 14 shows that all the links whose checkerboard graphs are in the
three families of Figure 13 are B-adequate and hence semi-adequate. In
each case, the all-B state is drawn. O

Lemma 4.3. Let D be a strongly reduced almost alternating diagram. Sup-
pose that a._y = 0, P = 1, and P = 2. After possibly relabeling vertices
v1 and vy, the checkerboard graph G belongs to one of the four families in
Figure 15. Moreover, every link whose checkerboard graph is in any of these
families is alternating.

Proof. Since ae_y =0, P =1, and P = 2, we have that P, = Q = 0 and
Bi=Po+S+1.

Since P = 2, we have that Py = 0,1, or 2. Furthermore, since there are two
paths of length two in each K, subgraph containing v; and v, it follows
that P = 2 implies that S =0 or 1.

Suppose that S = 0. Then 3; = Py + 1. Since Py < P =2 and 2 < 4,
we have two cases: either 8; = 2 and Pp =1 or ; = 3 and Py = 2. In the
former case, we obtain Family 4, and in the latter case we obtain Family 5.

Suppose S = 1. Then B; = Py + 2. Since S = 1, we have that 3 < 3,
and thus 3 < Py + 2. Again there are two cases: either Bl =3and Py =1
or 3, = 4 and Py = 2. In the former case, we obtain Family 6, and in the
latter case we obtain Family 7.

The diagrams in the left column of Figure 16 are the four families of link
diagrams whose checkerboard graphs G are shown in Figure 15. For each
of the four families, Figure 16 shows an isotopy to an alternating link. In
the case of Family 7, the diagram is nonalternating; however since it is a
connected sum of alternating diagrams, it follows that the link is alternating.
Since the links associated to the checkerboard graphs in these families are
alternating, they are not almost alternating. ([
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Family 4 Family 5
S=0,Py=1 5=0,Py=2

Family 6 Family 7
S=1,Py=1 S=1,Py=2

FIGURE 15. Four families of G when a._4 =0, P = 1, and

P=2

We conclude the paper with the proof of Theorem 1.1, which follows from
Theorems 1.2 and 3.1 and Lemmas 4.2 and 4.3.

Proof of Theorem 1.1. Let D be a strongly reduced almost alternating
diagram of the link L such that D has the fewest number of crossings among
all almost alternating diagrams of L. Suppose that the Jones polynomial of
Lis

VL(t) _ aotk + altk-H I an_ltk-i-n—l + antk—f—n’
where ag and a,, are nonzero. First, suppose that the number of components

f of L is at least two. The product of the first two coefficients and the
-1

product of the last two coefficients of ¢ (—t% — t_%> are strictly positive.

However, Theorem 1.2 states that at least one of the products agay or a,_1ay,

is at most zero. Thus
-1
Vi(t) # tF (—t% - t*%> .

Now suppose that £ = 1, i.e., that L is a knot. We need to show that
Vi (t) # t* for some k € Z. Adopting the notation of Theorem 3.1, Lem-
ma 3.4 implies that either P or P is in {0,2}. Without loss of generality
assume P € {0,2}. Thus a.—3 = £1. If any of ap, a1, or a—4 are nonzero,
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FIGURE 16. The diagrams on the left have G from Families
4,5, 6, and 7 as checkerboard graphs. In each case, an isotopy
yields an alternating link.
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then at least two coefficients of the Kauffman bracket of D are nonzero, and
hence Vi (t) # t*.

Suppose that ag = a3 = ac_4 = 0. Since oy = 0, it follows that P = 1.
If P =0, then Lemma 4.2 implies L is either semi-adequate or mutant to a
semi-adequate link. Theorem 4.1 then implies that V7, (t) # t* for any k € Z.
If P =2, then Lemma 4.3 implies that L is alternating, rather than almost
alternating. Hence the P = 2 case can be discarded from consideration.

Now suppose that L is Turaev genus one. Theorem 3.5 implies that L is
mutant to an almost alternating link. The result follows from the fact that
the Jones polynomial does not change under mutation. ([
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