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Proof of a conjecture of Bergeron,
Ceballos and Labbé

Alexander Postnikov and Darij Grinberg

Abstract. The reduced expressions for a given element w of a Coxeter
group (W,S) can be regarded as the vertices of a directed graph R (w);
its arcs correspond to the braid moves. Specifically, an arc goes from a

reduced expression −→a to a reduced expression
−→
b when

−→
b is obtained

from −→a by replacing a contiguous subword of the form stst · · · (for some
distinct s, t ∈ S) by tsts · · · (where both subwords have length ms,t, the
order of st ∈ W ). We prove a strong bipartiteness-type result for this
graph R (w): Not only does every cycle of R (w) have even length;
actually, the arcs of R (w) can be colored (with colors corresponding
to the type of braid moves used), and to every color c corresponds an
“opposite” color cop (corresponding to the reverses of the braid moves
with color c), and for any color c, the number of arcs in any given cycle
of R (w) having color in {c, cop} is even. This is a generalization and
strengthening of a 2014 result by Bergeron, Ceballos and Labbé.
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Introduction

Let (W,S) be a Coxeter group1 with Coxeter matrix
(
ms,s′

)
(s,s′)∈S×S , and

let w ∈W . Consider a directed graph R (w) whose vertices are the reduced
expressions for w, and whose arcs are defined as follows: The graph R (w)

has an arc from a reduced expression −→a to a reduced expression
−→
b whenever−→

b can be obtained from −→a by replacing some contiguous subword of the
form (s, t, s, t, . . .)︸ ︷︷ ︸

ms,t letters

by (t, s, t, s, . . .)︸ ︷︷ ︸
ms,t letters

, where s and t are two distinct elements

of S. (This replacement is called an (s, t)-braid move.)
The directed graph R (w) (or, rather, its undirected version) has been

studied many times; see, for example, [ReiRoi11] and the references therein.
In this note, we shall prove a bipartiteness-type result for R (w). Its sim-
plest aspect (actually, a corollary) is the fact that R (w) is bipartite (i.e.,
every cycle of R (w) has even length); but we shall concern ourselves with
stronger statements. We can regardR (w) as an edge-colored directed graph:

Namely, whenever a reduced expression
−→
b is obtained from a reduced ex-

pression −→a by an (s, t)-braid move, we color the arc from −→a to
−→
b with

the conjugacy class2 [(s, t)] of the pair (s, t) ∈ S × S. Our result (Theo-
rem 2.0.3) then states that, for every such color [(s, t)], every cycle of R (w)
has as many arcs colored [(s, t)] as it has arcs colored [(t, s)], and that the
total number of arcs colored [(s, t)] and [(t, s)] in any given cycle is even.
This generalizes and strengthens a result of Bergeron, Ceballos and Labbé
[BeCeLa14, Theorem 3.1].

Acknowledgments. We thank Nantel Bergeron and Cesar Ceballos for
introducing us to the problem at hand, and the referee for useful remarks.

1. A motivating example

Before we introduce the general setting, let us demonstrate it on a simple
example. This example is not necessary for the rest of this note (and can be
skipped by the reader3); it merely provides some intuition and motivation
for the definitions to come.

For this example, we fix an integer n ≥ 1, and we let W be the symmetric
group Sn of the set {1, 2, . . . , n}. For each i ∈ {1, 2, . . . , n− 1}, let si ∈ W

1All terminology and notation that appears in this introduction will later be defined
in more detail.

2A conjugacy class here means an equivalence class under the relation ∼ on the set
S × S, which is given by(

(s, t) ∼
(
s′, t′

)
⇐⇒ there exists a q ∈W such that qsq−1 = s′ and qtq−1 = t′

)
.

The conjugacy class of an (s, t) ∈ S × S is denoted by [(s, t)].
3All notations introduced in Section 1 should be understood as local to this section;

they will not be used beyond it (and often will be replaced by eponymic notations for
more general objects).
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be the transposition which switches i with i+ 1 (while leaving the remain-
ing elements of {1, 2, . . . , n} unchanged). Let S = {s1, s2, . . . , sn−1} ⊆ W .
The pair (W,S) is an example of what is called a Coxeter group (see, e.g.,
[Bourba81, Chapter 4] and [Lusztig14, §1]); more precisely, it is known as
the Coxeter group An−1. In particular, S is a generating set for W , and
the group W can be described by the generators s1, s2, . . . , sn−1 and the
relations

s2i = id for every i ∈ {1, 2, . . . , n− 1} ;(1)

sisj = sjsi for every i, j ∈ {1, 2, . . . , n− 1} such that |i− j| > 1;(2)

sisjsi = sjsisj for every i, j ∈ {1, 2, . . . , n− 1} such that |i− j| = 1.
(3)

This is known as the Coxeter presentation of Sn, and is due to Moore (see,
e.g., [CoxMos80, (6.23)–(6.25)] or [Willia03, Theorem 1.2.4]).

Given any w ∈ W , there exists a tuple (a1, a2, . . . , ak) of elements of S
such that w = a1a2 · · · ak (since S generates W ). Such a tuple is called a
reduced expression for w if its length k is minimal among all such tuples
(for the given w). For instance, when n = 4, the permutation π ∈ S4 = W
that is written as (3, 1, 4, 2) in one-line notation has reduced expressions
(s2, s1, s3) and (s2, s3, s1); in fact, π = s2s1s3 = s2s3s1. (We are following
the convention by which the product u◦v = uv of two permutations u, v ∈ Sn
is defined to be the permutation sending each i to u (v (i)).)

Given a w ∈ W , the set of reduced expressions for w has an additional
structure of a directed graph. Namely, the equalities (2) and (3) show that,
given a reduced expression −→a = (a1, a2, . . . , ak) for w ∈ W , we can obtain
another reduced expression in any of the following two ways:

• Pick some i, j ∈ {1, 2, . . . , n− 1} such that |i− j| > 1, and pick any
factor of the form (si, sj) in −→a (that is, a pair of adjacent entries of
−→a , the first of which is si and the second of which is sj), provided
that such a factor exists, and replace this factor by (sj , si).
• Alternatively, pick some i, j ∈ {1, 2, . . . , n− 1} such that |i− j| = 1,

and pick any factor of the form (si, sj , si) in −→a , provided that such
a factor exists, and replace this factor by (sj , si, sj).

In both cases, we obtain a new reduced expression for w (provided that
the respective factors exist). We say that this new expression is obtained
from −→a by an (si, sj)-braid move, or (when we do not want to mention si
and sj) by a braid move. For instance, the reduced expression (s2, s1, s3) for
π = (3, 1, 4, 2) ∈ S4 is obtained from the reduced expression (s2, s3, s1) by
an (s3, s1)-braid move, and conversely (s2, s3, s1) is obtained from (s2, s1, s3)
by an (s1, s3)-braid move.

Now, we can define a directed graphR0 (w) whose vertices are the reduced

expressions for w, and which has an edge from −→a to
−→
b whenever

−→
b is

obtained from −→a by a braid move (of either sort). For instance, let n = 5,
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Figure 1. R0(w).

and let w be the permutation written in one-line notation as (3, 2, 1, 5, 4).
Then, R0(w) looks as shown in Figure 1, where we have “colored” (i.e.,

labelled) every arc
(−→a ,−→b ) with the pair (si, sj) such that

−→
b is obtained

from −→a by an (si, sj)-braid move.
In our particular case, the graph R0 (w) consists of a single bidirected

cycle. This is not true in general, but certain things hold in general. First,

it is clear that whenever an arc from some vertex −→a to some vertex
−→
b has

color (si, sj), then there is an arc with color (sj , si) from
−→
b to −→a . Thus,

R0 (w) can be regarded as an undirected graph (at the expense of murkying
up the colors of the arcs). Furthermore, every reduced expression for w
can be obtained from any other by a sequence of braid moves (this is the
Matsumoto–Tits theorem; it appears, e.g., in [Lusztig14, Theorem 1.9]).
Thus, the graph R0 (w) is strongly connected.

What do the cycles of R0 (w) have in common? Walking down the long
cycle in the graph R0 (w) for w = (3, 2, 1, 5, 4) ∈ S5 counterclockwise, we
observe that the (s1, s2)-braid move is used once (i.e., we traverse precisely
one arc with color (s1, s2)), the (s2, s1)-braid move once, the (s1, s4)-braid
move twice, the (s4, s1)-braid move once, the (s2, s4)-braid move once, and
the (s4, s2)-braid move twice. In particular:

• The total number of (si, sj)-braid moves with |i− j| = 1 used is even
(namely, 2).
• The total number of (si, sj)-braid moves with |i− j| > 1 used is even

(namely, 6).

This example alone is scant evidence of any general result, but both even-
ness patterns persist for general n, for any w ∈ Sn and any directed cycle
in R0 (w). We can simplify the statement if we change our coloring to a
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coarser one. Namely, let M denote the subset

{(s, t) ∈ S × S | s 6= t} = {(si, sj) | i 6= j}

of S × S. We define a binary relation ∼ on M by

(s, t) ∼
(
s′, t′

)
⇐⇒ there exists a q ∈W such that qsq−1 = s′ and qtq−1 = t′.

This relation ∼ is an equivalence relation; it thus gives rise to a quotient
set M/ ∼. It is easy to see that the quotient set M/ ∼ has exactly two
elements (for n ≥ 4): the equivalence class of all (si, sj) with |i− j| = 1,
and the equivalence class of all (si, sj) with |i− j| > 1. Let us now define an
edge-colored directed graph R (w) by starting with R0 (w), and replacing
each color (si, sj) by its equivalence class [(si, sj)]. Thus, in R (w), the arcs
are colored with the (at most two) elements of M/ ∼. Now, our evenness
patterns can be restated as follows: For any n ∈ N, any w ∈ Sn and any
color c ∈ M/ ∼, any directed cycle of R (w) has an even number of arcs
with color c.

This can be generalized further to every Coxeter group, with a minor
caveat. Namely, let (W,S) be a Coxeter group with Coxeter matrix(

ms,s′
)
(s,s′)∈S×S .

Notions such as reduced expressions and braid moves still make sense (see
below for references and definitions). We redefine M as

{(s, t) ∈ S × S | s 6= t and ms,t <∞}

(since pairs (s, t) with ms,t =∞ do not give rise to braid moves). Unlike in
the case of W = Sn, it is not necessarily true that (s, t) ∼ (t, s) for every
(s, t) ∈ M. We define [(s, t)]op = [(t, s)]. The evenness pattern now has to
be weakened as follows: For every w ∈ W and any color c ∈ M/ ∼, any
directed cycle of R (w) has an even number of arcs whose color belongs to
{c, cop}. (For W = Sn, we have c = cop, and thus this recovers our old
evenness patterns.) This is part of the main theorem we will prove in this
note – namely, Theorem 2.0.3(b); it extends a result [BeCeLa14, Theorem
3.1] obtained by Bergeron, Ceballos and Labbé by geometric means. The
other part of the main theorem (Theorem 2.0.3(a)) states that any directed
cycle of R (w) has as many arcs with color c as it has arcs with color cop.

2. The theorem

In the following, we shall use the notations of [Lusztig14, §1] concerning
Coxeter groups. (These notations are compatible with those of [Bourba81,
Chapter 4], except that Bourbaki writes m (s, s′) instead of ms,s′ , and speaks
of “Coxeter systems” instead of “Coxeter groups”.)

Let us recall a brief definition of Coxeter groups and Coxeter matrices:
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A Coxeter group is a pair (W,S), where W is a group, and where S is a
finite subset of W having the following property: There exists a matrix(

ms,s′
)
(s,s′)∈S×S ∈ {1, 2, 3, . . . ,∞}

S×S

such that

• Every s ∈ S satisfies ms,s = 1.
• Every two distinct elements s and t of S satisfy ms,t = mt,s ≥ 2.
• The group W can be presented by the generators S and the relations

(st)ms,t = 1 for all (s, t) ∈ S × S satisfying ms,t 6=∞.
In this case, the matrix

(
ms,s′

)
(s,s′)∈S×S is called the Coxeter matrix of

(W,S). It is well-known (see, e.g., [Lusztig14, §1]4) that any Coxeter group
has a unique Coxeter matrix, and conversely, for every finite set S and
any matrix

(
ms,s′

)
(s,s′)∈S×S ∈ {1, 2, 3, . . . ,∞}

S×S satisfying the first two

of the three requirements above, there exists a unique (up to isomorphism
preserving S) Coxeter group (W,S).

We fix a Coxeter group (W,S) with Coxeter matrix
(
ms,s′

)
(s,s′)∈S×S .

Thus, W is a group, and S is a set of elements of order 2 in W such that
for every (s, s′) ∈ S × S, the element ss′ ∈ W has order ms,s′ . (See, e.g.,
[Lusztig14, Proposition 1.3(b)] for this well-known fact.)

We let M denote the subset

{(s, t) ∈ S × S | s 6= t and ms,t <∞}
of S×S. (This is denoted by I in [Bourba81, Chapter 4, n◦ 1.3].) We define
a binary relation ∼ on M by

(s, t) ∼
(
s′, t′

)
⇐⇒ there exists a q ∈W such that qsq−1 = s′ and qtq−1 = t′.

It is clear that this relation ∼ is an equivalence relation; it thus gives rise to a
quotient set M/ ∼. For every pair P ∈M, we denote by [P ] the equivalence
class of P with respect to this relation ∼.

We set N = {0, 1, 2, . . .}.
A word will mean a k-tuple for some k ∈ N. A subword of a word

(s1, s2, . . . , sk) will mean a word of the form
(
si1 , si2 , . . . , sip

)
, where

i1, i2, . . . , ip ∈ {1, 2, . . . , k} with i1 < i2 < · · · < ip.

For instance, (1), (3, 5), (1, 3, 5), () and (1, 5) are subwords of the word
(1, 3, 5). A factor of a word (s1, s2, . . . , sk) will mean a word of the form

(si+1, si+2, . . . , si+m)

4See also [Bourba81, Chapter V, n◦ 4.3, Corollaire] for a proof of the existence of a
Coxeter group corresponding to a given Coxeter matrix. Note that Bourbaki’s definition
of a “Coxeter system” differs from our definition of a “Coxeter group” in the extra re-
quirement that ms,t be the order of st ∈W ; but this turns out to be a consequence of the
other requirements.
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for some i ∈ {0, 1, . . . , k} and some m ∈ {0, 1, . . . , k − i}. For instance, (1),
(3, 5), (1, 3, 5) and () are factors of the word (1, 3, 5), but (1, 5) is not.

We recall that a reduced expression for an element w ∈ W is a k-tuple
(s1, s2, . . . , sk) of elements of S such that w = s1s2 · · · sk, and such that k
is minimum (among all such tuples). The length of a reduced expression
for w is called the length of w, and is denoted by l (w). Thus, a reduced
expression for an element w ∈ W is a k-tuple (s1, s2, . . . , sk) of elements of
S such that w = s1s2 · · · sk and k = l (w).

Definition 2.0.1. Let w ∈W . Let

−→a = (a1, a2, . . . , ak) and
−→
b = (b1, b2, . . . , bk)

be two reduced expressions for w.

Let (s, t) ∈ M. We say that
−→
b is obtained from −→a by an (s, t)-braid

move if
−→
b can be obtained from −→a by finding a factor of −→a of the form

(s, t, s, t, s, . . .)︸ ︷︷ ︸
ms,t elements

and replacing it by (t, s, t, s, t, . . .)︸ ︷︷ ︸
ms,t elements

.

We notice that if
−→
b is obtained from −→a by an (s, t)-braid move, then −→a

is obtained from
−→
b by an (t, s)-braid move.

Definition 2.0.2. Let w ∈ W . We define an edge-colored directed graph
R (w), whose arcs are colored with elements of M/ ∼, as follows:

• The vertex set of R (w) shall be the set of all reduced expressions for
w.
• The arcs of R (w) are defined as follows: Whenever (s, t) ∈ M, and

whenever −→a and
−→
b are two reduced expressions for w such that

−→
b

is obtained from −→a by an (s, t)-braid move, we draw an arc from s
to t with color [(s, t)].

Theorem 2.0.3. Let w ∈ W . Let C be a (directed) cycle in the graph
R (w). Let c = [(s, t)] ∈ M/ ∼ be an equivalence class with respect to ∼.
Let cop be the equivalence class [(t, s)] ∈M/ ∼. Then:

(a) The number of arcs colored c appearing in the cycle C equals the
number of arcs colored cop appearing in the cycle C.

(b) The number of arcs whose color belongs to {c, cop} appearing in the
cycle C is even.

None of the parts (a) and (b) of Theorem 2.0.3 is a trivial consequence of
the other: When c = cop, the statement of Theorem 2.0.3(a) is obvious and
does not imply part (b).

Theorem 2.0.3(b) generalizes [BeCeLa14, Theorem 3.1] in two directions:
First, Theorem 2.0.3 is stated for arbitrary Coxeter groups, rather than
only for finite Coxeter groups as in [BeCeLa14]. Second, in the terms of
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[BeCeLa14, Remark 3.3], we are working with sets Z that are “stabled by
conjugation instead of automorphism”.

3. Inversions and the word ρs,t

We shall now introduce some notations and state some auxiliary results
that will be used to prove Theorem 2.0.3. Our strategy of proof is inspired by
that used in [BeCeLa14, §3.4] and thus (indirectly) also by that in [ReiRoi11,
§3, and proof of Corollary 5.2]; however, we shall avoid any use of geometry
(such as roots and hyperplane arrangements), and work entirely with the
Coxeter group itself.

We denote the subset
⋃
x∈W

xSx−1 of W by T . The elements of T are called

the reflections (of W ). They all have order 2. (The notation T is used here
in the same meaning as in [Lusztig14, §1] and in [Bourba81, Chapter 4, n◦

1.4].)

Definition 3.0.1. For every k ∈ N, we consider the set W k as a left W -set
by the rule

w (w1, w2, . . . , wk) = (ww1, ww2, . . . , wwk) ,

and as a right W -set by the rule

(w1, w2, . . . , wk)w = (w1w,w2w, . . . , wkw) .

Definition 3.0.2. Let s and t be two distinct elements of T . Let ms,t

denote the order of the element st ∈W . (This extends the definition of ms,t

for s, t ∈ S.) Assume that ms,t < ∞. We let Ds,t denote the subgroup of
W generated by s and t. Then, Ds,t is a dihedral group (since s and t are
two distinct nontrivial involutions, and since any group generated by two
distinct nontrivial involutions is dihedral). We denote by ρs,t the word(

(st)0 s, (st)1 s, . . . , (st)ms,t−1 s
)

=

s, sts, ststs, . . . , ststs · · · s︸ ︷︷ ︸
2ms,t−1 letters


∈ (Ds,t)

ms,t .

The reversal of a word (a1, a2, . . . , ak) is defined to be (ak, ak−1, . . . , a1).
The following proposition collects some simple properties of the words

ρs,t.

Proposition 3.0.3. Let s and t be two distinct elements of T such that
ms,t <∞. Then:

(a) The word ρs,t consists of reflections in Ds,t, and contains every re-
flection in Ds,t exactly once.

(b) The word ρt,s is the reversal of the word ρs,t.
(c) Let q ∈ W . Then, the word qρt,sq

−1 is the reversal of the word
qρs,tq

−1.

Proof of Proposition 3.0.3. (a) We need to prove three claims:
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Claim 1. Every entry of the word ρs,t is a reflection in Ds,t.

Claim 2. The entries of the word ρs,t are distinct.

Claim 3. Every reflection in Ds,t is an entry of the word ρs,t.

Proof of Claim 1. We must show that (st)k s is a reflection in Ds,t for
every k ∈ {0, 1, . . . ,ms,t − 1}. Thus, fix k ∈ {0, 1, . . . ,ms,t − 1}. Then,

(st)k s = stst · · · s︸ ︷︷ ︸
2k+1 letters

=


stst · · · t︸ ︷︷ ︸
k letters

s tsts · · · s︸ ︷︷ ︸
k letters

, if k is even;

stst · · · s︸ ︷︷ ︸
k letters

t stst · · · s︸ ︷︷ ︸
k letters

, if k is odd

=


stst · · · t︸ ︷︷ ︸
k letters

s

stst · · · t︸ ︷︷ ︸
k letters

−1 , if k is even;

stst · · · s︸ ︷︷ ︸
k letters

t

stst · · · s︸ ︷︷ ︸
k letters

−1 , if k is odd


since tsts · · · s︸ ︷︷ ︸

k letters

=

stst · · · t︸ ︷︷ ︸
k letters

−1 if k is even,

and stst · · · s︸ ︷︷ ︸
k letters

=

stst · · · s︸ ︷︷ ︸
k letters

−1 if k is odd

 .

Hence, (st)k s is conjugate to either s or t (depending on whether k is even

or odd). Thus, (st)k s is a reflection. Also, it clearly lies in Ds,t. This proves
Claim 1.

Proof of Claim 2. The element st of W has order ms,t. Thus, the ele-

ments (st)0 , (st)1 , . . . , (st)ms,t−1 are all distinct. Hence, the elements (st)0 s,

(st)1 s, . . . , (st)ms,t−1 s are all distinct. In other words, the entries of the
word ρs,t are all distinct. Claim 2 is proven.

Proof of Claim 3. The dihedral group Ds,t has 2ms,t elements5, of which
at most ms,t are reflections6. But the word ρs,t has ms,t entries, and all its
entries are reflections in Ds,t (by Claim 1); hence, it contains ms,t reflections
in Ds,t (by Claim 2). Since Ds,t has only at most ms,t reflections, this shows

5since it is generated by two distinct involutions s 6= 1 and t 6= 1 whose product st has
order ms,t

6Proof. Consider the group homomorphism sgn : W → {1,−1} defined in [Lusztig14,
§1.1]. The group homomorphism sgn |Ds,t : Ds,t → {1,−1} sends either none or ms,t

elements of Ds,t to −1. Thus, this homomorphism sgn |Ds,t sends at most ms,t elements
of Ds,t to −1. Since it must send every reflection to −1, this shows that at most ms,t

elements of Ds,t are reflections.
(Actually, we can replace “at most” by “exactly” here, but we won’t need this.)
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that every reflection in Ds,t is an entry of the word ρs,t. Claim 3 is proven.

This finishes the proof of Proposition 3.0.3(a).
(b) We have

ρs,t =
(

(st)0 s, (st)1 s, . . . , (st)ms,t−1 s
)
,

ρt,s =
(

(ts)0 t, (ts)1 t, . . . , (ts)ms,t−1 t
)

(since mt,s = ms,t). Thus, in order to prove Proposition 3.0.3(b), we must

merely show that (st)k s = (ts)ms,t−1−k t for every k ∈ {0, 1, . . . ,ms,t − 1}.
So fix k ∈ {0, 1, . . . ,ms,t − 1}. Then,

(st)k s ·
(

(ts)ms,t−1−k t
)−1

= (st)k s t−1︸︷︷︸
=t

(
(ts)ms,t−1−k

)−1
︸ ︷︷ ︸
=(s−1t−1)ms,t−1−k

= (st)k st︸ ︷︷ ︸
=(st)k+1

(
s−1︸︷︷︸
=s

t−1︸︷︷︸
=t

)ms,t−1−k

= (st)k+1 (st)ms,t−1−k = (st)ms,t = 1,

so that (st)k s = (ts)ms,t−1−k t. This proves Proposition 3.0.3(b).
(c) Let q ∈ W . Proposition 3.0.3(b) shows that the word ρt,s is the

reversal of the word ρs,t. Hence, the word qρt,sq
−1 is the reversal of the

word qρs,tq
−1 (since the word qρt,sq

−1 is obtained from ρt,s by conjugating
each letter by q, and the word qρs,tq

−1 is obtained from ρs,t in the same
way). This proves Proposition 3.0.3(c). �

Definition 3.0.4. Let −→a = (a1, a2, . . . , ak) ∈ Sk. Then, Invs−→a is defined
to be the k-tuple (t1, t2, . . . , tk) ∈ T k, where we set

ti = (a1a2 · · · ai−1) ai (a1a2 · · · ai−1)−1 for every i ∈ {1, 2, . . . , k} .

Remark 3.0.5. Let w ∈W . Let −→a = (a1, a2, . . . , ak) be a reduced expres-
sion for w. The k-tuple Invs−→a is denoted by Φ (−→a ) in [Bourba81, Chapter 4,
n◦ 1.4], and is closely connected to various standard constructions in Coxeter
group theory. A well-known fact states that the set of all entries of Invs−→a
depends only on w (but not on −→a ); this set is called the (left) inversion set
of w. The k-tuple Invs−→a contains each element of this set exactly once (see
Proposition 3.0.6 below); it thus induces a total order on this set.

Proposition 3.0.6. Let w ∈W .

(a) If −→a is a reduced expression for w, then all entries of the tuple Invs−→a
are distinct.

(b) Let (s, t) ∈ M. Let −→a and
−→
b be two reduced expressions for w

such that
−→
b is obtained from −→a by an (s, t)-braid move. Then, there
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exists a q ∈W such that Invs
−→
b is obtained from Invs−→a by replacing

a particular factor of the form qρs,tq
−1 by its reversal.7

Proof of Proposition 3.0.6. Let −→a be a reduced expression for w. Write
−→a as (a1, a2, . . . , ak). Then, the definition of Invs−→a shows that

Invs−→a = (t1, t2, . . . , tk),

where the ti are defined by

ti = (a1a2 · · · ai−1) ai (a1a2 · · · ai−1)−1 for every i ∈ {1, 2, . . . , k}.

Now, every i ∈ {1, 2, . . . , k} satisfies

ti = (a1a2 · · · ai−1) ai (a1a2 · · · ai−1)−1︸ ︷︷ ︸
=a−1

i−1a
−1
i−2···a

−1
1 =ai−1ai−2···a1

(since each aj belongs to S)

= (a1a2 · · · ai−1) ai (ai−1ai−2 · · · a1)
= a1a2 · · · ai−1aiai−1 · · · a2a1.

But [Lusztig14, Proposition 1.6 (a)] (applied to q = k and si = ai) shows
that the elements a1, a1a2a1, a1a2a3a2a1, . . . , a1a2 · · · ak−1akak−1 · · · a2a1 are
distinct8. In other words, the elements t1, t2, . . . , tk are distinct (since
ti = a1a2 · · · ai−1aiai−1 · · · a2a1 for every i ∈ {1, 2, . . . , k}). In other words,
all entries of the tuple Invs−→a are distinct. Proposition 3.0.6(a) is proven.

(b) We need to prove that there exists a q ∈ W such that Invs
−→
b is

obtained from Invs−→a by replacing a particular factor of the form qρs,tq
−1

by its reversal.
We set m = ms,t (for the sake of brevity).
Write −→a as (a1, a2, . . . , ak).

The word
−→
b can be obtained from −→a by an (s, t)-braid move. In other

words, the word
−→
b can be obtained from −→a by finding a factor of −→a of the

form (s, t, s, t, s, . . .)︸ ︷︷ ︸
m elements

and replacing it by (t, s, t, s, t, . . .)︸ ︷︷ ︸
m elements

(by the definition

of an “(s, t)-braid move”, since ms,t = m). In other words, there exists an
p ∈ {0, 1, . . . , k −m} such that (ap+1, ap+2, . . . , ap+m) = (s, t, s, t, s, . . .)︸ ︷︷ ︸

m elements

, and

the word
−→
b can be obtained by replacing the (p+ 1)-st through (p+m)-th

entries of −→a by (t, s, t, s, t, . . .)︸ ︷︷ ︸
m elements

. Consider this p. Write
−→
b as (b1, b2, . . . , bk)

7See Definition 3.0.1 for the meaning of qρs,tq
−1.

8This also follows from [Bourba81, Chapter 4, n◦ 1.4, Lemme 2].
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(this is possible since the tuple
−→
b has the same length as −→a ). Thus,

(a1, a2, . . . , ap) = (b1, b2, . . . , bp) ,(4)

(ap+1, ap+2, . . . , ap+m) = (s, t, s, t, s, . . .)︸ ︷︷ ︸
m elements

,(5)

(bp+1, bp+2, . . . , bp+m) = (t, s, t, s, t, . . .)︸ ︷︷ ︸
m elements

,(6)

(ap+m+1, ap+m+2, . . . , ak) = (bp+m+1, bp+m+2, . . . , bk) .(7)

Write the k-tuples Invs−→a and Invs
−→
b as (α1, α2, . . . , αk) and (β1, β2, . . . , βk),

respectively. Their definitions show that

(8) αi = (a1a2 · · · ai−1) ai (a1a2 · · · ai−1)−1

and

(9) βi = (b1b2 · · · bi−1) bi (b1b2 · · · bi−1)−1

for every i ∈ {1, 2, . . . , k}.
Now, set q = a1a2 · · · ap. From (4), we see that q = b1b2 · · · bp as well. In

order to prove Proposition 3.0.6(b), it clearly suffices to show that Invs
−→
b is

obtained from Invs−→a by replacing a particular factor of the form qρs,tq
−1

— namely, the factor (αp+1, αp+2, . . . , αp+m) — by its reversal.
So let us show this. In view of

Invs−→a = (α1, α2, . . . , αk) ,

Invs
−→
b = (β1, β2, . . . , βk) ,

it clearly suffices to prove the following claims:

Claim 1. We have βi = αi for every i ∈ {1, 2, . . . , p}.

Claim 2. We have (αp+1, αp+2, . . . , αp+m) = qρs,tq
−1.

Claim 3. The m-tuple (βp+1, βp+2, . . . , βp+m) is the reversal of the m-tuple
(αp+1, αp+2, . . . , αp+m).

Claim 4. We have βi = αi for every i ∈ {p+m+ 1, p+m+ 2, . . . , k}.

Proof of Claim 1. Let i ∈ {1, 2, . . . , p}. Then, (4) shows that ag = bg for
every g ∈ {1, 2, . . . , i}. Now, (8) becomes

αi = (a1a2 · · · ai−1) ai (a1a2 · · · ai−1)−1 = (b1b2 · · · bi−1) bi (b1b2 · · · bi−1)−1

(since ag = bg for every g ∈ {1, 2, . . . , i})
= βi (by (9)) .

This proves Claim 1.

Proof of Claim 2. We have

ρs,t =
(

(st)0 s, (st)1 s, . . . , (st)ms,t−1 s
)

=
(

(st)0 s, (st)1 s, . . . , (st)m−1 s
)
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(since ms,t = m). Hence,

qρs,tq
−1 = q

(
(st)0 s, (st)1 s, . . . , (st)m−1 s

)
q−1

=
(
q (st)0 sq−1, q (st)1 sq−1, . . . , q (st)m−1 sq−1

)
.

Thus, in order to prove (αp+1, αp+2, . . . , αp+m) = qρs,tq
−1, it suffices to

show that αp+i = q (st)i−1 sq−1 for every i ∈ {1, 2, . . . ,m}. So let us fix
i ∈ {1, 2, . . . ,m}.

We have

a1a2 · · · ap+i−1 = (a1a2 · · · ap)︸ ︷︷ ︸
=q

(ap+1ap+2 · · · ap+i−1)︸ ︷︷ ︸
=stst · · ·︸ ︷︷ ︸

i−1 letters

(by (5))

= q stst · · ·︸ ︷︷ ︸
i−1 letters

.

Hence,

(a1a2 · · · ap+i−1)−1 =

q stst · · ·︸ ︷︷ ︸
i−1 letters

−1 = · · · t−1s−1t−1s−1︸ ︷︷ ︸
i−1 letters

q−1

= · · · tsts︸ ︷︷ ︸
i−1 letters

q−1
(
since s−1 = s and t−1 = t

)
.

Also,

(a1a2 · · · ap+i−1) ap+i = a1a2 · · · ap+i = (a1a2 · · · ap)︸ ︷︷ ︸
=q

(ap+1ap+2 · · · ap+i)︸ ︷︷ ︸
=stst · · ·︸ ︷︷ ︸

i letters

(by (5))

= q stst · · ·︸ ︷︷ ︸
i letters

.

Now, (8) (applied to p+ i instead of i) yields

αp+i = (a1a2 · · · ap+i−1) ap+i︸ ︷︷ ︸
=q stst · · ·︸ ︷︷ ︸

i letters

(a1a2 · · · ap+i−1)−1︸ ︷︷ ︸
= · · · tsts︸ ︷︷ ︸

i−1 letters

q−1

= q stst · · ·︸ ︷︷ ︸
i letters

· · · tsts︸ ︷︷ ︸
i−1 letters︸ ︷︷ ︸

=stst · · · s︸ ︷︷ ︸
2i−1 letters

=(st)i−1s

q−1

= q (st)i−1 sq−1.

This completes the proof of (αp+1, αp+2, . . . , αp+m) = qρs,tq
−1. Hence,

Claim 2 is proven.

Proof of Claim 3. In our proof of Claim 2, we have proven the equal-
ity (αp+1, αp+2, . . . , αp+m) = qρs,tq

−1. The same argument (applied to
−→
b , (b1, b2, . . . , bk), (β1, β2, . . . , βk), t and s instead of −→a , (a1, a2, . . . , ak),

(α1, α2, . . . , αk), s and t) proves (βp+1, βp+2, . . . , βp+m) = qρt,sq
−1 (where we

now use (6) instead of (5), and use q = b1b2 · · · bp instead of q = a1a2 · · · ap).
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Now, recall that the word qρt,sq
−1 is the reversal of the word qρs,tq

−1.
Since
(αp+1, αp+2, . . . , αp+m) = qρs,tq

−1 and (βp+1, βp+2, . . . , βp+m) = qρt,sq
−1,

this means that the word (βp+1, βp+2, . . . , βp+m) is the reversal of the word
(αp+1, αp+2, . . . , αp+m). This proves Claim 3.

Proof of Claim 4. Since m = ms,t, we have stst · · ·︸ ︷︷ ︸
m letters

= tsts · · ·︸ ︷︷ ︸
m letters

(this is one

of the braid relations of our Coxeter group). Let us set

x = stst · · ·︸ ︷︷ ︸
m letters

= tsts · · ·︸ ︷︷ ︸
m letters

.

Now, (5) yields ap+1ap+2 · · · ap+m = stst · · ·︸ ︷︷ ︸
m letters

= x. Similarly, from (6), we

obtain bp+1bp+2 · · · bp+m = x.
Let i ∈ {p+m+ 1, p+m+ 2, . . . , k}. Thus,

a1a2 · · · ai−1 = (a1a2 · · · ap)︸ ︷︷ ︸
=q

(ap+1ap+2 · · · ap+m)︸ ︷︷ ︸
=x

(ap+m+1ap+m+2 · · · ai−1)︸ ︷︷ ︸
=bp+m+1bp+m+2···bi−1

(by (7))

= qx (bp+m+1bp+m+2 · · · bi−1) .
Comparing this with

b1b2 · · · bi−1 = (b1b2 · · · bp)︸ ︷︷ ︸
=q

(bp+1bp+2 · · · bp+m)︸ ︷︷ ︸
=x

(bp+m+1bp+m+2 · · · bi−1)

= qx (bp+m+1bp+m+2 · · · bi−1) ,
we obtain a1a2 · · · ai−1 = b1b2 · · · bi−1. Also, ai = bi (by (7)). Now, (8)
becomes

αi =

a1a2 · · · ai−1︸ ︷︷ ︸
=b1b2···bi−1

 ai︸︷︷︸
=bi

a1a2 · · · ai−1︸ ︷︷ ︸
=b1b2···bi−1


−1

= (b1b2 · · · bi−1) bi (b1b2 · · · bi−1)−1

= βi (by (9)) .

This proves Claim 4.

Hence, all four claims are proven, and the proof of Proposition 3.0.6(b) is
complete. �

The following fact is rather easy (but will be proven in detail in the next
section):

Proposition 3.0.7. Let w ∈ W . Let s and t be two distinct elements of T
such that ms,t <∞. Let −→a be a reduced expression for w.

(a) The word ρs,t appears as a subword of Invs−→a at most one time.
(b) The words ρs,t and ρt,s cannot both appear as subwords of Invs−→a .



PROOF OF A CONJECTURE OF BERGERON, CEBALLOS AND LABBÉ 1595

Proof of Proposition 3.0.7. (a) This follows from the fact that the word
ρs,t has length ms,t ≥ 2 > 0, and from Proposition 3.0.6(a).

(b) Assume the contrary. Then, both words ρs,t and ρt,s appear as a
subword of Invs−→a . By Proposition 3.0.3(b), this means that both the word
ρs,t and its reversal appear as a subword of Invs−→a . Since the word ρs,t has
length ms,t ≥ 2, this means that at least one letter of ρs,t appears twice in
Invs−→a . This contradicts Proposition 3.0.6(a). This contradiction concludes
our proof. �

4. The set N and subwords of inversion words

We now let N denote the subset
⋃
x∈W

xMx−1 of T × T . Clearly, M ⊆ N.

Moreover, for every (s, t) ∈ N, we have s 6= t and ms,t < ∞ (because
(s, t) ∈ N =

⋃
x∈W

xMx−1, and because these properties are preserved by

conjugation). Thus, for every (s, t) ∈ N, the word ρs,t is well-defined and
has exactly ms,t entries.

We define a binary relation ≈ on N by

(s, t) ≈
(
s′, t′

)
⇐⇒

there exists a q ∈W such that qsq−1 = s′ and qtq−1 = t′.

It is clear that this relation ≈ is an equivalence relation; it thus gives rise
to a quotient set N/ ≈. For every pair P ∈ N, we denote by [[P ]] the
equivalence class of P with respect to this relation ≈.

The relation ∼ on M is the restriction of the relation ≈ to M. Hence,
every equivalence class c with respect to ∼ is a subset of an equivalence
class with respect to ≈. We denote the latter equivalence class by cN. Thus,
[P ]N = [[P ]] for every P ∈M.

We notice that the set N is invariant under switching the two elements
of a pair (i.e., for every (u, v) ∈ N, we have (v, u) ∈ N). Moreover, the
relation ≈ is preserved under switching the two elements of a pair (i.e.,
if (s, t) ≈ (s′, t′), then (t, s) ≈ (t′, s′)). This shall be tacitly used in the
following proofs.

Definition 4.0.1. Let w ∈W . Let −→a be a reduced expression for w.

(a) For any (s, t) ∈ N, we define an element hass,t
−→a ∈ {0, 1} by

hass,t
−→a =

{
1, if ρs,t appears as a subword of Invs−→a ,
0, otherwise.

.

(Keep in mind that we are speaking of subwords, not just factors,
here.)
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(b) Consider the free Z-module Z [N] with basis N. We define an element
Has−→a ∈ Z [N] by

Has−→a =
∑

(s,t)∈N

hass,t
−→a · (s, t)

(where the (s, t) stands for the basis element (s, t) ∈ N of Z [N]).

We can now state the main result that we will use to prove Theorem 2.0.3:

Theorem 4.0.2. Let w ∈W . Let (s, t) ∈M. Let −→a and
−→
b be two reduced

expressions for w such that
−→
b is obtained from −→a by an (s, t)-braid move.

Proposition 3.0.6(b) shows that there exists a q ∈ W such that Invs
−→
b is

obtained from Invs−→a by replacing a particular factor of the form qρs,tq
−1

by its reversal. Consider this q. Set s′ = qsq−1 and t′ = qtq−1; thus, s′ and
t′ are reflections and satisfy ms′,t′ = ms,t < ∞. Also, the definitions of s′

and t′ yield (s′, t′) = q (s, t)︸︷︷︸
∈M

q−1 ∈ qMq−1 ⊆ N. Similarly, (t′, s′) ∈ N (since

(t, s) ∈M).
Now, we have

(10) Has
−→
b = Has−→a −

(
s′, t′

)
+
(
t′, s′

)
.

Before we prove Theorem 4.0.2, we first show two lemmas. The first one
is a crucial property of dihedral subgroups in our Coxeter group:

Lemma 4.0.3. Let (s, t) ∈ M and (u, v) ∈ N. Let q ∈ W . Assume that
u ∈ qDs,tq

−1 and v ∈ qDs,tq
−1. Then, ms,t = mu,v.

Proof of Lemma 4.0.3.

Claim 1. Lemma 4.0.3 holds in the case when (u, v) ∈M.

Proof of Claim 1. Assume that (u, v) ∈ M. Thus, u, v ∈ S. Let I be
the subset {s, t} of S. We shall use the notations of [Lusztig14, §9]. In
particular, l (r) denotes the length of any element r ∈W .

We have WI = Ds,t. Consider the coset WIq
−1 of WI . From [Lusztig14,

Lemma 9.7 (a)] (applied to a = q−1), we know that this coset WIq
−1 has a

unique element of minimal length. Let w be this element. Thus, w ∈WIq
−1,

so that WIw = WIq
−1. Now,

q︸︷︷︸
=(q−1)−1

WI︸︷︷︸
=(WI)

−1

=
(
q−1
)−1

(WI)
−1 =

WIq
−1︸ ︷︷ ︸

=WIw


−1

= (WIw)−1 = w−1WI .

Let u′ = wuw−1 and v′ = wvw−1.
We have u ∈ q Ds,t︸︷︷︸

=WI

q−1 = qWIq
−1︸ ︷︷ ︸

=WIw

= qWI︸︷︷︸
=w−1WI

w = w−1WIw. In other

words, wuw−1 ∈ WI . In other words, u′ ∈ WI (since u′ = wuw−1). Simi-
larly, v′ ∈WI .
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We have u′ = wuw−1, hence u′w = wu. But [Lusztig14, Lemma 9.7 (b)]
(applied to a = q−1 and y = u′) shows that l (u′w) = l (u′) + l (w). Hence,

l
(
u′
)

+ l (w) = l

(
u′w︸︷︷︸
=wu

)
= l (wu) = l (w)± 1 (since u ∈ S) .

Subtracting l (w) from this equality, we obtain l (u′) = ±1, and thus l (u′) =
1, so that u′ ∈ S. Combined with u′ ∈WI , this shows that u′ ∈ S ∩WI = I.
Similarly, v′ ∈ I.

We have u 6= v (since (u, v) ∈ N), thus wuw−1 6= wvw−1, thus

u′ = wuw−1 6= wvw−1 = v′.

Thus, u′ and v′ are two distinct elements of the two-element set I = {s, t}.
Hence, either (u′, v′) = (s, t) or (u′, v′) = (t, s). In either of these two cases,
we have mu′,v′ = ms,t. But since u′ = wuw−1 and v′ = wvw−1, we have
mu′,v′ = mu,v. Hence, ms,t = mu′,v′ = mu,v. This proves Claim 1.

Claim 2. Lemma 4.0.3 holds in the general case.

Proof of Claim 2. Consider the general case. We have

(u, v) ∈ N =
⋃
x∈W

xMx−1.

Thus, there exists some x ∈ W such that (u, v) ∈ xMx−1. Consider this
x. From (u, v) ∈ xMx−1, we obtain x−1 (u, v)x ∈ M. In other words,(
x−1ux, x−1vx

)
∈M. Moreover,

x−1 u︸︷︷︸
∈qDs,tq−1

x ∈ x−1qDs,t q−1x︸ ︷︷ ︸
=(x−1q)−1

= x−1qDs,t

(
x−1q

)−1
,

and similarly x−1vx ∈ x−1qDs,t

(
x−1q

)−1
. Hence, Claim 1 (applied to(

x−1ux, x−1vx
)

and x−1q instead of (u, v) and q) shows that

ms,t = mx−1ux,x−1vx = mu,v.

This proves Claim 2, and thus proves Lemma 4.0.3. �

Next comes another lemma, bordering on the trivial:

Lemma 4.0.4. Let G be a group. Let H be a subgroup of G. Let u ∈ G,
v ∈ G and g ∈ Z. Assume that (uv)g−1 u ∈ H and (uv)g u ∈ H. Then,
u ∈ H and v ∈ H.
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Proof of Lemma 4.0.4. We have ((uv)g u)︸ ︷︷ ︸
∈H

(uv)g−1 u︸ ︷︷ ︸
∈H

−1 ∈ HH−1 ⊆ H
(since H is a subgroup of G). Since

((uv)g u)
(

(uv)g−1 u
)−1

︸ ︷︷ ︸
=u−1((uv)g−1)

−1

= (uv)g uu−1︸ ︷︷ ︸
=1

(
(uv)g−1

)−1
= (uv)g

(
(uv)g−1

)−1
= uv,

this rewrites as uv ∈ H. However, (uv)−g (uv)g u = u, so that

u =

 uv︸︷︷︸
∈H

−g (uv)g u︸ ︷︷ ︸
∈H

∈ H−gH ⊆ H

(since H is a subgroup of G). Now, both u and uv belong to the subgroup
H of G. Thus, so does u−1 (uv). In other words, u−1 (uv) ∈ H, so that
v = u−1 (uv) ∈ H. This completes the proof of Lemma 4.0.4. �

Proof of Theorem 4.0.2. Conjugation by q, i.e., the map

W →W,

x 7→ qxq−1,

is a group endomorphism of W . Hence, for every i ∈ N, we have

(11) q (st)i sq−1 =

(qsq−1)︸ ︷︷ ︸
=s′

qtq−1︸ ︷︷ ︸
=t′



i (
qsq−1

)︸ ︷︷ ︸
=s′

=
(
s′t′
)i
s′.

Let m = ms,t. We have

ρs,t =
(

(st)0 s, (st)1 s, . . . , (st)ms,t−1 s
)

=
(

(st)0 s, (st)1 s, . . . , (st)m−1 s
)
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(since ms,t = m) and thus

qρs,tq
−1 = q

(
(st)0 s, (st)1 s, . . . , (st)m−1 s

)
q−1

=
(
q (st)0 sq−1, q (st)1 sq−1, . . . , q (st)m−1 sq−1

)
=
((
s′t′
)0
s′,
(
s′t′
)1
s′, . . . ,

(
s′t′
)m−1

s′
)

(
since every i ∈ {0, 1, . . . ,m− 1} satisfies

q (st)i sq−1 = (s′t′)i s′ (by (11))

)
=
((
s′t′
)0
s′,
(
s′t′
)1
s′, . . . ,

(
s′t′
)ms′,t′−1 s′

)
(
since m = ms,t = ms′,t′

)
= ρs′,t′

(
by the definition of ρs′,t′

)
.

The word
−→
b is obtained from −→a by an (s, t)-braid move. Hence, the word

−→a can be obtained from
−→
b by a (t, s)-braid move.

From (s′, t′) ∈ N, we obtain s′ 6= t′. Hence, (s′, t′) 6= (t′, s′).
From s′ = qsq−1 and t′ = qtq−1, we obtain Ds′,t′ = qDs,tq

−1 (since
conjugation by q is a group endomorphism of W ).

Proposition 3.0.3(c) shows that the word qρt,sq
−1 is the reversal of the

word qρs,tq
−1. Hence, the word qρs,tq

−1 is the reversal of the word qρt,sq
−1.

Recall that Invs
−→
b is obtained from Invs−→a by replacing a particular factor

of the form qρs,tq
−1 by its reversal. Since this latter reversal is qρt,sq

−1 (as

we have previously seen), this shows that Invs
−→
b has a factor of qρt,sq

−1

in the place where the word Invs−→a had the factor qρs,tq
−1. Hence, Invs−→a

can, in turn, be obtained from Invs
−→
b by replacing a particular factor of

the form qρt,sq
−1 by its reversal (since the reversal of qρt,sq

−1 is qρs,tq
−1).

Thus, our situation is symmetric with respect to s and t; more precisely, we

wind up in an analogous situation if we replace s, t, −→a ,
−→
b , s′ and t′ by t,

s,
−→
b , −→a , t′ and s′, respectively.
We shall prove the following claims:

Claim 1. Let (u, v) ∈ N be such that (u, v) 6= (s′, t′) and (u, v) 6= (t′, s′).

Then, hasu,v
−→
b = hasu,v

−→a .

Claim 2. We have hass′,t′
−→
b = hass′,t′

−→a − 1.

Claim 3. We have hast′,s′
−→
b = hast′,s′

−→a + 1.

Proof of Claim 1. Assume the contrary. Thus, hasu,v
−→
b 6= hasu,v

−→a .

Hence, one of the numbers hasu,v
−→
b and hasu,v

−→a equals 1 and the other

equals 0 (since both hasu,v
−→
b and hasu,v

−→a belong to {0, 1}). Without loss

of generality, we assume that hasu,v
−→a = 1 and hasu,v

−→
b = 0 (because in
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the other case, we can replace s, t, −→a ,
−→
b , s′ and t′ by t, s,

−→
b , −→a , t′ and s′,

respectively).
The elements u and v are two distinct reflections (since (u, v) ∈ N).

Write the tuple Invs−→a as (α1, α2, . . . , αk). The tuple Invs
−→
b has the

same length as Invs−→a , since Invs
−→
b is obtained from Invs−→a by replacing a

particular factor of the form qρs,tq
−1 by its reversal. Hence, write the tuple

Invs
−→
b as (β1, β2, . . . , βk).

From hasu,v
−→a = 1, we obtain that ρu,v appears as a subword of Invs−→a .

In other words, ρu,v =
(
αi1 , αi2 , . . . , αif

)
for some integers i1, i2, . . . , if sat-

isfying 1 ≤ i1 < i2 < · · · < if ≤ k. Consider these i1, i2, . . . , if . From

hasu,v
−→
b = 0, we conclude that ρu,v does not appear as a subword of Invs

−→
b .

On the other hand, Invs
−→
b is obtained from Invs−→a by replacing a par-

ticular factor of the form qρs,tq
−1 by its reversal. This factor has ms,t = m

letters; thus, it has the form

(αp+1, αp+2, . . . , αp+m)

for some p ∈ {0, 1, . . . , k −m}. Consider this p. Thus,

(αp+1, αp+2, . . . , αp+m) = qρs,tq
−1 =

((
s′t′
)0
s′,
(
s′t′
)1
s′, . . . ,

(
s′t′
)m−1

s′
)
.

In other words,

(12) αp+i =
(
s′t′
)i−1

s′ for every i ∈ {1, 2, . . . ,m} .

We now summarize:

• The word ρu,v appears as the subword
(
αi1 , αi2 , . . . , αif

)
of Invs−→a ,

but does not appear as a subword of Invs
−→
b .

• The word Invs
−→
b is obtained from Invs−→a by replacing the factor

(αp+1, αp+2, . . . , αp+m) by its reversal.

Thus, replacing the factor (αp+1, αp+2, . . . , αp+m) in Invs−→a by its reversal
must mess up the subword

(
αi1 , αi2 , . . . , αif

)
of Invs−→a badly enough that

it no longer appears as a subword (not even in different positions). This
can only happen if at least two of the integers i1, i2, . . . , if lie in the interval
{p+ 1, p+ 2, . . . , p+m}.

Hence, at least two of the integers i1, i2, . . . , if lie in the interval

{p+ 1, p+ 2, . . . , p+m} .

In particular, there must be a g ∈ {1, 2, . . . , f − 1} such that the integers ig
and ig+1 lie in {p+ 1, p+ 2, . . . , p+m} (since i1 < i2 < · · · < if ). Consider
this g.

We have ig ∈ {p+ 1, p+ 2, . . . , p+m}. In other words, ig = p + rg for
some rg ∈ {1, 2, . . . ,m}. Consider this rg.

We have ig+1 ∈ {p+ 1, p+ 2, . . . , p+m}. In other words, ig+1 = p+rg+1

for some rg+1 ∈ {1, 2, . . . ,m}. Consider this rg+1.
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We have
(
αi1 , αi2 , . . . , αif

)
= ρu,v =

(
(uv)0 u, (uv)1 u, . . . , (uv)mu,v−1 u

)
(by the definition of ρu,v). Hence, αig = (uv)g−1 u and αig+1 = (uv)g u.
Now,

(uv)g−1 u = αig = αp+rg (since ig = p+ rg)

=
(
s′t′
)rg−1 s′ (by (12), applied to i = rg)

∈ Ds′,t′

and

(uv)g u = αig+1 = αp+rg+1 (since ig+1 = p+ rg+1)

=
(
s′t′
)rg+1−1 s′ (by (12), applied to i = rg+1)

∈ Ds′,t′ .

Hence, Lemma 4.0.4 (applied to G = W and H = Ds′,t′) yields u ∈ Ds′,t′

and v ∈ Ds′,t′ .
Furthermore, we have

αi1 = u and αif = v.9

Now, we have i1 ∈ {p+ 1, p+ 2, . . . , p+m} (by a simple argument10) and
if ∈ {p+ 1, p+ 2, . . . , p+m} (by a similar argument, with v occasionally
replacing u). Since i1 < i2 < · · · < if , all of the integers i1, i2, . . . , if belong
to {p+ 1, p+ 2, . . . , p+m} .

Since ρu,v =
(
αi1 , αi2 , . . . , αif

)
, it has length f , and hence f = mu,v.

But u ∈ Ds′,t′ = qDs,tq
−1 and v ∈ Ds′,t′ = qDs,tq

−1. Hence, Lemma 4.0.3
yields ms,t = mu,v. Since m = ms,t and f = mu,v, this rewrites as m = f .

Since i1 < i2 < · · · < if and f = m, and since, as we just showed, all
of i1, i2, . . . , if belong to {p+ 1, p+ 2, . . . , p+m}, the integers i1, i2, . . . , if

9Proof. From
(
αi1 , αi2 , . . . , αif

)
=
(
(uv)0 u, (uv)1 u, . . . , (uv)mu,v−1 u

)
, we obtain

αi1 = (uv)0︸ ︷︷ ︸
=1

u = u.

We have (uv)mu,v = 1, and thus (uv)mu,v−1 = (uv)−1 = v−1u−1.

From
(
αi1 , αi2 , . . . , αif

)
=
(
(uv)0 u, (uv)1 u, . . . , (uv)mu,v−1 u

)
, we obtain αif =

(uv)mu,v−1︸ ︷︷ ︸
=v−1u−1

u = v−1u−1u = v−1 = v (since v is a reflection), qed.

10Proof. The element u is a reflection and lies in Ds′,t′ . Hence, Proposition 3.0.3(a)
(applied to s′ and t′ instead of s and t) shows that the word ρs′,t′ contains u. Since ρs′,t′ =

qρs,tq
−1 = (αp+1, αp+2, . . . , αp+m), this shows that the word (αp+1, αp+2, . . . , αp+m) con-

tains u. In other words, u = αM for some M ∈ {p+ 1, p+ 2, . . . , p+m}. Consider this
M .

But Proposition 3.0.6(a) shows that all entries of the tuple Invs−→a are distinct. In
other words, the elements α1, α2, . . . , αk are pairwise distinct (since those are the entries
of Invs−→a ). Hence, from αi1 = u = αM , we obtain i1 = M ∈ {p+ 1, p+ 2, . . . , p+m}.
qed.
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form a strictly increasing sequence in {p+ 1, p+ 2, . . . , p+m} of length m.
But this forces

(i1, i2, . . . , if ) = (p+ 1, p+ 2, . . . , p+m) .

In particular, i1 = p+ 1 and if = p+m.
Now, αi1 = u, so that

u = αi1 = αp+1 (since i1 = p+ 1)

=
(
s′t′
)1−1︸ ︷︷ ︸

=1

s′ (by (12), applied to i = 1)

= s′.

Also, αif = v, so that

v = αif = αp+m (since if = p+m)

=
(
s′t′
)m−1︸ ︷︷ ︸

=(s′t′)−1

(since (s′t′)m=1
(since m=ms,t=ms′,t′ ))

s′ (by (12), applied to i = m)

=
(
s′t′
)−1

s′ = t′.

Combined with u = s′, this yields (u, v) = (s′, t′), which contradicts (u, v) 6=
(s′, t′). This contradiction proves that our assumption was wrong. Claim 1
is proven.

Proof of Claim 2. The word Invs
−→
b is obtained from Invs−→a by replacing

a particular factor of the form qρs,tq
−1 by its reversal. Thus, the word

Invs−→a has a factor of the form qρs,tq
−1. Since qρs,tq

−1 = ρs′,t′ , this means
that the word Invs−→a has a factor of the form ρs′,t′ . Consequently, the word
Invs−→a has a subword of the form ρs′,t′ . In other words, hass′,t′

−→a = 1.

The same argument (applied to t, s,
−→
b , −→a , t′ and s′ instead of s, t, −→a ,

−→
b , s′ and t′) shows that hast′,s′

−→
b = 1. In other words, the word Invs

−→
b

has a subword of the form ρt′,s′ . Hence, the word Invs
−→
b has no subword of

the form ρs′,t′ (because Proposition 3.0.7(b) (applied to
−→
b , s′ and t′ instead

of −→a , s and t) shows that the words ρs′,t′ and ρt′,s′ cannot both appear as

subwords of Invs
−→
b ). In other words, hass′,t′

−→
b = 0.

Combining this with hass′,t′
−→a = 1, we immediately obtain hass′,t′

−→
b =

hass′,t′
−→a − 1. Thus, Claim 2 is proven.

Proof of Claim 3. Applying Claim 2 to t, s,
−→
b , −→a , t′ and s′ instead of

s, t, −→a ,
−→
b , s′ and t′, we obtain hast′,s′

−→a = hast′,s′
−→
b − 1. In other words,

hast′,s′
−→
b = hast′,s′

−→a + 1. This proves Claim 3.
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Now, our goal is to prove that Has
−→
b = Has−→a − (s′, t′) + (t′, s′). But the

definition of Has
−→
b yields

Has
−→
b

=
∑

(u,v)∈N

hasu,v
−→
b · (u, v)

=
∑

(u,v)∈N;
(u,v)6=(s′,t′);
(u,v)6=(t′,s′)

hasu,v
−→
b︸ ︷︷ ︸

=hasu,v
−→a

(by Claim 1)

· (u, v) + hass′,t′
−→
b︸ ︷︷ ︸

=hass′,t′
−→a −1

(by Claim 2)

·
(
s′, t′

)
+ hast′,s′

−→
b︸ ︷︷ ︸

=hast′,s′
−→a +1

(by Claim 3)

·
(
t′, s′

)
(
since

(
s′, t′

)
6=
(
t′, s′

))
=

∑
(u,v)∈N;

(u,v)6=(s′,t′);
(u,v)6=(t′,s′)

hasu,v
−→a · (u, v) +

(
hass′,t′

−→a − 1
)
·
(
s′, t′

)

+
(
hast′,s′

−→a + 1
)
·
(
t′, s′

)
=

∑
(u,v)∈N;

(u,v)6=(s′,t′);
(u,v)6=(t′,s′)

hasu,v
−→a · (u, v) + hass′,t′

−→a ·
(
s′, t′

)
−
(
s′, t′

)

+ hast′,s′
−→a ·

(
t′, s′

)
+
(
t′, s′

)
=

∑
(u,v)∈N;

(u,v)6=(s′,t′);
(u,v)6=(t′,s′)

hasu,v
−→a · (u, v) + hass′,t′

−→a ·
(
s′, t′

)
+ hast′,s′

−→a ·
(
t′, s′

)
︸ ︷︷ ︸

=
∑

(u,v)∈N
hasu,v

−→a ·(u,v)

(since (s′,t′)6=(t′,s′))

−
(
s′, t′

)
+
(
t′, s′

)
=

∑
(u,v)∈N

hasu,v
−→a · (u, v)

︸ ︷︷ ︸
=Has−→a

−
(
s′, t′

)
+
(
t′, s′

)
= Has−→a −

(
s′, t′

)
+
(
t′, s′

)
.

This proves Theorem 4.0.2. �

5. The proof of Theorem 2.0.3

We are now ready to establish Theorem 2.0.3:

Proof of Theorem 2.0.3. We shall use the Iverson bracket notation: i.e.,
if A is any logical statement, then we shall write [A] for the integer

[A] =

{
1, if A is true,

0, if A is false.
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For every z ∈ Z [N] and n ∈ N, we let coordn z ∈ Z be the n-coordinate
of z (with respect to the basis N of Z [N]).

For every z ∈ Z [N] and N ⊆ N, we set coordN z =
∑
n∈N

coordn z.

We have c = [(s, t)], thus cN = [[(s, t)]] and cop = [(t, s)]. From the latter
equality, we obtain (cop)N = [[(t, s)]].

Let −→c1 ,−→c2 , . . . ,−→ck ,−−→ck+1 be the vertices on the cycle C (listed in the order
they are encountered when we traverse the cycle, starting at some arbitrarily
chosen vertex on the cycle and going until we return to the starting point).
Thus:

• We have −−→ck+1 = −→c1 .
• There is an arc from −→ci to −−→ci+1 for every i ∈ {1, 2, . . . , k}.

Fix i ∈ {1, 2, . . . , k}. Then, there is an arc from −→ci to −−→ci+1. In other
words, there exists some (si, ti) ∈M such that −−→ci+1 is obtained from −→ci by
an (si, ti)-braid move. Consider this (si, ti). Thus,

(13) the color of the arc from −→ci to −−→ci+1 is [(si, ti)] .

Proposition 3.0.6(b) (applied to −→ci , −−→ci+1, si and ti instead of −→a ,
−→
b , s and t)

shows that there exists a q ∈W such that Invs−−→ci+1 is obtained from Invs−→ci
by replacing a particular factor of the form qρsi,tiq

−1 by its reversal. Let us

denote this q by qi. Set s′i = qisiq
−1
i and t′i = qitiq

−1
i . Thus, s′i 6= t′i (since

si 6= ti) and ms′i,t
′
i

= msi,ti <∞ (since (si, ti) ∈M). Also, the definitions of

s′i and t′i yield(
s′i, t

′
i

)
=
(
qisiq

−1
i , qitiq

−1
i

)
= qi (si, ti)︸ ︷︷ ︸

∈M

q−1i ∈ qiMq−1i ⊆ N.

From s′i = qisiq
−1
i and t′i = qitiq

−1
i , we obtain (s′i, t

′
i) ≈ (si, ti).

We shall now show that

(14) coordcN (Has−−→ci+1 −Has−→ci ) = [[(si, ti)] = cop]− [[(si, ti)] = c].

Proof of (14). We have the following chain of logical equivalences:(t′i, s′i) ∈ cN︸︷︷︸
=[[(s,t)]]


⇐⇒

((
t′i, s

′
i

)
∈ [[(s, t)]]

)
⇐⇒

((
t′i, s

′
i

)
≈ (s, t)

)
⇐⇒

((
s′i, t

′
i

)
≈ (t, s)

)
⇐⇒ ((si, ti) ≈ (t, s)) (since

(
s′i, t

′
i

)
≈ (si, ti))

⇐⇒ ((si, ti) ∼ (t, s)) (since the restriction of the relation ≈ to M is ∼)

⇐⇒

(si, ti) ∈ [(t, s)]︸ ︷︷ ︸
=cop

 ⇐⇒ ((si, ti) ∈ cop) ⇐⇒ ([(si, ti)] = cop) .
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Hence,

(15)
[(
t′i, s

′
i

)
∈ cN

]
= [[(si, ti)] = cop] .

Also, we have the following chain of logical equivalences:(s′i, t′i) ∈ cN︸︷︷︸
=[[(s,t)]]


⇐⇒

((
s′i, t

′
i

)
∈ [[(s, t)]]

)
⇐⇒

((
s′i, t

′
i

)
≈ (s, t)

)
⇐⇒ ((si, ti) ≈ (s, t)) (since

(
s′i, t

′
i

)
≈ (si, ti))

⇐⇒ ((si, ti) ∼ (s, t)) (since the restriction of the relation ≈ to M is ∼)

⇐⇒

(si, ti) ∈ [(s, t)]︸ ︷︷ ︸
=c

 ⇐⇒ ((si, ti) ∈ c) ⇐⇒ ([(si, ti)] = c) .

Hence,

(16)
[(
s′i, t

′
i

)
∈ cN

]
= [[(si, ti)] = c] .

Applying (10) to −→ci , −−→ci+1, si, ti, qi, s
′
i and t′i instead of −→a ,

−→
b , s, t, q,

s′ and t′, we obtain Has−−→ci+1 = Has−→ci − (s′i, t
′
i) + (t′i, s

′
i). In other words,

Has−−→ci+1 −Has−→ci = (t′i, s
′
i)− (s′i, t

′
i). Thus,

coordcN (Has−−→ci+1 −Has−→ci )
= coordcN

((
t′i, s

′
i

)
−
(
s′i, t

′
i

))
= coordcN

(
t′i, s

′
i

)︸ ︷︷ ︸
=[(t′i,s′i)∈cN]
=[[(si,ti)]=c

op]
(by (15))

− coordcN
(
s′i, t

′
i

)︸ ︷︷ ︸
=[(s′i,t′i)∈cN]
=[[(si,ti)]=c]
(by (16))

= [[(si, ti)] = cop]− [[(si, ti)] = c] .

This proves (14).
Now, let us forget that we fixed i. Thus, for every i ∈ {1, 2, . . . , k}, we

have defined (si, ti) ∈M satisfying (13) and (14).
We have

coordcN (Has−−→ci+1 −Has−→ci ) = coordcN (Has−−→ci+1)− coordcN (Has−→ci )

for all i ∈ {1, 2, . . . , k}. Hence,

k∑
i=1

coordcN (Has−−→ci+1 −Has−→ci )

=
k∑
i=1

(coordcN (Has−−→ci+1)− coordcN (Has−→ci )) = 0
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(by the telescope principle). Hence,

0 =
k∑
i=1

coordcN (Has−−→ci+1 −Has−→ci )

=
k∑
i=1

([[(si, ti)] = cop]− [[(si, ti)] = c]) (by (14))

=

k∑
i=1

[[(si, ti)] = cop]−
k∑
i=1

[[(si, ti)] = c] .

Comparing this with

(the number of arcs colored cop appearing in C)

− (the number of arcs colored c appearing in C)

=

k∑
i=1

[(the color of the arc from −→ci to −−→ci+1) = cop]

−
k∑
i=1

[(the color of the arc from −→ci to −−→ci+1) = c]

=
k∑
i=1

[[(si, ti)] = cop]−
k∑
i=1

[[(si, ti)] = c] (by (13)) ,

we obtain

(the number of arcs colored cop appearing in C)

− (the number of arcs colored c appearing in C)

= 0.

In other words, the number of arcs colored c appearing in C equals the
number of arcs colored cop appearing in C. This proves Theorem 2.0.3(a).

(b) If c 6= cop, then Theorem 2.0.3(b) follows immediately from Theo-
rem 2.0.3(a). Thus, for the rest of this proof, assume that c = cop (without
loss of generality).

We have [(s, t)] = c = cop = [(t, s)], so that (t, s) ∼ (s, t). Hence, (t, s) ≈
(s, t) (since ∼ is the restriction of the relation ≈ to M).

Fix some total order on the set S. Let d be the subset

{(u, v) ∈ cN | u < v}

of cN.
Fix i ∈ {1, 2, . . . , k}. We shall now show that

(17) coordd (Has−−→ci+1 −Has−→ci ) ≡ [[(si, ti)] = c] mod 2.
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Proof of (17). Define qi, s
′
i and t′i as before. We have s′i 6= t′i. Hence,

either s′i < t′i or t′i < s′i.
We have the following equivalences:((

t′i, s
′
i

)
∈ cN

)
⇐⇒

((
t′i, s

′
i

)
∈ [[(s, t)]]

)
(since cN = [[(s, t)]])

⇐⇒
((
t′i, s

′
i

)
≈ (s, t)

)
⇐⇒

(
s′i, t

′
i

)
≈ (t, s)

⇐⇒ ((si, ti) ≈ (s, t))(
since

(
s′i, t

′
i

)
≈ (si, ti) and (t, s) ≈ (s, t)

)
⇐⇒ ((si, ti) ∼ (s, t))(18)

(since the restriction of the relation ≈ to M is ∼) and((
s′i, t

′
i

)
∈ cN

)
⇐⇒

((
s′i, t

′
i

)
∈ [[(s, t)]]

)
(since cN = [[(s, t)]])

⇐⇒
((
s′i, t

′
i

)
≈ (s, t)

)
⇐⇒ ((si, ti) ≈ (s, t))

⇐⇒ ((si, ti) ∼ (s, t)) .(19)

Applying (10) to −→ci , −−→ci+1, si, ti, qi, s
′
i and t′i instead of −→a ,

−→
b , s, t, q,

s′ and t′, we obtain Has−−→ci+1 = Has−→ci − (s′i, t
′
i) + (t′i, s

′
i). In other words,

Has−−→ci+1 −Has−→ci = (t′i, s
′
i)− (s′i, t

′
i). Thus,

coordd (Has−−→ci+1 −Has−→ci )
= coordd

((
t′i, s

′
i

)
−
(
s′i, t

′
i

))
= coordd

(
t′i, s

′
i

)
− coordd

(
s′i, t

′
i

)
=
[(
t′i, s

′
i

)
∈ d
]
−
[(
s′i, t

′
i

)
∈ d
]

≡
[(
t′i, s

′
i

)
∈ d
]

+
[(
s′i, t

′
i

)
∈ d
]

=
[(
t′i, s

′
i

)
∈ cN and t′i < s′i

]
+
[(
s′i, t

′
i

)
∈ cN and s′i < t′i

]
(since a pair (u, v) belongs to d if and only if (u, v) ∈ cN and u < v)

=
[
(si, ti) ∼ (s, t) and t′i < s′i

]
+
[
(si, ti) ∼ (s, t) and s′i < t′i

]
(by the equivalences (18) and (19))

= [(si, ti) ∼ (s, t)](
because either s′i < t′i or t′i < s′i

)
= [[(si, ti)] = [(s, t)]] = [[(si, ti)] = c] mod 2

(since [(s, t)] = c).

This proves (17).
Now, coordd (Has−−→ci+1 −Has−→ci ) = coordd (Has−−→ci+1)− coordd (Has−→ci ) for

each i ∈ {1, 2, . . . , k}; hence,

k∑
i=1

coordd (Has−−→ci+1 −Has−→ci ) =

k∑
i=1

(coordd (Has−−→ci+1)− coordd (Has−→ci ))

= 0
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(by the telescope principle). Hence,

0 =
k∑
i=1

coordd (Has−−→ci+1 −Has−→ci )

≡
k∑
i=1

[[(si, ti)] = c] (by (17))

=
k∑
i=1

[(the color of the arc from −→ci to −−→ci+1) = c] (by (13))

= (the number of arcs colored c appearing in C) mod 2.

Thus, the number of arcs colored c appearing in C is even. In other words,
the number of arcs whose color belongs to {c} appearing in C is even. In
other words, the number of arcs whose color belongs to

{
c, cop

}
appearing

in C is even, since {
c, cop︸︷︷︸

=c

}
= {c, c} = {c} .

This proves Theorem 2.0.3(b). �

6. Open questions

Theorem 2.0.3 is a statement about reduced expressions. As with all such
statements, one can wonder whether a generalization to “nonreduced” ex-
pressions would still be true. If w is an element of W , then an expression for
w means a k-tuple (s1, s2, . . . , sk) of elements of S such that w = s1s2 · · · sk.
Definition 2.0.1 can be applied verbatim to arbitrary expressions, leading to
the concept of an (s, t)-braid move. Finally, for every w ∈ W , we define a
directed graph E (w) in the same way as we defined R (w) in Definition 2.0.2,
but with the word “reduced” removed everywhere. This directed graph E (w)
will be infinite (in general) and consist of many connected components (one
of which is R (w)), but we can still inquire about its cycles. We conjecture
the following generalization of Theorem 2.0.3:

Conjecture 6.0.1. Let w ∈ W . Theorem 2.0.3 is still valid if we replace
R (w) by E (w).

A further, slightly lateral, generalization concerns a kind of “spin exten-
sion” of a Coxeter group:

Conjecture 6.0.2. For every (s, t) ∈M, let cs,t be an element of {1,−1}.
Assume that cs,t = cs′,t′ for any two elements (s, t) and (s′, t′) of M satisfying
(s, t) ∼ (s′, t′). Assume furthermore that cs,t = ct,s for each (s, t) ∈M. Let
W ′ be the group with the following generators and relations:

Generators: the elements s ∈ S and an extra generator q.
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Relations:

s2 = 1 for every s ∈ S;

q2 = 1;

qs = sq for every s ∈ S;

(st)ms,t = 1 for every (s, t) ∈M satisfying cs,t = 1;

(st)ms,t = q for every (s, t) ∈M satisfying cs,t = −1.

There is clearly a surjective group homomorphism π : W ′ → W sending
each s ∈ S to s, and sending q to 1. There is also an injective group
homomorphism ι : Z/2Z → W ′ which sends the generator of Z/2Z to q.
Then, the sequence

(20) 1 −→ Z/2 ι−→W ′
π−→W −→ 1

is exact. Equivalently, |Kerπ| = 2.

(Note that exactness of the sequence (20) at W ′ and at W is easy.)
If Conjecture 6.0.2 holds, then so does Conjecture 6.0.1(b) (that is, The-

orem 2.0.3(b) holds with R (w) replaced by E (w)). Indeed, assume Con-
jecture 6.0.2 to hold. Let c ∈ M/ ∼ be an equivalence class. For any
(u, v) ∈M, define

cu,v =

{
−1, if (u, v) ∈ c or (v, u) ∈ c,
1, otherwise.

.

Thus, a group W ′ is defined. Pick any section s : W →W ′ (in the category
of sets) of the projection π : W ′ → W . If w ∈ W , and if (s1, s2, . . . , sk) is
an expression of w, then the product s1s2 · · · sk formed in W ′ will either be
s (w) or qs (w); and these latter two values are distinct (by Conjecture 6.0.2).
We can then define the sign of the expression (s1, s2, . . . , sk) to be{

1, if s1s2 · · · sk = s (w) ,

−1, if s1s2 · · · sk = qs (w)
∈ {1,−1} .

The sign of an expression switches when we apply a braid move whose arc’s
color belongs to {c, cop}, but stays unchanged when we apply a braid move of
any other color. Theorem 2.0.3(b) then follows by a simple parity argument.

The construction of W ′ in Conjecture 6.0.2 generalizes the construction of
one of the two spin symmetric groups (up to a substitution). We suspect that
Conjecture 6.0.2 could be proven by constructing a “regular representation”,
and this would then yield an alternative proof of Theorem 2.0.3(b).
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