Strong approximation theorem for absolutely integral varieties over PSC Galois extensions of global fields

Wulf-Dieter Geyer, Moshe Jarden and Aharon Razon

Abstract

Let K be a global field, \mathcal{V} a proper subset of the set of all primes of K, \mathcal{S} a finite subset of \mathcal{V}, and \tilde{K} (resp. $K_{\text {sep }}$) a fixed algebraic (resp. separable algebraic) closure of K. Let $\operatorname{Gal}(K)=\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ be the absolute Galois group of K. For each $\mathfrak{p} \in \mathcal{V}$ we choose a Henselian (respectively, a real or algebraic) closure $K_{\mathfrak{p}}$ of K at \mathfrak{p} in \tilde{K} if \mathfrak{p} is nonarchimedean (respectively, archimedean). Then, $$
K_{\mathrm{tot}, \mathcal{S}}=\bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\tau \in \operatorname{Gal}(K)} K_{\mathfrak{p}}^{\tau}
$$ is the maximal Galois extension of K in $K_{\text {sep }}$ in which each $\mathfrak{p} \in \mathcal{S}$ totally splits. For each $\mathfrak{p} \in \mathcal{V}$ we choose a \mathfrak{p}-adic absolute value $\left|\left.\right|_{\mathfrak{p}}\right.$ of $K_{\mathfrak{p}}$ and extend it in the unique possible way to \tilde{K}.

For $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{e}\right) \in \operatorname{Gal}(K)^{e}$ let $K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]$ be the maximal Galois extension of K in $K_{\mathrm{tot}, \mathcal{S}}$ fixed by $\sigma_{1}, \ldots, \sigma_{e}$. Then, for almost all $\boldsymbol{\sigma} \in$ $\operatorname{Gal}(K)^{e}$ (with respect to the Haar measure), the field $K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]$ satisfies the following local-global principle:

Let V be an absolutely integral affine variety in \mathbb{A}_{K}^{n}. Suppose that for each $\mathfrak{p} \in \mathcal{S}$ there exists $\mathbf{z}_{\mathfrak{p}} \in V_{\text {simp }}\left(K_{\mathfrak{p}}\right)$ and for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{S}$ there exists $\mathbf{z}_{\mathfrak{p}} \in V(\tilde{K})$ such that in both cases $\left|\mathbf{z}_{\mathfrak{p}}\right|_{\mathfrak{p}} \leq 1$ if \mathfrak{p} is nonarchimedean and $\left|\mathbf{z}_{\mathfrak{p}}\right|_{\mathfrak{p}}<1$ if \mathfrak{p} is archimedean. Then, there exists $\mathbf{z} \in V\left(K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]\right)$ such that for all $\mathfrak{p} \in \mathcal{V}$ and for all $\tau \in \operatorname{Gal}(K)$ we have: $\left|\mathbf{z}^{\tau}\right|_{\mathfrak{p}} \leq 1$ if \mathfrak{p} is archimedean and $\left|\mathbf{z}^{\tau}\right|_{\mathfrak{p}}<1$ if \mathfrak{p} is nonarchimedean.

Contents

$$
\text { Introduction } 1448
$$

1. Twisted sheaves 1452
2. Global sections of invertible sheaves and Cartier divisors 1458
3. Continuity of divisors 1462
4. Reduction steps 1466
5. Curves 1473

Received February 6, 2017.
2010 Mathematics Subject Classification. 12E30.
Key words and phrases. PAC field, strong approximation theorem, stabilizing element, Picard group.
6. Closed separable point 1481
7. From Picard group to free modules
8. A stabilizing element 1491
9. Homogeneous generic point 1494
10. The curve Y 1503
11. A normalized stabilizing element 1513
12. M-points on varieties defined over $K \quad 1517$
13. Varieties over M 1522

References 1526

Introduction

The strong approximation theorem for a global field K gives an $x \in K$ that lies in given \mathfrak{p}-adically open discs for finitely many given primes \mathfrak{p} of K such that the absolute \mathfrak{p}-adic value of x is at most 1 for all other primes \mathfrak{p} except possibly one [CaF67, p. 67]. A possible generalization of that theorem to an arbitrary absolutely integral affine variety V over K fails, because in general, $V(K)$ is a small set. For example, if V is a curve of genus at least 2, then $V(K)$ is finite (by Faltings). This obstruction disappears as soon as we switch to "large Galois extensions" of K. We prove in this work a strong approximation theorem for absolutely integral affine varieties over each "large Galois extension" of K.

To be more precise, let \tilde{K} be an algebraic closure of $K, K_{\text {sep }}$ the separable closure of K in $\tilde{K}, \operatorname{Gal}(K)=\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ the absolute Galois group of K, and e a nonnegative integer. We equip $\operatorname{Gal}(K)^{e}$ with the normalized Haar measure [FrJ08, Section 18.5] and use the expression "for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ " to mean "for all $\boldsymbol{\sigma}$ in $\operatorname{Gal}(K)^{e}$ outside a set of measure zero". For each $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{e}\right) \in \operatorname{Gal}(K)^{e}$ let

$$
K_{\text {sep }}(\boldsymbol{\sigma})=\left\{x \in K_{\text {sep }} \mid x^{\sigma_{i}}=x, \text { for } i=1, \ldots, e\right\}
$$

and let $K_{\text {sep }}[\boldsymbol{\sigma}]$ be the maximal Galois extension of K in $K_{\text {sep }}(\boldsymbol{\sigma})$.
Let \mathbf{P}_{K} be the set of all primes of $K, \mathbf{P}_{K, \text { fin }}$ the set of all finite (i.e., nonarchimedean) primes and $\mathbf{P}_{K, \text { inf }}$ the set of all infinite (i.e., archimedean) primes. We fix a proper subset \mathcal{V} of \mathbf{P}_{K}, a finite subset \mathcal{T} of \mathcal{V}, and a subset \mathcal{S} of \mathcal{T} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \text { fin }}$. For each $\mathfrak{p} \in \mathcal{V}$ we fix a completion $\hat{K}_{\mathfrak{p}}$ of K at \mathfrak{p} and embed \tilde{K} in an algebraic closure $\widehat{K}_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$. Then, we extend the normalized absolute value $\left|\left.\right|_{\mathfrak{p}}\right.$ of $\hat{K}_{\mathfrak{p}}$ to $\widetilde{\hat{K}}_{\mathfrak{p}}$ in the unique possible way. In particular, this defines $|x|_{\mathfrak{p}}$ for each $x \in \tilde{K}$. As usual, if $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in$ \tilde{K}^{n}, we write $|\mathbf{x}|_{\mathfrak{p}}=\max \left(\left|x_{1}\right|_{\mathfrak{p}}, \ldots,\left|x_{n}\right|_{\mathfrak{p}}\right)$.

We set $K_{\mathfrak{p}}=\tilde{K} \cap \hat{K}_{\mathfrak{p}}$ and note that $K_{\mathfrak{p}}$ is a Henselian closure of K at \mathfrak{p} if $\mathfrak{p} \in \mathbf{P}_{K, \text { fin }}$ and a real or the algebraic closure of K at \mathfrak{p} if $\mathfrak{p} \in \mathbf{P}_{K, \text { inf }}$. Thus,

$$
K_{\mathrm{tot}, \mathcal{S}}=\bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\tau \in \operatorname{Gal}(K)} K_{\mathfrak{p}}^{\tau}
$$

is the maximal Galois extension of K in which each $\mathfrak{p} \in \mathcal{S}$ totally splits. For each $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ we set

$$
K_{\mathrm{tot}, \mathcal{S}}(\boldsymbol{\sigma})=K_{\mathrm{sep}}(\boldsymbol{\sigma}) \cap K_{\mathrm{tot}, \mathcal{S}} \quad \text { and } \quad K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]=K_{\mathrm{sep}}[\boldsymbol{\sigma}] \cap K_{\mathrm{tot}, \mathcal{S}} .
$$

For each extension M of K in \tilde{K} and every $\mathfrak{p} \in \mathbf{P}_{\text {fin }} \cap \mathcal{V}$ we consider the valuation ring $\mathcal{O}_{M, \mathfrak{p}}=\left\{\left.x \in M| | x\right|_{\mathfrak{p}} \leq 1\right\}$ of M at \mathfrak{p}. For each $\mathcal{U} \subseteq \mathcal{V}$ we define $\mathcal{O}_{M, \mathcal{U}}$ to be the set of all $x \in M$ such that $\left|x^{\tau}\right|_{\mathfrak{p}} \leq 1$ for all $\mathfrak{p} \in \mathcal{U}$ and $\tau \in \operatorname{Gal}(K)$. Note that if $\mathcal{U} \subseteq \mathbf{P}_{K, \text { fin }}$, then $\mathcal{O}_{M, \mathcal{U}}$ is an intersection of valuation rings, hence it is an integrally closed domain. Note however that $\mathcal{O}_{M,\{p\}}$ is different from $\mathcal{O}_{M, \mathfrak{p}}$.

In this notation the following proposition is a reformulation of [JaR08, Thm. 2.2]. Throughout this paper, for each positive integer n, by an affine variety in \mathbb{A}_{K}^{n} we mean a closed subscheme of \mathbb{A}_{K}^{n} (Subsection 4.2).

Proposition A. For almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ the field $M=K_{\mathrm{tot}, \mathcal{S}}(\boldsymbol{\sigma})$ satisfies the following strong approximation theorem: Let V be an affine absolutely integral variety in \mathbb{A}_{K}^{n} for some positive integer n. For each $\mathfrak{p} \in \mathcal{S}$ let $\mathbf{z}_{\mathfrak{p}} \in V_{\text {simp }}\left(K_{\mathfrak{p}}\right)$, for each $\mathfrak{p} \in \mathcal{T} \backslash \mathcal{S}$ let $\mathbf{z}_{\mathfrak{p}} \in V(\tilde{K})$, and for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$ let $\mathbf{z}_{\mathfrak{p}} \in V\left(\mathcal{O}_{\tilde{K}, \mathfrak{p}}\right)$. Then, for every $\varepsilon>0$ there exists $\mathbf{z} \in V(M)$ such that $\left|\mathbf{z}-\mathbf{z}_{\mathfrak{p}}^{\tau}\right|_{\mathfrak{p}}<\varepsilon$ for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$ and $\left|\mathbf{z}^{\tau}\right|_{\mathfrak{p}} \leq 1$ for all $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$.

When $e=0$, we have $K_{\mathrm{tot}, \mathcal{S}}(\boldsymbol{\sigma})=K_{\mathrm{tot}, \mathcal{S}}$ and we retrieve $[\mathrm{MoB} 89$, Thm. 1.3]. For arbitrary $e \geq 0$, Proposition A implies the following analog of Rumely's local-global principle for almost all fields $K_{\text {tot, } \mathcal{S}}(\boldsymbol{\sigma})$:

Proposition B. For almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ the field $M=K_{\mathrm{tot}, \mathcal{S}}(\boldsymbol{\sigma})$ satisfies the following local-global principle: Let V be an affine absolutely integral variety in \mathbb{A}_{K}^{n} for some positive integer n. Suppose for each $\mathfrak{p} \in \mathcal{S}$ there exists $\mathbf{z}_{\mathfrak{p}} \in V_{\text {simp }}\left(K_{\mathfrak{p}}\right)$ and for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{S}$ there exists $\mathbf{z}_{\mathfrak{p}} \in V(\tilde{K})$ such that in each case the following holds: $\left|\mathbf{z}_{\mathfrak{p}}\right|_{\mathfrak{p}} \leq 1$ if $\mathfrak{p} \in \mathbf{P}_{K, \text { fin }}$ and $\left|\mathbf{z}_{\mathfrak{p}}\right|_{\mathfrak{p}}<1$ if $\mathfrak{p} \in \mathbf{P}_{K, \text { inf }}$.

Then, there exists $\mathbf{z} \in V(M)$ such that for all $\tau \in \operatorname{Gal}(K)$ we have: $\left|\mathbf{z}^{\tau}\right|_{\mathfrak{p}} \leq 1$ for each $\mathfrak{p} \in \mathcal{V} \cap \mathbf{P}_{K, \text { fin }}$ and $\left|\mathbf{z}^{\tau}\right|_{\mathfrak{p}}<1$ for each $\mathfrak{p} \in \mathcal{V} \cap \mathbf{P}_{K, \mathrm{inf}}$.

For $K=\mathbb{Q}, e=0$ and $\mathcal{V}=\mathbf{P}_{\text {fin }}$, Proposition B specializes to Rumely's local-global principle for the ring $\tilde{\mathbb{Z}}$ of all algebraic integers [Rum86]. That principle yields an affirmative answer to Hilbert's 10th problem for $\tilde{\mathbb{Z}}$ [Rum86, p. 130, Thm. 2], answering a question of Julia Robinson from the 1970'ties. L. v. d. Dries applies the local-global principle to prove that the elementary theory of $\tilde{\mathbb{Z}}$ is decidable [Dri88, p. 190, Cor.].

The proof of Proposition A is carried out along the lines of the proof of the local-global principle for $K_{\text {tot } \mathcal{S}}$ of [GPR95]. In addition it uses that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ the field $K_{\operatorname{sep}}(\boldsymbol{\sigma})$ is PAC over $\mathcal{O}_{K, \mathcal{V}}$. This means that for every absolutely irreducible polynomial $f \in K[X, Y]$ which is separable in Y there exist infinitely many points $(a, b) \in \mathcal{O}_{K, \mathcal{V}} \times K_{\text {sep }}(\boldsymbol{\sigma})$ such that $f(a, b)=0$. This implies that $K_{\text {sep }}(\boldsymbol{\sigma})$ is also PAC over $\mathcal{O}_{L, \mathcal{V}}$ for every extension L of K in $K_{\text {sep }}(\boldsymbol{\sigma})$.

Unfortunately, as [BaJ08, Thm. B] proves, no Galois extension of K except $K_{\text {sep }}$ is PAC over K, let alone over $\mathcal{O}_{K, \mathcal{V}}$. In particular, if $\boldsymbol{\sigma} \neq 1$, then $K_{\text {sep }}[\boldsymbol{\sigma}]$ is not PAC over $\mathcal{O}_{K, \mathcal{V}}$. Thus, the proof of Proposition A breaks down for the fields $K_{\text {sep }}[\boldsymbol{\sigma}]$. However, almost all of the fields $M=K_{\text {sep }}[\boldsymbol{\sigma}]$ have a weaker property than being PAC over $\mathcal{O}_{K, \mathcal{V}}$, namely they are "weakly K-stably PAC over $\mathcal{O}_{K, \mathcal{V}}$ " (Definition 12.1 for $\mathcal{S}=\emptyset$). This would almost help to adjust the proof of Proposition A given in [JaR08] to a proof of the analogous theorem for almost all of the fields $K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]$. However, as in [JaR08], we would need to replace K somewhere along the proof by a finite extension L that lies in $K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]$ and then proceed with $L_{\mathrm{tot}, \mathcal{S}_{L}}[\boldsymbol{\sigma}]$, where \mathcal{S}_{L} is the set of all primes of L lying over \mathcal{S}. Although it is still true that $L_{\text {sep }}(\boldsymbol{\sigma})=K_{\text {sep }}(\boldsymbol{\sigma})$ and $K_{\text {sep }}(\boldsymbol{\sigma})$ is weakly L-stably PAC over $\mathcal{O}_{L, \mathcal{V}}$ (for almost all $\left.\boldsymbol{\sigma} \in \operatorname{Gal}(L)^{e}\right)$, the field $L_{\text {sep }}[\boldsymbol{\sigma}]$ may properly contain $K_{\text {sep }}[\boldsymbol{\sigma}]$ even if we choose L to be Galois over K, so nothing that we prove on $L_{\text {tot }, \mathcal{S}_{L}}[\boldsymbol{\sigma}]$ would apply to $K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]$.

Fortunately, the proof of [MoB89, Thm. 1.3] does not enlarge K as [JaR08] does. We combine the method of that proof with the method of the proof of the main result of [GeJ02]. In our case the latter result says that $K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]$ is PSC for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$. This means that if V is an absolutely integral affine variety in $\mathbb{A}_{K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]}$ for some positive integer n and $V_{\text {simp }}\left(K_{\mathfrak{p}}^{\tau}\right) \neq \emptyset$ for every $\mathfrak{p} \in \mathcal{S}$ and $\tau \in \operatorname{Gal}(K)$, then $V\left(K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]\right) \neq \emptyset$. One of the main ingredients of the proof of that theorem is the main result of [GJR17] which produces a "symmetrically stabilizing" element t for a given function field F of one variable over K with zeros and poles in given \mathcal{S}-adically open neighborhoods in $V\left(K_{\text {tot }, \mathcal{S}}\right)$.

The construction of t in the present work has to be done with extra care. We prove the following analog of Proposition A (see Theorem 13.7):

Theorem C (Strong approximation theorem). Let $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, e, \mathbf{P}_{K, \text { fin }}$ be as above. In particular, K is a global field and $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K \text {,fin }}$. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ the field $M=K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]$ satisfies the strong approximation theorem, that is M has the following property:

Let V be an absolutely integral affine variety in \mathbb{A}_{K}^{n} for some positive integer n. For each $\mathfrak{p} \in \mathcal{S}$ let $\Omega_{\mathfrak{p}}$ be a nonempty \mathfrak{p}-open subset of $V_{\text {simp }}\left(K_{\mathfrak{p}}\right)$. For each $\mathfrak{p} \in \mathcal{T} \backslash \mathcal{S}$ let $\Omega_{\mathfrak{p}}$ be a nonempty \mathfrak{p}-open subset of $V(\tilde{K})$, invariant under the action of $\operatorname{Gal}\left(K_{\mathfrak{p}}\right)$. Finally, for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$ we assume that
$V\left(\mathcal{O}_{\tilde{K}, \mathfrak{p}}\right) \neq \emptyset$. Then,

$$
\begin{equation*}
V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right) \cap \bigcap_{\mathfrak{p} \in \mathcal{T}} \bigcap_{\tau \in \operatorname{Gal}(K)} \Omega_{\mathfrak{p}}^{\tau} \neq \emptyset . \tag{1}
\end{equation*}
$$

The first three sections of this work introduce necessary prerequisites. Section 4 reduces the proof of the strong approximation theorem for an intermediate field M of $K_{\mathrm{tot}, \mathcal{S}} / K$ from absolutely integral affine varieties over the given global field K to absolutely integral affine curves over K. In particular it allows us to increase \mathcal{T} within \mathcal{V} and replace V by a nonempty Zariski-open subset, if necessary. Given an absolutely integral affine curve C over K, we use this flexibility in Section 5 to construct a principal ideal domain $R=\mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}$ with quotient field K and a smooth affine curve X over R such that $X_{K}=C$. Then, following [MoB89], we embed X as a Zariski-open subset of a projective regular curve $\bar{X}=\operatorname{Proj}\left(R\left[t_{0}, \ldots, t_{r}\right]\right)$, where $R\left[t_{0}, \ldots, t_{r}\right]=\sum_{k=0}^{\infty} R\left[t_{0} \ldots, t_{r}\right]_{k}$ is a graded integral domain over R such that $R\left[t_{0}, \ldots, t_{r}\right]_{0}=R$ and $R\left[t_{0}, \ldots, t_{r}\right]_{1}=\sum_{i=0}^{r} R t_{i}$ (Lemma 5.6).

The main result of [MoB89] produces for every large positive integer k a section $s_{0} \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ such that each of the irreducible components of the effective divisor $\operatorname{div}\left(s_{0}\right)$ yields distinct points of $X\left(K_{\text {tot }, \mathcal{S}}\right)$ that belong to the left hand side of (1) with C replacing V and $K_{\text {tot }, \mathcal{S}}$ replacing M. In particular, s_{0} does not vanish on $Z=\bar{X} \backslash X$ (essentially Proposition 7.6 and Lemma 7.8).

In order to find such points in $C\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$, we construct a surjective mor$\operatorname{phism} \varphi$ from \bar{X}_{K} onto a projective curve $Y=\operatorname{Proj}\left(K\left[s_{0}, \ldots, s_{l}\right]\right)$, where $s_{0}, s_{1}, \ldots, s_{l}$ are elements of $R\left[t_{0}, \ldots, t_{r}\right]_{k}$ for an appropriately chosen large k and s_{0} is as in the preceding paragraph. Moreover, s_{1}, \ldots, s_{l} vanish on Z. Changing the base from R to \tilde{K}, the curve $Y_{\tilde{K}}$ has some special properties. It is a nonstrange curve with only finitely many inflection points and finitely many double tangents, and it has cusps with a given large multiplicity q such that the multiplicities of all other points of $Y_{\tilde{K}}$ are at most q (Proposition 10.5).

Choosing q as a large prime number, the main result of [GJR17] and Proposition 11.2 give an element

$$
t=\frac{s_{0}+a_{1} s_{1}+\ldots+a_{l} s_{l}}{s_{0}+b_{1} s_{1}+\cdots+b_{l} s_{l}}
$$

of the function field F of \bar{X}_{K} such that $F / K(t)$ is a finite separable extension and the Galois closure \hat{F} of $F / K(t)$ is a regular extension of K (we call t a "stabilizing element" of $F / K)$. Moreover, $a_{1}, \ldots, a_{l}, b_{1}, \ldots, b_{l} \in R, b_{1}=$ $1+a_{1}$, and $\left(a_{1}, \ldots, a_{l}, b_{2}, \ldots, b_{l}\right)$ can be chosen in a \mathcal{T}-open subset of $R^{2 l-1}$.

By a result of [GJR00] (quoted here as Lemma 13.6), for almost all $\boldsymbol{\sigma} \in$ $\operatorname{Gal}(K)^{e}$, every extension M of $K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]$ in $K_{\mathrm{tot}, \mathcal{S}}$ is "weakly K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$ " (Definition 12.1). If we take a_{1}, \ldots, a_{l} in R sufficiently close to 0 in the \mathcal{T}-adic topology and $b_{2}, \ldots, b_{l} \in R$, then that property yields an
M-rational place of $F M$ with residue field M such that, with

$$
s^{\prime}=s_{0}+a_{1} s_{1}+\cdots+a_{l} s_{l},
$$

the zero of $\operatorname{div}\left(s^{\prime}\right)$ that corresponds to this place belongs to

$$
C\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right) \cap \bigcap_{\mathfrak{p} \in \mathcal{T}} \bigcap_{\tau \in \operatorname{Gal}(K)} \Omega_{\mathfrak{p}}^{\tau} \neq \emptyset
$$

(Proposition 12.3). Thus, M satisfies the strong approximation theorem.
Finally, we denote the compositum of all finite Galois extensions of K with symmetric Galois groups by $K_{\text {symm }}$. In a forthcoming work we prove the following result:

Theorem D. In the notation of Theorem C , the field $K_{\mathrm{tot}, \mathcal{S}} \cap K_{\mathrm{symm}}$ satisfies the strong approximation theorem.

Acknowledgement. The authors are indebted to Laurent Moret-Bailly for crucial contributions to Sections 7 and 9 and other helpful suggestions. They also thank Sebastian Petersen for technical help. Finally, they thank the anonymous referee for important comments.

1. Twisted sheaves

Recall that a ring A (commutative with 1) is graded if $A=\bigoplus_{k=0}^{\infty} A_{k}$, where each summand A_{k} is a commutative group under the addition of A and $A_{k} A_{l} \subseteq A_{k+l}$ for all $k, l \geq 0$. In particular, A_{0} is a subring of A and each A_{k} is an A_{0}-module. We then say that A is a graded ring over A_{0}. Each nonzero $s \in A$ has a unique presentation $s=\sum_{k=0}^{\infty} s_{k}$, where $s_{k} \in A_{k}$ for each $k \geq 0$ and $s_{k}=0$ for all large k. The elements of $\bigcup_{k=0}^{\infty} A_{k}$ are said to be homogeneous and the elements s_{k} above are the homogeneous components of s.

If a homogeneous element s of A belongs to A_{k}, we say that the A-degree of s is k and write $\operatorname{deg}_{A}(s)=k$. If s^{\prime} is an additional homogeneous element of A, then $\operatorname{deg}_{A}\left(s s^{\prime}\right)=\operatorname{deg}_{A}(s)+\operatorname{deg}_{A}\left(s^{\prime}\right)$.

If s_{0}, \ldots, s_{l} are elements of A_{k} for some $k \geq 0$, then $T=A_{0}\left[s_{0}, \ldots, s_{l}\right]$ is a graded ring over A_{0} with T_{m} being the A_{0}-module generated by all of the monomials in s_{0}, \ldots, s_{l} whose A-degree is km . In particular, $T_{0}=A_{0}$ and $T_{1}=\sum_{i=0}^{l} A_{0} s_{i}$.

An A-module M is graded if $M=\bigoplus_{k=0}^{\infty} M_{k}$, where each M_{k} is an additive subgroup of M and $A_{k} M_{l} \subseteq M_{k+l}$ for all k, l.

An ideal \mathfrak{a} of A is homogeneous if \mathfrak{a} is homogeneous as a graded A-module; alternatively, if $\mathfrak{a}=\bigoplus_{k=0}^{\infty}\left(\mathfrak{a} \cap A_{k}\right)$; alternatively, if each of the homogeneous components of every $a \in \mathfrak{a}$ belongs to \mathfrak{a}; alternatively, if \mathfrak{a} is generated by homogeneous elements. An example of a homogeneous ideal is

$$
A_{+}=\bigoplus_{k=1}^{\infty} A_{k} .
$$

The homogeneous prime ideals of A not containing A_{+}form a set $\operatorname{Proj}(A)$ that has a natural sheaf structure [Liu06, p. 52, Prop. 2.3.38].

If $\left(\mathfrak{a}_{i}\right)_{i \in I}$ is a family of homogeneous ideals of A, then each of the following ideals is homogeneous: $\sum_{i \in I} \mathfrak{a}_{i}, \prod_{i \in I} \mathfrak{a}_{i}$ ($=$ the set of all finite sums of finite products $a_{i_{1}} \cdots a_{i_{n}}$ with $a_{i_{1}} \in \mathfrak{a}_{i_{1}}, \ldots, a_{i_{n}} \in \mathfrak{a}_{i_{n}}$ and i_{1}, \ldots, i_{n} distinct elements of I), and $\bigcap_{i \in I} \mathfrak{a}_{i}$.
Setup 1.1. Let $A=\bigoplus_{k=0}^{\infty} A_{k}$ be a Noetherian graded ring. Then, the ideal A_{+}of A is finitely generated, so $A_{1}=\sum_{i=0}^{r} A_{0} t_{i}$ is a finitely generated A_{0}-module. We assume that $A=A_{0}\left[t_{0}, \ldots, t_{r}\right]$. Then, we set $V=\operatorname{Proj}(A)$ and consider for each k the twisted sheaf $O_{V}(k)$ [Har77, pp. 116-117] and the abelian $\operatorname{group} \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ of its global sections. Each $t \in \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ can be viewed as an element of the direct product $\prod_{P \in V} A_{P}$ which is locally a fraction of degree k. This means that each $P_{0} \in V$ has a Zariski-open neighborhood V_{0} and there exist homogeneous elements f and g of A such that $\operatorname{deg}_{A}(f)-\operatorname{deg}_{A}(g)=k, g \notin P$, and $t_{P}=\frac{f}{g}$ in A_{P} for each $P \in V_{0}$. If $a \in A_{j}$, then at is an element of $\Gamma\left(V, \mathcal{O}_{V}(j+k)\right)$, which is defined in the latter notation by $(a t)_{P}=\frac{a f}{g}$ for each $P \in V_{0}$. This definition makes $\bigoplus_{k=0}^{\infty} \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ into a graded A-module. It also gives a natural homomorphism $\beta=\beta_{V}: A \rightarrow \bigoplus_{k=0}^{\infty} \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ of graded A-modules mapping each $s \in A_{k}$ onto the element of $\prod_{P \in V} A_{P}$ whose P th coordinate is $\frac{s}{1}$. Let $\beta_{k}=\beta_{V, k}: A_{k} \rightarrow \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ be the k th homogeneous component of β.

For the convenience of the reader we supply a proof to a special case of [Gro61III, p. 446, Thm. 2.3.1]. It says that β_{k} is an isomorphism for all large k.

Lemma 1.2. The following statements hold under Setup 1.1:
(a) Let I be an ideal of A such that $A_{1} \subseteq \sqrt{I}$. Then, $A_{m} \subseteq I$ for all large m.
(b) Let s be a homogeneous element of A whose annihilator

$$
I=\{a \in A \mid a s=0\}
$$

is contained in no $P \in \operatorname{Proj}(A)$. Then, $A_{m} \subseteq I$ for all large m.
Proof. (a) For each $0 \leq i \leq r$ there exists e_{i} such that $t_{i}^{e_{i}} \in I$. Let $e=\sum_{i=0}^{r}\left(e_{i}-1\right)$ and let $m>e$. If $\prod_{i=0}^{r} t_{i}^{m_{i}} \in A_{m}$, then

$$
\sum_{i=0}^{r} m_{i}=m>\sum_{i=0}^{r}\left(e_{i}-1\right)
$$

so there exists $0 \leq i \leq r$ with $m_{i} \geq e_{i}$, hence $\prod_{i=0}^{r} t_{i}^{m_{i}} \in I$. Since A_{m} is generated as an A-module by the monomials of degree m in t_{0}, \ldots, t_{r}, we conclude that $A_{m} \subseteq I$.
(b) First note that $I=0: A s=\{a \in A \mid a s=0\}$ is a homogeneous ideal of A [ZaS75II, p. 152, Thm. 8]. Therefore, by the same theorem, \sqrt{I} is also homogeneous. By [Bou89, p. 283, Prop. 1], \sqrt{I} is an intersection of
homogeneous prime ideals P of A. By assumption, none of those P is in $\operatorname{Proj}(A)$, so all of them contain A_{+}, hence also A_{1}. It follows that $A_{1} \subseteq \sqrt{I}$. By Part (a), $A_{m} \subseteq I$ for all large m.
Lemma 1.3. Under Setup 1.1, the natural homomorphism

$$
\beta_{k}: A_{k} \rightarrow \Gamma\left(V, \mathcal{O}_{V}(k)\right)
$$

is an isomorphism for all large k.
Proof. We break up the proof into two parts.
Part A. For all large k, the map $\boldsymbol{\beta}_{\boldsymbol{k}}$ is injective. Indeed, since

$$
\beta: A \rightarrow \bigoplus_{k=0}^{\infty} \Gamma\left(V, \mathcal{O}_{V}(k)\right)
$$

is a homomorphism of graded A-modules, $I=\operatorname{Ker}(\beta)$ is a homogeneous ideal of A. Since A is Noetherian, $I=\sum_{i=1}^{n} A b_{i}$ with $b_{i} \in A_{k_{i}}$ for some distinct nonnegative integers $k_{i}, i=1, \ldots, n$. By the convention in Setup 1.1, $\left(\frac{b_{i}}{1}\right)_{P \in V}=\beta_{k_{i}}\left(b_{i}\right)=0$, where for each $P \in V$, the quotient $\frac{b_{i}}{1}$ is taken in the local ring A_{P}. Thus, there exists $b \in A \backslash P$ with $b b_{i}=0$. It follows that $N_{i}=\left\{a \in A \mid a b_{i}=0\right\} \nsubseteq P$. Lemma 1.2(b) gives an l_{i} such that $A_{k} \subseteq N_{i}$ for all $k>l_{i}$. Let $l_{0}=\max \left(k_{1}+l_{1}, \ldots, k_{n}+l_{n}\right)$. For each $l>l_{0}$ and for each $1 \leq i \leq n$ we have $l-k_{i}>l_{i}$, so $A_{l-k_{i}} \subseteq N_{i}$, hence $A_{l-k_{i}} b_{i}=0$. Using the presentation $I=\sum_{i=1}^{n} A b_{i}$ and the homogeneity of I, we get $I_{l}=\sum_{i=1}^{n} A_{l-k_{i}} b_{i}$. Therefore, $I_{l}=0$ for each $l>l_{0}$. This means that β_{l} is injective for all $l>l_{0}$.

Part B. For all large \boldsymbol{k}, the map $\boldsymbol{\beta}_{\boldsymbol{k}}$ is surjective. Let

$$
X=\mathbb{P}_{A_{0}}^{r}=\operatorname{Proj}(R), \quad \text { with } \quad R=A_{0}\left[T_{0}, \ldots, T_{r}\right]
$$

be the projective space of dimension r over $\operatorname{Spec}\left(A_{0}\right)$. Let J be the kernel of the A_{0}-epimorphism $R \rightarrow A$ that maps each T_{i} onto $t_{i}, i=0, \ldots, r$. Let \mathcal{J} be the sheaf of ideals associated with J, that is the sheaf appearing in the following exact sequence of sheafs:

$$
\begin{equation*}
0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{O}_{X} \xrightarrow{j^{\#}} j_{*} \mathcal{O}_{V} \longrightarrow 0, \tag{1}
\end{equation*}
$$

where $j: V \rightarrow X$ is the inclusion map [Har77, p. 115, Definition]. Since $\mathcal{O}_{X}(k)$ is an invertible sheaf on X [Har77, p. 117, Prop. II.5.12(a)], the tensor product of (1) with $\mathcal{O}_{X}(k)$ remains exact. In other words, the sequence $0 \rightarrow \mathcal{J}(k) \rightarrow \mathcal{O}_{X}(k) \rightarrow j_{*} \mathcal{O}_{V}(k) \rightarrow 0$ is exact. Indeed, one may check the exactness locally at each $P \in X$ [GoW10, p. 172] using that $O_{X}(k)_{P}$ is a free $O_{X, P}$-module. This yields an exact sequence of cohomology groups:
(2) $0 \rightarrow \Gamma(X, \mathcal{J}(k)) \rightarrow \Gamma\left(X, \mathcal{O}_{X}(k)\right) \rightarrow \Gamma\left(X,\left(j_{*} \mathcal{O}_{V}\right)(k)\right) \rightarrow H^{1}(X, \mathcal{J}(k))$
[Har77, p. 208, Prop. III.2.6] or [Liu06, p. 184, Prop. 5.2.15]. Since $\mathcal{J}(k)$ is a coherent sheaf on X [Har77, p. 116, Prop. II.5.9], a theorem of Serre [Har77, p. 228, Thm. III.5.2(b)] or [Liu06, p. 195, Thm. 5.3.2(b)] asserts
that $H^{1}(X, \mathcal{J}(k))=0$ for all large k. By [Har77, p. 117, Prop. II.5.12(c)] applied to the A_{0}-epimorphism $R \rightarrow A$ that maps T_{i} onto $t_{i}, i=0, \ldots, r$, we have $j_{*}\left(\mathcal{O}_{V}(k)\right) \cong\left(j_{*} \mathcal{O}_{V}\right)(k)$. It follows from the definition of the direct image [Har77, p. 65, Def.] that $\Gamma\left(X,\left(j_{*} \mathcal{O}_{V}\right)(k)\right) \cong \Gamma\left(V, \mathcal{O}_{V}(k)\right)$. Thus, (2) becomes:

$$
\begin{equation*}
0 \rightarrow \Gamma(X, \mathcal{J}(k)) \rightarrow \Gamma\left(X, \mathcal{O}_{X}(k)\right) \rightarrow \Gamma\left(V, \mathcal{O}_{V}(k)\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

Adding the maps $\beta_{X, k}$ and $\beta_{V, k}$ of Setup 1.1 to (3), we get the following commutative diagram:

By [Har77, p. 118, Prop. II.5.13], $\beta_{X, k}$ is an isomorphism for all k. Since the two horizontal maps of the commutative square of (4) are surjective, $\beta_{V, k}$ is surjective for all large k.

Remark 1.4. Under Setup 1.1, let V^{\prime} be a closed subscheme of V and let I be a homogeneous ideal of A such that $V^{\prime}=\operatorname{Proj}(A / I)$ [Liu06, p. 168, Prop. 5.1.30]. Then, $A^{\prime}=A / I=\bigoplus_{k=0}^{\infty}\left(A_{k} / A_{k} \cap I\right)$ is a graded ring over $A_{0}^{\prime}=A_{0} / A_{0} \cap I$. Moreover, $A_{1}^{\prime}=\sum_{i=0}^{r} A_{0}^{\prime} t_{i}^{\prime}$ with $t_{i}^{\prime}=t_{i}+I$, and $A^{\prime}=$ $A_{0}^{\prime}\left[t_{0}^{\prime}, \ldots, t_{r}^{\prime}\right]$.

For each integer $k \geq 0$ let $\pi_{V, V^{\prime}}^{(k)}: A_{k} \rightarrow A_{k}^{\prime}$ be the epimorphism of abelian groups induced by the epimorphism $A \rightarrow A / I$ of rings and let $\rho_{V, V^{\prime}}^{(k)}: \Gamma\left(V, \mathcal{O}_{V}(k)\right) \rightarrow \Gamma\left(V^{\prime}, \mathcal{O}_{V^{\prime}}(k)\right)$ be the restriction homomorphism induced by the closed immersion $V^{\prime} \subseteq V$. We set $\beta_{k}=\beta_{V, k}$ and $\beta_{k}^{\prime}=\beta_{V^{\prime}, k}$ (Setup 1.1). By Lemma 1.3, we have for each large k that β_{k} and β_{k}^{\prime} are isomorphisms. Since $\beta_{V, k}$ is natural in V, we have $\rho_{V, V^{\prime}}^{(k)} \circ \beta_{k}=\beta_{k}^{\prime} \circ \pi_{V, V^{\prime}}^{(k)}$. It follows that β_{k} maps the kernel $A_{k} \cap I$ of $\pi_{V, V^{\prime}}^{(k)}$ onto $\operatorname{Ker}\left(\rho_{V, V^{\prime}}^{(k)}\right)$. Also, since $\pi_{V, V^{\prime}}^{(k)}$ is surjective, so is $\rho_{V, V^{\prime}}^{(k)}$. This gives the following commutative diagram with two short exact sequences:

The maps $\pi_{V, V^{\prime}}^{(k)}$ and $\rho_{V, V^{\prime}}^{(k)}$ combine to epimorphisms of A-modules

$$
\begin{aligned}
\pi_{V, V^{\prime}}: A & \rightarrow A^{\prime}, \\
\rho_{V, V^{\prime}}: \bigoplus_{k=0}^{\infty} \Gamma\left(V, \mathcal{O}_{V}(k)\right) & \rightarrow \bigoplus_{k=0}^{\infty} \Gamma\left(V^{\prime}, \mathcal{O}_{V^{\prime}}(k)\right),
\end{aligned}
$$

that satisfy $\rho_{V, V^{\prime}} \circ \beta_{V}=\beta_{V^{\prime}} \circ \pi_{V, V^{\prime}}$.
Following this observation, we categorically identify A_{k} with $\Gamma\left(V, \mathcal{O}_{V}(k)\right)$ via $\beta_{V, k}$ and identify $A_{k} \cap I$ with $\operatorname{Ker}\left(\rho_{V, V^{\prime}}^{(k)}\right)$ for all large k.

Lemma 1.5. In the notation of Setup 1.1, let V_{1}, \ldots, V_{m} be closed pairwise disjoint subschemes of the projective scheme V and let k be a sufficiently large positive integer. For each $1 \leq i \leq m$ let $s_{i} \in \Gamma\left(V_{i}, \mathcal{O}_{V_{i}}(k)\right)$. Then, there exists an $s \in \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ such that $\left.s\right|_{V_{i}}=s_{i}$ for $i=1, \ldots, m$.

Proof. We consider the closed subscheme $V^{\prime}=\bigcup_{i=1}^{m} V_{i}$ of V. The sets V_{1}, \ldots, V_{m} are closed and disjoint in V^{\prime}. Hence, they are also open in V^{\prime}. If $i \neq j$, then the restrictions of both s_{i} and s_{j} to $\Gamma\left(\emptyset, \mathcal{O}_{V^{\prime}}(k)\right)$ is the unique element 0 of the latter module. By the basic property of sheaves, there exists $s^{\prime} \in \Gamma\left(V^{\prime}, \mathcal{O}_{V^{\prime}}(k)\right)$ such that $\left.s^{\prime}\right|_{V_{i}}=s_{i}$ for $i=1, \ldots, m$. Since V^{\prime} is a closed subscheme of V, the surjectivity of $\rho_{V, V^{\prime}}^{(k)}$ in (5) gives an $s \in \Gamma\left(V, \mathcal{O}_{V}(k)\right)$ such that $\left.s\right|_{V^{\prime}}=s^{\prime}$, hence $\left.s\right|_{V_{i}}=s_{i}$ for $i=1, \ldots, m$.

Example 1.6. Let K be a field and t_{0}, \ldots, t_{r} nonzero elements of a field extension of K. We set $\mathbf{t}=\left(t_{0}, \ldots, t_{r}\right)$ and assume that $K[\mathbf{t}]$ is a graded ring over K such that $K[\mathbf{t}]_{1}=\sum_{i=0}^{r} K t_{i}$. Then, for all distinct integers i, j between 0 and r the element t_{i} is transcendental over $K\left(\frac{t_{0}}{t_{j}}, \ldots, \frac{t_{r}}{t_{j}}\right)$ [ZaS75II, p. 168, Lemma]. Also, for each $k \geq 0, K[\mathbf{t}]_{k}$ is the vector space over K generated by all monomials in t_{0}, \ldots, t_{r} of degree k with coefficients in K.

A homogeneous element of the quotient field $K(\mathbf{t})$ of $K[\mathbf{t}]$ is a quotient $\frac{f}{g}$ of homogeneous elements of $K[\mathbf{t}]$ with $g \neq 0$. We set

$$
\operatorname{deg}_{K[t \mathrm{t}]}\left(\frac{f}{g}\right)=\operatorname{deg}_{K[\mathbf{t}]}(f)-\operatorname{deg}_{K[t]}(g)
$$

and observe that $\operatorname{deg}_{K[t]}$ is a well defined homomorphism from the multiplicative group of homogeneous elements of $K(\mathbf{t})^{\times}$onto \mathbb{Z}.

We consider the integral projective variety $V=\operatorname{Proj}(K[\mathbf{t}])$ over K. Then, for each $0 \leq i \leq r, F=K\left(\frac{t_{0}}{t_{i}}, \ldots, \frac{t_{r}}{t_{i}}\right)$ is the function field of V. It can also be described as the set of all homogeneous elements of $K(\mathbf{t})$ of $K[\mathbf{t}]-$ degree 0 . Indeed, if $f(\mathbf{t}), g(\mathbf{t})$ are homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree k with $g \neq 0$, then $\frac{f(\mathbf{t})}{g(\mathbf{t})}=\frac{f\left(t_{0} / t_{i}, \ldots, t_{r} / t_{i}\right)}{g\left(t_{0} / t_{i}, \ldots, t_{r} / t_{i}\right)} \in F$.

Recall that the local ring of V at a point P is the ring $\mathcal{O}_{V, P}$ of all quotients $\frac{f}{g}$, where f and g are homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree and $g \notin P$. Likewise for each $k \geq 0$ the stalk $\mathcal{O}_{V}(k)_{P}$ is the K-vector-space
that consists of all quotients $\frac{f}{g}$, where f and g are homogeneous elements of $K[\mathbf{t}]$ such that $\operatorname{deg}_{K[\mathbf{t}]}(f)-\operatorname{deg}_{K[\mathbf{t}]}(g)=k$ and $g \notin P$. By Lemma 1.3:
(a) For every large positive integer k an element x of $K(\mathbf{t})$ belongs to $K[\mathbf{t}]_{k}$ if and only if $x \in \mathcal{O}_{V}(k)_{P}$ for all $P \in V$.

Next we assume that V is an integral normal projective curve over K. Then:
(b) For each closed point P of V, the local ring $\mathcal{O}_{V, P}$ is a valuation ring of F [Lan58, p. 151, Thm. 1]. We denote the corresponding normalized discrete valuation of F by ord ${ }_{P}$. By definition, $\mathcal{O}_{V, P}$ is the subring of F that consists of all quotients $\frac{s}{u}$, where s, u are homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree with $u \notin P$. Thus, each of them satisfies $\operatorname{ord}_{P}\left(\frac{s}{u}\right) \geq 0$. Since $\mathcal{O}_{V, P}$ is the valuation ring of ord_{P}, each $x \in F$ with $\operatorname{ord}_{P}(x) \geq 0$ can be written as $\frac{s}{u}$ with s, u as above. In particular, if both s and u as above do not belong to P, then $\operatorname{ord}_{P}\left(\frac{s}{u}\right)=0$.
(c) If $\pi \in F$ satisfies $\operatorname{ord}_{P}(\pi) \geq 1$ and we write $\pi=\frac{p}{v}$ with p and v homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree with $v \notin P$, then $p \in P$ (otherwise $\pi^{-1}=\frac{v}{p} \in \mathcal{O}_{V, P}$, so $\operatorname{ord}_{P}(\pi)=0$, in contrast to our assumption).

Conversely, if f and u are homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree, $f \in P$, and $u \notin P$, then $\frac{f}{u} \in \mathcal{O}_{V, P}$, hence $\operatorname{ord}_{P}\left(\frac{f}{u}\right) \geq$ 0 . If $\operatorname{ord}_{P}\left(\frac{f}{u}\right)=0$, then $\frac{u}{f} \in \mathcal{O}_{V, P}$. This gives homogeneous elements g, v in $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree such that $v \notin P$ and $\frac{u}{f}=\frac{g}{v}$, hence $u v=f g \in P$ in contrast to the assumption that P is a prime ideal. It follows that $\operatorname{ord}_{P}\left(\frac{f}{u}\right) \geq 1$.
(d) If x is a homogeneous element of $K(\mathbf{t})$ of $K[\mathbf{t}]$-degree k,

$$
h \in K[\mathbf{t}]_{k} \backslash P
$$

and $\operatorname{ord}_{P}\left(\frac{x}{h}\right) \geq 0$, then by (b), $\frac{x}{h}=\frac{f}{g}$, where f and g are homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$-degree with $g \notin P$. Thus,

$$
x=\frac{f h}{g} \in \mathcal{O}_{V}(k)_{P}
$$

(e) Let x and u be homogeneous elements of $K[\mathbf{t}]$ of the same $K[\mathbf{t}]$ degree such that $u \notin P$ and $x \in P^{q}$ for some positive integer q. Since P is a homogeneous ideal of $K[\mathbf{t}]$, there exist a positive integer l and homogeneous elements $t_{i 1}, \ldots, t_{i q} \in K[\mathbf{t}]$ that belong to P, $i=1, \ldots, l$, such that $x=\sum_{i=1}^{l} \prod_{j=1}^{q} t_{i j}$, and under the setting $d=\operatorname{deg}_{K[\mathbf{t}]}(x)$ and $d_{i j}=\operatorname{deg}_{K[\mathbf{t}]}\left(t_{i j}\right)$ we have $\sum_{j=1}^{q} d_{i j}=d$ for all i. We choose a homogeneous element $v \in K[\mathbf{t}]_{1}$ with $v \notin P$ (e.g., one
of the t_{i} 's), divide x by v^{d} and obtain

$$
\frac{x}{v^{d}}=\sum_{i=1}^{l} \prod_{j=1}^{q} \frac{t_{i j}}{v^{d_{i j}}} .
$$

By (c), $\operatorname{ord}_{P}\left(\frac{t_{i j}}{v^{d_{i j}}}\right) \geq 1$ for all i, j. Hence, $\operatorname{ord}_{P}\left(\frac{x}{v^{d}}\right) \geq q$. It follows that $\operatorname{ord}_{P}\left(\frac{x}{u}\right)=\operatorname{ord}_{P}\left(\frac{x}{v^{d}}\right)+\operatorname{ord}_{P}\left(\frac{v^{d}}{u}\right) \geq q$.

2. Global sections of invertible sheaves and Cartier divisors

Following [Liu06, p. 266, Exer. 7.1.13], we associate effective Cartier divisors to global sections of invertible sheaves on integral schemes and introduce their degrees.
2.1 Divisors on curves over a field. We consider a curve C over a field L. Thus, C is a separated scheme of finite type over L, each of its irreducible components is of dimension 1 . We assume that C is integral and projective and let F be the function field of C. For each closed point \mathbf{p} of C and each nonzero $f \in \mathcal{O}_{C, \mathbf{p}}$ we write $\operatorname{ord}_{\mathbf{p}}(f)$ for the length of the $\mathcal{O}_{C, \mathbf{p}}$-module $\mathcal{O}_{C, \mathbf{p}} / \mathcal{O}_{C, \mathbf{p}} f$ [AtM69, p. 77]. This function satisfies

$$
\begin{equation*}
\operatorname{ord}_{\mathbf{p}}(f g)=\operatorname{ord}_{\mathbf{p}}(f)+\operatorname{ord}_{\mathbf{p}}(g), \tag{1}
\end{equation*}
$$

hence it extends to a function $\operatorname{ord}_{\mathbf{p}}$ on F^{\times}satisfying (1) for all $f, g \in F^{\times}$ [BLR90, p. 237]. If \mathbf{p} is a closed normal point of C, then $\operatorname{ord}_{\mathbf{p}}$ coincides with the normalized valuation attached to the discrete valuation ring $\mathcal{O}_{C, \mathbf{p}}$ as introduced in Example 1.6(b).

If $\left(U_{i}, f_{i}\right)_{i \in I}$ is data that represent a Cartier divisor D on C, we define $\operatorname{ord}_{\mathbf{p}}(D)$ as $\operatorname{ord}_{\mathbf{p}}\left(f_{i}\right)$ for each $i \in I$ such that $\mathbf{p} \in U_{i}$. Then, the Weil divisor that corresponds to D is $D_{\text {Weil }}=\sum \operatorname{ord}_{\mathbf{p}}(D) \mathbf{p}$, where \mathbf{p} ranges over all closed points of C. The degree of D (and of $D_{\text {Weil }}$) is then

$$
\begin{equation*}
\operatorname{deg}(D)=\sum_{\mathbf{p}} \operatorname{ord}_{\mathbf{p}}(D)[L(\mathbf{p}): L] . \tag{2}
\end{equation*}
$$

Here, $L(\mathbf{p})$ is the residue field $\mathcal{O}_{C, \mathbf{p}} / \mathfrak{m}_{C, \mathbf{p}}$ of C at \mathbf{p}. If an affine neighborhood of \mathbf{p} in C is embedded in \mathbb{A}_{L}^{n} and one views \mathbf{p} as an n-tuple of elements of \tilde{L}, then the field obtained from L by adjoining those elements is L-isomorphic to $L(\mathbf{p})$.

By (1), $\operatorname{deg}\left(D_{1}+D_{2}\right)=\operatorname{deg}\left(D_{1}\right)+\operatorname{deg}\left(D_{2}\right)$ for any two Cartier (or Weil) divisors D_{1} and D_{2} on C. A Cartier divisor on C that can be represented by a pair (C, f) with $f \in F^{\times}$is said to be principal and is denoted by $\operatorname{div}(f)$. By [GoW10, p. 498, Thm. 15.32], $\operatorname{deg}(\operatorname{div}(f))=0$.

Recall that a Cartier divisor D on C represented by data $\left(U_{i}, f_{i}\right)_{i \in I}$ naturally corresponds to an invertible sheaf \mathcal{L} on C such that

$$
\Gamma\left(U_{i}, \mathcal{L}\right)=\Gamma\left(U_{i}, \mathcal{O}_{C}\right) f_{i}^{-1}
$$

for each $i \in I$. Two Cartier divisors that correspond to isomorphic invertible sheaves on C differ by a principal divisor [GoW10, p. 303, Prop. 11.26]. By the preceding paragraph, they have the same degree. Hence, one defines $\operatorname{deg}(\mathcal{L})=\operatorname{deg}(D)$ for each Cartier divisor D on C that corresponds to \mathcal{L}. Since addition of divisors corresponds to tensor products of the corresponding invertible sheaves, we have $\operatorname{deg}\left(\mathcal{L} \otimes_{\mathcal{O}_{C}} \mathcal{L}^{\prime}\right)=\operatorname{deg}(\mathcal{L})+\operatorname{deg}\left(\mathcal{L}^{\prime}\right)$.

By [GoW10, p. 498, Remark 15.30(2)], the degree of divisors (hence of invertible sheaves) on C is invariant under a change of the base field.
2.2 Curves over schemes. Let $f: C \rightarrow S$ be an S-curve, i.e., f is a morphism of schemes of finite presentation with one dimensional fibers. Under the assumption that f is flat and proper and that both S and C are integral, [BLR90, p. 238, Prop. 2] generalizes the definition of the degree to invertible sheaves on C (hence the definition of the degree of divisors on $C)$. We restrict ourselves to the only case we use in this work, where for each $s \in S$, the fiber $C_{s}=\operatorname{Spec}(\mathbb{k}(s)) \times{ }_{S} C$ is an integral curve over the residue field $\mathbb{k}(s)=\mathcal{O}_{S, s} / \mathfrak{m}_{S, s}$ of S at s. Let $i_{s}: C_{s} \rightarrow C$ be the canonical morphism. We consider an invertible sheaf \mathcal{L} on C and for each $s \in S$ let \mathcal{L}_{s} be the pull-back $i_{s}^{*} \mathcal{L}$. It is an invertible sheaf on the fiber C_{s} [BLR90, p. 238, last paragraph before Prop. 2]. Since S is integral, [BLR90, p. 238, Prop. 2] implies that $\operatorname{deg}\left(\mathcal{L}_{s}\right)$ (defined in Subsection 2.1) has a unique value on S, which we define as $\operatorname{deg}(\mathcal{L})$. It follows from Subsection 2.1 that the degree is additive and invariant under base change. In particular, if $S=\operatorname{Spec}(R)$ for some integral domain R with quotient field K, and we take s to be the generic point of S, we get that $\operatorname{deg}(D)=\operatorname{deg}\left(D_{K}\right)$ for each Cartier divisor D on C.

Finally, we note that the assumptions on $f: C \rightarrow S$ to be flat and proper are satisfied if $S=\operatorname{Spec}(R)$ (resp. $S=\operatorname{Spec}(L)$), where R is a Dedekind domain (resp. L is a field), and f is projective and surjective (or at least dominating). See for example [Liu06, p. 137, Prop. 3.9] and [Liu06, p. 108, Thm. 3.30]. These are the cases we consider in this work.
2.3 Subschemes attached to divisors. As in Subsection 2.2, let

$$
f: C \rightarrow S
$$

be an S-curve. Recall that a Cartier divisor D on C represented by data $\left(U_{i}, f_{i}\right)_{i \in I}$ is said to be effective if $f_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{C}\right)$ for each $i \in I$. In this case, D gives rise to a closed subscheme $C(D)$ of C such that

$$
\Gamma\left(U_{i}, \mathcal{O}_{C(D)}\right)=\Gamma\left(U_{i}, \mathcal{O}_{C}\right) / f_{i} \Gamma\left(U_{i}, \mathcal{O}_{C}\right)
$$

for each $i \in I$. We say that D is flat (resp. finite) over S if $C(D)$ is flat (resp. finite) over S. We say that a subset C_{0} of C is disjoint from D, if $C_{0} \cap C(D)=\emptyset$. Finally, note that if $S=\operatorname{Spec}(L)$ for some field L, then $\operatorname{deg}(D)=\operatorname{dim}_{L} \Gamma\left(C(D), \mathcal{O}_{C(D)}\right)$ [GoW10, p. 497, (15.9.1)].
2.4 Divisors of global sections. Let C be an integral scheme with function field F. We consider an invertible sheaf \mathcal{L} on C and a nonzero
global section $s \in \Gamma(C, \mathcal{L})$, and elaborate on [Liu06, p. 266, Exer. 7.1.13] to associate an effective Cartier divisor $\operatorname{div}(s)$ to s.

By definition, C can be covered by open subsets $U_{i}, i \in I$, such that $\left.\mathcal{L}\right|_{U_{i}}$ is a free $\left.\mathcal{O}_{C}\right|_{U_{i}}$-module of rank 1. Thus, for each $i \in I$ there exists $e_{i} \in \Gamma\left(U_{i}, \mathcal{L}\right)$ such that for each Zariski-open subset U of U_{i}, the element $\left.e_{i}\right|_{U}$ is a free generator of the $\Gamma\left(U, \mathcal{O}_{C}\right)$-module $\Gamma(U, \mathcal{L})$. In particular, there exists a unique $f_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{C}\right)$ such that $\left.s\right|_{U_{i}}=f_{i} e_{i}$. Moreover, for each additional $j \in I$ there exists $u_{i j} \in \Gamma\left(U_{i} \cap U_{j}, \mathcal{O}_{C}\right)^{\times}$such that $\left.e_{i}\right|_{U_{i} \cap U_{j}}=\left.u_{i j} \cdot e_{j}\right|_{U_{i} \cap U_{j}}$, hence $\left.u_{i j} \cdot f_{i}\right|_{U_{i} \cap U_{j}}=\left.f_{j}\right|_{U_{i} \cap U_{j}}$. Thus, the data $\left(U_{i}, f_{i}\right)_{i \in I}$ define an effective Cartier divisor $\operatorname{div}(s)$ on C.

For later use we say that e_{i} is a free $\left.\mathcal{O}_{C}\right|_{U_{i}}$-generator of $\left.\mathcal{L}\right|_{U_{i}}$.
By [Har77, p. 144, Def.], the invertible sheaf $\mathcal{L}(\operatorname{div}(s))$ associated with $\operatorname{div}(s)$ satisfies $\left.\mathcal{L}(\operatorname{div}(s))\right|_{U_{i}}=\left(\left.\mathcal{O}_{C}\right|_{U_{i}}\right) f_{i}^{-1}$ for each $i \in I$. It follows from the construction made in the preceding paragraph that the $\Gamma\left(U_{i}, \mathcal{O}_{C}\right)$-isomorphisms $\varphi_{i}: \Gamma\left(U_{i}, \mathcal{L}(\operatorname{div}(s))\right) \rightarrow \Gamma\left(U_{i}, \mathcal{L}\right)$ defined by $\varphi_{i}\left(s^{\prime} f_{i}^{-1}\right)=s^{\prime} e_{i}$ for each $s^{\prime} \in \Gamma\left(U_{i}, \mathcal{O}_{C}\right)$ combine to an isomorphism $\varphi: \mathcal{L}(\operatorname{div}(s)) \rightarrow \mathcal{L}$ of invertible sheaves on C.

Now we assume that C is an integral locally factorial proper curve over a Noetherian domain R (possibly a field). As in [Har77, p. 141, first part of the proof of Prop. 6.11] or [GoW10, p. 307, (11.13.4) and Thm. 11.38(2)], the Weil divisor that corresponds to $\operatorname{div}(s)$ is

$$
\begin{equation*}
\operatorname{div}_{\text {Weil }}(s)=\sum_{P} \operatorname{ord}_{P}(\operatorname{div}(s)) P, \tag{3}
\end{equation*}
$$

where P ranges over all prime divisors of C such that $P \cap U_{i} \neq \emptyset$ and $\operatorname{ord}_{P}(\operatorname{div}(s))=\operatorname{ord}_{P}\left(f_{i}\right)$ for each $i \in I$. Here, in analogy to the notation introduced in Example 1.6(b), ord P_{P} is the normalized discrete valuation of F that corresponds to the valuation ring $\mathcal{O}_{C, P}$. Thus, $\operatorname{ord}_{P}\left(f_{i}\right)$ is nonnegative and independent of the i that satisfies $P \cap U_{i} \neq \emptyset$, so $\operatorname{div}_{\text {Weil }}(s)$ is an effective Weil divisor. The finitely many prime divisors P of C with $\operatorname{ord}_{P}(\operatorname{div}(s))>0$ are called the zeros of s. In the notation of Subsection 2.3, the set of zeros of s is the underlying topological set of $C(\operatorname{div}(s))$. Hence, $\operatorname{div}(s)$ is disjoint to a subset C_{0} of C if each of the zeros of s is disjoint to C_{0}. We say that $\operatorname{div}(s)$ is flat and finite over an integral domain R if $C(\operatorname{div}(s))$ is flat and finite over R.

In addition to the assumptions made on C above, we now assume that $C_{\mathfrak{p}}$ is integral over $\mathbb{k}(\mathfrak{p})=\operatorname{Quot}(R / \mathfrak{p})$ for each $\mathfrak{p} \in \operatorname{Spec}(R)$ (this is the only case we use in this work). The degree of $\operatorname{div}(s)$ is defined as in Subsection 2.1 if C is a curve over a field. If C is a curve over R, then by Subsection 2.2, $\operatorname{deg}(\operatorname{div}(s))=\operatorname{deg}\left(\operatorname{div}(s)_{K}\right)$, where $K=\operatorname{Quot}(R)$. Since $\mathcal{L}(\operatorname{div}(s)) \cong \mathcal{L}$, we deduce that $\operatorname{deg}(\operatorname{div}(s))=\operatorname{deg}(\mathcal{L})$. It follows that $\operatorname{deg}\left(\operatorname{div}\left(s^{\prime}\right)\right)=\operatorname{deg}(\operatorname{div}(s))$ for each nonzero $s^{\prime} \in \Gamma(C, \mathcal{L})$.

If the zeros of s belong to a Zariski-open subscheme C_{0} of C, we may consider $\operatorname{div}(s)$ also as a divisor on C_{0}.
2.5 The section 1_{D}. Let C be an integral scheme with function field F. Let D be a Cartier divisor on C with representing data $\left(U_{i}, f_{i}\right)_{i \in I}$. One attaches an invertible sheaf $\mathcal{L}(D)$ on C such that $\left.\mathcal{L}(D)\right|_{U_{i}}=\left.\mathcal{O}_{C}\right|_{U_{i}} f_{i}^{-1}$, hence $\Gamma\left(U_{i}, \mathcal{L}(D)\right)=\Gamma\left(U_{i}, \mathcal{O}_{C}\right) f_{i}^{-1}$ for every $i \in I[\operatorname{Har} 77$, p. 144, Def.]. If D is an effective divisor, then $f_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{C}\right)$, so the unit of $F, 1=f_{i} f_{i}^{-1}$ belongs to $\Gamma\left(U_{i}, \mathcal{L}(D)\right)$ for each $i \in I$. Hence, there exists a global section $1_{D} \in \Gamma(C, \mathcal{L}(D))$ such that $\left.1_{D}\right|_{U_{i}}=1$ for each $i \in I$.

In the notation of Subsection 2.4, the Cartier divisor on C that corresponds to 1_{D} has $\left(U_{i}, f_{i}\right)_{i \in I}$ as representing data. Hence, $\operatorname{div}\left(1_{D}\right)=D$.
2.6 The ample sheaves $\mathcal{O}_{C}(k)$. Let A_{0} be a Noetherian integral domain and let $A=\bigoplus_{k=0}^{\infty} A_{k}$ be a graded integral domain over A_{0} such that

$$
A_{1}=\sum_{i=0}^{r} A_{0} t_{i} \quad \text { and } \quad A=A_{0}[\mathbf{t}]
$$

with $\mathbf{t}=\left(t_{0}, \ldots, t_{r}\right)$. Then, $C=\operatorname{Proj}(A)$ is isomorphic to a closed subscheme of $\mathbb{P}_{A_{0}}^{r}$ [Liu06, p. 53, Lemma 2.3.41], so C is projective over A_{0}. Hence, C is proper over A_{0} [Liu06, p. 108, Thm. 3.3.30]. We assume that C is a regular curve over A_{0}, in particular C is locally factorial [Liu06, p. 130, Thm. 4.2.16(b)]. As above, we also assume that $C_{\mathfrak{p}}$ is integral for each $\mathfrak{p} \in \operatorname{Spec}\left(A_{0}\right)$. Let F be the function field of C. Following Subsection 2.4, we attach to each nonzero $s \in A_{k}$ with k large an effective Weil divisor $\operatorname{div}_{\text {Weil }}(s)$ as follows:

We set $U=A_{1} \backslash\{0\}$ and consider $u \in U$. Recall that

$$
D_{+}(u)=\{\mathbf{p} \in C \mid u \notin \mathbf{p}\}
$$

and the ring $\Gamma\left(D_{+}(u), \mathcal{O}_{C}\right)$ consists of all the quotients $\frac{s}{u^{\prime}}$, where s is a homogeneous element of A and $\operatorname{deg}_{A}(s)=l$. The $\Gamma\left(D_{+}(u), \mathcal{O}_{C}\right)$-module

$$
\Gamma\left(D_{+}(u), \mathcal{O}_{C}(k)\right)
$$

consists of all quotients $\frac{s}{u^{j}}$, where s is a homogeneous element of A and $\operatorname{deg}_{A}(s)-j=k$ (see the proof of [Har77, p. 117, Prop. II.5.12(a)]). Writing $\frac{s}{u^{j}}=\frac{s}{u^{j+k}} u^{k}$, we see that u^{k} is a free $\left.\mathcal{O}_{C}\right|_{D_{+}(u) \text {-generator of }\left.\mathcal{O}_{C}(k)\right|_{D_{+}(u)} \text {. In }}$ particular, $\mathcal{O}_{C}(k)$ is an invertible sheaf on C [Har77, p. 117, Prop. II.5.12(a)].

For large k, Lemma 1.3 identifies $\Gamma\left(C, \mathcal{O}_{C}(k)\right)$ with A_{k}. Following Subsection 2.4, the Cartier divisor that corresponds to an element $s \in A_{k}$ (which we write as $\frac{s}{u^{k}} u^{k}$) is $\left(D_{+}(u), \frac{s}{u^{k}}\right)_{u \in U}$. By our assumptions on A, for each prime divisor P of C and, with \mathbf{p} the homogeneous prime ideal of A underlying P, there exists $u \in U \backslash \mathbf{p}$, so $\operatorname{ord}_{P}\left(\frac{s}{u^{k}}\right)$ is a nonnegative integer that does not depend on u. Hence, $\operatorname{div}_{\text {Weil }}(s)=\sum \operatorname{ord}_{P}\left(\frac{s}{u^{k}}\right) P$, where P ranges over all prime divisors of C.

It follows from this definition that if s^{\prime} is another homogeneous element of A of large A-degree, then $\operatorname{div}_{\text {Weil }}\left(s s^{\prime}\right)=\operatorname{div}_{\text {Weil }}(s)+\operatorname{div}_{\text {Weil }}\left(s^{\prime}\right)$.
2.7 Divisors of function fields. We assume in this subsection that the ring A_{0} introduced in Subsection 2.6 is a field L. Then, the scheme C
introduced in that section is a projective normal curve over L. We identify the prime divisors P of F / L with the closed points of C such that the valuation ring of P, considered as a prime divisor, coincides with the local ring of C at P, considered as a point of C. In particular, the degree of P over L as a prime divisor coincides with its degree over L as a point of C. Then, a divisor of F / L is a formal sum $D=\sum k_{P} P$, where P ranges over all prime divisors of F / L and all but finitely many of the integral coefficients k_{P} are zero [FrJ08, Section 3.1]. As in (2), $\operatorname{deg}(D)=\sum_{P} k_{P}[L(P): L]$.

If $f \in F^{\times}$, we write $\operatorname{div}(f)=\sum_{P} \operatorname{ord}_{P}(f) P$ (in accordance with Subsection 2.1). We also write

$$
\operatorname{div}_{0}(f)=\sum_{\operatorname{ord}_{P}(f)>0} \operatorname{ord}_{P}(f) P \quad \text { and } \quad \operatorname{div}_{\infty}(f)=-\sum_{\operatorname{ord}_{P}(f)<0} \operatorname{ord}_{P}(f) P
$$

for the zero divisor and the pole divisor, respectively, of f. Since

$$
\operatorname{div}(f)=\operatorname{div}_{0}(f)-\operatorname{deg}_{\infty}(f) \quad \text { and } \quad \operatorname{deg}(\operatorname{div}(f))=0
$$

[Che51, p. 18, Thm. 5], we have $\operatorname{deg}\left(\operatorname{div}_{0}(f)\right)=\operatorname{deg}\left(\operatorname{div}_{\infty}(f)\right)$. Note that if s and s^{\prime} are nonzero homogeneous elements of A of the same A-degree, then $f=\frac{s^{\prime}}{s} \in F^{\times}$, so $s^{\prime}=f s$. For each divisor P of C we choose $u \in U \backslash P$. Then, by Section 2.6,

$$
\begin{aligned}
\operatorname{ord}_{P}\left(\operatorname{div}_{\text {Weil }}\left(s^{\prime}\right)\right)=\operatorname{ord}_{P}\left(\frac{s^{\prime}}{u^{k}}\right) & =\operatorname{ord}_{P}(f)+\operatorname{ord}_{P}\left(\frac{s}{u^{k}}\right) \\
& =\operatorname{ord}_{P}\left(\operatorname{div}_{\text {Weil }}(f)\right)+\operatorname{ord}_{P}\left(\operatorname{div}_{\text {Weil }}(s)\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\operatorname{div}_{\text {Weil }}\left(s^{\prime}\right)=\operatorname{div}_{\text {Weil }}(f)+\operatorname{div}_{\text {Weil }}(s) . \tag{4}
\end{equation*}
$$

Therefore, $\operatorname{deg}\left(\operatorname{div}_{\text {Weil }}\left(s^{\prime}\right)\right)=\operatorname{deg}\left(\operatorname{div}_{\text {Weil }}(s)\right)$.
In the sequel we omit the subscript "Weil" from Weil divisors. However, occasionally we add a subscript L for the divisors of elements of F^{\times}to indicate the field of constants of F.

3. Continuity of divisors

We apply the identification of global sections of high degrees of twisted sheaves on a projective scheme with homogeneous polynomials to the case of a curve over a local field and prove a theorem about continuity of divisors of functions.

Throughout this section we consider a field L and a graded ring $A=$ $\bigoplus_{k=0}^{\infty} A_{k}$ over $L=A_{0}$ such that $A_{1}=\sum_{i=0}^{r} L t_{i}$ and $A=L\left[t_{0}, \ldots, t_{r}\right]$, with $t_{0}, \ldots, t_{r} \neq 0$. We assume that $C=\operatorname{Proj}(A)$ is an absolutely integral normal projective curve over L with function field F. In particular, F is a regular extension of L [FrJ08, p. 175, Cor. 10.2.2(b)].
3.1 Continuity. We assume in this section that L is a field equipped with an absolute value $\|$ which is either nonarchimedean and Henselian or \| is
archimedean and L is either real closed or algebraically closed with \mathbb{C} as the | |-completion. Note that, if L is separably closed, then L is Henselian with respect to every nonarchimedean absolute value [Jar91, Cor. 11.3].

We consider a normal absolutely integral projective curve C over L with function field F. We extend $|\mid$ to the algebraic closure \tilde{L} of L in the unique possible way and prove that for each large k the map $s \mapsto \operatorname{div}(s)$ from $\Gamma\left(C, \mathcal{O}_{C}(k)\right)$ to the set of divisors on C is $|\mid$-continuous in a sense that will become clear in Lemma 3.4.

Following Subsection 2.7, we identify the set of L-rational points $C(L)$ of C with the set of prime divisors of F / L of degree 1 . The absolute value $|\mid$ of L induces a topology on $C(L)$ (see [Mum88, p. 57, Sec. I.10] or [GPR95, p. 68 , Sec. 7]), so we may speak of an | |-open neighborhood U of a point \mathbf{p} in $C(L)$. The set U is defined by inequalities involving || and elements of L. If L^{\prime} is an algebraic extension of L, then the same inequalities define a neighborhood $U\left(L^{\prime}\right)$ of the unique point $\mathbf{p}_{L^{\prime}}$ of $C\left(L^{\prime}\right)$ that lies over \mathbf{p}. To simplify notation, we also write \mathbf{p} rather than $\mathbf{p}_{L^{\prime}}$.

Here are some useful remarks about the interaction of the | |-topology with the Zariski-topology.
(a) Let V be an absolutely integral affine variety in \mathbb{A}_{L}^{n} for some positive integer n. If U is a Zariski-open subset of V, then $U(L)$ is | |-open in $V(L)$ [Mum88, p. 57, (i)]. On the other hand, if $U(L)$ is a | |-open subset of $V(L)$ that contains a simple point (= nonsingular point) of V, then $U(L)$ is Zariski-dense in V [GeJ02, Prop. 8.2(b)].
(b) If L is algebraically closed, and U is a nonempty Zariski-open subset of V, then $U(L)$ is | |-dense in $V(L)$ [GeJ75, Lemma 2.2].
(c) If L is separably closed and U is a nonempty Zariski-open subset of V, then $U(L)$ contains a simple point of V [Lan58, p. 76, Prop. 9]. Hence, by (a), $U(L)$ is | |-dense in $V(L)$.
3.2 Total splitting. Let D be an effective divisor of F / L and N a finite separable extension of L. We say that D totally splits in $F N$ if the extension D_{N} of D to N is the sum $\sum_{i=1}^{m} P_{i}$ of distinct prime divisors of degree 1 of $F N / N$. In this case we also say that $D_{N}=\sum_{i=1}^{m} P_{i}$ is a total splitting of D in $F N$. Note that P_{i} has in this case a unique extension to a prime divisor $P_{i, N^{\prime}}$ of N^{\prime} for every separable algebraic extension N^{\prime} of N [Deu73, p. 128, Thm.]. Hence, if L^{\prime} is a separable algebraic extension of L and we set $N^{\prime}=N L^{\prime}$, then $D_{N^{\prime}}=\sum_{i=1}^{m} P_{i, N^{\prime}}$ is a total splitting of D in $F N^{\prime}$.

Given a divisor D of F / L, we consider the vector space

$$
\mathfrak{L}(D)=\left\{f \in F^{\times} \mid \operatorname{div}(f)+D \geq 0\right\} \cup\{0\}
$$

over L.

Lemma 3.3. In the above notation, let f be an element of F^{\times}with a total splitting $\operatorname{div}_{0}(f)_{N}=\sum_{i=1}^{m} P_{i}$ of $\operatorname{div}_{0}(f)$ in $F N$. For each i let U_{i} be an ||open neighborhood of P_{i} in $C(N)$. Let u_{1}, \ldots, u_{l} be elements of $\mathfrak{L}\left(\operatorname{div}_{\infty}(f)\right)$ and let b_{1}, \ldots, b_{l} be elements of L satisfying $f=\sum_{\lambda=1}^{l} b_{\lambda} u_{\lambda}$.

Then, there exists a real number $\gamma>0$ such that every separable algebraic extension L^{\prime} of L has the following property: if $b_{1}^{\prime}, \ldots, b_{l}^{\prime} \in L^{\prime}$ satisfy

$$
\left|b_{\lambda}^{\prime}-b_{\lambda}\right|<\gamma
$$

for $1 \leq \lambda \leq l$ and we set $f^{\prime}=\sum_{\lambda=1}^{l} b_{\lambda}^{\prime} u_{\lambda}$ and $N^{\prime}=N L^{\prime}$, then

$$
\operatorname{div}_{\infty}\left(f^{\prime}\right)_{N^{\prime}}=\operatorname{div}_{\infty}(f)_{N^{\prime}}
$$

and $\operatorname{div}_{0}\left(f^{\prime}\right)_{N^{\prime}}=\sum_{i=1}^{m} P_{i}^{\prime}$ is a total splitting of $\operatorname{div}_{0}\left(f^{\prime}\right)_{L^{\prime}}$ in $F N^{\prime}$ with $P_{i}^{\prime} \in U_{i}\left(N^{\prime}\right)$ for all i.
Proof. We may assume that $L^{\prime}=L$ and $N^{\prime}=N$. Then, we choose an L-basis v_{1}, \ldots, v_{d} for $\mathfrak{L}\left(\operatorname{div}_{\infty}(f)\right)$ and set $u_{\lambda}=\sum_{\delta=1}^{d} a_{\lambda \delta} v_{\delta}$ for some $a_{\lambda \delta} \in L$ and $\lambda=1 \ldots, l$. This gives

$$
f=\sum_{\delta=1}^{d}\left(\sum_{\lambda=1}^{l} b_{\lambda} a_{\lambda \delta}\right) v_{\delta} \quad \text { and } \quad f^{\prime}=\sum_{\delta=1}^{d}\left(\sum_{\lambda=1}^{l} b_{\lambda}^{\prime} a_{\lambda \delta}\right) v_{\delta} .
$$

Since the map

$$
\left(b_{1}^{\prime}, \ldots, b_{l}^{\prime}\right) \mapsto\left(\sum_{\lambda=1}^{l} b_{\lambda}^{\prime} a_{\lambda 1}, \ldots, \sum_{\lambda=1}^{l} b_{\lambda}^{\prime} a_{\lambda d}\right)
$$

is $\left|\mid\right.$-continuous, we may replace u_{1}, \ldots, u_{l} by v_{1}, \ldots, v_{d}, if necessary, to assume that u_{1}, \ldots, u_{l} form a basis of $\mathfrak{L}\left(\operatorname{div}_{\infty}(f)\right)$. Now we may apply [JaR08, Prop. 4.3] to conclude the existence of $\gamma>0$ that has the properties of the conclusion of the lemma.

Lemma 3.4. As above we consider an absolute valued field $(L,| |)$ which is Henselian, real closed, or algebraically closed. We also consider the normal absolutely integral projective curve $C=\operatorname{Proj}\left(L\left[t_{0}, \ldots, t_{r}\right]\right)$ over L with function field F introduced at the beginning of this section.

Next we consider a finite Galois extension N of L, sections $s, s_{1}, \ldots, s_{e} \in$ $\Gamma\left(C, \mathcal{O}_{C}(k)\right)$ with k large as in Remark 1.4, and elements $a_{1}, \ldots, a_{e} \in L$ such that $s=\sum_{\varepsilon=1}^{e} a_{\varepsilon} s_{\varepsilon}$ and $\operatorname{div}(s)_{N}=\sum_{i=1}^{m} P_{i}$ is a total splitting of $\operatorname{div}(s)$ in $F N$. For each i let U_{i} be an $\left|\mid\right.$-open neighborhood of P_{i} in $C(N)$.

Then, there exists a real number $\gamma>0$ such that if L^{\prime} is a separable algebraic extension of L and $a_{1}^{\prime}, \ldots, a_{e}^{\prime} \in L^{\prime}$ satisfy $\left|a_{\varepsilon}^{\prime}-a_{\varepsilon}\right|<\gamma$ for $\varepsilon=$ $1, \ldots, e$ and we set $s^{\prime}=\sum_{\varepsilon=1}^{e} a_{\varepsilon}^{\prime} s_{\varepsilon}$ and $N^{\prime}=N L^{\prime}$, then $\operatorname{div}\left(s^{\prime}\right)_{N^{\prime}}=\sum_{i=1}^{m} P_{i}^{\prime}$ is a total splitting of $\operatorname{div}\left(s^{\prime}\right)_{L^{\prime}}$ in $F N^{\prime}$ with $P_{i}^{\prime} \in U_{i}\left(N^{\prime}\right)$ for all i. Moreover, $\operatorname{deg}\left(\operatorname{div}\left(s^{\prime}\right)_{L^{\prime}}\right)=\operatorname{deg}\left(\operatorname{div}(s)_{L}\right)$.
Proof. Again, we may assume that $L^{\prime}=L$ and hence that $N^{\prime}=N$. Since t_{0} is nonzero, it vanishes at only finitely many points of C. Applying an
invertible linear transformation over L on the coordinates t_{0}, \ldots, t_{r}, we may assume that

$$
\begin{equation*}
t_{0}\left(P_{i}\right) \neq 0 \text { for all } i . \tag{1}
\end{equation*}
$$

Under this assumption we set $t=\frac{s}{t_{0}^{k}}=\sum_{\varepsilon=1}^{e} a_{\varepsilon} \frac{s_{\varepsilon}}{t_{0}^{k}}$.
Claim. $\operatorname{div}_{\mathbf{0}}(\boldsymbol{t})=\operatorname{div}(s)$. By (4) in Subsection 2.7,

$$
\begin{equation*}
k \cdot \operatorname{div}\left(t_{0}\right)+\operatorname{div}(t)=\operatorname{div}(s) . \tag{2}
\end{equation*}
$$

Consider a point $\mathbf{p} \in C(N)$. Since C is normal and N is a separable extension, C_{N} is also normal [Lan58, p. 146, Thm. 7], so the notation $\operatorname{ord}_{\mathbf{p}}$ makes sense. By (2),

$$
\begin{equation*}
k \cdot \operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}\left(t_{0}\right)_{N}\right)+\operatorname{ord}_{\mathbf{p}}(t)=\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}(s)_{N}\right) . \tag{3}
\end{equation*}
$$

By Subsection 2.4, $\operatorname{div}\left(t_{0}\right) \geq 0$. If $\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}\left(t_{0}\right)_{N}\right)>0$, then $t_{0}(\mathbf{p})=0$, so by (1), $\mathbf{p} \neq P_{1}, \ldots, P_{m}$. Hence, $s(\mathbf{p}) \neq 0$, that is $\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}(s)_{N}\right)=0$. Hence, by (3), ord $\mathbf{o r p}_{\mathbf{p}}(t)<0$. Therefore, $\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}_{0}(t)_{N}\right)=0$. If $\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}\left(t_{0}\right)_{N}\right)=0$, then by (3), $\operatorname{ord}_{\mathbf{p}}(t)=\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}(s)_{N}\right) \geq 0$, so

$$
\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}_{0}(t)_{N}\right)=\operatorname{ord}_{\mathbf{p}}\left(\operatorname{div}(s)_{N}\right) .
$$

Thus, the latter equality holds for all $\mathbf{p} \in C(N)$. This implies that

$$
\operatorname{div}_{0}(t)_{N}=\operatorname{div}(s)_{N}
$$

Since the map of the group of divisors of C into the group of divisors of C_{N} given by $D \mapsto D_{N}$ is injective, we conclude that $\operatorname{div}_{0}(t)=\operatorname{div}(s)$, as claimed.

Returning to the proof of the lemma, Lemma 3.3 gives a real number $\gamma>0$ such that if $a_{1}^{\prime}, \ldots, a_{e}^{\prime} \in L$ satisfy $\left|a_{\varepsilon}^{\prime}-a_{\varepsilon}\right|<\gamma$ for $\varepsilon=1, \ldots, e$, and we set $t^{\prime}=\sum_{\varepsilon=1}^{e} a_{\varepsilon}^{\prime} \frac{\frac{s \varepsilon}{t_{0}^{k}}}{t_{0}^{\prime}}$, then:
(4a) $\operatorname{div}_{0}\left(t^{\prime}\right)_{N}=\sum_{i=1}^{m} P_{i}^{\prime}$ is a total splitting of $\operatorname{div}_{0}\left(t^{\prime}\right)$ in $F N$ and $P_{i}^{\prime} \in$ $U_{i}(N)$ for $i=1, \ldots, m$.
(4b) $\operatorname{div}_{\infty}\left(t^{\prime}\right)_{N}=\operatorname{div}_{\infty}(t)_{N}$.
Finally, we observe that $s^{\prime}=\sum_{\varepsilon=1}^{e} a_{\varepsilon}^{\prime} s_{\varepsilon}$ satisfies $t^{\prime}=\frac{s^{\prime}}{t_{0}^{k}}$. As in (2), $k \cdot \operatorname{div}\left(t_{0}\right)_{N}+\operatorname{div}\left(t^{\prime}\right)_{N}=\operatorname{div}\left(s^{\prime}\right)_{N}$. Hence, by (2),

$$
\operatorname{div}\left(s^{\prime}\right)_{N}-\operatorname{div}\left(t^{\prime}\right)_{N}=\operatorname{div}(s)_{N}-\operatorname{div}(t)_{N},
$$

so $\operatorname{div}\left(s^{\prime}\right)_{N}-\operatorname{div}_{0}\left(t^{\prime}\right)_{N}+\operatorname{div}_{\infty}\left(t^{\prime}\right)_{N}=\operatorname{div}(s)_{N}-\operatorname{div}_{0}(t)_{N}+\operatorname{div}_{\infty}(t)_{N}$. It follows from the claim and from (4b) that $\operatorname{div}\left(s^{\prime}\right)_{N}=\operatorname{div}_{0}\left(t^{\prime}\right)_{N}$. We conclude from (4a) that $\operatorname{div}\left(s^{\prime}\right)_{N}=\sum_{i=1}^{m} P_{i}^{\prime}$ is a total splitting of $\operatorname{div}\left(s^{\prime}\right)$ in $F N$. Moreover, since F / L is regular, the degree of divisors is preserved under the extension of the base field from L to N [Deu73, p. 126, Thm.]. Hence, $\operatorname{deg}\left(\operatorname{div}\left(s^{\prime}\right)\right)=\operatorname{deg}\left(\operatorname{div}\left(s^{\prime}\right)_{N}\right)=m=\operatorname{deg}\left(\operatorname{div}(s)_{N}\right)=\operatorname{deg}(\operatorname{div}(s))$, as claimed.

4. Reduction steps

We set up the arithmetical objects that appear in the proof of Theorem C and prove two reduction lemmas. They allow us to replace V by an open subvariety and \mathcal{T} by a larger finite subset of \mathcal{V}. Finally we reduce Theorem C to the case where V is a curve.
4.1 A global field. Let K be a global field, that is K is either a number field or an algebraic function field of one variable over a finite field. Following Weil's Foundation [Wei62], we choose an algebraically closed field \mho that contains K and has a sufficiently large transcendence degree to contain all of the field extensions of K that appear in this work. If F is a subfield of \mho, then $F_{\text {sep }}$ and \tilde{F} denote the unique separable closure and the unique algebraic closure of F, respectively, in \mho. In particular, if F^{\prime} is an extension of F in \mho, then $\tilde{F} \subseteq \widetilde{F^{\prime}}$. We denote the absolute Galois $\operatorname{group} \operatorname{Gal}\left(F_{\text {sep }} / F\right)$ of F by $\operatorname{Gal}(F)$.
4.2 Convention for affine varieties. We follow [Liu06, p. 55, Def. 3.47] to define an affine variety over K as an affine scheme associated to a finitely generated algebra over K.

Let V be an absolutely integral affine variety over K which we assume to be a closed K-subscheme of \mathbb{A}_{K}^{n} for some n (in which case we also say that V is an absolutely integral affine variety in $\left.\mathbb{A}_{K}^{n}\right)$. Thus, $V=\operatorname{Spec}(K[\mathbf{x}])$, where $K[\mathbf{x}]=K[\mathbf{X}] / I$ with $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right), I$ is a prime ideal of $K[\mathbf{X}]$ such that $\tilde{K}[\mathbf{X}] / \tilde{K} I$ is an integral domain, and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i}=X_{i}+I$ for $i=1, \ldots, n$. In the classical algebraic geometry V is said to be (or more accurately, closely related to) the absolutely irreducible affine variety defined over K by I. Thus, in the classical language, V is just the set of all $\mathbf{a} \in \mho^{n}$ such that $f(\mathbf{a})=0$ for all $f \in I$. This is the language used in our previous papers [FrJ08], [GeJ75], [GeJ89], [GeJ02], [GJR00], [JaR94], [JaR95], [JaR98], and [JaR08] that we use in this work. Following that convention, for each subset A of \mho we set $V(A)=\left\{\mathbf{a} \in A^{n} \mid f(\mathbf{a})=0\right.$ for all $\left.f \in I\right\}$. Each a in $V(A)$ is an A-rational point of V. Embedding $F=K(\mathbf{x})$ in \mho, the n-tuple \mathbf{x} is then a generic point of V and $F=K(\mathbf{x})$ is a function field of V. It is a regular extension of K [FrJ08, p. 175,Cor. 10.2.2(a)]. As usual, if $\operatorname{dim}(V)=1$, we speak about a "curve" rather than a "variety".

We also write $V_{\text {simp }}$ for the Zariski-open subset of V that consists of all simple ($=$ nonsingular) points of V.
4.3 Convention for projective varieties. By an absolutely integral projective variety in \mathbb{P}_{K}^{r} we mean a closed absolutely integral subscheme W of \mathbb{P}_{K}^{r}. Thus, $W=\operatorname{Proj}(K[\mathbf{T}] / I)$, where $\mathbf{T}=\left(T_{0}, \ldots, T_{r}\right), I$ is a homogeneous prime ideal of the graded ring $K[\mathbf{T}]$ that does not contain every T_{i}, and $\tilde{K}[\mathbf{T}] / \tilde{K} I$ is an integral domain. For each extension L of K, we use the classical notation and identify $W(L)=\operatorname{Mor}_{K}(\operatorname{Spec}(L), W)$ with the set of all equivalence classes $\mathbf{a}=\left(a_{0}: \cdots: a_{r}\right)$ of $(r+1)$-tuples of elements
of L with respect to multiplication by an element of L^{\times}such that there exists $0 \leq j \leq r$ with $a_{j} \neq 0$ and $\left(a_{0}, \ldots, a_{r}\right)$ is a zero of I. In this case $K(\mathbf{a})=K\left(\frac{a_{0}}{a_{j}}, \ldots, \frac{a_{r}}{a_{j}}\right)$ is the residue field of \mathbf{a}.

In particular, a point $\mathbf{t}=\left(t_{0}: \cdots: t_{r}\right)$ of $W(\mho)$ is generic if the map $\left(T_{0}, \ldots, T_{r}\right) \mapsto\left(t_{0}, \ldots, t_{r}\right)$ induces a K-isomorphism

$$
K\left[T_{0}, \ldots, T_{r}\right] / I \rightarrow K\left[t_{0}, \ldots, t_{r}\right] .
$$

Equivalently, for each $\mathbf{a} \in W(\mho)$ the $\operatorname{map}\left(t_{0}, \ldots, t_{r}\right) \mapsto\left(a_{0}, \ldots, a_{r}\right)$ uniquely extends to a K-homomorphism

$$
K\left[t_{0}, \ldots, t_{r}\right] \rightarrow K\left[a_{0}, \ldots, a_{r}\right] .
$$

In this case $F=K(\mathbf{t})$ is the function field of W. This notation is independent of the representative $\left(t_{0}, \ldots, t_{r}\right)$ of \mathbf{t}. However, $K\left[t_{0}, \ldots, t_{r}\right]$ does depend on that representative of \mathbf{t}. Nevertheless, we abuse our notation and abbreviate $K\left[t_{0}, \ldots, t_{r}\right]$ by $K[\mathbf{t}]$ whenever t_{0}, \ldots, t_{r} are given.

The points of W are the homogeneous prime ideals of $K[\mathbf{t}]$ that do not contain $K[\mathbf{t}]_{+}$, i.e., do not contain the set $\left\{t_{0}, \ldots, t_{r}\right\}$. If $P \in W$, then $K(P)=\mathcal{O}_{W, P} / \mathfrak{m}_{W, P}$ is the residue field of P. In particular, if $K(P)=K$, then P is a K-rational point of K that corresponds to a point $\mathbf{a} \in W(K)$ such that the map $\mathbf{t} \rightarrow \mathbf{a}$ defines a K-isomorphism $K[\mathbf{t}] / P \cong K$.

For a field extension L of K, a point Q of $W_{L}=W \times_{\operatorname{Spec}(K)} \operatorname{Spec}(L)$ lies over P (equivalently, over a) if $Q \cap K[\mathbf{t}]=P$.
4.4 Local fields. We denote the set of all primes of K by \mathbf{P}_{K}. For each $\mathfrak{p} \in \mathbf{P}_{K}$ we fix a completion $\hat{K}_{\mathfrak{p}}$ of K at \mathfrak{p} in \mathcal{J} and an absolute \mathfrak{p}-adic value $\left.\left|\left.\right|_{\mathfrak{p}}\right.$ of $\hat{K}_{\mathfrak{p}}$. Then, we extend $|\right|_{\mathfrak{p}}$ to $\widehat{\hat{K}}_{\mathfrak{p}}$ in the unique possible way. In particular, $\left|\left.\right|_{\mathfrak{p}}\right.$ is now also defined on \tilde{K}.

Let V be an absolutely integral affine variety in \mathbb{A}_{K}^{n} (Subsection 4.2). The \mathfrak{p}-adic topology on $\widetilde{\hat{K}}_{\mathfrak{p}}$ defines a \mathfrak{p}-adic topology on $V\left(\widehat{\hat{K}_{\mathfrak{p}}}\right)$ (Subsection 3.1). For each extension L of K in $\widetilde{\hat{K}}_{\mathfrak{p}}$ we refer to a \mathfrak{p}-adically open (resp. closed) subsets of $V(L)$ as \mathfrak{p}-open (resp. \mathfrak{p}-closed). Each \mathfrak{p}-open subset Ω of $V(L)$ is a union of open \mathfrak{p}-balls defined by parameters from L. If L^{\prime} is an extension of L in $\widetilde{\hat{K}}_{\mathfrak{p}}$, then the same parameters define open \mathfrak{p}-balls in $V\left(L^{\prime}\right)$. Their union is a \mathfrak{p}-open subset of $V\left(L^{\prime}\right)$ that we denote by $\Omega\left(L^{\prime}\right)$. Note that a change in the parameters that define Ω does not effect the set $\Omega\left(L^{\prime}\right)$. In particular, $\Omega\left(L^{\prime}\right) \cap V(L)=\Omega(L)$.

Next we consider the field $K_{\mathfrak{p}}=K_{\text {sep }} \cap \hat{K}_{\mathfrak{p}}$ and call it a \mathfrak{p}-closure of K at \mathfrak{p}. It is a Henselian closure of K at \mathfrak{p} if $\mathfrak{p} \in \mathbf{P}_{K}$ is nonarchimedean, a real closure of K if \mathfrak{p} is archimedean and real, and \tilde{K} if \mathfrak{p} is archimedean and complex.

If K is a number field, then $\operatorname{char}(K)=0$, so $K_{\text {sep }}=\tilde{K}$, hence

$$
K_{\mathfrak{p}}=\tilde{K} \cap \hat{K}_{\mathfrak{p}} .
$$

If K is a function field of one variable over a finite field, then $\hat{K}_{\mathfrak{p}}$ is a regular extension of $K_{\mathfrak{p}}$ [Jar94, Lemma 2.2], in particular $K_{\mathfrak{p}}=\tilde{K} \cap \hat{K}_{\mathfrak{p}}$. Thus, the latter relation holds in both cases.
4.5 Holomorphy domains. For each $\mathfrak{p} \in \mathbf{P}_{K}$ and a subfield M of $\widetilde{\hat{K}}_{\mathfrak{p}}$ we consider the closed disc

$$
\mathcal{O}_{M, \mathfrak{p}}=\left\{\left.x \in M| | x\right|_{\mathfrak{p}} \leq 1\right\}
$$

of M at \mathfrak{p}. We omit \mathfrak{p} from $\mathcal{O}_{M, \mathfrak{p}}$ if $\hat{K}_{\mathfrak{p}} \subseteq M \subseteq \widetilde{\hat{K}_{\mathfrak{p}}}$. If \mathfrak{p} is nonarchimedean, then $\mathcal{O}_{M, \mathfrak{p}}$ is a valuation ring of rank 1 of M.

Next we consider a subset \mathcal{U} of \mathbf{P}_{K} and a field $K \subseteq M \subseteq \tilde{K}$. Let \mathcal{U}_{M} be the set of all primes of M that lie over \mathcal{U}. If $\mathfrak{q} \in \mathcal{U}_{M}$ lies over $\mathfrak{p} \in \mathcal{U}$, then we denote the unique absolute value of M that extends $\left|\left.\right|_{\mathfrak{p}}\right.$ to M and represents \mathfrak{q} by $\left.\left|\left.\right|_{\mathfrak{q}}\right.$. In this case there exists $\tau \in \operatorname{Gal}(K)$ such that $| x\right|_{\mathfrak{q}}=\left|x^{\tau}\right|_{\mathfrak{p}}$ for each $x \in M$. Conversely, the latter condition defines \mathfrak{q}. We set

$$
\mathcal{O}_{M, \mathcal{U}}=\bigcap_{\mathfrak{q} \in \mathcal{U}_{M}}\left\{\left.x \in M| | x\right|_{\mathfrak{q}} \leq 1\right\}
$$

for the \mathcal{U}-holomorphy domain of M. (Note that in general $\mathcal{O}_{M,\{\mathfrak{p}\}} \neq \mathcal{O}_{M, \mathfrak{p}}$.) If \mathcal{U} consists of nonarchimedean primes, then $\mathcal{O}_{M, \mathcal{U}}$ is the integral closure of $\mathcal{O}_{K, \mathcal{U}}$ in M [Lan58, p. 12, Prop. 4]. If \mathcal{U} is arbitrary but M is Galois over K, then

$$
\mathcal{O}_{M, \mathcal{U}}=\bigcap_{\mathfrak{p} \in \mathcal{U}} \bigcap_{\tau \in \operatorname{Gal}(K)} \mathcal{O}_{M, \mathfrak{p}}^{\tau}
$$

Note that
(1) if $\mathcal{U} \subseteq \mathcal{U}^{\prime} \subseteq \mathbf{P}_{K}$, then $\mathcal{O}_{M, \mathcal{U}^{\prime}} \subseteq \mathcal{O}_{M, \mathcal{U}}$.
4.6 Basic objects. In the number field case (i.e., $\operatorname{char}(K)=0$), we denote the set of all nonarchimedean primes of K by $\mathbf{P}_{K, \text { fin }}$. In the function field case, where $p=\operatorname{char}(K)>0$, we fix a separating transcendence element t_{K} for K / \mathbb{F}_{p} and let $\mathbf{P}_{K, \text { fin }}=\left\{\left.\mathfrak{p} \in \mathbf{P}_{K}| | t_{K}\right|_{\mathfrak{p}} \leq 1\right\}$. In both cases $\mathbf{P}_{K, \text { fin }}$ is cofinite in \mathbf{P}_{K} and we set

$$
\mathcal{O}_{K}=\mathcal{O}_{K, \mathbf{P}_{K, \mathrm{fin}}}=\left\{\left.x \in K| | x\right|_{\mathfrak{p}} \leq 1 \text { for all } \mathfrak{p} \in \mathbf{P}_{K, \mathrm{fin}}\right\}
$$

If K is a number field, then \mathcal{O}_{K} is the integral closure of \mathbb{Z} in K. In the function field case \mathcal{O}_{K} is the integral closure of $\mathbb{F}_{p}\left[t_{K}\right]$ in K. In both cases \mathcal{O}_{K} is a Dedekind domain [CaF67, p. 13, Prop. 1]. Following the convention in algebraic number theory, we call \mathcal{O}_{K} the ring of integers of K.

Next we choose a finite (possibly empty) subset \mathcal{S} of \mathbf{P}_{K}, set

$$
K_{\mathrm{tot}, \mathcal{S}}=\bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\tau \in \operatorname{Gal}(K)} K_{\mathfrak{p}}^{\tau}
$$

and observe that $K_{\mathrm{tot}, \mathcal{S}}$ is the maximal Galois extension of K in which each $\mathfrak{p} \in \mathcal{S}$ totally splits.

We also choose a nonempty proper subset \mathcal{V} of \mathbf{P}_{K} that contains \mathcal{S}.
4.7 Strong approximation. Let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \text { fin }}$. Thus, by (1), $\mathcal{O}_{K} \subseteq \mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}$.

Given an absolutely integral affine variety V in \mathbb{A}_{K}^{n} for some positive integer n, we consider for each $\mathfrak{p} \in \mathcal{T}$:
(3a) a finite Galois extension $L_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$, such that $L_{\mathfrak{p}}=K_{\mathfrak{p}}$ if $\mathfrak{p} \in \mathcal{S}$, and
(3b) a nonempty \mathfrak{p}-open subset $\Omega_{\mathfrak{p}}$ of $V_{\text {simp }}\left(L_{\mathfrak{p}}\right)$, invariant under the action of $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$.
Assuming that
(3c) $V\left(\mathcal{O}_{\tilde{K}, \mathfrak{p}}\right) \neq \emptyset$, equivalently that $V\left(\mathcal{O}_{K_{\text {sep }, \mathfrak{p}}}\right) \neq \emptyset[$ GeJ75, Lemma 2.4], for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$,
we say that $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ is approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, V$.
Given a field $K \subseteq M \subseteq K_{\text {tot, } \mathcal{S}}$, we write

$$
\left(M, K, \mathcal{S}, \mathcal{V}, V, \mathcal{T},\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}\right) \models \operatorname{SAT}
$$

if
(4) there exists $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ such that $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}$ and all $\tau \in \operatorname{Gal}(K)$.
We write $(M, K, \mathcal{S}, \mathcal{V}, V) \models$ SAT if
(5) $\left(M, K, \mathcal{S}, \mathcal{V}, V, \mathcal{T},\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}\right) \models$ SAT for all finite subsets \mathcal{T} of \mathcal{V} that contain \mathcal{S} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \text { fin }}$ and for all approximation data $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, V$.
Finally, we write $(M, K, \mathcal{S}, \mathcal{V}) \models$ SAT and say that M satisfies the strong approximation theorem for $K, \mathcal{S}, \mathcal{V}$ if
(6) $(M, K, \mathcal{S}, \mathcal{V}, V) \models$ SAT for every absolutely integral affine variety V in \mathbb{A}_{K}^{n} for some positive integer n.
Note that all \mathfrak{p}-closures of K at a given $\mathfrak{p} \in \mathbf{P}_{K}$ are K-isomorphic. Hence, Conditions (3a)-(3c), (4), (5), and (6) are independent of the choices of the closures.
4.8 Fixing K, \mathcal{S}, and \mathcal{V}. For the rest of the work we fix the global field K, the proper subset \mathcal{V} of \mathbf{P}_{K}, and the finite subset \mathcal{S} of \mathcal{V}, as in Subsection 4.6. Let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} and satisfies $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K \text {,fin }}$. Let V be an absolutely integral affine variety over K in \mathbb{A}_{K}^{n} for some positive integer n and let $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ be approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, V$.

Remark 4.9. Conditions (3a)-(3c) can be reformulated in terms of completions instead of closures at primes of K. Indeed, suppose that for each $\mathfrak{p} \in \mathcal{T}$ we are given a finite Galois extension $\hat{L}_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$, such that $\hat{L}_{\mathfrak{p}}=\hat{K}_{\mathfrak{p}}$ if $\mathfrak{p} \in \mathcal{S}$, and a nonempty \mathfrak{p}-open subset $\hat{\Omega}_{\mathfrak{p}}$ of $V_{\text {simp }}\left(\hat{L}_{\mathfrak{p}}\right)$, invariant under the action of $\operatorname{Gal}\left(\hat{L}_{\mathfrak{p}} / \hat{K}_{\mathfrak{p}}\right)$. Then, with $L_{\mathfrak{p}}=\hat{L}_{\mathfrak{p}} \cap K_{\text {sep }}$, the \mathfrak{p}-open subset $\Omega_{\mathfrak{p}}=\hat{\Omega}_{\mathfrak{p}} \cap V\left(L_{\mathfrak{p}}\right)$ of $V\left(L_{\mathfrak{p}}\right)$ is nonempty.

Indeed, if $\mathfrak{p} \in \mathbf{P}_{K, \text { fin }}$, then by [JaR98, Remark 1.6], $V\left(L_{\mathfrak{p}}\right)$ is \mathfrak{p}-dense in $V\left(\hat{L}_{\mathfrak{p}}\right)$. If $\mathfrak{p} \in \mathbf{P}_{K, \text { inf }}$ is real, then $L_{\mathfrak{p}}$ and $\hat{L}_{\mathfrak{p}}$ are real closed, so $\hat{L}_{\mathfrak{p}}$ is an
elementary extension of $L_{\mathfrak{p}}$ as ordered fields [Pre84, p. 51, Cor. 5.2]. In particular, $V\left(L_{\mathfrak{p}}\right)$ is \mathfrak{p}-dense in $V\left(\hat{L}_{\mathfrak{p}}\right)$. Finally, if $\mathfrak{p} \in \mathbf{P}_{K, \text { inf }}$ is complex, then $L_{\mathfrak{p}}=\tilde{\mathbb{Q}}, \hat{L}_{\mathfrak{p}}$ is isomorphic to \mathbb{C} and there exists a real closed field $L_{\mathfrak{p}, 0}$ such that $L_{\mathfrak{p}}=L_{\mathfrak{p}, 0}(\sqrt{-1})$, and the pair $\left(\hat{L}_{\mathfrak{p}}, \hat{L}_{\mathfrak{p}, 0}\right)$, with $\hat{L}_{\mathfrak{p}, 0}$ being the \mathfrak{p}-closure of $L_{\mathfrak{p}, 0}$ in $\hat{L}_{\mathfrak{p}}$, is isomorphic to (\mathbb{C}, \mathbb{R}). The \mathfrak{p}-density of $V\left(L_{\mathfrak{p}}\right)$ in $V\left(\hat{L}_{\mathfrak{p}}\right)$ follows in this case from the fact that $\hat{L}_{\mathfrak{p}, 0}$ is an elementary extension of $L_{\mathfrak{p}, 0}$ as ordered fields.

Now we choose $\hat{\mathbf{z}} \in \hat{\Omega}_{\mathfrak{p}}$ and $\varepsilon>0$ such that

$$
\left\{\mathbf{z} \in V\left(\hat{L}_{\mathfrak{p}}\right)\left||\mathbf{z}-\hat{\mathbf{z}}|_{\mathfrak{p}}<\varepsilon\right\} \subseteq \hat{\Omega}_{\mathfrak{p}} .\right.
$$

Since $L_{\mathfrak{p}}$ is \mathfrak{p}-dense in $\hat{L}_{\mathfrak{p}}$, there exists $\mathbf{a} \in L_{\mathfrak{p}}^{n}$ that satisfies $|\mathbf{a}-\hat{\mathbf{z}}|_{\mathfrak{p}}<\frac{\varepsilon}{2}$. Since $\hat{L}_{\mathfrak{p}}$ is an elementary extension of $L_{\mathfrak{p}}$ as ordered fields, there exists $\mathbf{z} \in V\left(L_{\mathfrak{p}}\right)$ such that $|\mathbf{z}-\mathbf{a}|_{\mathfrak{p}}<\frac{\varepsilon}{2}$. Then, $|\mathbf{z}-\hat{\mathbf{z}}|_{\mathfrak{p}}<\varepsilon$, so $\mathbf{z} \in \hat{\Omega}_{\mathfrak{p}} \cap V\left(L_{\mathfrak{p}}\right)$, as desired.

Conversely, given $L_{\mathfrak{p}}$ and $\Omega_{\mathfrak{p}}$ as in (3b), we may consider $\hat{L}_{\mathfrak{p}}=\hat{K}_{\mathfrak{p}} L_{\mathfrak{p}}$ and let $\hat{\Omega}_{\mathfrak{p}}=\Omega_{\mathfrak{p}}\left(\hat{L}_{\mathfrak{p}}\right)$. Then, $\hat{\Omega}_{\mathfrak{p}}$ is a nonempty \mathfrak{p}-open subset of $V_{\text {simp }}\left(\hat{L}_{\mathfrak{p}}\right)$.

By Abraham Robinson, the theory of algebraically closed valued fields (with nontrivial valuation) is model complete [Pre86, p. 240, Kor. 4.18]. Hence, we could have replaced Condition (3c) by the condition: $V\left(\mathcal{O}_{\widetilde{K}_{\mathrm{p}}}\right) \neq \emptyset$ for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$.

In proving the strong approximation theorem for $K, \mathcal{S}, \mathcal{V}$, we may choose $\mathcal{T}, V,\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)$ with some extra properties. This is proved in the following lemma.
Lemma 4.10. Let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \text { fin }}, \quad V$ an absolutely integral affine variety in \mathbb{A}_{K}^{n} for some positive integer n, and $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, V$. We consider a field extension M of K in $K_{\mathrm{tot}, \mathcal{S}}$. Then, in order to prove that

$$
\left(M, K, \mathcal{S}, \mathcal{V}, V, \mathcal{T},\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}\right) \models \mathrm{SAT},
$$

we may
(a) replace $\Omega_{\mathfrak{p}}$, for each $\mathfrak{p} \in \mathcal{T}$, by $\Omega_{\mathfrak{p}} \cap U\left(L_{\mathfrak{p}}\right)$, where U is a given nonempty Zariski-open affine subset of V defined by polynomial inequalities with coefficients in K,
(b) replace \mathcal{T} by any larger finite subset \mathcal{T}^{\prime} of \mathcal{V} and extend $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ to any approximation data $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}^{\prime}}$ for $K, \mathcal{S}, \mathcal{T}^{\prime}, \mathcal{V}, V$,
(c) replace V by any absolutely integral affine variety V^{\prime} in $\mathbb{A}_{K}^{n^{\prime}}$, for some positive integer n^{\prime}, which is birationally equivalent to V, and
(d) replace V by any nonempty Zariski-open affine subvariety V_{0} of V defined by polynomial inequalities with coefficients in K, considered as an affine variety in \mathbb{A}_{K}^{n+1}; in other words, if $V=\operatorname{Spec}(B)$ is an affine variety over K, replace V by the Zariski-open subset

$$
D(f)=\{\mathfrak{p} \in B \mid f \notin \mathfrak{p}\}
$$

for some nonzero $f \in B$, and identify $D(f)$ with $\operatorname{Spec}\left(B\left[f^{-1}\right]\right)$.
Proof. (a) Since $U\left(L_{\mathfrak{p}}\right)$ is \mathfrak{p}-open in $V\left(L_{\mathfrak{p}}\right)$ (Statement (a) of Subsection 3.1), $\Omega_{\mathfrak{p}}^{\prime}=\Omega_{\mathfrak{p}} \cap U\left(L_{\mathfrak{p}}\right)$ is also \mathfrak{p}-open in $V\left(L_{\mathfrak{p}}\right)$. Since $\Omega_{\mathfrak{p}}$ contains a simple point of V (by (3b)), $\Omega_{\mathfrak{p}}$ is Zariski-dense in V (Statement (a) of Subsection 3.1), hence $\Omega_{\mathfrak{p}}^{\prime} \neq \emptyset$. Moreover, since $\Omega_{\mathfrak{p}}$ is invariant under $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$, so is $\Omega_{\mathfrak{p}}^{\prime}$. Finally, if $\mathbf{z} \in U\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ and $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}^{\prime}$ for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$, then $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ and $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$, as desired.
(b) Consider $\mathfrak{p} \in \mathcal{T}^{\prime} \backslash \mathcal{T}$. By assumption, \mathfrak{p} is finite. $V\left(\mathcal{O}_{K_{\text {sep }}, \mathfrak{p}}\right) \neq \emptyset$ by (3c). Since $V_{\text {simp }}$ is nonempty and Zariski-open in V and $V\left(\mathcal{O}_{K_{\text {sep }, \mathfrak{p}}}\right)$ is \mathfrak{p}-open in $V\left(K_{\text {sep }}\right)$, we have by Subsection 3.1(c), that $V_{\text {simp }}\left(\mathcal{O}_{\left.K_{\text {sep }, \mathfrak{p}}\right)} \neq \emptyset\right.$. Hence, we may choose a finite Galois extension $L_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$ such that

$$
\Omega_{\mathfrak{p}}=V_{\text {simp }}\left(\mathcal{O}_{L_{\mathfrak{p}}, \mathfrak{p}}\right) \neq \emptyset
$$

Since $V_{\text {simp }}$ is Zariski-open in V and $V\left(\mathcal{O}_{L_{\mathfrak{p}}, \mathfrak{p}}\right)$ is \mathfrak{p}-open in $V\left(L_{\mathfrak{p}}\right)$, the set $\Omega_{\mathfrak{p}}$ is \mathfrak{p}-open in $V\left(L_{\mathfrak{p}}\right)$ (Subsection 3.1(a)). Since $V_{\text {simp }}$ is defined over K, the set $\Omega_{\mathfrak{p}}$ is invariant under the action of $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$.

Thus, $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}^{\prime}}$ is approximation data for $K, \mathcal{S}, \mathcal{T}^{\prime}, \mathcal{V}, V$. If

$$
\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V}} \backslash \mathcal{T}^{\prime}\right)
$$

and $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}^{\prime}$ and $\tau \in \operatorname{Gal}(K)$, then $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$, and $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}} \subseteq V\left(\mathcal{O}_{L_{\mathfrak{p}}, \mathfrak{p}}\right)$ for all $\mathfrak{p} \in \mathcal{T}^{\prime} \backslash \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$. It follows that $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$, as desired.
(c) Since V and V^{\prime} are birationally equivalent over K, there exists a K-isomorphism φ of a nonempty Zariski-open affine subset V_{0} of V onto a nonempty Zariski-open affine subset V_{0}^{\prime} of V^{\prime}. Both V_{0} and V_{0}^{\prime} are absolutely integral affine varieties over K. Hence, φ corresponds to an isomorphism from the coordinate ring of V_{0}^{\prime} onto the coordinate ring of V_{0} [Liu06, p. 48, Lemma 2.3.23]. Thus, both φ and φ^{-1} are defined by polynomials with coefficients in K. We choose a finite subset \mathcal{T}^{\prime} of \mathcal{V} that contains \mathcal{T} such that all of those coefficients belong to $\mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}^{\prime}$.

Next we choose $\mathbf{z}_{0} \in V^{\prime}(\tilde{K})$ and extend \mathcal{T}^{\prime} within \mathcal{V} to assume that $\mathbf{z}_{0} \in$ $V^{\prime}\left(\mathcal{O}_{\tilde{K}, \mathcal{V}} \backslash \mathcal{T}^{\prime}\right)$. By ($3 \mathfrak{b}$), for each $\mathfrak{p} \in \mathcal{T}, \Omega_{\mathfrak{p}}$ is a nonempty \mathfrak{p}-open subset of $V_{\text {simp }}\left(L_{\mathfrak{p}}\right)$ which is invariant under $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$. Hence, by Subsection 3.1(a), $\Omega_{\mathfrak{p}} \cap V_{0, \operatorname{simp}}\left(L_{\mathfrak{p}}\right)$ is a nonempty \mathfrak{p}-open subset of $V_{0, \text { simp }}\left(L_{\mathfrak{p}}\right)$ which is invariant under $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$. Moreover, φ maps $V_{0, \text { simp }}\left(L_{\mathfrak{p}}\right) \mathfrak{p}$-homeomorphically onto $V_{0, \text { simp }}^{\prime}\left(L_{\mathfrak{p}}\right)$, so $\Omega_{\mathfrak{p}}^{\prime}=\varphi\left(\Omega_{\mathfrak{p}} \cap V_{0, \text { simp }}\left(L_{\mathfrak{p}}\right)\right)$ is a nonempty \mathfrak{p}-open subset of $V_{0, \text { simp }}^{\prime}\left(L_{\mathfrak{p}}\right)$, hence also of $V_{\text {simp }}^{\prime}\left(L_{\mathfrak{p}}\right)$, which is invariant under $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$.

By Condition (3c), for each $\mathfrak{p} \in \mathcal{T}^{\prime} \backslash \mathcal{T}, V\left(\mathcal{O}_{K_{\text {sep }, ~}}\right) \neq \emptyset$. By Subsection 3.1(c), there exists $\mathbf{z}_{\mathfrak{p}} \in V_{0, \text { simp }}\left(\mathcal{O}_{K_{\text {sep }}, \mathfrak{p}}\right)$. Let $L_{\mathfrak{p}}$ be a finite Galois extension of $K_{\mathfrak{p}}$ with $\mathbf{z}_{\mathfrak{p}} \in V_{0, \text { simp }}\left(\mathcal{O}_{L_{\mathfrak{p}}, \mathfrak{p}}\right)$. Then, $\Omega_{\mathfrak{p}}^{\prime}=\varphi\left(V_{0, \operatorname{simp}}\left(\mathcal{O}_{L_{\mathfrak{p}}, \mathfrak{p}}\right)\right)$ is a nonempty \mathfrak{p}-open subset of $V_{0, \text { simp }}^{\prime}\left(L_{\mathfrak{p}}\right)$, hence also of $V_{\text {simp }}^{\prime}\left(L_{\mathfrak{p}}\right)$, which is invariant under the action of $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$. Thus, $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}^{\prime}\right)_{\mathfrak{p} \in \mathcal{T}^{\prime}}$ is approximation data for $K, \mathcal{S}, \mathcal{T}^{\prime}, \mathcal{V}, V^{\prime}$.

We assume that there exists $\mathbf{z}^{\prime} \in V^{\prime}\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}^{\prime}}\right)$ such that $\left(\mathbf{z}^{\prime}\right)^{\tau} \in \Omega_{\mathfrak{p}}^{\prime}$ for all $\mathfrak{p} \in \mathcal{T}^{\prime}$ and $\tau \in \operatorname{Gal}(K)$. Since \mathcal{T}^{\prime} is nonempty and $\Omega_{\mathfrak{p}}^{\prime} \subseteq V_{0, \text { simp }}^{\prime}\left(L_{\mathfrak{p}}\right)$ for $\mathfrak{p} \in \mathcal{T}^{\prime}$, we have $\mathbf{z}^{\prime} \in V_{0}^{\prime}(\tilde{K})$. Moreover, since the coordinates of \mathbf{z}^{\prime} belong to $\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}^{\prime}}$, we have $\mathbf{z}^{\prime} \in V_{0}^{\prime}\left(\mathcal{O}_{M, \mathcal{V}} \mathcal{T}^{\prime}\right)$. By the choice of \mathcal{T}^{\prime},

$$
\begin{aligned}
\mathbf{z} & =\varphi^{-1}\left(\mathbf{z}^{\prime}\right) \\
& \in V_{0}\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}^{\prime}}\right) \cap \bigcap_{\mathfrak{p} \in \mathcal{T}^{\prime}} \bigcap_{\mathcal{T}} \bigcap_{\tau \in \operatorname{Gal}(K)} V_{0, \operatorname{simp}}\left(\mathcal{O}_{L_{\mathfrak{p}}, \mathfrak{p}}^{\tau}\right) \cap \bigcap_{\mathfrak{p} \in \mathcal{T}} \bigcap_{\tau \in \operatorname{Gal}(K)} \Omega_{\mathfrak{p}}^{\tau} .
\end{aligned}
$$

Hence, $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ and $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$, as desired.
(d) V_{0} is birationally equivalent over K to V, so we may use rule (c).

Remark 4.11 (Units). Let c be a nonzero element of $K_{\text {sep }}$, let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K \text {,fin }}$, and let M be an extension of K in $K_{\text {tot, } \mathcal{S}}$. Consider the finite subset

$$
\mathcal{T}^{\prime}=\mathcal{T} \cup\left\{\left.\mathfrak{p} \in \mathcal{V}| | c^{\tau}\right|_{\mathfrak{p}} \neq 1 \text { for at least one } \tau \in \operatorname{Gal}(K)\right\}
$$

of \mathcal{V}. Thus, $\left|c^{\tau}\right|_{\mathfrak{p}}=1$ for all $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}^{\prime}$ and all $\tau \in \operatorname{Gal}(K)$. Hence, c is a unit of $\mathcal{O}_{K(c), \mathcal{V} \backslash \mathcal{T}^{\prime}}$. It follows from Lemma 4.10 that in order to prove that $\left(M, K, \mathcal{S}, \mathcal{V}, V, \mathcal{T},\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}\right) \models$ SAT for a given absolutely integral affine variety V in \mathbb{A}_{K}^{n} for some positive integer n and approximation data $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, V$, we may assume that c is a unit of $\mathcal{O}_{K(c), \mathcal{V}} \backslash \mathcal{T}$.

We apply Lemma 4.10 to reduce the strong approximation theorem to the case of curves.

Lemma 4.12. Let M be an extension of K in $K_{\mathrm{tot}, \mathcal{S}}$. Suppose

$$
(M, K, \mathcal{S}, \mathcal{V}, C) \models \mathrm{SAT}
$$

for every positive integer m and every absolutely integral affine curve C in \mathbb{A}_{K}^{m}. Then, $(M, K, \mathcal{S}, \mathcal{V}) \models \operatorname{SAT}$.
Proof. Let V be an absolutely integral affine variety in \mathbb{A}_{K}^{n} for some positive integer n. Let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} such that

$$
\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \mathrm{fin}} .
$$

Let $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ be approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, V$. We choose a finite separable extension K^{\prime} of K and a point $\mathbf{z}_{0} \in V\left(K^{\prime}\right)$. Then, we choose a finite subset \mathcal{T}^{\prime} of \mathcal{V} that contains \mathcal{T} such that $\mathbf{z}_{0} \in V\left(\mathcal{O}_{K^{\prime}, \mathcal{V} \backslash \mathcal{T}^{\prime}}\right)$, hence also $\mathbf{z}_{0} \in V\left(\mathcal{O}_{K_{\text {sep }, \mathfrak{p}}}\right)$, for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}^{\prime}$. By Lemma 4.10, we may replace \mathcal{T} by \mathcal{T}^{\prime} to assume that $\mathbf{z}_{0} \in V\left(\mathcal{O}_{K_{\text {sep }, \mathfrak{p}}}\right)$ for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$.

Now we choose for each $\mathfrak{p} \in \mathcal{T}$ a point $\mathbf{z}_{\mathfrak{p}} \in \Omega_{\mathfrak{p}} \subseteq V\left(L_{\mathfrak{p}}\right)$. Then we apply [JaR98, Lemma 10.1] to find an absolutely integral affine curve C on V over K that goes through \mathbf{z}_{0} and $\mathbf{z}_{\mathfrak{p}}$ for every $\mathfrak{p} \in \mathcal{T}$. Moreover, since by (3b) each of the points $\mathbf{z}_{\mathfrak{p}}$ with $\mathfrak{p} \in \mathcal{T}$ is simple on V, that lemma allows us to choose
C such that each of those $\mathbf{z}_{\mathfrak{p}}$ is also simple on C. Thus, $\mathbf{z}_{0} \in C\left(\mathcal{O}_{K_{\text {sep }}, \mathfrak{p}}\right)$ for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$ and $\mathbf{z}_{\mathfrak{p}} \in \Omega_{\mathfrak{p}} \cap C_{\text {simp }}\left(L_{\mathfrak{p}}\right) \subseteq C_{\text {simp }}\left(L_{\mathfrak{p}}\right)$ for each $\mathfrak{p} \in \mathcal{T}$.

It follows that $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}} \cap C_{\text {simp }}\left(L_{\mathfrak{p}}\right)\right)_{\mathfrak{p} \in \mathcal{T}}$ is approximation data for K, \mathcal{S}, $\mathcal{T}, \mathcal{V}, C$. By assumption, there exists $\mathbf{z} \in C\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ such that

$$
\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}} \cap C_{\text {simp }}\left(L_{\mathfrak{p}}\right)
$$

for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$. Therefore, $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V}} \backslash \mathcal{T}\right)$ and $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}$ and $\tau \in \operatorname{Gal}(K)$. We conclude that $(M, K, \mathcal{S}, \mathcal{V}, V) \neq$ SAT. It follows that $(M, K, \mathcal{S}, \mathcal{V}) \models \mathrm{SAT}$, as claimed.

5. Curves

Following Lemma 4.12, we now concentrate on curves. We extend a given affine curve C over K to an affine curve X over a subring R of K and complete X to an integral projective curve \bar{X} over R. We apply Lemma 4.10 several times to make convenient assumptions on the associated data. These assumptions are used in the sequel to prove the strong approximation theorem.
5.1 An affine curve. Let $K, \mathbf{P}_{K}, K_{\mathfrak{p}}, \hat{K}_{\mathfrak{p}}, \mho, \mathcal{S}, \mathcal{T}, \mathcal{V}, M, \mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}$ be as in Section 4. In particular, $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \text { fin }}$. Let C be an absolutely integral affine curve in \mathbb{A}_{K}^{n}. We choose a generic point $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ for C over K with $x_{1}, \ldots, x_{n} \in \mho$ (Subsection 4.2). Moreover, enlarging \mho if necessary, we choose x_{1}, \ldots, x_{n} such that trans. $\operatorname{deg}(K(\mathbf{x}) / K)=\operatorname{trans} \cdot \operatorname{deg}\left(\hat{K}_{\mathfrak{p}}(\mathbf{x}) / \hat{K}_{\mathfrak{p}}\right)$ for each $\mathfrak{p} \in \mathbf{P}_{K}$. Then, $K(\mathbf{x}) / K$ is a regular extension of transcendence degree $1, F=K(\mathbf{x})$ is the function field of C over K. Moreover, for each $\mathfrak{p} \in \mathbf{P}_{K}$, the field F is linearly disjoint from $\hat{K}_{\mathfrak{p}}$ over K, so $\hat{K}_{\mathfrak{p}}(\mathbf{x}) / \hat{K}_{\mathfrak{p}}$ is also a regular extension [FrJ08, Lemma 2.6.7].

We apply Lemma 4.10 to replace C by a Zariski-open subset of simple points and assume that:
(1) C is smooth.

For each $\mathfrak{p} \in \mathcal{T}$ let $L_{\mathfrak{p}}$ be a finite Galois extension of $K_{\mathfrak{p}}$ such that $L_{\mathfrak{p}}=K_{\mathfrak{p}}$ if $\mathfrak{p} \in \mathcal{S}$. Then, let $\Omega_{\mathfrak{p}}$ be a nonempty \mathfrak{p}-open subset of $C\left(L_{\mathfrak{p}}\right)$, invariant under the action of $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$. We also assume that:
(2) $C\left(\mathcal{O}_{\tilde{K}, \mathfrak{p}}\right) \neq \emptyset$ for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$.

Thus, $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ is approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, C$.
5.2 Principal ideal domain. Recall that the class group of the ring of integers $\mathcal{O}_{K}=\mathcal{O}_{K, \mathbf{P}_{\text {fin }}}$ of K is finite (see [CaF67, p. 71] for the number field case and [Ros02, p. 243, Prop. 14.2] for the function field case). Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{h}$ be ideals of \mathcal{O}_{K} that represent the group of fractional ideals of \mathcal{O}_{K} modulo principal fractional ideals. Denote the union of \mathcal{T} with the set of all prime divisors of $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{h}$ that belong to \mathcal{V} by \mathcal{T}^{\prime}. Then, $\mathfrak{a}_{i} \mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}^{\prime}=\mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}^{\prime}$ for $i=1, \ldots, h$. Each ideal \mathfrak{a} of \mathcal{O}_{K} can be represented as $\mathfrak{a}=b \cdot \mathfrak{a}_{i}$ for some i
between 1 and h and $b \in K^{\times}$, so $\mathfrak{a} \mathcal{O}_{K, \mathcal{V}} \backslash_{\mathcal{T}^{\prime}}=b \cdot \mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}^{\prime}$. Thus, $\mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}^{\prime}$ is a principal ideal domain (see also [IsR05, p. 211, Prop. 8.9.7]).

Using Lemma 4.10, we replace \mathcal{T} by \mathcal{T}^{\prime}, if necessary, to assume:
(3) $R=\mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}$ is a principal ideal domain. In particular, R is integrally closed, hence a Dedekind domain. Therefore, $R_{\mathfrak{p}}$ is a regular local ring for each $\mathfrak{p} \in \operatorname{Spec}(R)$.

Note that whenever we replace \mathcal{T} by a larger finite subset \mathcal{T}^{\prime} of \mathcal{V}, we also replace R by its quotient ring $R^{\prime}=\mathcal{O}_{K, \mathcal{V} \backslash \mathcal{T}^{\prime}}$, which is still a principal ideal domain.
In the case where $\mathcal{V}=\mathcal{T}$, the ring R is an intersection of an empty set of local subrings of K, so $R=K$. In this case our results overlap with those of [GeJ02].
5.3 Nagata rings. A Noetherian ring A (commutative with 1) is called a Nagata ring if for every prime ideal P of A and every finite extension L of Quot (A / P) the integral closure of A / P in L is a finitely generated A / P module [Mat80, p. 231]. In particular, every field is a Nagata ring. The main theorem in this area, due to Nagata, says that each finitely generated ring extension of a Nagata ring is again a Nagata ring [Mat80, p. 240, Thm. 72].

Lemma 5.4. The following statements hold.
(a) Every Dedekind ring A of characteristic 0 is a Nagata ring.
(b) Suppose that A is a Dedekind ring and a Nagata ring. Then, every subring B of $\operatorname{Quot}(A)$ that contains A is also a Dedekind ring and a Nagata ring.
(c) R is a Nagata ring.

Proof. (a) See [Liu06, p. 340, Example 8.2.28(b)].
(b) (Moret-Bailly) That B is a Dedekind ring is a classical theorem of Noether-Grell [FrJ08, p. 32, Prop. 2.4.7]. We prove that B is also a Nagata ring.

We consider a prime ideal \mathfrak{q} of B. If \mathfrak{q} is maximal, then B / \mathfrak{q} is a field. Hence, if F is a finite extension of B / \mathfrak{q}, then F is the integral closure of B / \mathfrak{q} in F and F is a finitely generated B / \mathfrak{q}-module.

Otherwise, $\mathfrak{q}=0$ (because B is a Dedekind ring). Let L be a finite extension of $\operatorname{Quot}(A)$ and consider the integral closures A_{L} and B_{L} of A and B, respectively, in L.

We consider a maximal ideal Q of B and set $P=A \cap Q$. Since Quot (A) is the quotient field of both A and B, we have $P \neq 0$. Hence, A_{P} is a proper subring of Quot (A). Moreover, $A_{P} \subseteq B_{Q} \subset \operatorname{Quot}(A)$. Since A is Dedekind, A_{P} is a discrete valuation ring. Hence, $A_{P}=B_{Q}$ [FrJ08, p. 23, Lemma 2.2.5].

Next let $A_{L, P}$ be the localization of the A-module A_{L} at P and let $B_{L, Q}$ be the localization of the B-module B_{L} at Q. Since as a ring, $B_{L, Q}$ is
integral over $B_{Q}=A_{P}$ and $A_{L, P}$ is the integral closure of A_{P} in L, we have $B_{L, Q} \subseteq A_{L, P}$. Hence, $B_{L, Q} \subseteq A_{L, P}=A_{L} A_{P} \subseteq\left(A_{L} B\right)_{Q} \subseteq B_{L, Q}$,

Thus, $B_{L, Q}=\left(A_{L} B\right)_{Q}$ for all maximal ideals Q of B. It follows from [AtM69, p. 40, Prop. 3.9] that $B_{L}=A_{L} B$. Since A is a Nagata ring, A_{L} is a finitely generated A-module. Hence, B_{L} is a finitely generated B-module. We conclude that B is a Nagata ring, as claimed.
(c) By Subsection 4.6, \mathcal{O}_{K} is a Dedekind ring. If K is a number field, then \mathcal{O}_{K} is also a Nagata ring, by (a). If K is a function field of one variable over a finite field of characteristic p, then by Subsection 4.6, \mathcal{O}_{K} is an integral closure of $\mathbb{F}_{p}\left[t_{K}\right]$ in K. Since \mathbb{F}_{p} is a Nagata ring, Nagata's theorem implies that \mathcal{O}_{K} is a Nagata ring.

Thus, (c) is a special case of (b) for $A=\mathcal{O}_{K}$ and $B=R$.
5.5 Affine schemes. Using the above notation, we consider the affine integral schemes $\operatorname{Spec}(R)$ and $X=\operatorname{Spec}(R[\mathbf{x}])$, and let $f: X \rightarrow \operatorname{Spec}(R)$ be the structure morphism given by $f(P)=P \cap R$. Then, $\operatorname{Spec}(R)$ is a regular scheme of dimension 1 if $R \neq K$ (resp. 0, if $R=K$) and $\operatorname{dim}(X)=2$ if $R \neq K$ (resp. 1 if $R=K$), because trans. $\operatorname{deg}(K(\mathbf{x}) / K)=1$. By (3), $R[\mathbf{x}]$ is a Noetherian ring, hence X is a Noetherian scheme.

By (2), for each nonzero $\mathfrak{p} \in \operatorname{Spec}(R)$, there exists a point $\mathbf{a} \in C\left(\mathcal{O}_{\tilde{K}, \mathfrak{p}}\right)$, where \mathfrak{p} is considered here as an element of $\mathcal{V} \backslash \mathcal{T}$. That point is an R specialization of \mathbf{x}. It follows that $1 \notin \mathfrak{p} R[\mathbf{x}]$. Otherwise there exist $b_{i} \in \mathfrak{p}$ and $h_{i} \in R[\mathbf{X}], i=1, \ldots, l$, such that $1=\sum_{i=1}^{l} b_{i} h_{i}(\mathbf{x})$. Then,

$$
1=\sum_{i=1}^{l} b_{i} h_{i}(\mathbf{a}) \in \mathfrak{p} \mathcal{O}_{\tilde{K}, \mathfrak{p}},
$$

a contradiction. Hence, the prime ideal \mathfrak{p} of R (which is actually a maximal ideal) extends to a prime ideal of $R[\mathbf{x}]$. Since the generic point of X is mapped onto the generic point of $\operatorname{Spec}(R)$, this implies that:
(4) The morphism $f: X \rightarrow \operatorname{Spec}(R)$ is surjective.

In fact, (4) also implies (2). But, as we don't use this implication, we do not prove it here.

By Subsection 5.1, F / K is a regular extension of transcendence degree 1. We choose a separating transcendence element $t_{F} \in R[\mathbf{x}]$ for F / K. Then, $R\left[t_{F}\right]$ is an integrally closed domain [ZaS75II, p. 85, Thm. 29(a)] and $F / K\left(t_{F}\right)$ is a finite separable extension. Let $z \in R[\mathbf{x}]$ be a primitive element for $F / K\left(t_{F}\right)$, integral over $R\left[t_{F}\right]$. The discriminant g of $\operatorname{irr}\left(z, K\left(t_{F}\right)\right)$ is a nonzero element of $R\left[t_{F}\right]$, hence g is invertible in the ring $R\left[t_{F}, g^{-1}\right]$. Multiply g, if necessary, by a nonzero element of $R\left[t_{F}\right]$ to assume that each x_{i} is integral over $R\left[t_{F}, g^{-1}\right]$. By [FrJ08, p. 109, Lemma 6.1.2], $R\left[t_{F}, g^{-1}, z\right]$ is the integral closure of $R\left[t_{F}, g^{-1}\right]$ in F. Hence, $R\left[\mathbf{x}, g^{-1}\right]=R\left[t_{F}, g^{-1}, z\right]$ and the ring extension $R\left[\mathbf{x}, g^{-1}\right] / R\left[t_{F}, g^{-1}\right]$ is étale [Ray70, p. 18, Remarques].

By Lemma 4.10(c), we may replace C by the affine curve with the generic point $\left(\mathbf{x}, g^{-1}\right)$ over K. Thus, we may assume without loss that g^{-1} is one of the coordinates of \mathbf{x}, hence:
(5) The ring $R[\mathbf{x}]=R\left[t_{F}, g^{-1}, z\right]$ is integrally closed. Thus, X is normal. Moreover, $R[\mathbf{x}]$ is étale over $R\left[t_{F}, g^{-1}\right]$. Since $\operatorname{Spec}\left(R\left[t_{F}, g^{-1}\right]\right)$ is étale over $\operatorname{Spec}\left(R\left[t_{F}\right]\right)\left[\right.$ Liu06, p. 140, Prop. 4.3.22(b)] and $\operatorname{Spec}\left(R\left[t_{F}\right]\right)$ is smooth over $\operatorname{Spec}(R)$, we conclude from [Liu06, p. 143, Prop. 4.3.38] that:
(6) The morphism $f: X \rightarrow \operatorname{Spec}(R)$ is smooth.

Note that (5) and (6) remain true if we replace \mathcal{T} by a larger finite subset of \mathcal{V}, because integral closedness and smoothness are preserved under a change of the base ring by a quotient ring.

For each $\mathfrak{p} \in \operatorname{Spec}(R)$ we consider the fiber $X_{\mathfrak{p}}=X \times_{\operatorname{Spec}(R)} \operatorname{Spec}\left(\bar{K}_{\mathfrak{p}}\right)$ of f at \mathfrak{p}, where $\bar{K}_{\mathfrak{p}}=R / \mathfrak{p}$. Then,

$$
X_{\mathfrak{p}}=\operatorname{Spec}(R[\mathbf{x}] / R[\mathbf{x}] \mathfrak{p})=\operatorname{Spec}\left(R\left[t_{F}, g^{-1}, z\right] / R\left[t_{F}, g^{-1}, z\right] \mathfrak{p}\right) .
$$

Now we consider a polynomial $h \in R\left[X_{0}, X_{n+1}\right]$ such that $h\left(t_{F}, X_{n+1}\right)=$ $\operatorname{irr}\left(z, K\left(t_{F}\right)\right)$. Since F / K is regular, h is absolutely irreducible [FrJ08, p. 175, Cor. 10.2.2]. Since h is absolutely irreducible, it remains absolutely irreducible modulo \mathfrak{p} for almost all $\mathfrak{p} \in \operatorname{Spec}(R)$ [FrJ08, p. 170, Prop. 9.4.3]. Moreover, $g \neq 0$ modulo \mathfrak{p} for almost all $\mathfrak{p} \in \operatorname{Spec}(R)$. Adding the finitely many prime divisors of K that belong to \mathcal{V} and correspond to the exceptional \mathfrak{p} 's to \mathcal{T}, we may assume by Lemma 4.10 that:
(7) Each of the fibers $X_{\mathfrak{p}}$ of X over $\operatorname{Spec}(R)$ is absolutely integral.

Lemma 5.6. Starting from the Zariski-closed affine subscheme X of \mathbb{A}_{R}^{n}, we consider the Zariski-closure X^{\prime} of X in \mathbb{P}_{R}^{n} and let \bar{X} be the normalization of X^{\prime} in F. Then:
(a) \bar{X} may be identified with $\operatorname{Proj}(R[\mathbf{t}])$, with $\mathbf{t}=\left(t_{0}, \ldots, t_{r}\right)$, where $R[\mathbf{t}]$ is a graded ring over R with $R[\mathbf{t}]_{1}=\sum_{i=0}^{r} R t_{i}$. In particular, \bar{X} is a Noetherian scheme.
(b) Each of t_{0}, \ldots, t_{r} is transcendental over F. Thus, $K(\mathbf{t}) / K$ is a regular extension of transcendence degree 2 and $t_{0}, \ldots, t_{r} \neq 0$.
(c) $R\left[\frac{\mathrm{t}}{t_{0}}\right]$ is integrally closed with quotient field F.
(d) The scheme X may be identified with a Zariski-open subset of \bar{X} and $f: X \rightarrow \operatorname{Spec}(R)$ lifts to a surjective morphism $\bar{f}: \bar{X} \rightarrow \operatorname{Spec}(R)$.

Proof. We write $X^{\prime}=\operatorname{Proj}\left(R\left[\mathbf{s}^{\prime}\right]\right)$, where $\mathbf{s}^{\prime}=\left(s_{0}^{\prime}, \ldots, s_{n}^{\prime}\right), R\left[\mathbf{s}^{\prime}\right]$ is a graded ring over R with $R\left[\mathbf{s}^{\prime}\right]_{1}=\sum_{i=0}^{n} R s_{i}^{\prime}$ such that $s_{0}^{\prime} \neq 0$ and $x_{i}=\frac{s_{i}^{\prime}}{s_{0}^{\prime}}$ for $i=1, \ldots, n$. Then, the inclusion map $\xi: X^{\prime} \rightarrow \mathbb{P}_{R}^{n}$ is a closed immersion. Let $\pi_{n}: \mathbb{P}_{R}^{n} \rightarrow \operatorname{Spec}(R)$ be the canonical morphism and let $f^{\prime}: X^{\prime} \rightarrow \operatorname{Spec}(R)$ be the restriction of π_{n} to X^{\prime}. By definition, f^{\prime} is a projective morphism that extends f. Let $\pi: \bar{X} \rightarrow X^{\prime}$ be the normalization of X^{\prime} [Liu06, p. 120, Prop. 4.1.22]. In particular, \bar{X} is an absolutely integral normal scheme over
R whose function field coincides with that of X^{\prime}, namely F. Moroever, π is an integral morphism.

Claim A. $\boldsymbol{\pi}$ is a finite morphism. The scheme X^{\prime} is covered by the affine Noetherian Zariski-open sets $\operatorname{Spec}\left(R\left[\frac{\left[\frac{s_{s}^{\prime}}{s_{i}^{\prime}}\right]}{}\right]\right.$, where i ranges over all integers between 0 and n with $s_{i}^{\prime} \neq 0$. Each of the integral domain $R\left[\frac{\mathrm{~s}^{\prime}}{s_{i}^{\prime}}\right]$ is a finitely generated R-algebra. Hence, for each Zariski-open affine subset U of X^{\prime} the ring $\Gamma\left(U, \mathcal{O}_{X^{\prime}}\right)$ is a finitely generated R-algebra whose quotient field is F [Mum88, p. 122, Def. 3 and Prop. 1]. Moreover, the open set $\pi^{-1}(U)$ of \bar{X} is also affine [Liu06, p. 120, Def. 4.1.20] and $\Gamma\left(\pi^{-1}(U), \mathcal{O}_{\bar{X}}\right)$ is the integral closure of $\Gamma\left(U, \mathcal{O}_{X^{\prime}}\right)$ in F [Liu06, p. 121, comment following Definition 4.1.24]. By Lemma 5.4(c), R is a Nagata ring, so $\Gamma\left(\pi^{-1}(U), \mathcal{O}_{\bar{X}}\right)$ is finitely generated as a $\Gamma\left(U, \mathcal{O}_{X^{\prime}}\right)$-module. We conclude that π is finite, as claimed.

Claim B. The map π is a projective morphism in the sense of [Har77, p. 103, Def.]. Indeed X^{\prime} is a closed subscheme of \mathbb{P}_{R}^{n}, so the above mentioned definition of [Har77] coincides with that of [Gro61II, p. 104, Def. 5.5.2]. Thus, by Claim A and [Gro61II, p. 113, Cor. 6.1.11], π is projective. (See also [GoW10, p. 401, Cor. 13.77].)

It follows from [Liu06, p. 108, Cor. 3.3.32(b)] that $f^{\prime} \circ \pi: \bar{X} \rightarrow \operatorname{Spec}(R)$ is a projective morphism. Thus, there exist a positive integer r and a closed immersion $\varphi: \bar{X} \rightarrow \mathbb{P}_{R}^{r}$ such that $\bar{f}=f^{\prime} \circ \pi=\pi_{r} \circ \varphi$, where π_{r} is the canonical morphism $\mathbb{P}_{R}^{r} \rightarrow \operatorname{Spec}(R)$. This gives the following commutative diagram:

where $\iota: X \rightarrow X^{\prime}$ is the inclusion map. Since X is normal (by (5)), the restriction of π to $\pi^{-1}(X)$ is an isomorphism onto X [GoW10, p. 340, Rem. 12.46]. We use that isomorphism to identify X with $\pi^{-1}(X)$. Then, we identify \bar{X} with the closed subscheme $\varphi(\bar{X})$ of \mathbb{P}_{R}^{r}. By [Liu06, p. 168, Prop. 5.1.30], $R\left[T_{0}, \ldots, T_{r}\right]$ has a homogeneous ideal J such that

$$
\bar{X}=\operatorname{Proj}\left(R\left[T_{0}, \ldots, T_{r}\right] / J\right)
$$

For each $0 \leq i \leq r$ let $t_{i}=T_{i}+J$ and set $\mathbf{t}=\left(t_{0}, \ldots, t_{r}\right)$. Then, $R[\mathbf{t}]$ is a graded ring over R with $R[\mathbf{t}]_{1}=\sum_{i=0}^{r} R t_{i}$. By (3), R is Noetherian, hence so is $R[\mathbf{t}]$. Therefore, \bar{X} is a Noetherian scheme, as (a) asserts.

We omit all of the i 's between 0 and r with $t_{i}=0$, change r, and reenumerate the indices, if necessary, to assume that $t_{i} \neq 0$ for each $0 \leq i \leq r$. Then, by Example 1.6, each t_{i} is transcendental over F. Since $t_{j}=\frac{t_{i} t_{j}}{t_{i}}$ for all $0 \leq i, j \leq r$, we have $K(\mathbf{t})=F\left(t_{i}\right)$ for all $0 \leq i \leq r$. Hence,

$$
\operatorname{trans} \cdot \operatorname{deg}(K(\mathbf{t}) / K)=\operatorname{trans} \cdot \operatorname{deg}(F / K)+1=2
$$

Since by Subsection 5.1, F / K is a regular extension, so is $K(\mathbf{t}) / K$ [FrJ08, p. 41, Cor. 2.6.8(b)], as claimed by (b).

Since \bar{X} is normal and $R\left[\frac{\mathrm{t}}{t_{0}}\right]$ is the coordinate ring of the open affine subscheme of \bar{X} defined by $T_{0} \neq 0$, we have that $R\left[\frac{\mathrm{t}}{t_{0}}\right]$ is an integrally closed ring with quotient field F, as claimed in (c).

Finally, we deduce from Diagram (8) that the morphism $\bar{f}=f^{\prime} \circ \pi$ from \bar{X} to $\operatorname{Spec}(R)$ extends $f: X \rightarrow \operatorname{Spec}(R)$. Since, by (4), f is surjective, so is \bar{f}, as asserted by (d). The proof of Lemma 5.6 is complete.
5.7 Boundary. We consider the closed subset $\bar{X} \backslash X$ of \bar{X}. Since \bar{X} is irreducible of dimension 2 if $R \neq K$ (resp. 1, if $R=K$) and X is open in \bar{X} and nonempty, $\operatorname{dim}(\bar{X} \backslash X) \leq 1$. Let Z be the unique reduced subscheme of \bar{X} with support $\bar{X} \backslash X$. Thus, $\operatorname{dim}(Z) \leq 1$. Since $K[\mathbf{x}]$ is not finite over K, the affine scheme $C=X_{K}$ is not proper [Liu06, p. 104, Lemma 3.3.17]. In particular, Z_{K} (hence also Z) is nonempty. Since $\operatorname{dim}(\operatorname{Spec}(R))=1$ if $R \neq K(\operatorname{resp} . \operatorname{dim}(\operatorname{Spec}(R))=0$ if $R=K)$, we conclude that:
(9) $\operatorname{dim}(Z)=1$ if $R \neq K($ resp. $\operatorname{dim}(Z)=0$ if $R=K)$.

Let $Z=\bigcup_{i=1}^{d(Z)} Z_{i}$, with $d(Z) \geq 1$, be the decomposition of Z into its irreducible components over R. We prove that, after a possible enlargement of \mathcal{T} inside \mathcal{V} :
(10) For each $1 \leq i \leq d(Z), Z_{i}$ is a regular scheme over R with $\operatorname{dim}\left(Z_{i}\right)=$ 1 if $R \neq K$ (resp. $\operatorname{dim}\left(Z_{i}\right)=0$ if $R=K$) and the restriction of f to Z_{i} is a finite, flat, and surjective morphism.
Indeed, for each $1 \leq i \leq d(Z)$ let $f_{i}: Z_{i} \rightarrow \operatorname{Spec}(R)$ be the restriction of \bar{f} to Z_{i}. Thus, f_{i} is the restriction of the natural morphism $\mathbb{P}_{R}^{r} \rightarrow \operatorname{Spec}(R)$ to the closed subset Z_{i} of \mathbb{P}_{R}^{r}. It follows that f_{i} is a projective morphism. By [Liu06, p. 108, Thm. 3.3.30], f_{i} is proper. In particular, f_{i} is a closed map, so $f_{i}\left(Z_{i}\right)$ is a closed subset of $\operatorname{Spec}(R)$. Since $\operatorname{Spec}(R)$ is an irreducible scheme of dimension $\leq 1, \quad f_{i}\left(Z_{i}\right)$ is either a closed point of $\operatorname{Spec}(R)$ or all of $\operatorname{Spec}(R)$. If in the first case the prime of K that corresponds to $f_{i}\left(Z_{i}\right)$ is in \mathcal{V}, we adjoin it to \mathcal{T}. Since $R=\mathcal{O}_{K, \mathcal{V} \backslash \mathcal{T}}$ (by (3), Z_{i} won't be an irreducible component of Z any more. Having done so for all of those i 's, we may assume that $f_{i}\left(Z_{i}\right)=\operatorname{Spec}(R)$ for all i. Since Z is nonempty, the above procedure does not eliminate all of the Z_{i} 's. In other words, we may still assume that $d(Z) \geq 1$.

The fiber of the generic point of $\operatorname{Spec}(R)$ (i.e., of the zero ideal) is the generic point of Z_{i}. For each closed point $\mathfrak{p} \in \operatorname{Spec}(R)$ the subset $f_{i}^{-1}(\mathfrak{p})$ of
Z_{i} is closed. Since Z_{i} is irreducible of dimension $\leq 1, f_{i}^{-1}(\mathfrak{p})$ is either a finite set or $f_{i}^{-1}(\mathfrak{p})=Z_{i}$. In the latter case we have $f_{i}\left(Z_{i}\right)=\{\mathfrak{p}\}$, in contrast to the preceding paragraph. It follows that the fibers of f_{i} are finite.

We have therefore proved that the morphism f_{i} is projective with finite fibers. By [Liu06, p. 152, Cor. 4.4.7], f_{i} is a finite morphism. Since Z_{i} is reduced, we get by the definition of a finite morphism and by the fact that $f_{i}: Z_{i} \rightarrow \operatorname{Spec}(R)$ is surjective that $Z_{i}=\operatorname{Spec}\left(R_{i}\right)$ is an affine scheme, where R_{i} is an integral domain, finitely generated and integral over R. Since R is a Dedekind domain (by (3)), [Liu06, p. 11, Cor. 1.2.14] implies that R_{i} is flat over R. Hence, f_{i} is flat. Since the integral closure of R in $\operatorname{Quot}\left(R_{i}\right)$ is also a finitely generated R-module (because R is a Nagata ring), we may enlarge \mathcal{T} in \mathcal{V} to assume that R_{i} is integrally closed, hence a Dedekind domain. Thus, Z_{i} is a Dedekind scheme [Liu06, p. 116, Example 4.1.7] and therefore regular [Liu06, p. 117, Prop. 4.1.12 and p. 128, Example 4.2.9]. Moreover, since R_{i} is a finitely generated R-module, $\operatorname{dim}\left(Z_{i}\right)=\operatorname{dim}(R)=1$ if $R \neq K$ (resp. $\operatorname{dim}\left(Z_{i}\right)=0$ if $R=K$). This complete the proof of Statement (10).

Next we prove that, after another possible enlargement of \mathcal{T} in \mathcal{V} (Lemma 4.10):
(11) Z is a regular scheme over R of dimension 1 if $R \neq K$ (resp. 0 , if $R=K$) and the restriction f_{Z} of \bar{f} to Z is a finite, flat, and surjective morphism.
Indeed, if $1 \leq i<j \leq d(Z)$, then $Z_{i} \cap Z_{j}$, as an intersection of distinct irreducible subschemes of Z of dimension ≤ 1, is a scheme of dimension 0 , hence finite. Therefore, $f_{Z}\left(Z_{i} \cap Z_{j}\right)$ is a finite subset of $\operatorname{Spec}(R)$. Adding the primes in \mathcal{V} that correspond to this subset to \mathcal{T}, we may assume that $Z_{i} \cap Z_{j}=\emptyset$. In other words, we may assume that $Z=\bigcup_{i=1}^{d(Z)} Z_{i}$. Since each of the sets Z_{i} is closed in Z, it is also open.

As a disjoint union of open regular subschemes Z_{i} (by (10)), the scheme Z is itself regular. Moreover, the natural map $f_{Z}: Z \rightarrow \operatorname{Spec}(R)$, inducing for each i the map f_{i} on Z_{i}, is finite, flat, and surjective, because by (10), f_{i} has these properties for each i. This concludes the proof of (11).
5.8 The ideals I and I_{i}. Since Z is a closed subscheme of $\bar{X}=\operatorname{Proj}(R[\mathbf{t}])$, we may identify Z with $\operatorname{Proj}(R[\mathbf{t}] / I)$, where I is a homogeneous ideal of $R[\mathbf{t}]$ [Liu06, p. 168, Prop. 5.1.30]. Similarly, for each $1 \leq i \leq d(Z)$, there exists a homogeneous prime ideal I_{i} of $R[\mathbf{t}]$ that contains I and $R[\mathbf{t}]_{+} \nsubseteq I_{i}$ such that $Z_{i}=V_{+}\left(I_{i}\right)$. Since Z is reduced, I is equal to its radical and the latter is equal to the intersection of all homogeneous prime ideals that contain I and are minimal with this property [ZaS75II, p. 152, Thm. 8 and Corollary]. The set \mathcal{P} of all these prime ideals is finite (because $R[\mathbf{t}] / I$ is Noetherian). The ideals $I_{1}, \ldots, I_{d(Z)}$ belong to \mathcal{P}. Let P_{1}, \ldots, P_{m} be all the other ideals in \mathcal{P} and note that each of them contains $R[\mathbf{t}]_{+}$. For each $P \in \mathcal{P}$ with $P \cap R \neq 0$, we add the elements of \mathcal{V} that correspond to prime ideals of R that divide a generator of $P \cap R$ (use (3)) to \mathcal{T}. After this enlargement,
$P \cap R=0$, so $P \subseteq R[\mathbf{t}]_{+}$for each $P \in \mathcal{P}$. In particular, $P_{j}=R[\mathbf{t}]_{+}$for $j=1, \ldots, m$. Note that for $1 \leq i \leq d(Z)$, the property $\bar{f}\left(Z_{i}\right)=\operatorname{Spec}(R)$, which (10) guarantees, implies that $I_{i} \cap R=0$, so $I_{i} \subseteq R[\mathbf{t}]_{+}$. Hence, $I_{i} \subseteq P_{j}$ for each $i=1, \ldots, d(Z)$ and $j=1, \ldots, m$. It follows from the minimality of the elements in \mathcal{P} that $m=0$. Therefore, $\bigcap_{i=1}^{d(Z)} I_{i}=I$.
5.9 The boundary over K. The quotient ring of $R[\mathbf{t}]$ with respect to the multiplicative set $R \backslash\{0\}$ is $K[\mathbf{t}]$. By Subsection 5.8, $I_{i} \cap R=0$ for $i=1, \ldots, d(Z)$. Hence, $K I_{1}, \ldots, K I_{d(Z)}$ are distinct points of \bar{X}_{K}. It follows that the generic fiber $Z_{K}=\operatorname{Proj}(K[\mathbf{t}] / K I)$ of Z consists of $d(Z)$ distinct points $Z_{1, K}, \ldots, Z_{d(Z), K}$, corresponding to the points $K I_{1}, \ldots, K I_{d(Z)}$ of \bar{X}_{K}. Each of these points is closed, so $K I_{j} \nsubseteq K I_{i}$ if $j \neq i$. It follows that $\bigcap_{j \neq i} K I_{j} \nsubseteq K I_{i}$ for every $1 \leq i \leq d(Z)$. By Subsection 5.8, $\bigcap_{i=1}^{d(Z)} K I_{i}=K I$.

We denote the degree of the divisor $\sum_{i=1}^{d(Z)} Z_{i, K}$ attached to Z_{K} by $\operatorname{deg}_{K}\left(Z_{K}\right)$.
5.10 Special fibers. We let $\bar{X}_{\text {sing }}$ be the closed subset of all singular points of \bar{X}. Since \bar{X} is normal, each of its points of codimension 1 is nonsingular [Liu06, p. 268, Example 7.2.6]. Hence, $\bar{X}_{\text {sing }}$ has dimension 0, so $\bar{X}_{\text {sing }}$ is finite. Following $[\mathrm{MoB} 89$, p. 187, (3.1.2)], we add the finitely many primes in \mathcal{V} corresponding to the finite subset $\bar{f}\left(\bar{X}_{\text {sing }}\right)$ of $\operatorname{Spec}(R)$ to \mathcal{T} and assume that:
(12) \bar{X} is regular.

Finally, we may apply the arguments that prove (7) to each of the finitely many affine Zariski-open parts of \bar{X} and conclude, possibly after an additional enlargement of \mathcal{T} in \mathcal{V}, that:
(13) Each of the fibers $\bar{X}_{\mathfrak{p}}$ of \bar{X} over $\operatorname{Spec}(R)$ is an absolutely integral projective curve.
5.11 Generic fibers. We consider the generic fibers
$X_{K}=X \times_{\operatorname{Spec}(R)} \operatorname{Spec}(K)=\operatorname{Spec}(K[\mathbf{x}]) \quad$ and $\quad \bar{X}_{K}=\bar{X} \times_{\operatorname{Spec}(R)} \operatorname{Spec}(K)$
of X and \bar{X}, respectively. Then, X_{K} is an affine K-scheme which is actually isomorphic to our original curve C. Since C is smooth (by (1)):
(14) X_{K} is smooth.

Moroever, \bar{X}_{K} is the normalization of the projective closure of X_{K} in \mathbb{P}_{K}^{r} [Eis95, p. 126, Prop. 4.4.13, and p. 127, last paragraph]. In particular, \bar{X}_{K} is normal.

By (7) and (13):
(15) X_{K} and \bar{X}_{K} are absolutely integral.

Moreover, for each $\mathfrak{p} \in \mathcal{T}$ we may view the subset $\Omega_{\mathfrak{p}}$ of $C\left(L_{\mathfrak{p}}\right)$ introduced in Subsection 5.1 also as a \mathfrak{p}-open subset of $X_{K}\left(L_{\mathfrak{p}}\right)$.

6. Closed separable point

We choose a closed separable point \mathbf{b} of X over K, let $E=K(\mathbf{b})$, denote the integral closure of R in E by R_{E}, choose a point B^{\prime} of $\bar{X}_{R_{E}}$ that lies over \mathbf{b}, use the conjugates of B^{\prime} over K to construct a homogeneous ideal $B^{\prime \prime}$ of $R_{E}[\mathbf{t}]$, and prove that $V_{+}\left(B^{\prime}\right) \cap V_{+}\left(B^{\prime \prime}\right)=\emptyset$. We use the homogeneous ideals B^{\prime} and $B^{\prime \prime}$ of $R_{E}[\mathbf{t}]$ in Section 9 to produce homogeneous coordinates $s_{0}, s_{1}, \ldots, s_{l} \in R[\mathbf{t}]$ of large degree of a projective curve $Y=\operatorname{Proj}\left(K\left[s_{0}, \ldots, s_{l}\right]\right)($ Lemma 9.5), and to construct in Section 10 a birational morhism $\varphi: \bar{X}_{K} \rightarrow Y$ which maps the smooth affine curve X_{K} minus the point corresponding to $B=R[\mathbf{t}] \cap B^{\prime}$ isomorphically onto a Zariski-open smooth affine subset Y_{0} of Y, maps Z_{K} onto a point $\mathbf{y}_{0} \in Y(K)$, and maps the point of \bar{X}_{K} corresponding to B onto cusps $\mathbf{y}_{1}, \ldots, \mathbf{y}_{e} \in Y(\tilde{K})$ of multiplicity q, where q is a large prime number, such that $Y(\tilde{K})=Y_{0}(\tilde{K}) \cup\left\{\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{e}\right\}$ (Lemmas 10.3 and 10.4). We use that curve to construct a symmetrically stabilizing element for F / K using the main result of [GJR17] quoted here as Proposition 8.6.
6.1 Separable integral point. We assume without loss that t_{0}, t_{1} form a separable transcendence base for $K(\mathbf{t}) / K$ (Lemma 5.6(b) and [FrJ08, p. 38, Lemma 2.6.1]). Let $h_{0}, h_{1}, \ldots, h_{n} \in R\left[T_{0}, \ldots, T_{r}\right]$ be homogeneous polynomials of the same degree such that $h_{0}(\mathbf{t}) \neq 0$ and $x_{j}=\frac{h_{j}(\mathbf{t})}{h_{0}(\mathbf{t})}$ for $j=1, \ldots, n$. Then, we choose $b_{1} \in K_{\text {sep }} \backslash K$ and extend the map $\left(t_{0}, t_{1}\right) \mapsto\left(1, b_{1}\right)$ to a K-homomorphism $\varphi: K[\mathbf{t}] \rightarrow K_{\text {sep }}$ such that with $b_{i}=\varphi\left(t_{i}\right)$ for $i=2, \ldots, r$ and $\mathbf{b}=\left(1: b_{1}: \cdots: b_{r}\right)$ we have $h_{0}(\mathbf{b}) \neq 0$. It follows that $\mathbf{b} \in X\left(K_{\text {sep }}\right) \backslash X(K)$. From a geometric point of view we can choose a separating transcendence base of F / K that leads to a nonconstant morphism $f: C \rightarrow \mathbb{A}^{1}$, so there is a dense open set U in \mathbb{A}^{1} such that $f^{-1}(U) \rightarrow U$ is finite étale, and choose $b_{1} \in U\left(K_{\text {sep }}\right) \backslash U(K)$ and $\mathbf{b} \in f^{-1}\left(b_{1}\right)\left(K_{\text {sep }}\right)$. Since X is smooth (Subsection 5.1(1)), $\mathbf{b} \in \bar{X}_{\text {simp }}\left(K_{\text {sep }}\right)$. Let $E=K\left(b_{1}, \ldots, b_{r}\right)$, set $e=[E: K]$, and note that $e \geq 2$, by the choice of b_{1}. We choose a nonzero element b^{\prime} of R such that $b^{\prime} b_{i}$ is integral over R for $i=1, \ldots, r$. Adjoining the prime divisors of b^{\prime} that are in \mathcal{V} to \mathcal{T} and using Lemma 4.10, we may assume that b_{1}, \ldots, b_{r} are integral over R. Geometrically, we can consider the point \mathbf{b} as a section $\operatorname{Spec}(E) \rightarrow C$. Then, after enlarging \mathcal{T} if necessary, it extends to a $\operatorname{section} \operatorname{Spec}\left(R_{E}\right) \rightarrow X$.

For each ideal \mathfrak{a} of a graded ring A we let \mathfrak{a}^{h} be the ideal generated by all of the homogeneous elements of \mathfrak{a}. Then, \mathfrak{a}^{h} is the maximal homogeneous ideal of A contained in \mathfrak{a}. By [Liu06, p. 51, Lemma 2.3.35(a)], \mathfrak{a}^{h} is a prime ideal, if \mathfrak{a} is.

Having made this definition, we consider the homogeneous prime ideal $B=\operatorname{Ker}(\varphi)^{h} \cap R[\mathbf{t}]$ of $R[\mathbf{t}]$. Geometrically, B is the generic point of the image of the section $\operatorname{Spec}\left(R_{E}\right) \rightarrow X$. Note that $t_{0} \notin \operatorname{Ker}(\varphi)$ (because $\varphi\left(t_{0}\right)=1$), hence $t_{0} \notin B$. Thus, B can be also considered as a point of \bar{X} that belongs to X. Moreover, B lies under \mathbf{b}.

Since $\operatorname{Ker}(\varphi)^{h}$ is a prime ideal of $K[\mathbf{t}]$, its intersection with K^{\times}is empty, hence:
(1) $B \cap R=0$.

Since $K[\mathbf{t}]$ is the quotient ring of $R[\mathbf{t}]$ with respect to the multiplicative set $R \backslash\{0\}$ and B is disjoint to that set (by (1)), we have:
(2) $K B \cap R[\mathbf{t}]=B$ and $K B=\operatorname{Ker}(\varphi)^{h}$.
6.2 The ring R_{E}. Following Subsection 6.1, we consider the separable field extension $E=K(\mathbf{b})$ of K and let R_{E} be the integral closure of R in E. By Subsection 6.1, b_{1}, \ldots, b_{r} are integral over R, so $b_{1}, \ldots, b_{r} \in R_{E}$.

Since R is a principal ideal domain (Subsection 5.2) and E / K is a finite separable extension, R_{E} is a finitely generated free R-module [Wae91, p. 175, Sec. 17.3]. Thus, R_{E} has an R-basis w_{1}, \ldots, w_{e} which is also a basis for E / K.

We choose $\sigma_{1}, \ldots, \sigma_{e} \in \operatorname{Aut}(\tilde{K} / K)$ whose restrictions to E are the distinct K-embeddings of E into \tilde{K} and σ_{1} is the identity map of E. Since $K(\mathbf{t}) / K$ is a regular extension (Lemma 5.6(b)), we may extend $\sigma_{1}, \ldots, \sigma_{e}$ to elements of $\operatorname{Aut}(\tilde{K}(\mathbf{t}) / K(\mathbf{t}))$ having the same names.

Since E / K is a separable extension $\operatorname{det}\left(w_{i}^{\sigma_{j}}\right) \neq 0$ [Lan93, p. 286, Cor. 5.4]. Moreover, $\operatorname{det}\left(w_{i}^{\sigma_{j}}\right)_{i, j=1, \ldots, e}$ belongs to the integral closure \tilde{R} of R in \tilde{K}. We use Lemma 4.10 to enlarge \mathcal{T} such that:
(3) $\operatorname{det}\left(w_{i}^{\sigma_{j}}\right)$ is invertible in \tilde{R}.

Having made this assumption, we prove that:
(4) $R_{E}\left[\frac{\mathrm{t}}{t_{0}}\right]$ is integrally closed.

Indeed, let $f \in E\left(\frac{\mathbf{t}}{t_{0}}\right)$ be integral over $R_{E}\left[\frac{\mathrm{t}}{t_{0}}\right]$. Since

$$
E\left(\frac{\mathbf{t}}{t_{0}}\right)=E \cdot K\left(\frac{\mathbf{t}}{t_{0}}\right)=\sum_{i=1}^{e} K w_{i} \cdot K\left(\frac{\mathbf{t}}{t_{0}}\right)=\sum_{i=1}^{e} w_{i} K\left(\frac{\mathbf{t}}{t_{0}}\right),
$$

we may write $f=\sum_{i=1}^{e} w_{i} f_{i}$ with $f_{1}, \ldots, f_{e} \in K\left(\frac{\mathbf{t}}{t_{0}}\right)$. Applying σ_{j} on the latter equality, we get $f^{\sigma_{j}}=\sum_{i=1}^{e} w_{i}^{\sigma_{j}} f_{i}, j=1, \ldots, e$. Applying Kramer's rule to the latter system of equations, we find for each $1 \leq k \leq e$ that $f_{k}=f_{k}^{\prime} / \operatorname{det}\left(w_{i}^{\sigma_{j}}\right)$ with f_{k}^{\prime} in the integral closure of $R\left[\frac{\mathrm{t}}{t_{0}}\right]$ in $\bar{K}\left(\frac{\mathrm{t}}{t_{0}}\right)$. It follows from (3) that f_{k} belongs to the integral closure of $R\left[\frac{\mathbf{t}}{t_{0}}\right]$ in $K\left(\frac{\mathbf{t}}{t_{0}}\right)$. Since $R\left[\frac{\mathrm{t}}{t_{0}}\right]$ is integrally closed (Lemma $\left.5.6(\mathrm{c})\right), f_{k} \in R\left[\frac{\mathrm{t}}{t_{0}}\right]$. It follows that $f \in R_{E}\left[\frac{\mathrm{t}}{t_{0}}\right]$.

Notation 6.3. We consider the homogeneous ideals

$$
\begin{aligned}
\tilde{B}_{j} & =\sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right), j=1, \ldots, e, \\
B^{\prime} & =\sum_{i=1}^{r} R_{E}[\mathbf{t}]\left(t_{i}-b_{i} t_{0}\right), \quad B^{\prime \prime}=\bigcap_{j=2}^{e}\left(R_{E}[\mathbf{t}] \cap \tilde{B}_{j}\right)
\end{aligned}
$$

of $\tilde{K}[\mathbf{t}]$ and $R_{E}[\mathbf{t}]$, respectively, and note that $\tilde{B}_{j}=\tilde{B}_{1}^{\sigma_{j}}$ for $j=1, \ldots, e$. Note also that $\tilde{K}[\mathbf{t}] / \tilde{B}_{j}$ is isomorphic to the integral domain $\tilde{K}\left[t_{0}\right]$, so \tilde{B}_{j} is a prime ideal of $\tilde{K}[\mathbf{t}]$ for $j=1, \ldots, e$. Similarly $R_{E}[\mathbf{t}] / B^{\prime} \cong R_{E}\left[t_{0}\right]$, so B^{\prime} is a prime ideal of $R_{E}[\mathbf{t}]$.
Lemma 6.4. $B^{\prime}=R_{E}[\mathbf{t}] \cap \tilde{B}_{1}$.
Proof. It suffices to prove that each $f \in R_{E}[\mathbf{t}] \cap \tilde{B}_{1}$ belongs to B^{\prime}. To that end we choose a basis $\left(\tilde{w}_{1}, \tilde{w}_{2}, \tilde{w}_{3}, \ldots\right)$ for \tilde{K} / E with $\tilde{w}_{1}=1$. Then, we note that since $K(\mathbf{t}) / K$ is a regular extension (Lemma 5.6(b)), also $E(\mathbf{t}) / E$ is a regular extension. Hence, $\tilde{w}_{1}, \tilde{w}_{2}, \tilde{w}_{3}, \ldots$ also form a basis for $\tilde{K}[\mathbf{t}]$ over $E[\mathbf{t}]$. By definition, $f=\sum_{i=1}^{r} f_{i}\left(t_{i}-b_{i} t_{0}\right)$ with $f_{i} \in \tilde{K}[\mathbf{t}]$ for $i=1, \ldots, r$. For each $1 \leq i \leq r$ we write $f_{i}=\sum_{k=1}^{\infty} f_{i k} \tilde{w}_{k}$ with $f_{i k} \in E[\mathbf{t}]$ for all k and all but finitely many of the $f_{i k}$'s are 0 . Then, $f=\sum_{k=1}^{\infty}\left(\sum_{i=1}^{r} f_{i k}\left(t_{i}-b_{i} t_{0}\right)\right) \tilde{w}_{k}$. Comparing the coefficients of \tilde{w}_{1} on both sides, we have

$$
f=\sum_{i=1}^{r} f_{i 1}\left(t_{i}-b_{i} t_{0}\right) \in E[\mathbf{t}] B^{\prime} \cap R_{E}[\mathbf{t}] .
$$

Since the $R_{E}[\mathbf{t}]$-degree of each nonzero element of B^{\prime} is at least 1 , we have $B^{\prime} \cap R_{E}=0$. In addition observe that $E[\mathbf{t}]$ is the quotient ring of $R_{E}[\mathbf{t}]$ with respect to the multiplicative subset $R_{E} \backslash\{0\}$. Since B^{\prime} is a prime ideal of $R_{E}[\mathbf{t}]$ (Notation 6.3), it follows that $E[\mathbf{t}] B^{\prime} \cap R_{E}[\mathbf{t}]=B^{\prime}$, so $f \in B^{\prime}$, as claimed.

Lemma 6.5. $B=R[\mathbf{t}] \cap \tilde{B}_{j}$ for $j=1, \ldots, e, B \subseteq B^{\prime} \cap B^{\prime \prime}$, and

$$
\tilde{K} B=\bigcap_{j=1}^{e} \tilde{B}_{j} .
$$

Thus, $\tilde{B}_{1}, \ldots, \tilde{B}_{e}$ are exactly the points of $X_{\tilde{K}}$ that lie over B. Each of them is simple. Moreover, $\tilde{B}_{j} \nsubseteq \tilde{B}_{j^{\prime}}$ if $j \neq j^{\prime}$.

Proof. Since $K(\mathbf{t}) / K$ is a regular extension, we may uniquely extend the K-homomorphism φ introduced in Subsection 6.1 to a \tilde{K}-homomorphism $\tilde{\varphi}: \tilde{K}[\mathbf{t}] \rightarrow \tilde{K}$. Then, $\operatorname{Ker}(\tilde{\varphi})^{h}$ is a homogeneous prime ideal of $\tilde{K}[\mathbf{t}]$ that belongs to $X_{\tilde{K}}$ and $\tilde{\varphi}(\mathbf{t})=\mathbf{b}$. For each $f \in \operatorname{Ker}(\tilde{\varphi})^{h}$ we apply the Taylor expansion around $\frac{\mathbf{b}}{b_{0}}$ to $f\left(\frac{\mathbf{t}}{t_{0}}\right)$ (with $b_{0}=1$) and then multiply the resulting expression by $t_{0}^{\operatorname{deg}(f)}$. We find that $\operatorname{Ker}(\tilde{\varphi})^{h}=\sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i} t_{0}\right)$. It follows that $B=R[\mathbf{t}] \cap \operatorname{Ker}(\varphi)^{h}=R[\mathbf{t}] \cap \operatorname{Ker}(\tilde{\varphi})^{h}=R[\mathbf{t}] \cap \sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i} t_{0}\right)$. Applying σ_{j} on both sides, we get:
(5) $B=R[\mathbf{t}] \cap \sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right)=R[\mathbf{t}] \cap \tilde{B}_{j}$ for $j=1, \ldots, e$.

The point \tilde{B}_{1} of $X_{\tilde{K}}$ corresponds to \mathbf{b}, so \tilde{B}_{1} is simple. Hence, $\tilde{B}_{j}=\tilde{B}_{1}^{\sigma_{j}}$ is also simple for $j=1, \ldots, e$.

By (5) and by Lemma $6.4, B=R[\mathbf{t}] \cap \tilde{B}_{1} \subseteq R_{E}[\mathbf{t}] \cap \tilde{B}_{1}=B^{\prime}$. Also, $B \subseteq \bigcap_{j=2}^{e}\left(R_{E}[\mathbf{t}] \cap \tilde{B}_{j}\right)=B^{\prime \prime}$.

Let P^{\prime} be a point of $X_{\tilde{K}}$ that contains $\tilde{K} B$ and let $\mathbf{b}^{\prime}=\left(1: b_{1}^{\prime}: \cdots: b_{r}^{\prime}\right)$ be the corresponding point in $X(\tilde{K})$ (note that $t_{0} \notin P^{\prime}$, otherwise $t_{0} \in$ $\left.K[\mathbf{t}] \cap P^{\prime}=K B\right)$. Let $\varphi^{\prime}: K[\mathbf{t}] \rightarrow \tilde{K}$ be the K-homomorphism mapping \mathbf{t} onto \mathbf{b}^{\prime}. Then, $\operatorname{Ker}\left(\varphi^{\prime}\right)^{h}=K B=\operatorname{Ker}(\varphi)^{h}$ (because $K B$ is a closed point of $\left.X_{K}\right)$. It follows that there exists $\sigma \in \operatorname{Aut}(K / K)$ such that $\mathbf{b}^{\prime}=\mathbf{b}^{\sigma}$. Hence, P^{\prime} is one of the \tilde{B}_{j} 's, as claimed.

Finally, we prove that $\tilde{B}_{j} \nsubseteq \tilde{B}_{j^{\prime}}$ if $j \neq j^{\prime}$. For that it suffices to prove that $\tilde{B}_{j} \subseteq \tilde{B}_{1}$ implies that $j=1$. Indeed, the latter assumption implies that for all $1 \leq i, i^{\prime} \leq r$ there exist $f_{i, i^{\prime}} \in \tilde{K}\left[T_{0}, \ldots, T_{r}\right]$ such that

$$
t_{i}-b_{i}^{\sigma_{j}} t_{0}=\sum_{i^{\prime}=1}^{r} f_{i, i^{\prime}}(\mathbf{t})\left(t_{i^{\prime}}-b_{i^{\prime}} t_{0}\right) .
$$

Applying $\tilde{\varphi}$ on both sides, we get $b_{i}-b_{i}^{\sigma_{j}}=0$ for $i=1, \ldots, r$. Since $E=$ $K\left(b_{1}, \ldots, b_{r}\right)$, we conclude from the choice of $\sigma_{1}, \ldots, \sigma_{e}$ in Subsection 6.2 that $j=1$, as claimed.

Since $t_{0} \in R[\mathbf{t}], \quad \tilde{B}_{j} \cap R[\mathbf{t}]=B\left(\right.$ Lemma 6.5), and $t_{0} \notin B$ (Subsection 6.1), we have:
Corollary 6.6. For each $1 \leq j \leq e$ we have $t_{0} \notin \tilde{B}_{j}$.
Notation 6.7. By the choice of $\sigma_{1}, \ldots, \sigma_{e}$, the r-tuples $\left(b_{1}^{\sigma_{j}}, \ldots, b_{r}^{\sigma_{j}}\right), j=$ $1, \ldots, e$, are distinct. Since the ring R is infinite, it contains c_{1}, \ldots, c_{r} such that

$$
\sum_{i=1}^{r} c_{i}\left(b_{i}-b_{i}^{\sigma_{j}}\right) \neq 0, \quad j=2, \ldots, e
$$

We consider the nonzero element $c=\prod_{j=2}^{e} \sum_{i=1}^{r} c_{i}\left(b_{i}-b_{i}^{\sigma_{j}}\right)$ of \tilde{R}. By Remark 4.11, we may add finitely many primes in \mathcal{V} to \mathcal{T}, if necessary, to assume that c is invertible in \tilde{R}.
Lemma 6.8. $V_{+}\left(B^{\prime}\right) \cap V_{+}\left(B^{\prime \prime}\right)=\emptyset$.
Proof. We break up the proof into several parts.
Part A. The elements $\tilde{\boldsymbol{t}}_{1}, \ldots, \tilde{t}_{e}$. For each $1 \leq j \leq e$ let

$$
\tilde{t}_{j}=\sum_{i=1}^{r} c_{i}\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right) .
$$

Since b_{1}, \ldots, b_{r} are separable over K, integral over R, and $\tilde{t}_{j} \in \tilde{R}[\mathbf{t}]_{1}$,
(6) $\frac{\tilde{t}_{j}}{t_{0}}$ is separable over $K\left(\frac{\mathbf{t}}{t_{0}}\right)$ and integral over $R\left[\frac{\mathbf{t}}{t_{0}}\right], j=1, \ldots, e$.

By definition,
(7) $\tilde{t}_{j} \in \tilde{B}_{j}$ for $j=1, \ldots, e$.

We claim that:
(8) There exists a positive integer k_{0} such that $t_{0}^{k_{0}} \prod_{j=2}^{e} \tilde{t}_{j} \in B^{\prime \prime}$.

Indeed, each $\sigma \in \operatorname{Gal}(K(\mathbf{t}))$ permutes $\frac{\tilde{t}_{1}}{t_{0}}, \ldots, \frac{\tilde{t}_{e}}{t_{0}}$, so by (6),

$$
\prod_{j=1}^{e} \frac{\tilde{t}_{j}}{t_{0}} \in K\left(\frac{\mathbf{t}}{t_{0}}\right)
$$

In addition, $\frac{\tilde{t}_{1}}{t_{0}} \in E\left(\frac{\mathbf{t}}{t_{0}}\right)$. Therefore,

$$
\prod_{j=2}^{e} \frac{\tilde{t}_{j}}{t_{0}}=\left(\prod_{j=1}^{e} \frac{\tilde{t}_{j}}{t_{0}}\right) / \frac{\tilde{t}_{1}}{t_{0}} \in E\left(\frac{\mathbf{t}}{t_{0}}\right)
$$

By (6), $\prod_{j=2}^{e} \frac{\tilde{t}_{j}}{t_{0}}$ is integral over $R\left[\frac{\mathbf{t}}{t_{0}}\right]$, hence also over $R_{E}\left[\frac{\mathbf{t}}{t_{0}}\right]$. Since by (4), $R_{E}\left[\frac{\mathbf{t}}{t_{0}}\right]$ is integrally closed in $E\left(\frac{\mathbf{t}}{\mathbf{t}_{0}}\right)$, we have $\prod_{j=2}^{e} \frac{\tilde{t}_{j}}{t_{0}} \in R_{E}\left[\frac{\mathbf{t}}{t_{0}}\right]$. Hence, there exists a positive integer k_{0} such that $t_{0}^{k_{0}} \prod_{j=2}^{e} \tilde{t}_{j} \in R_{E}[\mathbf{t}]$. It follows from (7) that $t_{0}^{k_{0}} \prod_{j=2}^{e} \tilde{t}_{j} \in \bigcap_{j=2}^{e} \tilde{B}_{j} \cap R_{E}[\mathbf{t}]=B^{\prime \prime}$, as claimed.
Part B. A power of $\boldsymbol{t}_{\boldsymbol{0}}$. We note that

$$
\begin{aligned}
t_{0}^{k_{0}} \prod_{j=2}^{e} \tilde{t}_{j} & =t_{0}^{k_{0}} \prod_{j=2}^{e} \sum_{i=1}^{r} c_{i}\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right) \\
& =t_{0}^{k_{0}} \prod_{j=2}^{e} \sum_{i=1}^{r} c_{i}\left(t_{i}-b_{i} t_{0}+b_{i} t_{0}-b_{i}^{\sigma_{j}} t_{0}\right) \\
& =t_{0}^{k_{0}} u+t_{0}^{k_{0}} \prod_{j=2}^{e} \sum_{i=1}^{r} c_{i}\left(b_{i}-b_{i}^{\sigma_{j}}\right) t_{0} \\
& =t_{0}^{k_{0}} u+t_{0}^{k_{0}+e-1} c
\end{aligned}
$$

where c is the invertible element of \tilde{R} introduced in Notation 6.7 , and u is a sum of products of $e-1$ elements of $\tilde{R}[\mathbf{t}]$, one of which is $c_{i}\left(t_{i}-b_{i} t_{0}\right)$ for some $1 \leq i \leq r$, so belongs to B^{\prime}, and the others have the form $c_{i}\left(b_{i}-b_{i}^{\sigma_{j}}\right) t_{0}$, so they belong to $\tilde{R}[\mathbf{t}]$. Thus, $u \in \tilde{R}[\mathbf{t}] B^{\prime}$. Since c is invertible in \tilde{R}, we have, by (8), that

$$
\begin{equation*}
t_{0}^{k_{0}+e-1}=-c^{-1} t_{0}^{k_{0}} u+c^{-1} t_{0}^{k_{0}} \prod_{j=2}^{e} \tilde{t}_{j} \in \tilde{R}[\mathbf{t}] B^{\prime}+\tilde{R}[\mathbf{t}] B^{\prime \prime} \tag{9}
\end{equation*}
$$

Completion of proof of Lemma 6.8. Recall that $V_{+}\left(B^{\prime}\right)\left(\right.$ resp. $\left.V_{+}\left(B^{\prime \prime}\right)\right)$ is the set of all homogeneous prime ideals of $R_{E}[\mathbf{t}]$ that contain B^{\prime} (resp. $B^{\prime \prime}$) but do not contain the set $\left\{t_{0}, \ldots, t_{r}\right\}$. If $P \in V_{+}\left(B^{\prime}\right) \cap V_{+}\left(B^{\prime \prime}\right)$, then $B^{\prime}+B^{\prime \prime} \subseteq P$. Since $\tilde{R}[\mathbf{t}]$ is an integral extension of $R_{E}[\mathbf{t}]$, there exists a prime ideal \tilde{P} of $\tilde{R}[\mathbf{t}]$ whose intersection with $R_{E}[\mathbf{t}]$ is P. In particular, $\tilde{R}[\mathbf{t}] B^{\prime}+\tilde{R}[\mathbf{t}] B^{\prime \prime} \subseteq \tilde{P}$. By (9), $t_{0}^{k_{0}+e-1} \in \tilde{P}$. Hence, $t_{0}^{k_{0}+e-1} \in \tilde{P} \cap R_{E}[\mathbf{t}]=P$, so $t_{0} \in P$. Since for each $1 \leq i \leq e$, we have $t_{i}-b_{i} t_{0} \in B^{\prime} \subseteq P$, we have $t_{i}=\left(t_{i}-b_{i} t_{0}\right)+b_{i} t_{0} \in P$. Thus, $\left\{t_{0}, \ldots, t_{r}\right\} \subseteq P$. This contradiction implies that P as above does not exist.

Remark 6.9. We could save the introduction of this section if X_{K} had a K-rational point. But in view of Falting's theorem, many of the absolutely integral curves over K have no K-rational points, if K is a number field. Still, we could simplify the proof of the properties of B if we could choose \mathbf{b} as Galois over K, that is such that $E=K(\mathbf{b})$ is a Galois extension of K. But unfortunately, it seems to be unknown if each absolutely integral curve over a global field has a Galois point [JaP16]. So, we have chosen b as a separable algebraic point over K which is not K-rational. The latter condition makes the proofs of the properties of \mathbf{b} somewhat simpler in that we need not distinguish between the cases where \mathbf{b} is K-rational or not.
6.10 The closed subschemes $Z_{q B}$. Along with the closed subscheme Z of \bar{X} we consider also the closed subscheme $Z_{B}=\operatorname{Proj}(R[\mathbf{t}] / B)$ and for each positive integer q the closed subscheme $Z_{q B}=\operatorname{Proj}\left(R[\mathbf{t}] / B^{q}\right)$ of \bar{X}. All of the subschemes $Z_{q B}$ are actually contained in X and have the same underlying topological space. As for Z, we have $\operatorname{dim}\left(Z_{q B}\right)=1$ if $R \neq K$ (resp. $\operatorname{dim}\left(Z_{q B}\right)=0$ if $R=K$) and the extensions $Z_{q B, K}=\operatorname{Proj}\left(K[\mathbf{t}] / K B^{q}\right)$ and $Z_{q B, \tilde{K}}=\operatorname{Proj}\left(\tilde{K}[\mathbf{t}] / \tilde{K} B^{q}\right)$ have dimension 0 . Moreover, since $X \cap Z=\emptyset$, we have $Z_{q B} \cap Z=\emptyset$. In particular, $Z_{B, K} \cap Z_{K}=\emptyset$ and $I \nsubseteq B$.

7. From Picard group to free modules

We present a result of [MoB89, Section 3] that gives a big set of effective Cartier divisors on X whose irreducible components are finite and surjective over $\operatorname{Spec}(R)$ and satisfy certain approximation conditions at each $\mathfrak{p} \in \mathcal{T}$. Lemma 7.10 then says that the above mentioned big set is in a sense \mathcal{T}-open.
7.1 Divisors. For each positive integer d we consider the fiber product

$$
X^{d}=X \times_{\operatorname{Spec}(R)} \cdots \times_{\operatorname{Spec}(R)} X=\operatorname{Spec}\left(R[\mathbf{x}] \otimes_{R} \cdots \otimes_{R} R[\mathbf{x}]\right)
$$

of d copies of X (resp. tensor product of d copies of $R[\mathbf{x}])$. Let the symmetric group \mathfrak{S}_{d} act on X^{d} by permutation. Then, the quotient

$$
X^{(d)}=X^{d} / \mathfrak{S}_{d}
$$

is an affine scheme over $\operatorname{Spec}(R)$ and \mathfrak{S}_{d} acts transitively on each fiber of $X^{d} \rightarrow X^{(d)}$. Moreover, since $\operatorname{Spec}(R)$ is a Noetherian scheme, the natural projection $X^{d} \rightarrow X^{(d)}$ is finite [GoW10, p. 331, Prop. 12.27(4)].

The fat diagonal Δ of X^{d} is the closed subscheme such that

$$
\Delta(L)=\bigcup_{i \neq j}\left\{\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{d}\right) \in X^{d}(L) \mid \mathbf{p}_{i}=\mathbf{p}_{j}\right\}
$$

for every ring extension L of R. Note that \mathfrak{S}_{d} leaves Δ invariant. Hence, it makes sense to set

$$
U_{d}=\left(X^{d} \backslash \Delta\right) / \mathfrak{S}_{d}
$$

Also, note that the inertia group in \mathfrak{S}_{d} of each $\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{d}\right) \in X^{d} \backslash \Delta$ is trivial. Hence, by [Liu06, p. 147, Exer. 4.3.19], the map $X^{d} \rightarrow X^{(d)}$ is étale along $X^{d} \backslash \Delta$.

Now let S be an R-scheme. Since X is smooth over $\operatorname{Spec}(R)$ (Statement (6) of Section 5), [MoB89, (3.2.3)] says that there is a functorial bijection between $X^{(d)}(S)$ and
(1) the set of all effective Cartier divisors D on $X_{S}=X \times_{\operatorname{Spec}(R)} S$ that are finite and flat of degree d over S,
with $\operatorname{deg}(D)$ as defined in Subsection 2.2.
7.2 Global sections. We consider again the graded ring

$$
R[\mathbf{t}]=R\left[t_{0}, \ldots, t_{r}\right]
$$

introduced in Lemma 5.6 such that $\bar{X}=\operatorname{Proj}(R[\mathbf{t}])$. We also consider the closed reduced subscheme $Z=\bar{X} \backslash X$ introduced in Subsection 5.7 and recall that $Z=\operatorname{Proj}(R[\mathbf{t}] / I)$, where I is a homogeneous ideal of $R[\mathbf{t}]$ (Subsection 5.8). For each large positive integer k, Remark 1.4 gives a commutative diagram

where the upper and lower rows are short exact sequences which have been identified via canonical maps. Also, $\pi_{\bar{X}, Z}^{(k)}$ is the quotient map and $\rho_{\bar{X}, Z}^{(k)}$ is the restriction map from \bar{X} to Z. Changing the base from R to a field L that contains K, Diagram (2) becomes

7.3 Generalized Picard functor. In this subsection we let L be a ring extension of R and consider the category $\mathcal{C}(L)$ whose objects are the couples (\mathcal{L}, α), where \mathcal{L} is an invertible sheaf on \bar{X}_{L} and $\alpha:\left.\mathcal{O}_{Z_{L}} \rightarrow \mathcal{L}\right|_{Z_{L}}$ is an isomorphism. A morphism $(\mathcal{L}, \alpha) \rightarrow\left(\mathcal{L}^{\prime}, \alpha^{\prime}\right)$ between two objects of $\mathcal{C}(L)$ is an isomorphism $\varphi: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ such that $\left.\varphi\right|_{Z_{L}} \circ \alpha=\alpha^{\prime}$.

In particular, if D is a Cartier divisor on \bar{X}_{L} which is disjoint from Z_{L} (Subsection 2.3) and $\left(U_{m}, f_{m}\right)_{m \in M}$ is data that represent D, then for all $m \in M$ and $\mathbf{p} \in U_{m} \cap Z_{L}$, the image $f_{m, \mathbf{p}}$ of f_{m} in $\mathcal{O}_{\bar{X}_{L}, \mathbf{p}}$ is invertible, so
$f_{m, \mathbf{p}}^{-1} \mathcal{O}_{\bar{X}_{L}, \mathbf{p}}=\mathcal{O}_{\bar{X}_{L}, \mathbf{p}}$. On the other hand, $\mathcal{L}(D)_{\mathbf{p}}=f_{m, \mathbf{p}}^{-1} \mathcal{O}_{\bar{X}_{L}, \mathbf{p}}$ (with $\mathcal{L}(D)$ as in Subsection 2.5), so $\mathcal{L}(D)_{\mathbf{p}}=\mathcal{O}_{\bar{X}_{L, \mathbf{p}}}$. It follows that $\left.\mathcal{L}(D)\right|_{Z_{L}} \cong \mathcal{O}_{Z_{L}}$. Finally, since for each $m \in M,\left.1_{D}\right|_{U_{m}}$ is the unit element of $\Gamma\left(U_{m}, \mathcal{L}(D)\right)$ (Subsection 2.5), we may consider $\left.1_{D}\right|_{Z_{L}}$ as the identity map $\left.\mathcal{O}_{Z_{L}} \rightarrow \mathcal{L}(D)\right|_{Z_{L}}$. Thus, $\left(\mathcal{L}_{\bar{X}_{L}}(D), 1_{D}\right)$ is one of the objects of $\mathcal{C}(L)$ mentioned in the preceding paragraph.

If $(\mathcal{L}, \alpha),\left(\mathcal{L}^{\prime}, \alpha^{\prime}\right) \in \mathcal{C}(L)$, then $\left(\mathcal{L} \otimes_{\mathcal{X}_{\bar{x}_{L}}} \mathcal{L}^{\prime}, \alpha \otimes \alpha^{\prime}\right) \in \mathcal{C}(L)$ and morphisms of objects of $\mathcal{C}(L)$ commute with tensor products.

If L is a field extension of K, we denote for each nonnegative integer d the subcategory of $\mathcal{C}(L)$ of all objects (\mathcal{L}, α) with $\operatorname{deg}(\mathcal{L})=d$ by $\mathcal{C}_{d}(L)$.

We note in passing that [MoB89, Subsection 3.4] denotes the group of isomorphism classes of objects of $\mathcal{C}_{d}(L)$ by $\mathrm{PG}_{d}(\bar{X}, Z)(L)$ and call it the generalized Picard functor relative to Z.
7.4 Generalized Picard functors over $\hat{K}_{\mathfrak{p}}$. We use the convention of Subsection 5.1. For each $\mathfrak{p} \in \mathcal{T}$ let $\hat{L}_{\mathfrak{p}}=L_{\mathfrak{p}} \hat{K}_{\mathfrak{p}}$ and let $\hat{\Omega}_{\mathfrak{p}}^{[d]}$ be the set of effective Weil divisors D on $X_{\hat{K}_{\mathfrak{p}}}$ of degree d with $D_{\hat{L}_{\mathfrak{p}}}=\sum_{i=1}^{d} \mathbf{p}_{i}$, where $\mathbf{p}_{1}, \ldots, \mathbf{p}_{d}$ are distinct points in $\Omega_{\mathfrak{p}}\left(\hat{L}_{\mathfrak{p}}\right)$ (notation of Subsection 4.4). Thus, D totally splits in $F \hat{L}_{\mathfrak{p}}$ in the sense of Subsection 3.2, where F is the function field of X_{K} introduced in Subsection 5.1. Moreover, each $D \in \hat{\Omega}_{\mathfrak{p}}^{[d]}$ can be considered as a point of $U_{d}\left(\hat{L}_{\mathfrak{p}}\right)$ which is fixed under the action of $\operatorname{Gal}\left(\hat{L}_{\mathfrak{p}} / \hat{K}_{\mathfrak{p}}\right)$. Therefore, $\hat{\Omega}_{\mathfrak{p}}^{[d]}$ may be viewed as a subset of $U_{d}\left(\hat{K}_{\mathfrak{p}}\right)$ (notation of Subsection 7.1), hence of $X^{(d)}\left(\hat{K}_{\mathfrak{p}}\right)$.

Next we let $W_{\mathfrak{p}}^{[d]}$ be the set of all pairs $(\mathcal{L}, \alpha) \in \mathcal{C}_{d}\left(\hat{K}_{\mathfrak{p}}\right)$ that are equivalent to $\left(\mathcal{L}_{\bar{X}_{\hat{K}_{\mathfrak{p}}}}(D), 1_{D}\right)$ for some $D \in \hat{\Omega}_{\mathfrak{p}}^{[d]}$. We quote two results from [MoB89] that rely on the assumptions we made on X, \bar{X}, Z, and f in Section 5 .

Lemma 7.5. The following statements hold for each $\mathfrak{p} \in \mathcal{T}$.
(a) $\hat{\Omega}_{\mathfrak{p}}^{[d]}$ is \mathfrak{p}-open in $U_{d}\left(\hat{K}_{\mathfrak{p}}\right)[$ MoB89, Lemma 3.3(a)].
(b) Let d and d^{\prime} be nonnegative integers such that

$$
d \geq 2 \cdot \operatorname{genus}\left(\bar{X}_{K}\right)+\operatorname{deg}_{K}\left(Z_{K}\right)
$$

(see Subsection 5.9 for the definition of $\operatorname{deg}_{K}\left(Z_{K}\right)$). Then,

$$
W_{\mathfrak{p}}^{[d]} W_{\mathfrak{p}}^{\left[d^{\prime}\right]} \subseteq W_{\mathfrak{p}}^{\left[d+d^{\prime}\right]},
$$

where the product on the left hand side is defined by the tensor product introduced in Subsection 7.3 [MoB89, Lemma 3.7.2(ii)].

Next we draw a consequence of [MoB89, Lemma 3.8] and [MoB89, Lemma 3.9]. To that end we use [Har77, p. 117, Prop. II.5.12(c)] to identify $\left.\mathcal{O}_{\bar{X}}(k)\right|_{Z}$ (which implicitly appears in the above mentioned lemmas of [MoB89]) with $\mathcal{O}_{Z}(k)$.

Proposition 7.6. There exist a positive integer k_{0} and an isomorphism $\alpha^{\left(k_{0}\right)}: \mathcal{O}_{Z} \rightarrow \mathcal{O}_{Z}\left(k_{0}\right)$ such that for each integral positive multiple k of k_{0} the positive integer $d_{k}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right)$ (in the notation of Subsection 2.1) and the isomorphism $\alpha^{(k)}=\left(\alpha^{\left(k_{0}\right)}\right)^{\otimes\left(k / k_{0}\right)}: \mathcal{O}_{Z} \rightarrow \mathcal{O}_{Z}(k)$ satisfy the following condition:

There is a section $s_{0}^{(k)} \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ such that, in the notation of Diagram (2),
(a) $\alpha^{(k)}(Z)(1)=\rho_{\bar{X}, Z}^{(k)}\left(s_{0}^{(k)}\right)$, where $\alpha^{(k)}(Z): \Gamma\left(Z, \mathcal{O}_{Z}\right) \rightarrow \Gamma\left(Z, \mathcal{O}_{Z}(k)\right)$ is the corresponding isomorphism of $\Gamma\left(Z, \mathcal{O}_{Z}\right)$-modules,
(b) $\left(\mathcal{O}_{\bar{X}_{\hat{K}_{\mathfrak{p}}}}(k), \alpha_{\mathfrak{p}}^{(k)}\right) \in W_{\mathfrak{p}}^{\left[d_{k}\right]}$, and
(c) $\operatorname{div}\left(s_{0, \mathfrak{p}}^{(k)}\right) \in \hat{\Omega}_{\mathfrak{p}}^{\left[d_{k}\right]}$, for each $\mathfrak{p} \in \mathcal{T}$,
where 1 is the unit element of the ring $\Gamma\left(Z, \mathcal{O}_{Z}\right)$, and $\alpha_{\mathfrak{p}}^{(k)}$ and $s_{0, \mathfrak{p}}^{(k)}$ are the isomorphism and the section obtained from $\alpha^{(k)}$ and s_{0} by base change from R to $\hat{K}_{\mathfrak{p}}$.

In addition, the identifications made in Diagrams (2) and (3) and their commutativity are valid for R and for every field extension L of K.

Proof. By [MoB89, Lemma 3.9], applied to the ample invertible sheaf $\mathcal{O}_{\bar{X}}(1)$ on \bar{X} [GoW10, p. 386, Example 13.45] rather than to \mathcal{M}_{0}, there exist a positive integer k_{0} and an isomorphism $\alpha^{\left(k_{0}\right)}: \mathcal{O}_{Z} \rightarrow \mathcal{O}_{Z}\left(k_{0}\right)$ such that:
(4a) $d_{0}=d_{k_{0}}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}\left(k_{0}\right)\right) \geq 2 \cdot \operatorname{genus}\left(\bar{X}_{K}\right)+\operatorname{deg}_{K}\left(Z_{K}\right)$.
(4b) $\left(\mathcal{O}_{\bar{X}_{\hat{K}_{\mathfrak{p}}}}\left(k_{0}\right), \alpha_{\mathfrak{p}}^{\left(k_{0}\right)}\right) \in W_{\mathfrak{p}}^{\left[d_{0}\right]}$ for each $\mathfrak{p} \in \mathcal{T}$.
Now consider an integral positive multiple k of k_{0} and let $k_{1}=k / k_{0}$. Recall that $\mathcal{O}_{\bar{X}}(k)$ is naturally isomorphic to $\mathcal{O}_{\bar{X}}\left(k_{0}\right)^{\otimes k_{1}}$ [Har77, p. 117, Prop. II.5.12(b)] and $\mathcal{O}_{\bar{X}}\left(k_{0}\right)$ is a free $\mathcal{O}_{\bar{X}}$-module of rank 1 , so

$$
\alpha^{(k)}=\left(\alpha^{\left(k_{0}\right)}\right)^{\otimes k_{1}}
$$

is an isomorphism of \mathcal{O}_{Z} onto $\mathcal{O}_{Z}(k)$ and $d_{k}=k_{1} d_{0}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right)$ (Subsection 2.1). By (4a) and Lemma 7.5(b), $\left(W_{\mathfrak{p}}^{\left[d_{0}\right]}\right)^{k_{1}} \subseteq W_{\mathfrak{p}}^{\left[d_{k}\right]}$ for each $\mathfrak{p} \in \mathcal{T}$. Hence, by (4b), Condition (b) holds for each $\mathfrak{p} \in \mathcal{T}$.

By [MoB89, Lemma 3.8], there exists $s_{0}^{(k)} \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ such that (a) and (c) are satisfied, as claimed.

The last assertion of the proposition holds if we eventually replace k_{0} by a sufficiently large integral positive multiple of itself.
7.7 Generators of global sections. In the notation of Proposition 7.6 let k be an integral positive multiple of k_{0} and let

$$
\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k), \alpha^{(k)}\right)=\left\{s \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right) \mid \rho_{\bar{X}, Z}^{(k)}(s)=\alpha^{(k)}(Z)(1)\right\} .
$$

The bijection given in (1) for the $\operatorname{scheme} \operatorname{Spec}(R)$ and the bijection given in [MoB89, p. 189, (3.5.4)] prove part (a) of the following result:
Lemma 7.8. If $s \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k), \alpha^{(k)}\right)$, then:
(a) $\operatorname{div}(s)$ is an effective Cartier divisor on X, finite and flat over $\operatorname{Spec}(R)$ of degree $d_{k}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right)$.
(b) Each irreducible component of $\operatorname{div}(s)$ is finite and surjective over $\operatorname{Spec}(R)$.

Proof. As stated above, it suffices to prove (b). Let $f: X \rightarrow \operatorname{Spec}(R)$ be the morphism introduced in Subsection 5.5, let Y be the closed subscheme of X attached to $\operatorname{div}(s)$ (Subsection 2.3). By Subsection 5.5, X is Noetherian, hence so is Y [Liu06, p. 55, Prop. 2.3.46(a)]. Consider an irreducible component Y^{\prime} of Y. Since $\left.f\right|_{Y}$ is finite, it is proper [GoW10, p. 344, Example 12.56(3)], hence closed. By (a), f is flat on Y. Hence, by [Liu06, p. 136, Lemma 4.3.7], $f\left(Y^{\prime}\right)$ is dense in $\operatorname{Spec}(R)$, so $f\left(Y^{\prime}\right)=\operatorname{Spec}(R)$. By [GoW10, p. 325, Prop. 12.11(1)], the closed immersion $Y^{\prime} \rightarrow Y$ is finite. Composing it with $\left.f\right|_{Y}$, we conclude that $\left.f\right|_{Y^{\prime}}$ is a finite morphism [GoW10, p. 325, Prop. 12.11(2)].
7.9 Divisors of sections in open sets. Let k be an integral positive multiple of k_{0} and consider elements s_{1}, \ldots, s_{l} in $\operatorname{Ker}\left(\rho_{\bar{X}, Z}^{(k)}\right)$, that is elements of $\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ that vanish on Z. Let $s_{0}^{(k)}$ be the section introduced in Proposition 7.6. We set $\mathbf{s}=\left(s_{0}^{(k)}, s_{1}, \ldots, s_{l}\right)$ and

$$
\begin{equation*}
\Gamma_{\mathbf{s}}^{(k)}=\left\{s_{0}^{(k)}+\sum_{i=1}^{l} a_{i} s_{i} \mid a_{1}, \ldots, a_{l} \in R\right\} . \tag{5}
\end{equation*}
$$

Then, $\Gamma_{\mathbf{s}}^{(k)} \subseteq \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k), \alpha^{(k)}\right)$, hence Lemma 7.8 holds for every $s \in \Gamma_{\mathbf{s}}^{(k)}$.
For each $\mathfrak{p} \in \mathcal{T}$ and every algebraic extension K^{\prime} of K let $\hat{\Omega}_{\mathfrak{p}, K^{\prime}}^{\left[d_{k}\right]}$, be the set of Cartier divisors D on $X_{\hat{K}_{\mathrm{p}} K^{\prime}}$ that are effective of degree

$$
d_{k}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right),
$$

étale, totally split in $F \hat{L}_{\mathfrak{p}} K^{\prime}$ in the sense of Subsection 3.2 (where F is the function field of X_{K} introduced in Subsection 5.1), whose irreducible $\hat{L}_{\mathfrak{p}} K^{\prime}$-components are in $\Omega_{\mathfrak{p}}\left(\hat{L}_{\mathfrak{p}} K^{\prime}\right)$. We also set
(6) $\Gamma_{\mathbf{s}, \mathrm{p}, K^{\prime}}^{(k)}$ to be the set of all $s \in \Gamma\left(\bar{X}_{\hat{K}_{\mathrm{p}} K^{\prime}}, \mathcal{O}_{\bar{X}_{\hat{K}_{\mathrm{p}} K^{\prime}}}(k)\right)$ of the form $s=s_{0}^{(k)}+\sum_{i=1}^{l} a_{i} s_{i}$ with $a_{1}, \ldots, a_{l} \in \hat{K}_{\mathfrak{p}} K^{\prime}$ such that $\operatorname{div}(s) \in \hat{\Omega}_{\mathfrak{p}, K^{\prime}}^{\left[d_{k}\right]}$.
By Lemma 7.5(a), $\hat{\Omega}_{\mathfrak{p}, K^{\prime}}^{\left[d_{k}\right]}$, is \mathfrak{p}-open in $U_{d}\left(\hat{K}_{\mathfrak{p}} K^{\prime}\right)$. Hence, an application of Lemma 3.4 to the Galois extension $\hat{L}_{\mathfrak{p}} K^{\prime} / \hat{K}_{\mathfrak{p}} K^{\prime}$, with $\mathfrak{p} \in \mathcal{T}$, yields the following result:

Lemma 7.10. Let k_{0} be the integer introduced in Proposition 7.6, let k be an integral positive multiple of k_{0}, and let $s_{0}^{(k)}$ be an element of $\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ that Proposition 7.6 gives. In addition let

$$
s_{1}, \ldots, s_{l} \in \operatorname{Ker}\left(\rho_{\bar{X}, Z}^{(k)}\right)
$$

and set $\mathbf{s}=\left(s_{0}^{(k)}, s_{1}, \ldots, s_{l}\right)$. Then, there exists a positive real number γ such that if K^{\prime} is a separable algebraic extension of K, then the following holds: If $a_{1}, \ldots, a_{l} \in K^{\prime}$ satisfy $\left|a_{i}^{\sigma}\right|_{\mathfrak{p}}<\gamma$ for all $1 \leq i \leq l, \sigma \in \operatorname{Gal}(K)$, and $\mathfrak{p} \in \mathcal{T}$, then

$$
s_{0}^{(k)}+\sum_{i=1}^{l} a_{i} s_{i} \in \Gamma_{\mathbf{s}, \mathfrak{p}, K^{\prime}}^{(k)}
$$

for each $\mathfrak{p} \in \mathcal{T}$.

8. A stabilizing element

Let K, F, R, X, \bar{X}, and Z be as in Subsections 4.1, 5.1, 5.2, 5.5, Lemma 5.6, and Subsection 5.7, respectively. In particular F is a finitely generated regular extension of K of transcendence degree 1 . Thus, F has a transcendental element t over K such that $F / K(t)$ is a finite separable extension. Let \hat{F} be the Galois closure of $F / K(t)$. We say that t symmetrically stabilizes F / K if $\operatorname{Gal}(\hat{F} \tilde{K} / \tilde{K}(t))$ is isomorphic to the symmetric group of $\operatorname{rank}[F: K(t)]$. In this case $\operatorname{Gal}(\hat{F} \tilde{K} / \tilde{K}(t)) \cong \operatorname{Gal}(\hat{F} / K(t))[F r J 08$, p. 391, Lemma 18.9.2], hence \hat{F} / K is a regular extension. The existence of symmetrically stabilizing elements is proved in [GeJ89] in the case where F / K is conservative (in particular, if K is perfect), and in [Neu98] in the general case. In [GeJ02, Thm. 16.2] we prove that t can be chosen as a quotient of linear combinations of a basis of the linear space $\mathfrak{L}(D)$ (introduced just before Lemma 3.3) attached to a certain very ample divisor D of F / K. In this section and in the three following ones we refine that construction and choose the coefficient of the first element of the basis to be 1, keeping the other coefficients in given nonempty \mathcal{T}-open subsets of R, where \mathcal{T} is a finite subset of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K, \text { fin }}$. Here we call a subset U of $R \mathcal{T}$-open if U is the union of basic \mathcal{T}-open sets. The latter are intersections of \mathfrak{p}-open discs of K, where \mathfrak{p} ranges over all elements of \mathcal{T}.

Our construction depends on the main result of [GJR17] that we now start to explain.
8.1 Matrices. Let \mho be the universal field extension of K chosen in Subsection 4.1. For each pair (i, j) of positive integers we consider the affine variety $\mathbb{M}_{i j}$ over K such that the set $\mathbb{M}_{i j}(\mho)$ consists of all $i \times j$ matrices with entries in \mho. Thus, $\mathbb{M}_{i j}$ is naturally isomorphic to the affine space $\mathbb{A}_{K}^{i j}$. If $i \leq j$, we write $\mathbb{M}_{i j}^{*}$ for the nonempty Zariski-open subset of $\mathbb{M}_{i j}$ consisting
of all matrices in $\mathbb{M}_{i j}$ of rank i, i.e., with linearly independent rows. We fix a positive integer l for this section, let

$$
\mathbb{M}^{(l)}=\mathbb{M}_{2,3}^{*} \times \mathbb{M}_{3,4}^{*} \times \cdots \times \mathbb{M}_{l, l+1}^{*}
$$

and define a morphism $\mu^{(l)}: \mathbb{M}^{(l)} \rightarrow \mathbb{M}_{2, l+1}$ by multiplication:

$$
\mu^{(l)}\left(A_{2}, A_{3}, \ldots, A_{l}\right)=A_{2} A_{3} \cdots A_{l},
$$

and observe that actually $\mu^{(l)}$ maps $\mathbb{M}^{(l)}(K)$ onto $\mathbb{M}_{2, l+1}^{*}(K)$ [GeJ02, §3]. For each $i \geq 2$, we define a map $\psi_{i}: \mathbb{M}_{i, i+1}^{*} \rightarrow \mathbb{P}^{i}$ mapping each $A \in \mathbb{M}_{i, i+1}^{*}(\mho)$ onto the unique point $\left(y_{0}: \cdots: y_{i}\right)$ of $\mathbb{P}^{i}(\mho)$ that satisfies $A\left(\begin{array}{c}y_{0} \\ \vdots \\ y_{i}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$.
Kramer's rule implies that ψ_{i} is a morphism. Let $\mathbb{P}^{(l)}=\mathbb{P}^{2} \times \cdots \times \mathbb{P}^{l}$ and $\psi^{(l)}=\psi_{2} \times \cdots \times \psi_{l}: \mathbb{M}^{(l)} \rightarrow \mathbb{P}^{(l)}$. Then, $\psi^{(l)}$ is a morphism that maps $\mathbb{M}^{(l)}(K)$ onto $\mathbb{P}^{(l)}(K)$ [GeJ02, §3]. Both maps from $\mathbb{M}^{(l)}$ appear in the following row:

$$
\begin{equation*}
\mathbb{P}^{(l)} \stackrel{\psi^{(l)}}{\longleftrightarrow} \mathbb{M}^{(l)} \xrightarrow{\mu^{(l)}} M_{2, l+1}^{*} . \tag{1}
\end{equation*}
$$

8.2 F. K. Schmidt's derivatives. Let $\Delta=\operatorname{Proj}\left(K\left[s_{0}, s_{1}, \ldots, s_{l}\right]\right)$ be an absolutely integral projective curve in \mathbb{P}_{K}^{l} with function field F, where $K\left[s_{0}, s_{1}, \ldots, s_{l}\right]$ is a graded domain over K with

$$
K\left[s_{0}, s_{1}, \ldots, s_{l}\right]_{1}=\sum_{i=0}^{l} K s_{i} .
$$

We set $\tilde{\Delta}=\Delta_{\tilde{K}}=\operatorname{Proj}\left(\tilde{K}\left[s_{0}, s_{1}, \ldots, s_{l}\right]\right)$.
Over each point $\mathbf{p} \in \tilde{\Delta}(\tilde{K})$ there lie only finitely many prime divisors P_{1}, \ldots, P_{e} of $F \tilde{K} / \tilde{K}$ (alternatively, finitely many points of the normalization of $\tilde{\Delta}$), with $e \geq 1$. For each $1 \leq i \leq e$ let \mathfrak{m}_{i} be the maximal ideal of the discrete valuation ring \mathcal{O}_{i} of $F \tilde{K}$ that corresponds to P_{i} and let π_{i} be a generator of \mathfrak{m}_{i}. Then, $\mathcal{O}_{\tilde{\Delta}, \mathbf{p}} \subseteq \mathcal{O}_{i}$ and $\mathfrak{m}_{i} \cap \mathcal{O}_{\tilde{\Delta}, \mathbf{p}}=\mathfrak{m}_{\tilde{\Delta}, \mathbf{p}}$. We identify $\mathcal{O}_{i} / \mathfrak{m}_{i}$ with \tilde{K}. If an element f of $F \tilde{K}$ belongs to \mathcal{O}_{i}, we denote its residue modulo \mathfrak{m}_{i} in \tilde{K} by $f\left(P_{i}\right)$, otherwise we set $f\left(P_{i}\right)=\infty$. In the former case, one may express f as a formal power series $f=\sum_{k=0}^{\infty} \frac{D^{k} f}{D \pi_{i}^{k}}\left(P_{i}\right) \pi_{i}^{k}$, with coefficients in \tilde{K}, where $\frac{D^{k} f}{D \pi_{i}^{k}}$ is an element of \mathcal{O}_{i} called the F.K. Schmidt derivative of degree k of f with respect to P_{i} [GJR17, Section 4].
8.3 Characteristic-0 like curves. For each $1 \leq i \leq e$ there exists $u_{i} \in$ $\tilde{K}\left(s_{0}, \ldots, s_{l}\right)$ such that for each $0 \leq j \leq l$ we have $u_{i} s_{j} \in \mathcal{O}_{i}$ and there is $0 \leq j^{\prime} \leq l$ such that $u_{i} s_{j^{\prime}} \notin \mathfrak{m}_{i}$. Then, we write $\mathbf{s}\left(P_{i}\right)$ for the point

$$
\mathbf{p}=\left(u_{i} \mathbf{s}\right)\left(P_{i}\right)=\left(\left(u_{i} s_{0}\right)\left(P_{i}\right):\left(u_{i} s_{1}\right)\left(P_{i}\right): \cdots:\left(u_{i} s_{l}\right)\left(P_{i}\right)\right)
$$

of $\tilde{\Delta}(\tilde{K})$ and note that \mathbf{p} does not depend on u_{i}. However, for each $k \geq 1$, the expression $\frac{D^{k}\left(u_{i} \mathbf{s}\right)}{D \pi_{i}^{k}}\left(P_{i}\right)$ may depend on u_{i} and on π_{i}. Nevertheless, we still denote it by $\mathbf{s}^{[k]}\left(P_{i}\right)$ and make sure that each of the objects that depend on this symbol does not depend on u_{i} nor on π_{i}.

For example, by [GJR17, Lemma 4.2], the condition

$$
\begin{equation*}
\operatorname{rank}\left(\mathbf{p} \mathbf{s}^{[1]}\left(P_{i}\right)\right)=2 \tag{2}
\end{equation*}
$$

(where both \mathbf{p} and $\mathbf{s}^{[1]}\left(P_{i}\right)$ are considered here as columns of height $l+1$ and ($\left.\mathbf{p} \mathbf{~ s}^{[1]}\left(P_{i}\right)\right)$ is the corresponding $(l+1) \times 2$ matrix) is independent of u_{i} and π_{i}. By [GJR17, Lemma 5.1], Condition (2) is equivalent to the condition that $\mathbf{s}^{[1]}\left(P_{i}\right)$ is not a column of zeros. Thus, the latter condition is also independent of u_{i} and π_{i}. By [GJR17, Lemma 5.2], \mathbf{p} is a simple point of $\tilde{\Delta}$ if and only if $F \tilde{K} / \tilde{K}$ has a unique prime divisor P over \mathbf{p} and $\mathbf{s}^{[1]}(P)$ is not a column of zeros. In this case we write $\mathbf{s}^{[1]}(\mathbf{p})$ for $\mathbf{s}^{[1]}(P)$. Then, the linear form $\mathbf{p} Y_{0}+\mathbf{s}^{[1]}(\mathbf{p}) Y_{1}$ is a parametric presentation of the tangent $T_{\tilde{\Delta}, \mathbf{p}}$ to $\tilde{\Delta}$ at \mathbf{p}.

We say that \mathbf{p} is an inflection point of $\tilde{\Delta}$ if \mathbf{p} is simple and

$$
\operatorname{rank}\left(\mathbf{p} \mathbf{s}^{[1]}(\mathbf{p}) \mathbf{s}^{[2]}(\mathbf{p})\right)=2 .
$$

Again, by [GJR17, Lemma 4.2], this condition is independent of the parameters. By [GeJ89, Lemma 3.1 and the paragraph before Lemma 1.1], our definition of an inflection point coincides with the traditional one if $\tilde{\Delta}$ is a plane curve [Har77, p. 148].

If char $(K)=0$, then $\tilde{\Delta}$ has only finitely many double tangents (i.e., tangents at two simple points or more) and only finitely many inflection points. Moreover, if $\tilde{\Delta}$ is not a line, it is nonstrange. This means that there exists no point in $\mathbb{P}^{l}(\tilde{K})$ through which infinitely many tangents to $\tilde{\Delta}$ at simple points go [GJR17, first paragraph of Section 11]. In positive characteristic one or more of these properties may fail for some curves. So, we say for arbitrary characteristic that Δ is a characteristic-0-like curve if $\tilde{\Delta}$ has only finitely many double tangents, finitely many inflection points, and it is nonstrange.

The point \mathbf{p} is a cusp of $\tilde{\Delta}$ if \mathbf{p} is singular and $F \tilde{K} / \tilde{K}$ has a unique prime divisor that lies over \mathbf{p}.
8.4 Multiplicities. Consider a point $\mathbf{p} \in \tilde{\Delta}(\tilde{K})$ and let $\mathfrak{m}=\mathfrak{m}_{\tilde{\Delta}, \mathbf{p}}$ be the maximal ideal of the local ring $\mathcal{O}_{\tilde{\Delta}, \mathbf{p}}$. Let P_{1}, \ldots, P_{e} be the distinct prime divisors of $F \tilde{K} / \tilde{K}$ that lie over \mathbf{p}. For each $1 \leq i \leq e$ we define the multiplicity of $\tilde{\Delta}$ at P_{i} as

$$
\operatorname{mult}\left(\tilde{\Delta}, P_{i}\right)=\min _{a \in \mathfrak{m}} \operatorname{ord}_{P_{i}}(a)
$$

where $\operatorname{ord}_{P_{i}}$ is the normalized discrete valuation of $F \tilde{K} / \tilde{K}$ attached to P_{i}. We also note that $\operatorname{dim}_{\tilde{K}} \mathfrak{m}^{k} / \mathfrak{m}^{k+1}$ becomes a constant positive integer for
all large positive integers k [GJR17, Remark 6.2]. We call that integer the multiplicity of $\tilde{\Delta}$ at \mathbf{p} and denote it by mult $(\tilde{\Delta}, \mathbf{p})$. Thus,

$$
\operatorname{mult}(\tilde{\Delta}, \mathbf{p})=\operatorname{dim}_{\tilde{K}} \mathfrak{m}^{k} / \mathfrak{m}^{k+1}
$$

for each large k. By [GJR17, Lemma 6.4],

$$
\operatorname{mult}(\tilde{\Delta}, \mathbf{p})=\sum_{i=1}^{e} \operatorname{mult}\left(\tilde{\Delta}, P_{i}\right)
$$

In particular, if \mathbf{p} is normal (i.e., in this case, simple), $F \tilde{K} / \tilde{K}$ has a unique prime divisor P over \mathbf{p} and

$$
\operatorname{mult}(\tilde{\Delta}, \mathbf{p})=\operatorname{mult}(\tilde{\Delta}, P)=\min _{a \in \mathfrak{m}} \operatorname{ord}_{P}(a)=1
$$

If $F \tilde{K} / \tilde{K}$ has a unique prime divisor P that lies over \mathbf{p} and $\operatorname{mult}(\tilde{\Delta}, P)>1$, then $\mathcal{O}_{\tilde{\Delta}, \mathbf{p}}$ is a proper subring of the valuation ring of $F \tilde{K} / \tilde{K}$ at P, so $\mathcal{O}_{\tilde{\Delta}, \mathbf{p}}$ is not a discrete valuation ring of $F \tilde{K} / \tilde{K}$. Hence, \mathbf{p} is a singular point of $\tilde{\Delta}$, so \mathbf{p} is a cusp of $\tilde{\Delta}$.
Definition 8.5. Let q be a positive integer. A q-curve over \tilde{K} is an integral projective curve $\tilde{\Delta}$ over \tilde{K} which
(3a) is characteristic-0-like,
(3b) has a cusp of multiplicity q, and
(3c) $\max _{\mathbf{q} \in \tilde{\Delta}(\tilde{K})} \operatorname{mult}(\tilde{\Delta}, \mathbf{q})=q$.
We may now quote [GJR17, Thm. 16.1] for our global field K :
Proposition 8.6. Let $\Delta=\operatorname{Proj}\left(K\left[s_{0}, \ldots, s_{l}\right]\right)$ be an absolutely integral projective curve in \mathbb{P}_{K}^{l}, where $K\left[s_{0}, \ldots, s_{l}\right]$ is a graded ring over K with $K\left[s_{0}, \ldots, s_{l}\right]_{1}=\sum_{i=0}^{l} K s_{i}$. Let F be the function field of Δ and suppose that $\tilde{\Delta}=\Delta_{\tilde{K}}$ is a q-curve for some prime number q.

Then, there exists a nonempty Zariski-open subset U_{i} of $\mathbb{P}_{\tilde{K}}^{i}, i=2,3, \ldots, l$, such that with $U=U_{2} \times U_{3} \times \cdots \times U_{l} \subseteq \mathbb{P}^{(l)}$, for each $A \in\left(\psi^{(l)}\right)^{-1}(U(K))$ and with $\mu^{(l)}(A)=\binom{\mathbf{a}}{\mathbf{b}}$, the element $t=\sum_{i=0}^{l} a_{i} s_{i} / \sum_{i=0}^{l} b_{i} s_{i} \quad[F: K(t)]-$ symmetrically stabilizes F / K.
Remark 8.7. Theorem 16.1 of [GJR17] assumes that $s_{0}, s_{1}, \ldots, s_{l}$ are elements of F. We may achieve this condition by choosing a nonzero element s^{\prime} of $\sum_{i=0}^{l} K s_{i}$. Then, $\left(\frac{s_{0}}{s^{\prime}}: \cdots: \frac{s_{l}}{s^{\prime}}\right)$ is a generic point of Δ with coordinates in F and $\sum_{i=0}^{l} a_{i} \frac{s_{i}}{s^{\prime}} / \sum_{i=0}^{l} b_{i} \frac{s_{i}}{s^{\prime}}=t$.

9. Homogeneous generic point

In the next section we construct a birational morphism of \bar{X}_{K} onto a q-curve Y over K, with a large prime number q, on which Proposition 8.6
will be applied. The aim of this section is to construct the homogeneous coordinates of the generic point of Y.

Recall from Lemma 5.6 that $\bar{X}=\operatorname{Proj}(R[\mathbf{t}])$, where $\mathbf{t}=\left(t_{0}, \ldots, t_{r}\right), R[\mathbf{t}]$ is a graded ring with $R[\mathbf{t}]_{0}=R, R[\mathbf{t}]_{1}=\sum_{i=0}^{r} R t_{i}$, and $t_{0}, \ldots, t_{r} \neq 0$.
Lemma 9.1. Let k be a positive integer and $s_{0}, \ldots, s_{r^{\prime}}$ nonzero generators of the K-vector-space $K[\mathbf{t}]_{k}$. Then, for every $0 \leq i \leq r$ and $0 \leq i^{\prime} \leq r^{\prime}$ we have

$$
\begin{equation*}
K\left(\frac{t_{0}}{t_{i}}, \ldots, \frac{t_{r}}{t_{i}}\right)=K\left(\frac{s_{0}}{s_{i^{\prime}}}, \ldots, \frac{s_{r^{\prime}}}{s_{i^{\prime}}}\right) . \tag{1}
\end{equation*}
$$

Proof. The left hand side of (1) is the function field F of X and of \bar{X}. For each $0 \leq i^{\prime} \leq r^{\prime}$ there exists a homogeneous polynomial $f_{i^{\prime}} \in K\left[T_{0}, \ldots, T_{r}\right]$ of degree k with $s_{i^{\prime}}=f_{i^{\prime}}(\mathbf{t})$. Hence, for each $0 \leq j^{\prime} \leq r^{\prime}$ we have

$$
\begin{align*}
\frac{s_{j^{\prime}}}{s_{i^{\prime}}} & =\frac{f_{j^{\prime}}\left(t_{0}, \ldots, t_{r}\right)}{t_{0}^{k}} / \frac{f_{i^{\prime}}\left(t_{0}, \ldots, t_{r}\right)}{t_{0}^{k}} \tag{2}\\
& =f_{j^{\prime}}\left(1, \frac{t_{1}}{t_{0}}, \ldots, \frac{t_{r}}{t_{0}}\right) / f_{i^{\prime}}\left(1, \frac{t_{1}}{t_{0}}, \ldots, \frac{t_{r}}{t_{0}}\right) \in F .
\end{align*}
$$

Conversely, we denote the right hand side of (1) by F^{\prime}. For each $0 \leq i \leq r$ there exist $a_{0}, \ldots, a_{r^{\prime}}$ and $b_{0}, \ldots, b_{r^{\prime}}$ in K such that $t_{i} t_{0}^{k-1}=a_{0} s_{0}+\cdots+a_{r^{\prime}} s_{r^{\prime}}$ and $t_{0}^{k}=b_{0} s_{0}+\cdots+b_{r^{\prime}} s_{r^{\prime}}$. Then,

$$
\begin{equation*}
\frac{t_{i}}{t_{0}}=\frac{t_{i} t_{0}^{k-1}}{t_{0}^{k}}=\frac{a_{0} s_{0}+\cdots+a_{r^{\prime}} s_{r^{\prime}}}{s_{i^{\prime}}} / \frac{b_{0} s_{0}+\cdots+b_{r^{\prime}} s_{r^{\prime}}}{s_{i^{\prime}}} \in F^{\prime} \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that $F=F^{\prime}$, as claimed.
The following result is [GJR17, Prop. 19.1]:
Proposition 9.2. Let F be an algebraic function field of one variable over \tilde{K} and consider an element $t \in F^{\times}$. Let $\mathbf{s}=\left(s_{0}: s_{1}: \cdots: s_{m}\right)$ be a generic point of an integral projective curve Δ in $\mathbb{P}_{\bar{K}}^{m}$ with $s_{0}, s_{1}, \ldots, s_{m} \in F$. Let $\mathrm{x}^{\prime}=\left(x_{0}^{\prime}: x_{1}^{\prime}: \cdots: x_{n^{\prime}}^{\prime}\right)$ be a generic point of an integral projective curve Λ in $\mathbb{P}_{\tilde{K}}^{n^{\prime}}$ with $x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime} \in F$. Suppose Δ is characteristic-0-like. In addition suppose that for each $(j, k) \in\{0, \ldots, m\} \times\left\{0, \ldots, n^{\prime}\right\}$ there exists $a_{j k} \in \tilde{K}$ such that $t s_{j}=\sum_{k=0}^{n^{\prime}} a_{j k} x_{k}^{\prime}$. Then, Λ is also characteristic-0-like curve.
Setup 9.3. Let R be the principal ideal domain with quotient field K introduced in Subsection 5.2, X the affine scheme over R introduced in Subsection 5.5, and \bar{X} the projective scheme over R introduced in Lemma 5.6. Subsection 6.1 introduces a separable point B of X that we consider as a homogeneous prime ideal of $R[\mathbf{t}]$ and a point $\mathbf{b}=\left(1: b_{1}: \cdots: b_{r}\right)$ of $X\left(K_{\text {sep }}\right)$ that lies over B with b_{1}, \ldots, b_{r} integral over R. As in Subsection 6.2, we set $E=K(\mathbf{b})=K(B)$ and let $R_{E}=\mathcal{O}_{E, \mathcal{V}} \backslash \mathcal{T}$ be the integral closure of R in E.

As in Subsection 6.2, let w_{1}, \ldots, w_{e} be an R-basis of R_{E} (hence, also a K-basis of E) and let $\sigma_{1}, \ldots, \sigma_{e}$ be elements of $\operatorname{Aut}(\tilde{K}(\mathbf{t}) / K(\mathbf{t}))$ whose restrictions to E are the distinct K-embeddings of E into \tilde{K} and σ_{1} is the identity map of E. The choices made in that subsection imply that $\operatorname{det}\left(w_{i}^{\sigma_{j}}\right)_{i, j=1, \ldots, e}$ is invertible in the integral closure \tilde{R} of R in \tilde{K} and the $\operatorname{ring} R_{E}\left[\frac{\mathrm{t}}{t_{0}}\right]$ is integrally closed. Finally:
(4a) We consider the simple points

$$
\tilde{B}_{j}=\sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right),
$$

$j=1, \ldots, e$, of $X_{\tilde{K}}$ that lie over B and the corresponding points

$$
\mathbf{b}_{j}=\left(1: b_{1}^{\sigma_{j}}: \cdots: b_{r}^{\sigma_{j}}\right)=\mathbf{b}^{\sigma_{j}}
$$

of $X(\tilde{K})$, so, in the notation of Subsection 6.10,

$$
Z_{B}(\tilde{K})=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{e}\right\} .
$$

Note that since $E=K(\mathbf{b})$ is a separable extension of K of degree e, the points $\mathbf{b}_{1}, \ldots, \mathbf{b}_{e}$ form a complete system of conjugate separable points of $\bar{X}(\tilde{K})$ that lie over B and none of the ideals $\tilde{B}_{1}, \ldots, \tilde{B}_{e}$ of $\tilde{K}[\mathbf{t}]$ contains another one.
(4b) We consider the homogeneous ideals

$$
B^{\prime}=\sum_{i=1}^{r} R_{E}[\mathbf{t}]\left(t_{i}-b_{i} t_{0}\right)=R_{E}[\mathbf{t}] \cap \tilde{B}_{1}
$$

(Lemma 6.4) and

$$
B^{\prime \prime}=\bigcap_{j=2}^{e} R_{E}[\mathbf{t}] \cap \tilde{B}_{j}
$$

of $R_{E}[\mathbf{t}]$ introduced in Notation 6.3 that satisfy

$$
V_{+}\left(B^{\prime}\right) \cap V_{+}\left(B^{\prime \prime}\right)=\emptyset
$$

(Lemma 6.8).
(4c) We consider the positive integer k_{0} mentioned in Proposition 7.6.
(4d) We recall that $Z=\operatorname{Proj}(R[\mathbf{t}] / I)$, where I is a nonzero homogeneous ideal of $R[\mathbf{t}]$ (Subsection 5.8) such that $I \nsubseteq B$ (Subsection 6.10), choose a nonzero homogeneous element s_{I} of $I \backslash B$, and set

$$
k_{I}=\operatorname{deg}_{K[\mathbf{t}]}\left(s_{I}\right) .
$$

(4e) For each large multiple k of k_{0}, we consider the isomorphism

$$
\alpha^{(k)}(Z): \Gamma\left(Z, \mathcal{O}_{Z}\right) \rightarrow \Gamma\left(Z, \mathcal{O}_{Z}(k)\right)
$$

that appears in Proposition 7.6 and the homomorphism

$$
\rho_{\bar{X}, Z}^{(k)}: \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right) \rightarrow \Gamma\left(Z, \mathcal{O}_{Z}(k)\right)
$$

that appears in the commutative diagram (2) in Subsection 7.2.
Lemma 9.4. Under Setup 9.3, let a_{1}, \ldots, a_{r} be elements of R and set

$$
\tilde{s}=\prod_{j=1}^{e}\left(a_{1}\left(t_{1}-b_{1}^{\sigma_{j}} t_{0}\right)+\cdots+a_{r}\left(t_{r}-b_{r}^{\sigma_{j}} t_{0}\right)\right) .
$$

Then, $\tilde{s} \in R[\mathbf{t}]$.
Proof. We consider the independent variables T_{0}, \ldots, T_{r} and the element

$$
\begin{equation*}
\tilde{S}=\prod_{j=1}^{e}\left(a_{1}\left(T_{1}-b_{1}^{\sigma_{j}} T_{0}\right)+\cdots+a_{r}\left(T_{r}-b_{r}^{\sigma_{j}} T_{0}\right)\right) \tag{5}
\end{equation*}
$$

of $\tilde{K}(\mathbf{T})$, where $\mathbf{T}=\left(T_{0}, \ldots, T_{r}\right)$. Using the distributive law we may rewrite (5) as

$$
\begin{equation*}
\tilde{S}=\sum_{i=1}^{m} h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right) \mu_{i}(\mathbf{T}), \tag{6}
\end{equation*}
$$

where h_{1}, \ldots, h_{m} are polynomials with coefficients in $R, \underline{b}=\left(b_{1}, \ldots, b_{r}\right)$, and $\mu_{1}(\mathbf{T}), \ldots, \mu_{m}(\mathbf{T})$ are distinct monomials in T_{0}, \ldots, T_{r} of degree e.

We extend $\sigma_{1}, \ldots, \sigma_{e}$ to elements of $G=\operatorname{Aut}(\tilde{K}(\mathbf{t}, \mathbf{T}) / K(\mathbf{t}, \mathbf{T}))$ with the same names. Since $b_{1}, \ldots, b_{r} \in E$ (Setup 9.3), the choice of $\sigma_{1}, \ldots, \sigma_{e}$, implies for each $\tau \in G$ that the e-tuple $\left(\underline{b}^{\sigma_{1} \tau}, \ldots, \underline{b}^{\sigma_{e} \tau}\right)$ is a permutation of $\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right)$. Therefore, applying τ on (5), gives $\tilde{S}^{\tau}=\tilde{S}$. On the other hand, applying τ on (6) gives $\tilde{S}^{\tau}=\sum_{i=1}^{m} h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right)^{\tau} \mu_{i}(\mathbf{T})$. Hence, $\sum_{i=1}^{m} h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right) \mu_{i}(\mathbf{T})=\tilde{S}=\tilde{S}^{\tau}=\sum_{i=1}^{m} h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right)^{\tau} \mu_{i}(\mathbf{T})$. Since $\mu_{1}(\mathbf{T}), \ldots, \mu_{m}(\mathbf{T})$ are linearly independent over \tilde{K}, we get

$$
h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right)^{\tau}=h_{i}\left(\underline{(}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right)
$$

for $i=1, \ldots, m$. Since $b_{1}, \ldots, b_{r} \in K_{\text {sep }}$ (Setup 9.3), we get that

$$
h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right) \in K
$$

for $i=1, \ldots, m$. Since $h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right)$ are integral over R (because b_{1}, \ldots, b_{r} are integral over R, as mentioned in Setup 9.3) and R is integrally closed (Subsection 5.2), we have $h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right) \in R$ for $i=1, \ldots, m$.

Finally, we observe that the specialization $\mathbf{T} \rightarrow \mathbf{t}$, extends to a \tilde{K} homomorphism $\varphi: \tilde{K}[\mathbf{T}] \rightarrow \tilde{K}[\mathbf{t}]$. It follows from (5) and (6) that

$$
\tilde{s}=\varphi(\tilde{S})=\sum_{i=1}^{m} h_{i}\left(\underline{b}^{\sigma_{1}}, \ldots, \underline{b}^{\sigma_{e}}\right) \mu_{i}(\mathbf{t}) \in R[\mathbf{t}],
$$

as claimed.
Lemma 9.5. Under Setup 9.3, let q be a positive integer and let k be a large multiple of k_{0}. Then, $R[\mathbf{t}]_{k}=\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ has elements $s_{0}^{(k)}, s_{1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ with $l(k) \geq e$ such that the following hold:
(a) $\left.s_{0}^{(k)}\right|_{Z}=\rho_{\bar{X}, Z}^{(k)}\left(s_{0}^{(k)}\right)=\alpha^{(k)}(Z)(1) \neq 0$. Moreover, $s_{0}^{(k)}$ vanishes at no point of $Z(\tilde{K})$ and $\operatorname{div}\left(s_{0, \mathfrak{p}}^{(k)}\right) \in \hat{\Omega}_{\mathfrak{p}}^{\left[d_{k}\right]}$ (notation of Proposition 7.6) for each $\mathfrak{p} \in \mathcal{T}$.
(b) $s_{0}^{(k)} \notin \tilde{B}_{j}$ for $j=1, \ldots, e$.
(c) $\left.s_{i}^{(k)}\right|_{Z}=0$, so $s_{i}^{(k)} \in I$, hence $s_{i}^{(k)} \in I_{j}$ for $i=1, \ldots, l(k)$ and $j=1, \ldots, d(Z)$ (in the notation of Subsection 5.8).
(d) $s_{i}^{(k)} \equiv w_{i}^{\sigma_{j}} s_{0}^{(k)} \bmod \tilde{B}_{j}^{q}$, in particular $s_{i}^{(k)}\left(\tilde{B}_{j}\right)=w_{i}^{\sigma_{j}} s_{0}^{(k)}\left(\tilde{B}_{j}\right)$, for $i, j=1, \ldots, e$.
(e) $s_{i}^{(k)} \in \tilde{B}_{j}^{q}$ for $i=e+1, \ldots, l(k)$ and $j=1, \ldots, e$.
(f) $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ form an R-basis for the free R-module

$$
L^{(k)}=\operatorname{Ker}\left(\rho_{\bar{X}, Z \cup Z_{q B}}^{(k)}\right)=R[\mathbf{t}]_{k} \cap I \cap B^{q}
$$

hence also a K-basis for the vector space

$$
L_{K}^{(k)}=\operatorname{Ker}\left(\rho_{\bar{X}_{K}, Z_{K} \cup Z_{q B, K}}^{(k)}\right)=K[\mathbf{t}]_{k} \cap K I \cap K B^{q}
$$

over K.
(g) The function field of $\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ is F.
(h) $\operatorname{Proj}\left(\tilde{K}\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ is a characteristic-0-like integral projective curve in $\mathbb{P}_{\tilde{K}}^{l(k)}$.
Proof. We break up the proof into several parts.
Part A. Choosing $\boldsymbol{s}_{\mathbf{0}}^{(\boldsymbol{k})} \in \boldsymbol{\Gamma}\left(\overline{\boldsymbol{X}}, \mathcal{O}_{\overline{\boldsymbol{X}}}(\boldsymbol{k})\right)$. Let k be a large multiple of k_{0}. Let Z_{B} be the closed reduced subscheme $\operatorname{Proj}(R[\mathbf{t}] / B)$ of \bar{X} introduced in Subsection 6.10. Since X and Z are disjoint (Subsection 5.7) and Z_{B} is a closed subscheme of \bar{X} which is contained in X (Subsection 6.10), restriction of sections gives rise (by Lemma 1.5) to an epimorphism

$$
\begin{equation*}
\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right) \longrightarrow \Gamma\left(Z, \mathcal{O}_{Z}(k)\right) \times \Gamma\left(Z_{B}, \mathcal{O}_{Z_{B}}(k)\right) \tag{7}
\end{equation*}
$$

Recall that we are identifying $\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right), \quad \Gamma\left(Z, \mathcal{O}_{Z}(k)\right)$, and $\Gamma\left(Z_{B}, \mathcal{O}_{Z_{B}}(k)\right)$ with $R[\mathbf{t}]_{k}, R[\mathbf{t}]_{k} /\left(R[\mathbf{t}]_{k} \cap I\right)$, and $R[\mathbf{t}]_{k} /\left(R[\mathbf{t}]_{k} \cap B\right)$, respectively (Remark 1.4). The restriction maps of (7) are replaced under these identifications by the quotient maps. Thus, in these terms, the epimorphism (7) is given by

$$
s \mapsto\left(s+\left(R[\mathbf{t}]_{k} \cap I\right), s+\left(R[\mathbf{t}]_{k} \cap B\right)\right)
$$

By Proposition 7.6, there exists an isomorphism of sheaves

$$
\alpha^{(k)}: \mathcal{O}_{Z} \rightarrow \mathcal{O}_{Z}(k)
$$

of \mathcal{O}_{Z}-modules such that $\Gamma\left(Z, \mathcal{O}_{Z}(k)\right)=\alpha^{(k)}(Z)(1) \cdot \Gamma\left(Z, \mathcal{O}_{Z}\right)$, where 1 is the unit element of the $\operatorname{ring} \Gamma\left(Z, \mathcal{O}_{Z}\right)$. Moreover, there exists

$$
s_{0}^{(k)} \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)=R[\mathbf{t}]_{k}
$$

with
(8) $\left.s_{0}^{(k)}\right|_{Z}=\rho_{\bar{X}, Z}^{(k)}\left(s_{0}^{(k)}\right)=\alpha^{(k)}(Z)(1) \neq 0$. Also, the germ $\alpha^{(k)}(Z)(1)_{P}$ of $\alpha^{(k)}(Z)(1)$ at each point $P \in Z$ is nonzero, so $s_{0}^{(k)}$ vanishes at no point of $Z(\tilde{K})$,
as stated in (a). Moreover,
(9) $\operatorname{div}\left(s_{0, \mathfrak{p}}^{(k)}\right) \in \hat{\Omega}_{\mathfrak{p}}^{\left[d_{k}\right]}$ for each $\mathfrak{p} \in \mathcal{T}$, where $d_{k}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right)$.

We choose by (7) a section $s_{I B} \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)=R[\mathbf{t}]_{k}$ that belongs to I but not to B. By Lemma 7.10, we may replace $s_{0}^{(k)}$, if necessary, by $s_{0}^{(k)}+a s_{I B}$ with $a \in R$ which is sufficiently \mathcal{T}-close to 0 to assume that, in addition to (8) and (9),
(10) $s_{0}^{(k)} \notin B$. Hence, by Lemma $6.5, s_{0}^{(k)} \notin \tilde{B}_{j}$ for $j=1, \ldots, e$, so (b) holds.
Part B. Choosing $s_{1}^{\prime}, \ldots, s_{e}^{\prime} \in \boldsymbol{\Gamma}\left(\overline{\boldsymbol{X}}, \boldsymbol{\mathcal { O }}_{\overline{\boldsymbol{X}}}(\boldsymbol{k})\right)$. We use Setup 9.3(4b) to set

$$
Z_{q B^{\prime}}=\operatorname{Proj}\left(R_{E}[\mathbf{t}] /\left(B^{\prime}\right)^{q}\right) \quad \text { and } \quad Z_{q B^{\prime \prime}}=\operatorname{Proj}\left(R_{E}[\mathbf{t}] /\left(B^{\prime \prime}\right)^{q}\right)
$$

Both are disjoint closed subschemes of $\bar{X}_{R_{E}}$ which are contained in $X_{R_{E}}$, so are disjoint from the closed subscheme $Z_{R_{E}}$ of $\bar{X}_{R_{E}}$. Hence, by Lemma 1.5, restriction of sections gives rise to an epimorphism

$$
\begin{align*}
& \Gamma\left(\bar{X}_{R_{E}}, \mathcal{O}_{\bar{X}_{R_{E}}}(k)\right) \rightarrow \tag{11}\\
& \quad \Gamma\left(Z_{R_{E}}, \mathcal{O}_{Z_{R_{E}}}(k)\right) \times \Gamma\left(Z_{q B^{\prime}}, \mathcal{O}_{Z_{q B^{\prime}}}(k)\right) \times \Gamma\left(Z_{q B^{\prime \prime}}, \mathcal{O}_{Z_{q B^{\prime \prime}}}(k)\right) .
\end{align*}
$$

Thus, there exists $s_{1}^{\prime} \in \Gamma\left(\bar{X}_{R_{E}}, \mathcal{O}_{\bar{X}_{R_{E}}}(k)\right)=R_{E}[\mathbf{t}]_{k}$ such that $s_{1}^{\prime} \mid Z_{R_{E}}=0$, $\left.s_{1}^{\prime}\right|_{q B^{\prime}}=s_{0}^{(k)} \mid Z_{q B^{\prime}}$, and $\left.s_{1}^{\prime}\right|_{q B^{\prime \prime}}=0$. Then, for each large multiple k of k_{0}, we have by Remark 1.4 that

$$
\begin{equation*}
s_{1}^{\prime} \in R_{E} I, \quad s_{1}^{\prime}-s_{0}^{(k)} \in\left(B^{\prime}\right)^{q}, \quad \text { and } \quad s_{1}^{\prime} \in\left(B^{\prime \prime}\right)^{q} \tag{12}
\end{equation*}
$$

This implies that $s_{1}^{\prime} \notin \tilde{B}_{1}$ (otherwise it would follow from

$$
s_{1}^{\prime}-s_{0}^{(k)} \in\left(B^{\prime}\right)^{q} \subseteq B^{\prime} \subseteq \tilde{B}_{1}
$$

that $s_{0}^{(k)} \in R[\mathbf{t}] \cap \tilde{B}_{1}=B$ (Lemma 6.5), which contradicts (10)) and $s_{1}^{\prime} \in \tilde{B}_{j}^{q}$ for $j=2, \ldots, e$.

Next we write $s_{1}^{\prime}=f_{1}^{\prime}(\mathbf{t})$, where $f_{1}^{\prime} \in R_{E}\left[T_{0}, \ldots, T_{r}\right]_{k}$ and recall that $\tilde{R}=\mathcal{O}_{\tilde{K}, \mathcal{V} \backslash \mathcal{T}}$ is the integral closure of R in \tilde{K} (Subsection 4.5). We set $s_{j}^{\prime}=\left(s_{1}^{\prime}\right)^{\sigma_{j}}=\left(f_{1}^{\prime}\right)^{\sigma_{j}}(\mathbf{t}) \in \tilde{R}[\mathbf{t}]_{k}$ for $j=2, \ldots, e$. Then, by the preceding paragraph,
(13) $s_{j}^{\prime} \mid Z_{\tilde{R}}=0, s_{j}^{\prime}-s_{0}^{(k)} \in \tilde{B}_{j}^{q}$, and $s_{j^{\prime}}^{\prime} \in \tilde{B}_{j}^{q}$ for $j^{\prime} \neq j$. In particular, by $(10), s_{j}^{\prime}\left(\tilde{B}_{j}\right)=s_{0}^{(k)}\left(\tilde{B}_{j}\right) \neq 0$ for $j=1, \ldots, e$ and $s_{j}^{\prime}\left(\tilde{B}_{j^{\prime}}\right)=0$ for $j^{\prime} \neq j$.

Part C. Choosing $s_{1}^{(k)}, \ldots, s_{e}^{(k)}$. For each $1 \leq i \leq e$ let
(14) $s_{i}^{(k)}=\sum_{j=1}^{e} w_{i}^{\sigma_{j}} s_{j}^{\prime}=\sum_{j=1}^{e}\left(w_{i} f_{1}^{\prime}\right)^{\sigma_{j}}(\mathbf{t})$.

Then, each of the coefficients of the monomials in t_{0}, \ldots, t_{r} on the right hand side of (14) is an element of K which is integral over R. Since the latter ring is integrally closed (Subsection 5.2), each of those coefficients belong to R. Hence, $s_{i}^{(k)} \in R[\mathbf{t}]$. Moreover, since $f_{1}^{\prime} \in R_{E}\left[T_{0}, \ldots, T_{r}\right]_{k}$, we have $s_{i}^{(k)} \in R[\mathbf{t}]_{k}$. By (13),
(15) $\left.s_{i}^{(k)}\right|_{Z}=0$ for $i=1, \ldots, e$,
as stated in (c). Again, by (13),
(16) $s_{i}^{(k)}=\sum_{j^{\prime}=1}^{e} w_{i}^{\sigma_{j^{\prime}}} s_{j^{\prime}}^{\prime} \equiv w_{i}^{\sigma_{j}} s_{j}^{\prime} \equiv w_{i}^{\sigma_{j}} s_{0}^{(k)} \bmod \tilde{B}_{j}^{q}$ for $i, j=1, \ldots, e$, as stated in (d).
Part D. The free modules $L^{(k)}$ and the linear spaces $L_{\boldsymbol{K}}^{(k)}$. We choose a nonzero homogeneous element s_{B} of B and let $k_{B}=\operatorname{deg}_{K[\mathbf{t}]}\left(s_{B}\right)$ (Section 1).
(17) We choose a large multiple k_{1} of k_{0} such that $k_{1} \geq k_{I}+q k_{B}+1$, where k_{I} is as in (4 d).
For each large integer k let

$$
\begin{equation*}
L^{(k)}=\operatorname{Ker}\left(\rho_{\bar{X}, Z \cup Z_{q B}}^{(k)}\right)=R[\mathbf{t}]_{k} \cap I \cap B^{q} \text { (Remark 1.4). } \tag{18}
\end{equation*}
$$

Since $\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)=R[\mathbf{t}]_{k}$ is a finitely generated R-module and R is Noetherian, $L^{(k)}$ is a finitely generated R-module. Moreover, since both R and $L^{(k)}$ are submodules of the field $K(\mathbf{t})$, the R-module $L^{(k)}$ is torsion-free. In addition, R is a principal ideal domain (Setup 9.3). So, $L^{(k)}$ is a finitely generated free R-module [Lan93, p. 148, Thm. 7.1]. It satisfies the following rule:
(19) If $s \in L^{(k)}$ and $s^{\prime} \in R[\mathbf{t}]_{k^{\prime}}$, then $s s^{\prime} \in L^{\left(k+k^{\prime}\right)}$.

Similarly we consider the vector space
(20) $L_{K}^{(k)}=\operatorname{Ker}\left(\rho_{\bar{X}_{K}, Z_{K} \cup Z_{q B, K}}^{(k)}\right)=K[\mathbf{t}]_{k} \cap K I \cap(K B)^{q}$
over K and observe that Rule (19) holds also for these vector spaces.
Let $s_{0}^{\left[k_{1}\right]}, \ldots, s_{m}^{\left[k_{1}\right]}$ be an R-basis of $L^{\left(k_{1}\right)}$ and consider the scheme

$$
\Lambda=\operatorname{Proj}\left(R\left[s_{0}^{\left[k_{1}\right]}, \ldots, s_{m}^{\left[k_{1}\right]}\right]\right)
$$

By (19) and (18),
(21) $s_{I} s_{B}^{q} K[\mathbf{t}]_{k_{1}-k_{I}-q k_{B}} \subseteq K[\mathbf{t}]_{k_{1}} \cap K I \cap K B^{q}=L_{K}^{\left(k_{1}\right)}$, where s_{I} is introduced in (4d).
Since $k_{1}-k_{I}-q k_{B} \geq 1$ (by (17)), Lemma 9.1 implies that the quotients of the elements of $K[\mathbf{t}]_{k_{1}-k_{I}-q k_{B}}$ by a chosen nonzero element of this K -vector-space generate the field F over K. Since $s_{I} s_{B}^{q} \neq 0$, Relation (21) implies that the function field of Λ_{K} is F.

Part E. Characteristic-0-like curve. We follow [GJR17, Remark 18.1] and let $s_{0}^{\left[3 k_{1}\right]}, \ldots, s_{\left.m^{*}\right]}^{\left[3 k_{1}\right]}$ be all of the elements of the form $s_{h}^{\left[k_{1}\right]} s_{i}^{\left[k_{1}\right]} s_{j}^{\left[k_{1}\right]}$ with $0 \leq h, i, j \leq m$. By (19), $s_{0}^{\left[3 k_{1}\right]}, \ldots, s_{m^{*}}^{\left[3 k_{1}\right]} \in L^{\left(3 k_{1}\right)} \subseteq R[\mathbf{t}]_{3 k_{1}}$. Thus, $R\left[s_{0}^{\left[3 k_{1}\right]}, \ldots, s_{m^{*}}^{\left[3 k_{1}\right]}\right]$ is a graded ring over R with

$$
R\left[s_{0}^{\left[3 k_{1}\right]}, \ldots, s_{m^{*}}^{\left[3 k_{1}\right]}\right]_{1}=\sum_{i=0}^{m^{*}} R s_{i}^{\left[3 k_{1}\right]}
$$

and

$$
\Lambda^{*}=\operatorname{Proj}\left(R\left[s_{0}^{\left[3 k_{1}\right]}, \ldots, s_{m^{*}}^{\left[3 k_{1}\right]}\right]\right)
$$

is the image of Λ under the 3 -fold Veronese embedding. In particular, the function field of Λ_{K}^{*} is F. Also,

$$
\Lambda_{\tilde{K}}^{*}=\operatorname{Proj}\left(\tilde{K}\left[s_{0}^{\left[3 k_{1}\right]}, \ldots, s_{m^{*}}^{\left[3 k_{1}\right]}\right]\right)
$$

is the image of

$$
\Lambda_{\tilde{K}}=\operatorname{Proj}\left(\tilde{K}\left[s_{0}^{\left[k_{1}\right]}, \ldots, s_{m}^{\left[k_{1}\right]}\right]\right)
$$

under the 3-fold Veronese embedding. Therefore, by [GJR17, Prop. 18.6],
(22) the curve $\Lambda_{\tilde{K}}^{*}$ is characteristic-0-like.

Let $k \geq 3 k_{1}$ be a large multiple of k_{0}. For each $0 \leq i \leq m^{*}$ we set $s_{i}^{*}=t_{0}^{k-3 k_{1}} s_{i}^{\left[3 k_{1}\right]} \in L^{(k)}$ (by (19)). In addition, we choose $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ in $R[\mathbf{t}]_{k}$ that form an R-basis of $L^{(k)}$ (as stated in (f)). In particular,
(23) $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ vanish on Z.

Together with (15), Statement (23) verifies (c). Also, $R\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]$ is a graded ring over R with

$$
R\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)]}\right]_{1}=\sum_{i=0}^{l(k)} R s_{i}^{(k)} .
$$

Since $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ generate $L_{K}^{(k)}$ over K, we have $s_{0}^{*}, \ldots, s_{m^{*}}^{*} \in \sum_{i=0}^{l(k)} K s_{i}^{(k)}$. Hence,

$$
\begin{equation*}
\frac{s_{i}^{\left[3 k_{1}\right]}}{t_{0}^{3 k_{1}}}=\frac{s_{i}^{*}}{t_{0}^{k}} \in \sum_{j=0}^{l(k)} K \frac{s_{j}^{(k)}}{t_{0}^{k}} \text { for } i=0, \ldots, m^{*} . \tag{24}
\end{equation*}
$$

Since the function field of Λ_{K}^{*} is F, it follows from (24) that F is contained in the function field of $\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$. The latter is contained in F. Hence, the function field of $\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ is F, as stated in (g).

Now observe that $\left(\frac{s_{0}^{\left[3 k_{1}\right]}}{t_{0}^{3 k_{1}}}: \cdots: \frac{s_{m}^{\left[3 k_{1}\right]}}{t_{0}^{3 k_{1}}}\right)$ is a generic point of $\Lambda_{\tilde{K}}^{*}$ with coordinates in F, hence in $F \tilde{K}$. Also, $\left(\frac{s_{0}^{(k)}}{t_{0}^{k}}: \cdots: \frac{s_{l(k)}^{(k)}}{t_{0}^{k}}\right)$ is a generic point of $\operatorname{Proj}\left(\tilde{K}\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ with coordinates in F, hence in $F \tilde{K}$. Therefore, by (22), (24), and Proposition 9.2, $\operatorname{Proj}\left(\tilde{K}\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ is a characteristic0 -like curve, as (h) claims.

By the definition of $L^{(k)}$ in Part $\mathrm{D}, s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ vanish on $Z_{q B}$, hence they all belong to B^{q} and therefore to $\tilde{B}_{j}^{q}, j=1, \ldots, e$, as claimd by (e).

Lemma 9.6. In the notation of Lemma 9.5, the following hold for each large multiple k of k_{0} :
(a) The sections $s_{0}^{(k)}, s_{1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ have no common zero in $\bar{X}(\tilde{K})$.
(b) The sections $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ have no common zero in

$$
\bar{X}(\tilde{K}) \backslash\left(Z(\tilde{K}) \cup Z_{B}(\tilde{K})\right) .
$$

Proof. By Lemma 9.5(a),(b), $s_{0}^{(k)}$ vanishes at no point of $Z(\tilde{K}) \cup Z_{B}(\tilde{K})$. Hence, in order to complete the proof of the claim, it suffices to prove (b).

Since $Z(\tilde{K}) \cup Z_{B}(\tilde{K})$ is a finite subset of $\bar{X}(\tilde{K})$, there exists a homogeneous polynomial $h_{0} \in K\left[T_{0}, \ldots, T_{r}\right]$ that vanish on $Z(\tilde{K}) \cup Z_{B}(\tilde{K})$ but not on $\bar{X}(\tilde{K})$. Replacing h_{0} by its q th power (with q as in Lemma 9.5), we may assume that $h_{0}(\mathbf{t}) \in K B^{q}$. Then, we choose $\mathbf{r}_{0} \in \bar{X}(\tilde{K}) \backslash\left(Z(\tilde{K}) \cup Z_{B}(\tilde{K})\right)$ such that $h_{0}\left(\mathbf{r}_{0}\right) \neq 0$.

Since $\operatorname{dim}\left(\bar{X}_{K}\right)=1$, the polynomial h_{0} vanishes only at finitely many points of $\bar{X}(\tilde{K})$. Let $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ be the finitely many points in $X(\tilde{K}) \backslash Z_{B}(\tilde{K})$ at which h_{0} vanishes. For each i between 1 and m we choose a homogeneous polynomial $h_{i} \in K\left[T_{0}, \ldots, T_{r}\right]$ that vanishes on $Z(\tilde{K})$ but not at \mathbf{r}_{i} such that $h_{i}(\mathbf{t}) \in K B^{q}$. Then, we set $k_{2}=\max \left(\operatorname{deg}\left(h_{0}\right), \ldots, \operatorname{deg}\left(h_{m}\right)\right)$.

We consider a positive multiple k of k_{0} with $k \geq k_{2}$. Given a point $\mathbf{p} \in X(\tilde{K}) \backslash Z_{B}(\tilde{K})$, we choose an index $0 \leq j \leq r$ such that $t_{j}(\mathbf{p}) \neq 0$. If $\mathbf{p}=\mathbf{r}_{i}$ for some i between 1 and m, then $h_{i}(\mathbf{p}) \neq 0$ (by the choice of h_{i}). If $\mathbf{p} \neq \mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$, then $h_{0}(\mathbf{p}) \neq 0$ (by the defining property of $\left.\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right)$. Thus, in any case, there exists $0 \leq i \leq m$ with $h_{i}(\mathbf{p}) \neq 0$. It follows that $h\left(T_{0}, \ldots, T_{r}\right)=T_{j}^{k-\operatorname{deg}\left(h_{i}\right)} h_{i}\left(T_{0}, \ldots, T_{r}\right)$ is a homogeneous polynomial of degree k with coefficients in K that vanishes on $Z(\tilde{K})$, hence on Z_{K}, but not at p. Moreover, $h(\mathbf{t}) \in K B^{q}$. In particular, $h(\mathbf{t}) \in \operatorname{Ker}\left(\rho_{\bar{X}_{K}, Z_{K} \cup Z_{q B, K}}^{(k)}\right)$. By Lemma 9.5(f), the set $\left\{s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}\right\}$ is a K-basis of $\operatorname{Ker}\left(\rho_{\bar{X}_{K}, Z_{K} \cup Z_{q B, K}}^{(k)}\right)$. Hence, $h(\mathbf{t})$ is a linear combination of $s_{e+1}^{(k)}, \cdots, s_{l(k)}^{(k)}$ with coefficients in K, so $h(\mathbf{p})$ is a linear combination of $s_{e+1}^{(k)}(\mathbf{p}), \ldots, s_{l(k)}^{(k)}(\mathbf{p})$ with coefficients in K.

Therefore, at least one of the elements $s_{e+1}^{(k)}(\mathbf{p}), \ldots, s_{l(k)}^{(k)}(\mathbf{p})$ of \tilde{K} is nonzero. This proves (b) and completes the proof of the lemma.

10. The curve Y

We construct a birational morphism of \bar{X}_{K} onto a projective q-curve Y over K for each given positive integer $q \geq 2$. Choosing q to be a large prime number, we then apply Proposition 8.6 to construct a symmetrically stabilizing element for F / K of a special form.

Setup 10.1. We replace k_{0} (Proposition 7.6) by a large multiple of itself to assume that Lemmas 9.5 and 9.6 hold for each positive multiple k of k_{0}. Under Setup 9.3, we consider a large multiple k of k_{0}, a positive integer q, and the elements $s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}$ of $R[\mathbf{t}]_{k}$ that Lemma 9.5 produces. In particular, $K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]$ is a graded ring over K such that

$$
K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]_{1}=\sum_{i=0}^{l(k)} K s_{i}^{(k)}
$$

Let $Y=\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ and let $\varphi=\varphi^{(k)}: \bar{X}_{K} \rightarrow Y$ be the rational map defined by $\varphi(\mathbf{t})=\mathbf{s}^{(k)}$. Since $s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}$ have no common zero in $\bar{X}(\tilde{K})$ (Lemma 9.6), φ is a morphism.

Let $\tilde{\varphi}=\varphi_{\tilde{K}}^{(k)}: \bar{X}_{\tilde{K}} \rightarrow Y_{\tilde{K}}$ be the extension of φ created by changing the base field from K to \tilde{K}. We consider the points

$$
\begin{aligned}
\mathbf{y}_{0} & =(1: 0: \cdots: 0) \\
\mathbf{y}_{1} & =\left(1: w_{1}^{\sigma_{1}}: \cdots: w_{e}^{\sigma_{1}}: 0: \cdots: 0\right) \\
& \vdots \\
\mathbf{y}_{e} & =\left(1: w_{1}^{\sigma_{e}}: \cdots: w_{e}^{\sigma_{e}}: 0: \cdots: 0\right)
\end{aligned}
$$

of $\mathbb{P}^{l(k)}(\tilde{K})$.
Lemma 10.2. Let Γ be an absolutely integral projective curve over a field L and let Γ_{0} be a nonempty Zariski-open subset of Γ with $\Gamma_{0} \neq \Gamma$. Then, Γ_{0} is an absolutely integral affine curve over L.
Proof. By a result of Goodman, $\Gamma_{0, \tilde{L}}$ is affine [Goo69, p. 167, Prop. 5]. It follows from [GoW10, p. 442, Prop. 14.51(6)] that Γ_{0} is also affine. (We are indebted to Ulrich Görtz for this argument.)

Alternatively, we may point out that Γ_{0} is not a proper scheme and use [Liu06, Exer. 7.5.5, p. 315].

Another possibility communicated to us by David Harbater is to construct an effective Cartier divisor D on Γ whose support is $\Gamma \backslash \Gamma_{0}$ and then conclude from [Liu06, Prop. 7.5.5, p. 305] that D is ample. Thus, for some positive
integer n_{0}, the divisor $n_{0} D$ is very ample. Hence, $\mathcal{L}\left(n_{0} D\right)$ admits a set of global sections that provide an embedding of Γ into some projective space \mathbb{P}_{L}^{m} such that D is the (set-theoretic) inverse image of the hyperplane at infinity. Therefore, Γ_{0} is the inverse image of \mathbb{A}_{L}^{m}, hence is affine, because closed immersions are finite [GoW10, p. 325, Prop. 12.11(1)].

Lemma 10.3. The morphism φ of Setup 10.1 maps the affine curve $X_{K} \backslash Z_{B, K}$ isomorphically onto a Zariski-open smooth affine subset Y_{0} of Y. Moreover:
(a) The morphism $\varphi: \bar{X}_{K} \rightarrow Y$ is birational.
(b) $\mathbf{y}_{0} \in Y(K)$ and $\varphi^{-1}\left(\mathbf{y}_{0}\right)=Z_{K}$.
(c) $\mathbf{y}_{j} \in Y(\tilde{K})$ and $\tilde{\varphi}^{-1}\left(\mathbf{y}_{j}\right)=\mathbf{b}_{j}$ for $j=1, \ldots, e$.
(d) $Y_{0}=Y \backslash\left(\varphi\left(Z_{K}\right) \cup \varphi\left(Z_{B, K}\right)\right)$.
(e) $Y_{0}(\tilde{K})=Y(\tilde{K}) \backslash\left\{\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{e}\right\}$.

Proof. Recall that $X_{K}=\operatorname{Spec}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ (Subsection 5.11). By Lemma 10.2, the Zariski-open subset

$$
X_{K} \backslash Z_{B, K}=\bar{X}_{K} \backslash\left(Z_{K} \cup Z_{B, K}\right)
$$

of X_{K} (with $Z_{B, K}$ as introduced in Subsection 6.10) is an absolutely integral affine curve over K, hence may be written as $\operatorname{Spec}\left(K\left[x_{1}, \ldots, x_{n^{\prime}}\right]\right)$, for some $n^{\prime} \geq n$ and elements $x_{n+1}, \ldots, x_{n^{\prime}}$ of F that do not vanish on $Z_{B, K}$. The rest of the proof breaks up into several parts.

Part A. The affine subset $\boldsymbol{Y}_{\mathbf{0}}$ of \boldsymbol{Y}. By Subsection 5.11, \bar{X}_{K} is a normal curve. Hence, for each $Q \in \bar{X}_{K}$, the local ring $\mathcal{O}_{\bar{X}_{K}, Q}$ is a discrete valuation ring of F [Lan58, p. 151, Thm. 1]. In particular, this statement holds for each of the points $K I_{1}, \ldots, K I_{d(Z)}$ of \bar{X}_{K} that correspond to the points $Z_{1, K}, \ldots, Z_{d(Z), K}$ of Z_{K} and which are introduced in Subsection 5.9. The statement also applies to the point $K B$ of X_{K} introduced in Subsection 6.1. We choose a positive integer e^{\prime} that satisfies the following condition:
(1) $\operatorname{ord}_{K I_{i}}\left(x_{j^{\prime}}\right)+e^{\prime} \geq 0$ and $\operatorname{ord}_{K B}\left(x_{j^{\prime}}\right)+e^{\prime} q \geq 0$ for $i=1, \ldots, d(Z)$ and $j^{\prime}=1, \ldots, n^{\prime}$.
Now we set $k^{\prime}=e^{\prime} k_{0}$ and suppose that $k \geq k^{\prime}$. For each $0 \leq i \leq l(k)$ we choose (by Setup 10.1) a homogeneous polynomial $f_{i} \in K\left[T_{0}, \ldots, T_{r}\right]$ of degree k such that $s_{i}^{(k)}=f_{i}(\mathbf{t})$. By Setup 10.1, the morphism $\tilde{\varphi}=$ $\varphi_{\tilde{K}}^{(k)}: \bar{X}_{\tilde{K}} \rightarrow Y_{\tilde{K}}$ is defined by
(2) $\tilde{\varphi}(\mathbf{t})=\left(f_{0}(\mathbf{t}): f_{1}(\mathbf{t}): \cdots: f_{l(k)}(\mathbf{t})\right)$.

By Lemma 9.5(a), $s_{0}^{(k)}$ does not vanish on Z, by Lemma 9.5(c), $\left.s_{j}^{(k)}\right|_{Z}=0$ for $j=1, \ldots, l(k)$. Hence,
(3) $\tilde{\varphi}\left(Z_{\tilde{K}}\right)=\left\{\mathbf{y}_{0}\right\}$, so $\varphi\left(Z_{K}\right)=\left\{\mathbf{y}_{0}\right\}$ and $\tilde{\varphi}(Z(\tilde{K}))=\left\{\mathbf{y}_{0}\right\}$, in particular $\mathbf{y}_{0} \in Y(K)$.

Next note in the notation of Setup 9.3 that

$$
\begin{equation*}
Z_{B}(\tilde{K})=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{e}\right\} . \tag{4}
\end{equation*}
$$

We consider j between 1 and e. By Lemma $9.5(\mathrm{~b}), s_{0}^{(k)}\left(\tilde{B}_{j}\right) \neq 0$. Also, for $i=1, \ldots, e$ we have by Lemma $9.5(\mathrm{~d})$ that $s_{i}^{(k)}\left(\tilde{B}_{j}\right)=w_{i}^{\sigma_{j}} s_{0}^{(k)}\left(\tilde{B}_{j}\right)$. By Lemma 9.5(e), $s_{i}^{(k)}\left(\tilde{B}_{j}\right)=0$ for $i=e+1, \ldots, l(k)$. Hence,

$$
\begin{align*}
\mathbf{y}_{j} & =\left(1: w_{1}^{\sigma_{j}}: \cdots: w_{e}^{\sigma_{j}}: 0: \cdots: 0\right) \tag{5}\\
& =\left(s_{0}^{(k)}\left(\tilde{B}_{j}\right): w_{1}^{\sigma_{j}} s_{0}^{(k)}\left(\tilde{B}_{j}\right): \cdots: w_{e}^{\sigma_{j}} s_{0}^{(k)}\left(\tilde{B}_{j}\right): 0: \cdots: 0\right) \\
& =\left(s_{0}^{(k)}\left(\tilde{B}_{j}\right): s_{1}^{(k)}\left(\tilde{B}_{j}\right): \cdots: s_{e}^{(k)}\left(\tilde{B}_{j}\right): s_{e+1}^{(k)}\left(\tilde{B}_{j}\right): \cdots: s_{l(k)}^{(k)}\left(\tilde{B}_{j}\right)\right) \\
& =\left(f_{0}\left(\mathbf{b}_{j}\right): f_{1}\left(\mathbf{b}_{j}\right): \cdots: f_{e}\left(\mathbf{b}_{j}\right): f_{e+1}\left(\mathbf{b}_{j}\right): \cdots: f_{l(k)}\left(\mathbf{b}_{j}\right)\right) \\
& =\tilde{\varphi}\left(\mathbf{b}_{j}\right) \in Y(\tilde{K}) .
\end{align*}
$$

It follows from (3), (4), and (5) that
(6) $\tilde{\varphi}\left(Z_{B}(\tilde{K})\right)=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{e}\right\}$ and $\tilde{\varphi}\left(Z(\tilde{K}) \cup Z_{B}(\tilde{K})\right)=\left\{\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{e}\right\}$.

By Setup 9.3, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{e}$ form a complete system of K-conjugate separable points of $\bar{X}(\tilde{K})$ that lie over $K B$, so they are all of the points of $\bar{X}(\tilde{K})$ that lie over $K B$. Similarly, $\mathbf{y}_{1}, \ldots, \mathbf{y}_{e}$ form a complete system of K-conjugate separable points of $Y(\tilde{K})$ that lie over $\varphi(K B)$. By [Lan58, p. 74, the equivalence of C 6 and C 7$], Y$ has a Zariski-closed subset $Y_{1,1}$ with $Y_{1,1}(\tilde{K})=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{e}\right\}$. Then, $Y_{1}=\left\{\mathbf{y}_{0}\right\} \cup Y_{1,1}$ is a Zariski-closed subset of $Y, Y_{0}=Y \backslash Y_{1}$ is a nonempty Zariski-open subset of Y and $Y_{0}(\tilde{K})=Y(\tilde{K}) \backslash\left\{\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{e}\right\}$.

Part B. Inclusion of coordinate rings. We consider a point \mathbf{p} of $X(\tilde{K}) \backslash Z_{B}(\tilde{K})$. For each positive multiple k of k_{0}, Lemma 9.6(b) gives $e+1 \leq i \leq l(k)$ such that $f_{i}(\mathbf{p}) \neq 0$. Hence, by (2) and the definition of the \mathbf{y}_{j} 's,

$$
\tilde{\varphi}(\mathbf{p})_{\tilde{\sim}}=\left(f_{0}(\mathbf{p}): f_{1}(\mathbf{p}): \cdots: f_{l(k)}(\mathbf{p})\right) \neq \mathbf{y}_{j}, \quad j=0,1, \ldots, e,
$$

so $\tilde{\varphi}(\mathbf{p}) \in Y_{0}(\tilde{K})$. Thus,

$$
\begin{equation*}
\tilde{\varphi}\left(X(\tilde{K}) \backslash Z_{B}(\tilde{K})\right) \subseteq Y_{0}(\tilde{K}) . \tag{7}
\end{equation*}
$$

By (3), $\tilde{\varphi}(Z(\tilde{K}))=\left\{\mathbf{y}_{0}\right\} \nsubseteq Y_{0}(\tilde{K})$, hence the morphism $\tilde{\varphi}: \bar{X}_{\tilde{K}} \rightarrow Y_{\tilde{K}}$ of integral projective curves over \tilde{K} is nonconstant. Since morphisms of projective curves are closed [Mum88, p. 77, Thm. I.9.1], $\tilde{\varphi}\left(\bar{X}_{\tilde{K}}\right)=Y_{\tilde{K}}$. It follows from (7) and (6) that $\tilde{\varphi}\left(X(\tilde{K}) \backslash Z_{B}(\tilde{K})\right)=Y_{0}(\tilde{K})$, hence also:
(8) $\varphi\left(X_{K} \backslash Z_{B, K}\right)=Y_{0}$. It follows from (6) that $\varphi^{-1}\left(Y_{0}\right)=X_{K} \backslash Z_{B, K}$.

By Lemma 10.2, Y_{0} is an affine curve over K. Hence, there is an inclusion

$$
\begin{equation*}
K\left[Y_{0}\right] \subseteq K\left[X_{K} \backslash Z_{B, K}\right] \tag{9}
\end{equation*}
$$

of the coordinate rings of the affine schemes Y_{0} and $X_{K} \backslash Z_{B, K}[$ Liu06, p. 48, Prop. 2.3.25].

Part C. Equality of coordinate rings. We choose nonzero homogeneous elements $a_{0} \in K I$ and $b_{0} \in K B$ of $K[\mathbf{t}]$. Then, both Zariski-closed subsets $V_{+}\left(a_{0} K[\mathbf{t}]\right)$ and $V_{+}\left(b_{0} K[\mathbf{t}]\right)$ of \bar{X}_{K} are of dimension 0 . Therefore, $\left(X_{K} \backslash Z_{B, K}\right) \cap\left(V_{+}\left(a_{0} K[\mathbf{t}]\right) \cup V_{+}\left(b_{0} K[\mathbf{t}]\right)\right)$ is a finite set, say $\left\{P_{1}, \ldots, P_{m}\right\}$. For each i between 1 and m we choose nonzero homogeneous elements $a_{i} \in K I \backslash P_{i}$ and $b_{i} \in K B \backslash P_{i}$ of $K[\mathbf{t}]$. Note that $P_{i} \notin Z_{K}$, because X_{K} and Z_{K} are disjoint.

Now we assume, in addition to the conditions we have put so far on k, that

$$
\begin{equation*}
k \geq k^{\prime}+\max _{0 \leq i \leq m}\left(\operatorname{deg}_{K[t \mathbf{t}]}\left(a_{i}\right)+q \operatorname{deg}_{K[t]}\left(b_{i}\right)\right), \tag{10}
\end{equation*}
$$

where $k^{\prime}=e^{\prime} k_{0}$ (Part A).
We consider $P \in X_{K} \backslash Z_{B, K}$. If $P \notin V_{+}\left(a_{0} K[\mathbf{t}]\right) \cup V_{+}\left(b_{0} K[\mathbf{t}]\right)$, we set $a_{P}=a_{0}$ and $b_{P}=b_{0}$. Otherwise $P=P_{i}$ for some i between 1 and m and we set $a_{P}=a_{i}$ and $b_{P}=b_{i}$. In each case:

$$
\begin{equation*}
a_{P} \in(K I \backslash P) \cap\left\{a_{0}, \ldots, a_{m}\right\} \text { and } b_{P} \in(K B \backslash P) \cap\left\{b_{0}, \ldots, b_{m}\right\} . \tag{11}
\end{equation*}
$$

By Lemma 9.6(b), there exists i^{\prime} between $e+1$ and $l\left(k_{0}\right)$ such that $s_{i^{\prime}}^{\left(k_{0}\right)} \notin$ P. By Lemma 9.5(f), $s_{i^{\prime}}^{\left(k_{0}\right)} \in K[\mathbf{t}]_{k_{0}} \cap K I \cap K B^{q}$. We set $s^{\prime}=\left(s_{i^{\prime}}^{\left(k_{0}\right)}\right)^{e^{\prime}}$. Then,
(12) $s^{\prime} \in K[\mathbf{t}]_{k^{\prime}} \cap K I \cap K B^{q}$ and $s^{\prime} \notin P$.

For each $1 \leq j \leq n^{\prime}$ we consider the element $x_{j}^{\prime}=x_{j} s^{\prime}$ of $K(\mathbf{t})$. Since $x_{j} \in F$,
(13) $\operatorname{deg}_{K[\mathbf{t}]}\left(x_{j}^{\prime}\right)=\operatorname{deg}_{K[\mathbf{t}]}\left(s^{\prime}\right)=k^{\prime}$ (second and third paragraphs of Example 1.6).
Since $X_{K} \backslash Z_{B, K}=\operatorname{Spec}\left(K\left[x_{1}, \ldots, x_{n^{\prime}}\right]\right)$, we have $\operatorname{ord}_{Q}\left(x_{j}\right) \geq 0$ for each $Q \in X_{K} \backslash Z_{B, K}$ and every $1 \leq j \leq n^{\prime}$. We choose $u_{1} \in K[\mathbf{t}]_{1} \backslash Q$ (e.g., one of the elements t_{0}, \ldots, t_{r}) and write

$$
\begin{equation*}
\frac{x_{j}^{\prime}}{u_{1}^{k^{\prime}}}=x_{j} \cdot\left(\frac{s_{i^{\prime}}^{\left(k_{0}\right)}}{u_{1}^{k_{0}}}\right)^{e^{\prime}} . \tag{14}
\end{equation*}
$$

By Example 1.6(b), $\operatorname{ord}_{Q}\left(\frac{\hat{s}_{s^{\prime}}^{\left(k_{0}\right)}}{u_{1}^{k_{0}}}\right) \geq 0$. Hence, by (14),

$$
\begin{equation*}
\operatorname{ord}_{Q}\left(\frac{x_{j}^{\prime}}{u_{1}^{k^{\prime}}}\right)=\operatorname{ord}_{Q}\left(x_{j}\right)+e^{\prime} \cdot \operatorname{ord}_{Q}\left(\frac{s_{i^{\prime}}^{\left(k_{0}\right)}}{u_{1}^{k_{0}}}\right) \geq 0 . \tag{15a}
\end{equation*}
$$

Given an i between 1 and $d(Z)$, we choose $u_{2} \in K[\mathbf{t}]_{1} \backslash K I_{i}$ (e.g., one of the elements t_{0}, \ldots, t_{r}). By Lemma $9.5(\mathrm{c}), s_{i^{\prime}}^{\left(k_{0}\right)} \in I_{i}$, hence by Example $1.6(\mathrm{c}), \operatorname{ord}_{K I_{i}}\left(\frac{s_{i}^{\left(k_{0}\right)}}{u_{2}^{k_{0}}}\right) \geq 1$. Therefore, by (14) (with u_{2} replacing u_{1}) and
(1),
(15b) $\operatorname{ord}_{K I_{i}}\left(\frac{x_{j}^{\prime}}{u_{2}^{k^{\prime}}}\right)=\operatorname{ord}_{K I_{i}}\left(x_{j}\right)+e^{\prime} \cdot \operatorname{ord}_{K I_{i}}\left(\frac{s_{i^{\prime}}^{\left(k_{0}\right)}}{u_{2}^{k_{0}}}\right) \geq \operatorname{ord}_{K I_{i}}\left(x_{j}\right)+e^{\prime} \geq 0$.
Finally, we choose u_{3} in $K[\mathbf{t}]_{1} \backslash K B$. Since $s_{i^{\prime}}^{\left(k_{0}\right)} \in(K B)^{q}($ Lemma 9.5(f)), we have by Example 1.6(e) that $\operatorname{ord}_{K B}\left(\frac{s_{i^{\prime}}^{\left(k_{0}\right)}}{u_{3}^{k_{0}}}\right) \geq q$. Hence, by (14) (with u_{3} replacing u_{1}) and (1),
(15c) $\operatorname{ord}_{K B}\left(\frac{x_{j}^{\prime}}{u_{3}^{k^{\prime}}}\right)=\operatorname{ord}_{K B}\left(x_{j}\right)+e^{\prime} \cdot \operatorname{ord}_{K B}\left(\frac{s_{i^{\prime}}^{\left(k_{0}\right)}}{u_{3}^{k_{0}}}\right) \geq \operatorname{ord}_{K B}\left(x_{j}\right)+e^{\prime} q \geq 0$.
By (13), $\operatorname{deg}_{K[t]}\left(x_{j}^{\prime}\right)=k^{\prime}$. It follows from (15a)-(15c) and Example 1.6(d) that $x_{j}^{\prime} \in \mathcal{O}_{\bar{X}_{K}}\left(k^{\prime}\right)_{Q}$ for each $Q \in \bar{X}_{K}$. Hence, by Example 1.6(a), $x_{j}^{\prime} \in$ $K[\mathbf{t}]_{k^{\prime}}$ (note that, by the last paragraph of Proposition 7.6, each positive multiple of k_{0} satisfies Diagrams (2) and (3) of Subsection 7.2). Now we choose $0 \leq j^{\prime} \leq r$ such that $t_{j^{\prime}} \notin P$. We use (10), (11), (12), and (13) to set

$$
x_{j}^{\prime \prime}=t_{j^{\prime}}^{k-\operatorname{deg}_{K[t]}\left(a_{P}\right)-q \operatorname{deg}_{K[t]}\left(b_{P}\right)-k^{\prime}} a_{P} b_{P}^{q} x_{j}^{\prime} \in K[\mathbf{t}]_{k} \cap K I \cap(K B)^{q}
$$

and

$$
s=t_{j^{\prime}}^{k-\operatorname{deg}_{K[t]}\left(a_{P}\right)-q \operatorname{deg}_{K[t]}\left(b_{P}\right)-k^{\prime}} a_{P} b_{P}^{q} s^{\prime} \in K[\mathbf{t}]_{k} \cap K I \cap(K B)^{q} \backslash P .
$$

By Lemma 9.5(f),

$$
\begin{equation*}
x_{j}^{\prime \prime}, s \in \sum_{i=e+1}^{l(k)} K s_{i}^{(k)} . \tag{16}
\end{equation*}
$$

By (7), $\varphi(P) \in Y_{0}$. Since $Y=\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$, we have by the definition of φ that $\varphi(P)=P \cap K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]$. Since

$$
s \in K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right] \backslash P,
$$

we conclude that $s \notin \varphi(P)$. Hence, by (16),

$$
x_{j}=\frac{x_{j}^{\prime}}{s^{\prime}}=\frac{x_{j}^{\prime \prime}}{s} \in \mathcal{O}_{Y, \varphi(P)}=\mathcal{O}_{Y_{0}, \varphi(P)} .
$$

It follows from (8) that each x_{j} with $1 \leq j \leq n^{\prime}$ lies in $\mathcal{O}_{Y_{0}, P_{0}}$ for each $P_{0} \in Y_{0}$, so $x_{j} \in K\left[Y_{0}\right]$ [Lan58, p. 31, Thm. 6]. Thus,

$$
K\left[X_{K} \backslash Z_{B, K}\right]=K\left[x_{1}, \ldots, x_{n^{\prime}}\right] \subseteq K\left[Y_{0}\right] .
$$

We conclude from (9) that $K\left[Y_{0}\right]=K\left[X_{K} \backslash Z_{B, K}\right]$.
Part D. End of proof. By (8) and by the conclusion of Part C, φ maps the affine curve $X_{K} \backslash Z_{B, K}$ isomorphically onto Y_{0}. Since X_{K} is smooth (Statement (14) in Subsection 5.11),
(17) Y_{0} is smooth
and the morphism $\varphi: \bar{X}_{K} \rightarrow Y$ is birational. We know that $\bar{X}(\tilde{K})$ is the disjoint union of $\left(X \backslash Z_{B}\right)(\tilde{K}),\left\{\mathbf{b}_{1}\right\}, \ldots,\left\{\mathbf{b}_{e}\right\}$, and $Z(\tilde{K})$. By (5),

$$
\tilde{\varphi}\left(\mathbf{b}_{j}\right)=\mathbf{y}_{j}
$$

for $j=1, \ldots, e$ and, by $(3), \tilde{\varphi}(Z(\tilde{K}))=\left\{\mathbf{y}_{0}\right\}$. We conclude that
(18) $\varphi^{-1}\left(\mathbf{y}_{0}\right)=Z_{K}$ and $\tilde{\varphi}^{-1}\left(\mathbf{y}_{j}\right)=\mathbf{b}_{j}, j=1, \ldots, e$.

This settles all of the statements of the lemma.
Lemma 10.4. Suppose $q \geq 2$. Then, for each $1 \leq j \leq e$, the point \mathbf{y}_{j} of $Y(\tilde{K})$ is a cusp of multiplicity q.

Proof. We consider $1 \leq j \leq e$. By Lemma 10.3(c), the simple point \tilde{B}_{j} of $X_{\tilde{K}}$ is the unique point of $\bar{X}_{\tilde{K}}$ that $\tilde{\varphi}$ maps onto \mathbf{y}_{j}. Thus, $\mathcal{O}_{\bar{X}_{\tilde{K}}, \tilde{B}_{j}}$ is the unique valuation ring of $\tilde{K} F / \tilde{K}$ that contains the local ring $O_{Y_{\tilde{K}}, \mathbf{y}_{j}}$. Let \mathfrak{m} be the maximal ideal of $\mathcal{O}_{Y_{\tilde{K}}, \mathbf{y}_{j}}$. Since $q \geq 2$, it suffices to prove that $q=\min _{m \in \mathfrak{m}} \operatorname{ord}_{\tilde{B}_{j}}(m)$ (Subsection 8.4).

Part A. Lower bound. By Lemma 9.5(b), $s_{0}^{(k)} \notin \tilde{B}_{j}$. Hence,

$$
\tilde{K}\left[\frac{s_{1}^{(k)}}{s_{0}^{(k)}}, \ldots, \frac{s_{l(k)}^{(k)}}{s_{0}^{(k)}}\right]
$$

is the coordinate ring of an open affine neighborhood of \mathbf{y}_{j} in $Y_{\tilde{K}}$. Therefore, by Lemma 9.5(d),(e),
(19) \mathfrak{m} is generated by the elements $\frac{s_{1}^{(k)}}{s_{0}^{(k)}}-w_{1}^{\sigma_{j}}, \ldots, \frac{s_{e}^{(k)}}{s_{0}^{(k)}}-w_{e}^{\sigma_{j}}, \frac{s_{e+1}^{(k)}}{s_{0}^{(k)}}, \ldots, \frac{s_{l(l)}^{(k)}}{s_{0}^{(k)}}$. Moreover, by Lemma 9.5(d),(e), ord $\tilde{B}_{j}\left(\frac{s_{i}^{(k)}}{s_{0}^{(k)}}-w_{i}^{\sigma_{j}}\right) \geq q$ for $i=1, \ldots, e$ and $\operatorname{ord}_{\tilde{B}_{j}}\left(\frac{s_{i}^{(k)}}{s_{0}^{(k)}}\right) \geq q$ for $i=e+1, \ldots, l(k)$. Hence, $\operatorname{ord}_{\tilde{B}_{j}}(m) \geq q$ for all $m \in \mathfrak{m}$.
Part B. Vector spaces. The proof of the lemma will be complete, once we produce an element of $\mathcal{O}_{Y_{\tilde{K}}, \mathbf{y}_{j}}$ whose $\operatorname{ord}_{\tilde{B}_{j}}$-value is q. To this end we consider the K-vector-spaces

$$
\begin{gathered}
V_{j}=\left\{\left(a_{1}, \ldots, a_{r}\right) \in K^{r} \left\lvert\, \operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right)\right) \geq 1\right.\right\} \\
V_{j}^{(2)}=\left\{\left(a_{1}, \ldots, a_{r}\right) \in K^{r} \left\lvert\, \operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right)\right) \geq 2\right.\right\} .
\end{gathered}
$$

We also consider for each $j^{\prime} \neq j$ the K-vector-space

$$
V_{j^{\prime}}=\left\{\left(a_{1}, \ldots, a_{r}\right) \in K^{r} \left\lvert\, \operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j^{\prime}}}\right)\right) \geq 1\right.\right\} .
$$

Claim B1. $V_{j} \not \subset V_{j}^{(\mathbf{2})}$. Indeed, since \tilde{B}_{j} is a simple point of the curve $\bar{X}_{\tilde{K}}$ (Lemma 6.5), $\mathfrak{m}_{\bar{X}_{\tilde{K}}, \tilde{B}_{j}}$ is the maximal ideal of the discrete valuation ring $\mathcal{O}_{\bar{X}_{\tilde{K}}, \tilde{B}_{j}}$. By Notation 6.3, $\tilde{B}_{j}=\sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right)$. Since $t_{0} \notin \tilde{B}_{j}$ (Corollary 6.6), we have

$$
\mathfrak{m}_{\bar{X}_{\tilde{K}}, \tilde{B}_{j}}=\sum_{i=1}^{r} \mathcal{O}_{\bar{X}_{\tilde{K}}, \tilde{B}_{j}}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right) .
$$

Hence, there exists $1 \leq i \leq r$ such that $\operatorname{ord}_{\tilde{B}_{j}}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right)=1$. By definition, $(0, \ldots, 0,1,0, \ldots, 0) \in V_{j} \backslash V_{j}^{(2)}$, where 1 stands in the i th place, as desired. The claim follows.

Claim B2. $V_{j} \notin V_{j^{\prime}}$ for each $j^{\prime} \neq j$. Assume toward contradiction that $V_{j} \subseteq V_{j^{\prime}}$ for some $j^{\prime} \neq j$. Then, for each $\left(a_{1}, \ldots, a_{r}\right) \in K^{r}$ we have

$$
\begin{equation*}
\operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right)\right) \geq 1 \Longrightarrow \operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j^{\prime}}}\right)\right) \geq 1 . \tag{20}
\end{equation*}
$$

For each $1 \leq i \leq r$ we have $t_{i}-b_{i}^{\sigma_{j}} t_{0} \in \tilde{B}_{j}$, so by Example 1.6(c),

$$
\operatorname{ord}_{\tilde{B}_{j}}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right) \geq 1
$$

By $(20), \operatorname{ord}_{\tilde{B}_{j}}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j^{\prime}}}\right) \geq 1$. Since $\tilde{B}_{j^{\prime}}=\sum_{i=1}^{r} \tilde{K}[\mathbf{t}]\left(t_{i}-b_{i}^{\sigma_{j^{\prime}}} t_{0}\right)$, we get $\tilde{B}_{j^{\prime}} \subseteq \tilde{B}_{j}$ in contrast to Lemma 6.5. The claim follows.

It follows from Claims B 1 and B 2 that $V_{j}^{(2)}$ and $V_{j} \cap V_{j^{\prime}}$ for $j^{\prime} \neq j$ are proper subspaces of V_{j}. Since K is an infinite field, there exists

$$
\left(a_{1}, \ldots, a_{r}\right) \in V_{j} \backslash\left(V_{j}^{(2)} \cup \bigcup_{j^{\prime} \neq j} V_{j^{\prime}}\right)
$$

In other words,

$$
\begin{align*}
& \operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j}}\right)\right)=1, \tag{21}\\
& \operatorname{ord}_{\tilde{B}_{j}}\left(\sum_{i=1}^{r} a_{i}\left(\frac{t_{i}}{t_{0}}-b_{i}^{\sigma_{j^{\prime}}}\right)\right)=0 \text { for } j^{\prime} \neq j .
\end{align*}
$$

We multiply a_{1}, \ldots, a_{r} by a nonzero element of R to assume that a_{1}, \ldots, a_{r} are in R.

Part C. An element of $\boldsymbol{R}[\mathrm{t}]_{k} \cap \boldsymbol{I} \cap \boldsymbol{B}^{q}$. We consider the element

$$
\begin{equation*}
\tilde{s}=\prod_{j^{\prime}=1}^{e}\left(a_{1}\left(t_{1}-b_{1}^{\sigma_{j^{\prime}}} t_{0}\right)+\cdots+a_{r}\left(t_{r}-b_{r}^{\sigma_{j^{\prime}}} t_{0}\right)\right) \tag{22}
\end{equation*}
$$

of $\tilde{K}[\mathbf{t}]_{e}$. By Lemma 9.4, $\tilde{s} \in R[\mathbf{t}]$, hence $\tilde{s} \in R[\mathbf{t}]_{e}$. By the first statement of (21) and by Example 1.6(c), $\sum_{i=1}^{r} a_{i}\left(t_{i}-b_{i}^{\sigma_{j}} t_{0}\right) \in \tilde{B}_{j}$. Hence, by (22), $\tilde{s} \in R[\mathbf{t}] \cap \tilde{B}_{j}=B$ (Lemma 6.5).

Assuming that $k \geq k_{I}+e q$, we set

$$
s=t_{0}^{k-k_{I}-e q} s_{I} \tilde{s}^{q},
$$

where s_{I} is the homogeneous element of $I \backslash B$ chosen in Setup 9.3(4d) and $k_{I}=\operatorname{deg}_{K[\mathbf{t}]}\left(s_{I}\right)$. Then,

$$
\begin{equation*}
s \in R[\mathbf{t}]_{k} \cap I \cap B^{q} . \tag{23}
\end{equation*}
$$

Part D. The ord ${\tilde{\tilde{B}_{j}}}^{-}$-value of $\frac{s}{s_{0}^{(k)}}$. By (21) and (22), the ord \tilde{B}_{j}-value of the j-factor of the product on the right hand side of

$$
\begin{equation*}
\frac{s}{t_{0}^{k}}=\frac{s_{I}}{t_{0}^{k_{I}}} \prod_{j^{\prime}=1}^{e}\left(a_{1}\left(\frac{t_{1}}{t_{0}}-b_{1}^{\sigma_{j^{\prime}}}\right)+\cdots+a_{r}\left(\frac{t_{r}}{t_{0}}-b_{r}^{\sigma_{j^{\prime}}}\right)\right)^{q} \tag{24}
\end{equation*}
$$

is q and the $\operatorname{ord}_{\tilde{B}_{j}}$-value of the j^{\prime} th factor is 0 for each $j^{\prime} \neq j$. Since $s_{I}, t_{0} \notin$ \tilde{B}_{j} (because $s_{I} \in R[\mathbf{t}] \backslash B$), we have $\operatorname{ord}_{\tilde{B}_{j}}\left(\frac{s_{I}}{t_{0}^{k_{I}}}\right)=0$ (Example 1.6(b)). Therefore, by $(24), \operatorname{ord}_{\tilde{B}_{j}}\left(\frac{s}{t_{0}^{k}}\right)=q$. Finally, since $t_{0}, s_{0}^{(k)} \notin \tilde{B}_{j}$, we have $\operatorname{ord}_{\tilde{B}_{j}}\left(\frac{s}{s_{0}^{(k)}}\right)=q$.

We may now complete the proof of Lemma 10.4. By Lemma 9.5(f), $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ generate $R[\mathbf{t}]_{k} \cap I \cap B^{q}$ over R. Hence, by (23), there exist $a_{e+1}^{\prime}, \ldots, a_{l(k)}^{\prime} \in R$ such that $s=\sum_{i=e+1}^{l(k)} a_{i}^{\prime} s_{i}^{(k)}$. It follows from (19) that

$$
\frac{s}{s_{0}^{(k)}}=\sum_{i=e+1}^{l(k)} a_{i}^{\prime} \frac{s_{i}^{(k)}}{s_{0}^{(k)}} \in \mathfrak{m},
$$

as desired.
Proposition 10.5. Let q be a large positive integer. Then, for each large positive multiple k of the integer k_{0} introduced in Proposition 7.6, there exists a birational morphism φ of \bar{X}_{K} onto an absolutely integral projective curve Y in $\mathbb{P}_{K}^{l(k)}$ such that $Y_{\tilde{K}}$ is a q-curve (Definition 8.5).

Proof. In the notation of Subsection 5.9, let $Z_{K}(\tilde{K})=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{\tilde{d}}\right\}$. Since each point of \bar{X}_{K} and in particular each point of Z_{K} is normal (Subsection 5.11), each \mathbf{z}_{δ} with $1 \leq \delta \leq \tilde{d}$ is simple or a cusp of $\bar{X}_{\tilde{K}}$ [Neu98, p. 234, Lemma 2.14]. In each case \mathbf{z}_{δ} lies under a unique prime divisor \tilde{Z}_{δ} of $\tilde{K} F / \tilde{K}$.

In the other direction, \mathbf{z}_{δ} lies over the point $Z_{i(\delta), K}$ of Z_{K} for a unique $i(\delta)$ between 1 and $d(Z)$ (Subsection 5.9). Since $K I_{i(\delta)}$ is a normal point of \bar{X}_{K}, we may identify $Z_{i(\delta), K}$ with the restriction of \tilde{Z}_{δ} to F. Let z_{δ} be a generator of $\mathfrak{m}_{\bar{X}_{K}, Z_{i(\delta), K}}$. Then, ord $\tilde{Z}_{\delta}\left(z_{\delta}\right)$ is the ramification index $e_{\tilde{Z}_{\delta} / Z_{i(\delta), K}}$ of \tilde{Z}_{δ} over $Z_{i(\delta), K}$. We consider an integer

$$
\begin{equation*}
q \geq \sum_{\delta=1}^{\tilde{d}} e_{\tilde{Z}_{\delta} / Z_{i(\delta), K}}=\sum_{\delta=1}^{\tilde{d}} \operatorname{ord}_{\tilde{Z}_{\delta}}\left(z_{\delta}\right) . \tag{25}
\end{equation*}
$$

Next we choose a large positive multiple k of k_{0} that satisfies the conditions of the preceding lemmas of this section. In particular,

$$
Y=\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)
$$

is the integral projective curve in $\mathbb{P}_{K}^{l(k)}$ and $\varphi: \bar{X}_{K} \rightarrow Y$ is the morphism with $\varphi(\mathbf{t})=\mathbf{s}^{(k)}$ introduced in Setup 10.1.

By Lemma 10.3(a), φ is a birational morphism. Since \bar{X}_{K} is absolutely integral, so is Y. By Lemma 9.5(h), Y is a characteristic-0-like curve.

By Lemma 10.3, each of the points of $Y(\tilde{K})$ except possibly $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{e}$ is simple, hence of multiplicity 1 in $Y_{\tilde{K}}$ (Subsection 8.4). By Lemma 10.4, each of the points $\mathbf{y}_{1}, \ldots, \mathbf{y}_{e}$ is a cusp of $Y_{\tilde{K}}$ of multiplicity q. Therefore, it suffices to prove that $\operatorname{mult}\left(Y_{\tilde{K}}, \mathbf{y}_{0}\right) \leq q$ (Definition 8.5).

By Lemma 10.3(b), $\varphi^{-1}\left(\mathbf{y}_{0}\right)=Z_{K}$. Hence, by Subsection 8.4,

$$
\operatorname{mult}\left(Y_{\tilde{K}}, \mathbf{y}_{0}\right)=\sum_{\delta=1}^{\tilde{d}} \operatorname{mult}\left(Y_{\tilde{K}}, \tilde{Z}_{\delta}\right)
$$

so if for each $1 \leq \delta \leq \tilde{d}$ we produce

$$
\begin{equation*}
y_{\delta} \in \mathfrak{m}_{Y, \mathbf{y}_{0}} \text { with } \operatorname{ord}_{\tilde{Z}_{\delta}}\left(y_{\delta}\right)=\operatorname{ord}_{\tilde{Z}_{\delta}}\left(z_{\delta}\right), \tag{26}
\end{equation*}
$$

then, by (25),

$$
\operatorname{mult}\left(Y_{\tilde{K}}, \mathbf{y}_{0}\right)=\sum_{\delta=1}^{\tilde{d}} \operatorname{mult}\left(Y_{\tilde{K}}, \tilde{Z}_{\delta}\right) \leq \sum_{\delta=1}^{\tilde{d}} \operatorname{ord}_{\tilde{Z}_{\delta}}\left(y_{\delta}\right)=\sum_{\delta=1}^{\tilde{d}} \operatorname{ord}_{\tilde{Z}_{\delta}}\left(z_{\delta}\right) \leq q,
$$

and we will be done.
In order to produce y_{δ} as in (26), we recall that $Z_{B, K}$ and Z_{K} are disjoint (Subsection 6.10), in particular $K B^{q} \nsubseteq K I_{i(\delta)}$. Thus, we may choose a positive integer k^{\prime} and an element $\nu \in\left(K[\mathbf{t}]_{k^{\prime}} \cap K B^{q}\right) \backslash K I_{i(\delta)}$.

By Subsection 5.9, the point $Z_{i(\delta), K}$ of Z_{K} corresponds to the homogeneous prime ideal $K I_{i(\delta)}$ of $K[\mathbf{t}]$ that contains $K I$. Since $z_{\delta} \in \mathfrak{m}_{\bar{X}_{K}, Z_{i(\delta), K}}$, we may write
(27) $z_{\delta}=\frac{\mu^{\prime \prime}}{\lambda}$, where $\mu^{\prime \prime}, \lambda \in K[\mathbf{t}]_{k^{\prime \prime}}$ for some positive integer $k^{\prime \prime}$ such that $\mu^{\prime \prime} \in K I_{i(\delta)}$ and $\lambda \notin K I_{i(\delta)}$ (Example 1.6(c)).
Next we choose a homogeneous element $\rho^{\prime} \in\left(\bigcap_{j \neq i(\delta)} K I_{j}\right) \backslash K I_{i(\delta)}$ (Subsection 5.9) and an $0 \leq i^{\prime} \leq r$ with $t_{i^{\prime}} \notin K I_{i(\delta)}$.

Observe that $k^{\prime}, k^{\prime \prime}$, and ρ^{\prime} depend on \bar{X}_{K} but not on Y, so we may assume that $k>k^{\prime}+k^{\prime \prime}+\operatorname{deg}_{K[t]}\left(\rho^{\prime}\right)$. This assumption allows us to set $\rho=t_{i^{\prime}}^{k-k^{\prime}-k^{\prime \prime}-\operatorname{deg}_{K[t]}\left(\rho^{\prime}\right)} \rho^{\prime}$. Then, $\rho \in K[\mathbf{t}]_{k-k^{\prime}-k^{\prime \prime}} \cap\left(\bigcap_{j \neq i(\delta)} K I_{j}\right) \backslash K I_{i(\delta)}$, so $\mu^{\prime \prime} \rho \in \bigcap_{j=1}^{d(Z)} K I_{j}=K I$ (Subsection 5.9) and $\operatorname{deg}_{K[\mathbf{t}]}\left(\mu^{\prime \prime} \rho\right)=k-k^{\prime}$.

It follows that $\mu=\mu^{\prime \prime} \nu \rho \in K[\mathbf{t}]_{k} \cap K I \cap K B^{q}$. By Lemma 9.5(f), μ is a linear combination of $s_{e+1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ with coefficients in K. Since μ belongs to $K I$, it vanishes on Z_{K}, hence also at \mathbf{y}_{0}. By Lemma 9.5(a), $s_{0}^{(k)}$ does not vanish on $Z(\tilde{K})$, hence $s_{0}^{(k)}$ does not vanish at \mathbf{y}_{0} (which is the image of $Z(\tilde{K})$ under $\tilde{\varphi}$, by Lemma 10.3(b)). Therefore, $y_{\delta}=\frac{\mu}{s_{0}^{(k)}} \in \mathfrak{m}_{Y, \mathbf{y}_{0}}$ (Example 1.6(c)).

In order to compute $\operatorname{ord}_{\tilde{Z}_{\delta}}\left(y_{\delta}\right)$, we choose $0 \leq j \leq r$ with $t_{j}\left(\mathbf{z}_{\delta}\right) \neq 0$. Since $\nu, \rho \in K[\mathbf{t}] \backslash K I_{i(\delta)}$, we also have $\nu\left(\mathbf{z}_{\delta}\right) \neq 0, \rho\left(\mathbf{z}_{\delta}\right) \neq 0$, and $s_{0}^{(k)}\left(\mathbf{z}_{\delta}\right) \neq 0$. Hence, each of the elements $\frac{\nu}{t_{j}^{k^{\prime}}}, \frac{\rho}{t_{j}^{k-k^{\prime}-k^{\prime \prime}}}$, and $\frac{\lambda t_{j}^{k-k^{\prime \prime}}}{s_{0}^{(k)}}$ of $\mathcal{O}_{\bar{X}_{\tilde{K}}, \mathbf{z}_{\delta}}$ is invertible. Therefore, the $\operatorname{ord}_{\tilde{Z}_{\delta}}$-value of these elements is 0 . Writing

$$
y_{\delta}=\frac{\mu^{\prime \prime}}{\lambda} \cdot \frac{\nu}{t_{j}^{k^{\prime}}} \cdot \frac{\rho}{t_{j}^{k-k^{\prime}-k^{\prime \prime}}} \cdot \frac{\lambda t_{j}^{k-k^{\prime \prime}}}{s_{0}^{(k)}}
$$

we get from (27) that

$$
\begin{aligned}
\operatorname{ord}_{\tilde{Z}_{\delta}}\left(y_{\delta}\right) & =\operatorname{ord}_{\tilde{Z}_{\delta}}\left(\frac{\mu^{\prime \prime}}{\lambda}\right)+\operatorname{ord}_{\tilde{Z}_{\delta}}\left(\frac{\nu}{t_{j}^{k^{\prime}}}\right)+\operatorname{ord}_{\tilde{Z}_{\delta}}\left(\frac{\rho}{t_{j}^{k-k^{\prime}-k^{\prime \prime}}}\right)+\operatorname{ord}_{\tilde{Z}_{\delta}}\left(\frac{\lambda t_{j}^{k-k^{\prime \prime}}}{s_{0}^{(k)}}\right) \\
& =\operatorname{ord}_{\tilde{Z}_{\delta}}\left(z_{\delta}\right)
\end{aligned}
$$

as desired.
Having established in Proposition 10.5 that the absolutely integral projective curve $Y=\operatorname{Proj}\left(K\left[s_{0}^{(k)}, \ldots, s_{l(k)}^{(k)}\right]\right)$ is a q-curve with function field F for a large positive multiple k of k_{0} and a large positive integer q, we choose q as a large prime number and apply Proposition 8.6 with Y replacing Δ to deduce the following mile stone of the work:

Proposition 10.6. Under Setup 10.1 and in the notation of Subsection 8.1, the following statement holds for every large positive multiple k of k_{0} :

There exists a nonempty Zariski-open subset U_{i} of $\mathbb{P}_{K}^{i}, i=2,3, \ldots, l(k)$, such that with $U=U_{2} \times U_{3} \times \cdots \times U_{l(k)}$, for each $\mathbf{A} \in\left(\psi^{(k)}\right)^{-1}(U(K))$ and with $\binom{\mathbf{a}}{\mathbf{b}}=\mu^{(k)}(\mathbf{A})$, the element

$$
t=\sum_{i=0}^{l(k)} a_{i} s_{i}^{(k)} / \sum_{i=0}^{l(k)} b_{i} s_{i}^{(k)}
$$

[$F: K(t)]$-symmetrically stabilizes F / K.
Remark 10.7. The case where K is a number field is much simpler. In this case \tilde{K} is a separable extension of K. Hence, the normal absolutely integral curve \bar{X}_{K} remains normal under the base change from K to \tilde{K}. Thus, in this case $\bar{X}_{\tilde{K}}$ is a smooth projective curve. This allows us to forget about the special separable point B of X constructed in Section 6. The birational morphism $\varphi: \bar{X}_{K} \rightarrow Y$ now maps X_{K} isomorphically onto Y_{0}. However, we have to take extra care of the point $\mathbf{y}_{0}=\varphi\left(Z_{K}\right)$. Over $\tilde{K}, \mathbf{y}_{0}$ is a higher ordinary point of $Y_{\tilde{K}}$. In other words, the tangents to $\bar{X}_{\tilde{K}}$ at points that lie over \mathbf{y}_{0} are distinct. Then, we may use a much simple version of Proposition 8.6 that makes a big part of the paper [GJR17] redundant.

11. A normalized stabilizing element

Proposition 11.2 below allows us to choose the stabilizing element more carefully. We prove that t can be chosen in Proposition 10.6 such that $a_{0}=1, b_{0}=1, b_{1}=a_{1}+1$, and $\left(a_{1}, \ldots, a_{l(k)}\right)$ and $\left(b_{2}, \ldots, b_{l(k)}\right)$ respectively belong to given \mathcal{T}-open subsets of $R^{l(k)}$ and $R^{l(k)-1}$, where the \mathcal{T}-topologies on powers of R are the product \mathcal{T}-topologies.

Lemma 11.1. Let m be a positive integer and \mathcal{C} a nonempty \mathcal{T}-open subset of R^{m}. Then, \mathcal{C} is Zariski-dense in \mathbb{A}_{K}^{m}.

Proof. It suffices to prove that if $f \in K\left[X_{1}, \ldots, X_{m}\right]$ is nonzero, then there exists $\mathbf{x} \in \mathcal{C}$ such that $f(\mathbf{x}) \neq 0$. In order to do it we first choose a point $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right) \in \mathcal{C}$ and a positive real number ε such that if $\mathbf{x} \in R^{m}$ satisfies $|\mathbf{x}-\mathbf{c}|_{\mathfrak{p}}<\varepsilon$ for all $\mathfrak{p} \in \mathcal{T}$, then $\mathbf{x} \in \mathcal{C}$. Using induction, we may assume that $m=1$. Then, we use the strong approximation theorem of algebraic number theorey [CaF67, p. 67] to choose $a \in R$ such that $|a|_{\mathfrak{p}}<\varepsilon$ for all $\mathfrak{p} \in \mathcal{T}$. Then, $x=c_{1}+a y \in \mathcal{C}$ for each $y \in R$. Hence, $f(x) \neq 0$ for all but finitely many $x \in \mathcal{C}$.

Proposition 11.2. Under Setup 10.1, let k be a large positive multiple of k_{0} such that Proposition 10.6 holds. Let \mathcal{A} and \mathcal{B} be nonempty \mathcal{T}-open subsets of $R^{l(k)}$ and $R^{l(k)-1}$, respectively. Set $s_{i}=s_{i}^{(k)}$ for $i=0, \ldots, l(k)$. Then, there exist $\left(a_{1}, \ldots, a_{l(k)}\right) \in \mathcal{A}$ and $\left(b_{2}, \ldots, b_{l(k)}\right) \in \mathcal{B}$ such that with $b_{1}=a_{1}+1$ the quotient $t=\frac{s_{0}+a_{1} s_{1}+\cdots+a_{l(k)} s_{l(k)}}{s_{0}+b_{1} s_{1}+\cdots+b_{l(k)} s_{l(k)}}$ symmetrically stabilizes F / K.

Proof. We write $l=l(k)$ and simplify the notation introduced in Subsection 8.1 by setting $\mathbb{M}=\mathbb{M}^{(l)}, \mu=\mu^{(l)}, \mathbb{P}=\mathbb{P}^{(l)}$, and $\psi=\psi^{(k)}$. Then, (1) of that subsection simplifies to the row

$$
\begin{equation*}
\mathbb{P} \stackrel{\psi}{\longleftrightarrow} \mathbb{M} \xrightarrow{\mu} \mathbb{M}_{2, l+1}^{*} . \tag{1}
\end{equation*}
$$

For each $2 \leq i \leq l$ let U_{i} be the nonempty Zariski-open subset of \mathbb{P}_{K}^{i} that Proposition 10.6 supplies. We shrink U_{i}, if necessary, to assume that:
(2) Each $\left(a_{1}: \cdots: a_{i}: a_{i+1}\right) \in U_{i}(\tilde{K})$ satisfies $a_{i+1} \neq 0$.

Let $U=U_{2} \times \cdots \times U_{l}$. By Proposition 10.6:
(3) For each $\mathbf{A} \in \psi^{-1}(U(K))$ and with $\mu(\mathbf{A})=\left(\begin{array}{llll}a_{0} & a_{1} & \cdots & a_{l} \\ b_{0} & b_{1} & \cdots & b_{l},\end{array}\right)$ the element $t=\frac{a_{0} s_{0}+\cdots+a_{l} s_{l}}{b_{0} s_{0}+\cdots+b_{l} s_{l}}$ symmetrically stabilizes F / K.
We are going to extend row (1) to a commutative diagram:

The subset \mathbb{M}^{\prime} of \mathbb{M}. Let \mathbb{M}_{2}^{\prime} be the Zariski-closed subset of \mathbb{M}_{2}^{*} such that $\mathbb{M}_{2}^{\prime}(\mho)$ consists of all matrices of the form

$$
A_{2}=\left(\begin{array}{ccc}
1 & a_{11} & a_{12} \tag{5}\\
1 & a_{11}+1 & a_{22}
\end{array}\right)
$$

For each $3 \leq i \leq l$ let \mathbb{M}_{i}^{\prime} be the Zariski-closed subset of \mathbb{M}_{i}^{*} such that $\mathbb{M}_{i}^{\prime}(\mho)$ consists of all matrices of the form

$$
A_{i}=\left(\begin{array}{ccccc}
1 & a_{11} & \cdots & \cdot & a_{1 i} \tag{6}\\
0 & 1 & \cdots & \cdot & a_{2 i} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & a_{i i}
\end{array}\right)
$$

Then, for each $2 \leq i \leq l, \mathbb{M}_{i}^{\prime}$ is naturally isomorphic to the affine space $\mathbb{A}^{i(i+1) / 2}$. We define a closed immersion $\theta^{\prime}: \mathbb{A}^{2 l-1} \rightarrow \mathbb{M}_{2, l+1}^{*}$ by

$$
\theta^{\prime}\left(a_{1}, \ldots, a_{l}, b_{2}, \ldots, b_{l}\right)=\left(\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdots & a_{l} \tag{7}\\
1 & a_{1}+1 & b_{2} & \cdots & b_{l}
\end{array}\right)
$$

Now we set $\mathbb{M}^{\prime}=\mathbb{M}_{2}^{\prime} \times \cdots \times \mathbb{M}_{l}^{\prime}$ and observe by induction on l that

$$
\mu\left(\mathbb{M}^{\prime}\right) \subseteq \theta^{\prime}\left(\mathbb{A}^{2 l-1}\right)
$$

Hence, there exists a unique morphism $\mu^{\prime}: \mathbb{M}^{\prime} \rightarrow \mathbb{A}^{2 l-1}$ such that

$$
\theta^{\prime} \circ \mu^{\prime}=\left.\mu\right|_{\mathbb{M}^{\prime}}
$$

The morphism $\boldsymbol{\rho}$. For each $2 \leq i \leq l$ we define an embedding $\rho_{i}: \mathbb{A}^{i} \rightarrow \mathbb{P}^{i}$ by $\rho_{i}\left(a_{1}, \ldots, a_{i}\right)=\left(a_{1}: \cdots: a_{i}: 1\right)$. Let $\mathbb{A}=\mathbb{A}^{2} \times \cdots \times \mathbb{A}^{l}$ and consider the morphism $\rho=\rho_{2} \times \cdots \times \rho_{l}$ from \mathbb{A} to \mathbb{P}.
The morphism $\psi_{i}^{\prime}: \mathbb{M}_{i}^{\prime} \rightarrow \mathbb{A}^{i}$. In the notation of (5) and by Subsection 8.1, $\psi_{2}\left(A_{2}\right)=\left(y_{0}: y_{1}: y_{2}\right)$ is the unique element of \mathbb{P}^{2} that satisfies

$$
\left(\begin{array}{cc}
1 & a_{11} \tag{8}\\
1 & a_{11}+1
\end{array}\right)\binom{y_{0}}{y_{1}}+\binom{a_{12}}{a_{22}} y_{2}=\left(\begin{array}{ccc}
1 & a_{11} & a_{12} \\
1 & a_{11}+1 & a_{22}
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=0 .
$$

Let $A_{2}^{\prime}=\left(\begin{array}{cc}1 & a_{11} \\ 1 & a_{11}+1\end{array}\right)$. Since $y_{i} \neq 0$ for at least one i and $\operatorname{det}\left(A_{2}^{\prime}\right)=1$, we have $y_{2} \neq 0$. Hence, we may assume that $y_{2}=1$ and conclude that $\psi_{2}\left(A_{2}\right)=\left(y_{0}: y_{1}: 1\right)=\rho_{2}\left(y_{0}, y_{1}\right)$.

Similarly, for $i=3, \ldots, l$ we consider a matrix A_{i} as in (6). Then, $\psi_{i}\left(A_{i}\right)=\left(y_{0}: \cdots: y_{i}\right)$ is the unique element of \mathbb{P}^{i} that satisfies

$$
\left(\begin{array}{cccc}
1 & a_{11} & \cdots & a_{1, i-1} \tag{9}\\
0 & 1 & \cdots & a_{2, i-1} \\
\vdots & & & \\
0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\cdots \\
y_{i-1}
\end{array}\right)+\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\cdots \\
a_{i i}
\end{array}\right) y_{i}=0 .
$$

Again, the determinant of the $i \times i$ matrix A_{i}^{\prime} on the left hand side of (9) is 1 , hence $y_{i} \neq 0$, so we may assume that $y_{i}=1$. As in the previous case, we conclude that

$$
\begin{equation*}
\psi_{i}\left(A_{i}\right)=\left(y_{0}: \cdots: y_{i-1}: 1\right)=\rho_{i}\left(y_{0}, \ldots, y_{i-1}\right) . \tag{10}
\end{equation*}
$$

Let $\tilde{\mathbf{y}}_{i}$ and $\tilde{\mathbf{a}}_{i}$ be the first and the second columns of height i that appear in (8) if $i=2$ and in (9) if $3 \leq i \leq l$. Then, $A_{i}^{\prime} \tilde{\mathbf{y}}_{i}+\tilde{\mathbf{a}}_{i}=0$ and we define the morphism $\psi_{i}^{\prime}: \mathbb{M}_{i}^{\prime} \rightarrow \mathbb{A}^{i}$ by the formula

$$
\begin{equation*}
\psi_{i}^{\prime}\left(A_{i}\right)=\tilde{\mathbf{y}}_{i}=-\left(A_{i}^{\prime}\right)^{-1} \tilde{\mathbf{a}}_{i} \tag{11}
\end{equation*}
$$

and consider $\psi_{i}^{\prime}\left(A_{i}\right)$ in the sequel as a row. It follows from (10) and (11) that $\rho_{i} \circ \psi_{i}^{\prime}=\left.\psi_{i}\right|_{\mathbb{M}_{i}^{\prime}}$. Writing $\psi^{\prime}=\psi_{2}^{\prime} \times \cdots \times \psi_{l}^{\prime}$, this establishes the left part of Diagram (4).
Claim A. For each $2 \leq i \leq l$ we have $\psi_{i}^{\prime}\left(\mathbb{M}_{i}^{\prime}\right)=\mathbb{A}^{i}$. Indeed, let $y_{0}, y_{1}, \ldots, y_{i-1} \in \mho$. For $i=2$ we set $a_{11}=0, a_{12}=-y_{0}$, and $a_{22}=-y_{0}-y_{1}$ in A_{2}. Then, (8) holds for $y_{2}=1$, so by (11),

$$
\psi_{2}^{\prime}\left(A_{2}\right)=\left(y_{0}, y_{1}\right) .
$$

When $l>2$, we set for each $3 \leq i \leq l$,

$$
A_{i}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -y_{0} \\
0 & 1 & \cdots & 0 & -y_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -y_{i-1}
\end{array}\right) \in \mathbb{M}_{i}^{\prime} .
$$

Substituting the corresponding values for the parameters appearing in (9) and setting $y_{i}=1$, we get that $\psi_{i}^{\prime}\left(A_{i}\right)=\left(y_{0}, \ldots, y_{i-1}\right)$, as desired. The claim follows.

Claim B. $\boldsymbol{\mu}^{\prime}\left(\mathbb{M}^{\prime}(\boldsymbol{R})\right)=\mathbb{A}^{2 l-1}(\boldsymbol{R})$. First observe that if $\mathbf{A} \in \mathbb{M}^{\prime}(R)$, then $\mu(\mathbf{A}) \in \theta^{\prime}\left(\mathbf{A}^{2 l-1}(R)\right)$, hence by (4) and (7),

$$
\mu^{\prime}(\mathbf{A})=\left(\theta^{\prime}\right)^{-1}(\mu(\mathbf{A})) \in \mathbb{A}^{2 l-1}(R) .
$$

To prove the inclusion in the other direction, we consider

$$
\left(a_{1}, \ldots, a_{l}, b_{2}, \ldots, b_{l}\right) \in \mathbb{A}^{2 l-1}(R)
$$

If $l=2$, let $A_{2}=\left(\begin{array}{ccc}1 & a_{1} & a_{2} \\ 1 & a_{1}+1 & b_{2}\end{array}\right) \in \mathbb{M}_{2}^{\prime}(R)$. If $l>2$, let

$$
A_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) \in \mathbb{M}_{2}^{\prime}(R), \quad A_{i}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \in \mathbb{M}_{i}^{\prime}(R)
$$

for $i=3, \ldots, l-1$, and

$$
A_{l}=\left(\begin{array}{ccccccc}
1 & a_{1} & a_{2} & a_{3} & \cdots & a_{l-1} & a_{l} \\
0 & 1 & b_{2}-a_{2} & b_{3}-a_{3} & \cdots & b_{l-1}-a_{l-1} & b_{l}-a_{l} \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right) \in \mathbb{M}_{l}^{\prime}(R)
$$

Then,

$$
A_{2} A_{3} \cdots A_{l-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0
\end{array}\right) \in \mathbb{M}_{2, l}(R)
$$

Thus, in both cases,

$$
\begin{aligned}
\mu(\mathbf{A})=A_{2} \cdots A_{l-1} \cdot A_{l} & =\left(\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdots & a_{l} \\
1 & a_{1}+1 & b_{2} & \cdots & b_{l}
\end{array}\right) \\
& =\theta^{\prime}\left(a_{1}, \ldots, a_{l}, b_{2}, \ldots, b_{l}\right) .
\end{aligned}
$$

Hence, by the commutativity of (4),

$$
\left(a_{1}, \ldots, a_{l}, b_{2}, \ldots, b_{l}\right)=\left(\theta^{\prime}\right)^{-1}(\mu(\mathbf{A}))=\mu^{\prime}(\mathbf{A}) \in \mu^{\prime}\left(\mathbb{M}^{\prime}(R)\right)
$$

as desired. The claim follows.
Conclusion of the proof. The product $\mathcal{A} \times \mathcal{B}$ is a nonempty \mathcal{T}-open subset of $\mathbb{A}^{2 l-1}(R)$. By Claim $\mathrm{B}, \mu^{\prime}\left(\mathbb{M}^{\prime}(R)\right)=\mathbb{A}^{2 l-1}(R)$. Hence, the \mathcal{T}-open subset $\left(\mu^{\prime}\right)^{-1}(\mathcal{A} \times \mathcal{B})$ of $\mathbb{M}^{\prime}(R)$ is nonempty. By definition, \mathbb{M}^{\prime} is isomorphic to an affine space. Hence, by Lemma 11.1, $\left(\mu^{\prime}\right)^{-1}(\mathcal{A} \times \mathcal{B})$ is Zariski-dense in \mathbb{M}^{\prime}.

Since $a_{i+1} \neq 0$ for each $2 \leq i \leq l$ and every $\left(a_{1}: \cdots: a_{i}: a_{i+1}\right) \in U_{i}$ (by (2)), we have $U_{i} \subseteq \rho_{i}\left(\mathbb{A}^{i}\right)$, hence $U \subseteq \rho(\mathbb{A})$. Therefore, $U^{\prime}=\rho^{-1}(U)$ is a nonempty Zariski-open subset of \mathbb{A}.

By Claim $\mathrm{A}, \psi^{\prime}\left(\mathbb{M}^{\prime}\right)=\mathbb{A}$, hence $\left(\psi^{\prime}\right)^{-1}\left(U^{\prime}\right)$ is a nonempty Zariski-open subset of \mathbb{M}^{\prime}. Therefore, there exists $\mathbf{A} \in\left(\mu^{\prime}\right)^{-1}(\mathcal{A} \times \mathcal{B}) \cap\left(\psi^{\prime}\right)^{-1}\left(U^{\prime}\right)$. Let $\left(a_{1}, \ldots, a_{l}, b_{2}, \ldots, b_{l}\right)=\mu^{\prime}(\mathbf{A})$. Then,

$$
\begin{gathered}
\mathbf{a}=\left(a_{1}, \ldots, a_{l}\right) \in \mathcal{A}, \quad \mathbf{b}=\left(b_{2}, \ldots, b_{l}\right) \in \mathcal{B}, \\
\mu(\mathbf{A})=\theta^{\prime}\left(\mu^{\prime}(\mathbf{A})\right)=\left(\begin{array}{llll}
1 & a_{1} & \cdots & a_{l} \\
1 & b_{1} & \cdots & b_{l}
\end{array}\right)
\end{gathered}
$$

with $b_{1}=a_{1}+1$, and $\psi(\mathbf{A})=\rho\left(\psi^{\prime}(\mathbf{A})\right) \in U(K)$. By (3), the element $t=\frac{s_{0}+a_{1} s_{1}+\cdots+a_{l} s_{l}}{s_{0}+b_{1} s_{1}+\cdots+b_{l} s_{l}}$ symmetrically stabilizes F / K, as desired.

12. M-points on varieties defined over K

Using the notation of Subsection 4.8, we fix a global field K, a proper subset \mathcal{V} of the set \mathbf{P}_{K} of all primes of K, and a finite subset \mathcal{S} of \mathcal{V}. We also consider a finite subset \mathcal{T} of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K \text {,fin }}$. The following definition puts together those properties of the fields $K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]$ that are used in the proof of Theorem C. Then, Proposition 12.3 restates Theorem C for curves for algebraic extensions of K having those properties.

Definition 12.1 ([GJR00, Def. 1.10]). Let M be an extension of K in $K_{\text {tot }, \mathcal{S}}$ and let \mathcal{O} be a subset of M. We say that M is weakly (resp. weakly symmetrically) K-stably $P S C$ over \mathcal{O} if for every absolutely irreducible polynomial $h \in K[T, Y]$ monic in Y with $d=\operatorname{deg}_{Y}(h)$ and every polynomial $g \in K[T]$ satisfying:
(1a) $h(0, Y)$ has d distinct roots in $K_{\text {tot }, \mathcal{S}}, g(0) \neq 0$.
(1b) $\operatorname{Gal}(h(T, Y), K(T)) \cong \operatorname{Gal}(h(T, Y), \tilde{K}(T))$ (resp. and is isomorphic to the symmetric group \mathfrak{S}_{d}).
there exists $(a, b) \in \mathcal{O} \times M$ such that $h(a, b)=0$ and $g(a) \neq 0$.
Note that in that case, if $M \subseteq M^{\prime} \subseteq K_{\text {tot }, \mathcal{S}}$, then M^{\prime} is also weakly K stably PSC over \mathcal{O}. Also note that if M is weakly K-stably PSC over \mathcal{O}, then M is also weakly symmetrically K-stably PSC over \mathcal{O}.

Setup 12.2. Proposition 7.6 introduces a positive integer k_{0}, for each positive multiple k of k_{0} an isomorphism $\alpha^{(k)}: \mathcal{O}_{Z} \rightarrow \mathcal{O}_{Z}(k)$ of sheaves and an element $s_{0}^{(k)} \in \Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k)\right)$ such that the isomorphism

$$
\alpha^{(k)}(Z): \Gamma\left(Z, \mathcal{O}_{Z}\right) \rightarrow \Gamma\left(Z, \mathcal{O}_{Z}(k)\right)
$$

of $\Gamma\left(Z, \mathcal{O}_{Z}\right)$-modules induced by $\alpha^{(k)}$ satisfies $\rho_{\bar{X}, Z}^{(k)}\left(s_{0}^{(k)}\right)=\alpha^{(k)}(Z)(1)$, where 1 is the unit element of the ring $\Gamma\left(Z, \mathcal{O}_{Z}\right)$. We choose k sufficiently large such that Proposition 10.6 holds. Then, we consider the elements $s_{1}^{(k)}, \ldots, s_{l(k)}^{(k)}$ of $\operatorname{Ker}\left(\rho_{\bar{X}, Z}^{(k)}\right)$ that appear in Proposition 10.6 and set

$$
\mathbf{s}=\left(s_{0}^{(k)}, s_{1}^{(k)}, \ldots, s_{l(k)}^{(k)}\right) .
$$

As in Subsection 7.9, for each algebraic extension K^{\prime} of K and every $\mathfrak{p} \in \mathcal{T}$ let $\Gamma_{\mathbf{s}, \boldsymbol{p}, K^{\prime}}^{(k)}$ be the set of all $s \in \Gamma\left(\bar{X}_{\hat{K}_{\mathrm{p}} K^{\prime}}, \mathcal{O}_{\bar{X}_{\hat{K}_{\mathfrak{p}} K^{\prime}}}(k)\right)$ of the form $s=s_{0}^{(k)}+\sum_{i=1}^{l(k)} a_{i} s_{i}^{(k)}$ with $a_{1}, \ldots, a_{l(k)} \in \hat{K}_{\mathfrak{p}} K^{\prime}$ such that $\operatorname{div}(s) \in \hat{\Omega}_{\mathfrak{p}, K^{\prime}}^{\left[d_{k}\right]}$, where $d_{k}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right)$. In particular, $\operatorname{div}(s)$ totally splits in $F \hat{L}_{\mathfrak{p}} K^{\prime}$ into d_{k} distinct components each of which is a point that belongs to $\Omega_{\mathfrak{p}}\left(\hat{L}_{\mathfrak{p}} K^{\prime}\right)$ (Subsection 7.4).

Proposition 12.3. Let $K, \mathcal{S}, \mathcal{T}, \mathcal{V}$ be as in the first paragraph of this section. Let C be an absolutely integral affine curve over K and let $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ be approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, C$ (as in Subsection 4.7). Let M be a subfield of $K_{\mathrm{tot}, \mathcal{S}}$ that contains K. Suppose M is weakly symmetrically K stably PSC over $\mathcal{O}_{K, \mathcal{V}}$ (resp. $\left.\mathcal{O}_{M, \mathcal{V}}\right)$. Then, there exists $\mathbf{z} \in C\left(\mathcal{O}_{M, \mathcal{V}} \backslash \mathcal{T}\right)$ such that $\mathbf{z}^{\tau} \in \bigcap_{\mathfrak{p} \in \mathcal{T}} \Omega_{\mathfrak{p}}$ (resp. $\mathbf{z}^{\tau} \in \bigcap_{\mathfrak{p} \in \mathcal{S}} \Omega_{\mathfrak{p}} \cap \bigcap_{\mathfrak{p} \in \mathcal{T} \backslash \mathcal{S}} \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} K_{\text {tot }, \mathcal{S}}\right)$) for each $\tau \in \operatorname{Gal}(K)$.
Proof. We let X and \bar{X} be as in Subsection 5.5 and Lemma 5.6, respectively, and write F for the common function field of X and \bar{X}. Following Lemma 4.10, we change C and \mathcal{T}, if necessary, to meet all of the assumptions of Sections 5 and 6 . We also simplify our notation by setting $l=l(k)$ and $s_{i}=s_{i}^{(k)}$ for $i=0, \ldots, l$. We set $\mathbf{s}=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$.

The rest of the proof naturally breaks up into six parts.
Part A. The subset \mathcal{A} of $\boldsymbol{R}^{\boldsymbol{l}}$. Lemma 7.10 supplies a \mathcal{T}-open neighbor$\operatorname{hood} \mathcal{A}$ of $(0, \ldots, 0)$ in R^{l} such that if L is an algebraic extension of K, if R_{L} is the integral closure of R in L, and if $\left(a_{1}, \ldots, a_{l}\right)$ belongs to the \mathcal{T}_{L}-open neighborhood $\mathcal{A}\left(R_{L}\right)$ of $(0, \ldots, 0)$ in R_{L}^{l} induced by \mathcal{A}, then, in the notation of Setup 12.2,

$$
\left(s_{0}+\sum_{i=1}^{l} a_{i} s_{i}\right)_{\mathfrak{p}} \in \Gamma_{\mathbf{s}, \mathfrak{p}, L}^{(k)}
$$

for each $\mathfrak{p} \in \mathcal{T}$, where for $s \in \Gamma\left(\bar{X}_{R_{L}}, \mathcal{O}_{\bar{X}_{R_{L}}}(k)\right), \quad s_{\mathfrak{p}}$ is the section in $\Gamma\left(\bar{X}_{\hat{K}_{\mathfrak{p}} L}, \mathcal{O}_{\bar{X}_{\hat{K}_{\mathfrak{p}} L}}(k)\right)$ obtained from s by base change from R_{L} to $\hat{K}_{\mathfrak{p}} L$. We set $\mathcal{B}=R^{l-1}$.

Proposition 11.2 gives $\mathbf{a}=\left(a_{1}, \ldots, a_{l}\right) \in \mathcal{A}$ and $\left(b_{2}, \ldots, b_{l}\right) \in \mathcal{B}$ such that, with $b_{1}=a_{1}+1, s=s_{0}+\sum_{i=1}^{l} a_{i} s_{i}$ and $s^{*}=s_{0}+\sum_{i=1}^{l} b_{i} s_{i}$, the element $t=\frac{s}{s^{*}}$ symmetrically stabilizes F / K.
Part B. $\boldsymbol{K}_{\text {tot }, \mathcal{S}}$-rational points of \boldsymbol{X}. By Subsection $7.9, s$ and s^{*} are elements of $\Gamma_{\mathrm{s}}^{(k)}$, hence they belong to $\Gamma\left(\bar{X}, \mathcal{O}_{\bar{X}}(k), \alpha^{(k)}\right)$ (Setup 12.2). Moreover, by Part A, $s_{\mathfrak{p}} \in \Gamma_{\mathbf{s}, \mathfrak{p}, K}^{(k)}$ for each $\mathfrak{p} \in \mathcal{T}$. Following Subsection 2.6, we consider $\operatorname{div}(s)$ as an effective Weil divisor on \bar{X}. By Lemma 4.10, we may assume that \mathcal{T} is nonempty. By Setup 12.2 , for each $\mathfrak{p} \in \mathcal{T}, \operatorname{div}\left(s_{\mathfrak{p}}\right)$ belongs to $\hat{\Omega}_{\mathfrak{p}, K}^{\left[d_{k}\right]}$, where $d_{k}=\operatorname{deg}\left(\mathcal{O}_{\bar{X}_{K}}(k)\right)$, hence $\operatorname{div}\left(s_{\mathfrak{p}}\right)$ totally splits in $F \hat{L}_{\mathfrak{p}}$. The
components of $\operatorname{div}\left(s_{\mathfrak{p}}\right)$ are points in $X\left(\hat{L}_{\mathfrak{p}}\right)$ and there are exactly d_{k} of them (Subsection 7.4). When $\mathfrak{p} \in \mathcal{S}$, we have $\hat{L}_{\mathfrak{p}}=\hat{K}_{\mathfrak{p}}$, so the components of $\operatorname{div}\left(s_{\mathfrak{p}}\right)$ are in this case ($\tilde{K} \cap \hat{K}_{\mathfrak{p}}$)-rational points of X. By Subsection 4.4, they are $K_{\mathfrak{p}}$-rational points. Since $\operatorname{div}(s)$ is invariant under the action of $\operatorname{Gal}(K)$, each of those components is $K_{\mathfrak{p}}^{\tau}$-rational for all $\tau \in \operatorname{Gal}(K)$ and $\mathfrak{p} \in \mathcal{S}$. Therefore, with $N=K_{\mathrm{tot}, \mathcal{S}}$ and R_{N} the integral closure of R in N, we have
(2) $\operatorname{div}(s)_{R_{N}}=\operatorname{div}(s) \times_{\operatorname{Spec}(R)} \operatorname{Spec}\left(R_{N}\right)$ is a formal sum of $d_{k} K_{\mathrm{tot}, \mathcal{S}^{-}}$ rational points of X, each with multiplicity 1 .
Note that if S is empty, then $K_{\text {tot }, \mathcal{S}}=K_{\text {sep }}$, so (2) also holds in this case.
Part C. Choosing \boldsymbol{y}. The homogeneous element $s^{*} \in K\left[t_{0}, \ldots, t_{r}\right]$ gives rise to the Zariski-open affine subscheme $C_{0}=D_{+}\left(s^{*}\right)$ of $\bar{X}_{K}[$ Liu06, p. 51, Lemma 3.36(a)]. Thus, $C_{0}=\operatorname{Spec}(A)$, where A is an integrally closed domain (because \bar{X}_{K} is normal) with quotient field F. Therefore,

$$
A=\bigcap_{\substack{\mathbf{p} \in \bar{X}_{K} \\ s^{*} \notin \mathbf{p}}} \mathcal{O}_{\bar{X}_{K}, \mathbf{p}}
$$

In particular, $t=\frac{s}{s^{*}} \in A$ and A is integral over $K[t]$.
By (4) in Subsection 2.7, $\operatorname{div}(t)=\operatorname{div}(s)-\operatorname{div}\left(s^{*}\right)$. Hence, since $\operatorname{div}(s)$ and $\operatorname{div}\left(s^{*}\right)$ are effective Weil divisors (Subsection 2.4), $\operatorname{div}_{0}(t) \leq \operatorname{div}(s)$, so each zero of t is also a zero of s. It follows from (2) that t has at most d_{k} zeros, each with multiplicity 1 .

We choose $y \in A$ such that $F=K(t, y)$ and let $h_{0} \in K[T, Y]$ be the absolutely irreducible polynomial, monic in Y, such that $h_{0}(t, y)=0$. Let $d=[F: K(t)]$, let y_{1}, \ldots, y_{d} be the roots of $h_{0}(t, Y)$ in $K(t)_{\text {sep }}$ with $y_{1}=y$, and let $\Delta(t)=\prod_{i \neq j}\left(y_{i}-y_{j}\right) \in K[t]$. Since h_{0} is separable in $Y, \Delta(t) \neq 0$. We write $h_{0}(T, Y)=Y^{d}+f_{d-1}(T) Y^{d-1}+\cdots+f_{0}(T)$ with $f_{0}, \ldots, f_{d-1} \in$ $K[T]$. Since the roots of $h_{0}(0, Y)$ bijectively correspond to the zeros of t, it follows from the preceding paragraph, that $h_{0}(0, Y)$ has d distinct roots, $\bar{y}_{1}, \ldots, \bar{y}_{d}$ in $K_{\text {sep }}$ and $d \leq d_{k}$, so $\Delta(0)=\prod_{i \neq j}\left(\bar{y}_{i}-\bar{y}_{j}\right) \neq 0$.
Part D. Another stabilizing element. For each $1 \neq a_{0} \in K$ we have

$$
\frac{\sum_{i=1}^{l}\left(a_{i}-a_{0} b_{i}\right) s_{i}}{1-a_{0}}=\sum_{i=1}^{l}\left(a_{i}+\left(a_{i}-b_{i}\right) \frac{a_{0}}{1-a_{0}}\right) s_{i}
$$

hence

$$
\begin{equation*}
t_{0}=\frac{t-a_{0}}{1-a_{0}}=\frac{s_{0}+\sum_{i=1}^{l}\left(a_{i}+\left(a_{i}-b_{i}\right) \frac{a_{0}}{1-a_{0}}\right) s_{i}}{s_{0}+\sum_{i=1}^{l} b_{i} s_{i}} . \tag{3}
\end{equation*}
$$

Note that $K\left(t_{0}\right)=K(t)$, so also t_{0} symmetrically stabilizes F / K. Since \mathcal{A} is \mathcal{T}-open, there exists a positive real number $\gamma_{\mathbf{a}}$ such that
(4) if $\mathbf{c} \in R_{N}^{l}$ satisfies $|\mathbf{c}-\mathbf{a}|_{\mathfrak{p}}<\gamma_{\mathbf{a}}$ for each $\mathfrak{p} \in \mathcal{T}_{N}$, then $\mathbf{c} \in \mathcal{A}\left(R_{N}\right)$.

We use the strong approximation theorem for K [CaF67, p. 67] to choose a nonzero $m \in R=\mathcal{O}_{K, \mathcal{V}} \backslash \mathcal{T}$ such that

$$
\begin{equation*}
\left|\left(a_{i}-b_{i}\right) m\right|_{\mathfrak{p}}<\gamma_{\mathbf{a}} \tag{5}
\end{equation*}
$$

for all $1 \leq i \leq l$ and $\mathfrak{p} \in \mathcal{T}$. In particular, for $i=1$, we get $|m|_{\mathfrak{p}}<\gamma_{\mathbf{a}}$ for all $\mathfrak{p} \in \mathcal{T}$.

Let $t^{\prime}=\frac{t}{m(1-t)}$ and note that $t=\frac{m t^{\prime}}{1+m t^{\prime}}$. We let j^{\prime} be a positive integer such that

$$
h_{1}\left(t^{\prime}, Y\right)=\left(\frac{1+m t^{\prime}}{m}\right)^{j^{\prime}} \cdot h_{0}\left(\frac{m t^{\prime}}{1+m t^{\prime}}, Y\right) \in K\left[t^{\prime}, Y\right]
$$

and write

$$
h_{1}\left(t^{\prime}, Y\right)=f_{d}^{*}\left(t^{\prime}\right) Y^{d}+f_{d-1}^{*}\left(t^{\prime}\right) Y^{d-1}+\cdots+f_{0}^{*}\left(t^{\prime}\right)
$$

with $f_{0}^{*}, \ldots, f_{d}^{*} \in K\left[T^{\prime}\right]$ and $f_{d}^{*}\left(T^{\prime}\right)=\left(\frac{1+m T^{\prime}}{m}\right)^{j^{\prime}}$. In particular,

$$
f_{d}^{*}(0)=m^{-j^{\prime}} \neq 0
$$

We set $Y^{\prime}=f_{d}^{*}\left(t^{\prime}\right) Y$ and $h\left(T^{\prime}, Y^{\prime}\right)=f_{d}^{*}\left(T^{\prime}\right)^{d-1} \cdot h_{1}\left(T^{\prime}, Y\right)$. Then, $h \in$ $K\left[T^{\prime}, Y^{\prime}\right]$ is monic of degree d in Y^{\prime} and $y_{1}^{*}=f_{d}^{*}\left(t^{\prime}\right) y_{1}, \ldots, y_{d}^{*}=f_{d}^{*}\left(t^{\prime}\right) y_{d}$ are the roots of $h\left(t^{\prime}, Y^{\prime}\right)$. Let $\Delta^{*}\left(t^{\prime}\right)=\prod_{i \neq j}\left(y_{i}^{*}-y_{j}^{*}\right) \in K\left[t^{\prime}\right]$. Then,

$$
\Delta^{*}\left(t^{\prime}\right)=f_{d}^{*}\left(t^{\prime}\right)^{d(d-1)} \cdot \prod_{i \neq j}\left(y_{i}-y_{j}\right)=f_{d}^{*}\left(t^{\prime}\right)^{d(d-1)} \cdot \Delta\left(\frac{m t^{\prime}}{1+m t^{\prime}}\right) .
$$

In particular, by Part $\mathrm{C}, \Delta^{*}(0)=f_{d}^{*}(0)^{d(d-1)} \Delta(0) \neq 0$, so $h\left(0, Y^{\prime}\right)$ has d distinct roots.

Since $K\left(t^{\prime}\right)=K(t) \subseteq F$, we may consider a prime divisor Q of $F \tilde{K} / \tilde{K}$ such that $t^{\prime}(Q)=0$. Then, $t(Q)=\frac{m t^{\prime}(Q)}{1+m t^{\prime}(Q)}=0$. Let \mathbf{q} be the point of $\bar{X}(\tilde{K})$ that lies under Q. Then, \mathbf{q} is a zero of t, hence of s, so by (2), $\mathbf{q} \in X\left(K_{\mathrm{tot}, \mathcal{S}}\right)$.

Since $f_{d}^{*}\left(t^{\prime}\right) \neq 0$, we have

$$
K\left(t^{\prime}, y_{1}^{*}\right)=K\left(t^{\prime}, f_{d}^{*}\left(t^{\prime}\right) y\right)=K\left(t^{\prime}, y\right)=K(t, y)=F .
$$

Also, since $h\left(T^{\prime}, Y^{\prime}\right)$ is absolutely irreducible, the d distinct roots of $h\left(0, Y^{\prime}\right)$ are the images of y_{1}^{*} at the distinct prime divisors of $F \tilde{K} / \tilde{K}$ which are zeros of t^{\prime} [Lan58, p. 10, Thm. 2]. By the preceding paragraph each of these roots lies in $K_{\text {tot }, \mathcal{S}}$. Thus, $h\left(T^{\prime}, Y^{\prime}\right)$ satisfies Condition (1a) (with (T^{\prime}, Y^{\prime}) replacing (T, Y)). Since t is a symmetrically stabilizing element for F / K, so is t^{\prime}. Hence, $h\left(T^{\prime}, Y^{\prime}\right)$ also satisfies Condition (1b), with $\operatorname{Gal}\left(h\left(T^{\prime}, Y^{\prime}\right), K\left(T^{\prime}\right)\right) \cong \mathfrak{S}_{d}$.

Part E. A prime divisor of $F M / M$ of degree 1. By the assumption on M, there exists $(\bar{t}, \bar{y}) \in \mathcal{O}_{K, \mathcal{V}} \times M$ (resp. $\left.(\bar{t}, \bar{y}) \in \mathcal{O}_{M, \mathcal{V}} \times M\right)$ such that $h(\bar{t}, \bar{y})=0, h(\bar{t}, Y)$ is separable, $m \bar{t}+1 \neq 0$, and x_{1}, \ldots, x_{n} (introduced in Subsection 5.1) belong to the local ring of $M\left[t^{\prime}, y_{1}^{*}\right]$ at (\bar{t}, \bar{y}). Since C is
a smooth curve (Statement (1) of Section 5), there exists a prime divisor P of $F M / M$ of degree 1 such that $t^{\prime}(P)=\bar{t}$ is in $\mathcal{O}_{K, \mathcal{V}}$ (resp. in $\mathcal{O}_{M, \mathcal{V}}$), $1+m t^{\prime}(P) \neq 0$, and $\mathbf{z}=\mathbf{x}(P) \in C(M)$. Hence, $t=\frac{m t^{\prime}}{1+m t^{\prime}}$ is defined at P, $a_{0}=t(P) \neq 1, \quad P$ is a zero of $\frac{t-a_{0}}{1-a_{0}}$, and

$$
\begin{equation*}
\frac{a_{0}}{1-a_{0}}=m t^{\prime}(P) \text { is in } m \mathcal{O}_{K, \mathcal{V}}\left(\text { resp. in } m \mathcal{O}_{M, \mathcal{V}}\right) \tag{6}
\end{equation*}
$$

Let $\mathbf{a}^{\prime}=\mathbf{a}+(\mathbf{a}-\mathbf{b}) \frac{a_{0}}{1-a_{0}}$ and set $s^{\prime}=s_{0}+\sum_{i=1}^{l} a_{i}^{\prime} s_{i}$. Since P is a zero of the left hand side of (3), P is also a zero of the right hand side of (3). The latter is $\frac{s^{\prime}}{s^{*}}$. Again, since $\operatorname{div}\left(s^{\prime}\right)$ and $\operatorname{div}\left(s^{*}\right)$ are effective divisors, P is a zero of s^{\prime}.

By the properties of $t^{\prime}(P)$ mentioned in the preceding paragraph, by (6), and by (5), $\left|a_{i}^{\prime}-a_{i}\right|_{\mathfrak{p}}=\left|\left(a_{i}-b_{i}\right) \frac{a_{0}}{1-a_{0}}\right|_{\mathfrak{p}}=\left|\left(a_{i}-b_{i}\right) m t^{\prime}(P)\right|_{\mathfrak{p}}<\gamma_{\mathbf{a}}$ for all $1 \leq i \leq l$ and $\mathfrak{p} \in \mathcal{T}$ (resp. $\mathfrak{p} \in \mathcal{T}_{M}$). By (4), $\mathbf{a}^{\prime} \in \mathcal{A}\left(R_{N}\right) \cap K^{l}$ (resp. $\mathbf{a}^{\prime} \in \mathcal{A}\left(R_{N}\right) \cap M^{l}$), hence $\mathbf{a}^{\prime} \in \mathcal{A}$ (resp. $\mathbf{a}^{\prime} \in \mathcal{A}\left(R_{M}\right)$). Therefore, by Part A, for each $\mathfrak{p} \in \mathcal{T}$ the section $s_{\mathfrak{p}}^{\prime}$ lies in $\Gamma_{\mathbf{s}, \mathfrak{p}, K}^{(k)}$ (resp. in $\Gamma_{\mathbf{s}, \mathfrak{p}, M}^{(k)}$). In particular, $\operatorname{div}\left(s_{\mathfrak{p}}^{\prime}\right)$ has no multiple components (Setup 12.2), so $\operatorname{div}\left(s^{\prime}\right)_{R_{N}}$ has no multiple components.

Part F. The irreducible components of $\operatorname{div}\left(s^{\prime}\right)_{\boldsymbol{R}_{N}}$. Let \mathbf{p} be an irreducible component of $\operatorname{div}\left(s^{\prime}\right)_{R_{N}}$. By Lemma 7.8(b) (for s^{\prime} replacing s), the restriction of the morphism $f_{R_{N}}: X \times_{\operatorname{Spec}(R)} \operatorname{Spec}\left(R_{N}\right) \rightarrow \operatorname{Spec}\left(R_{N}\right)$ (induced from the morphism f which is introduced in Subsection 5.5) to \mathbf{p} is finite and surjective over $\operatorname{Spec}\left(R_{N}\right)$. Since \mathbf{p} is not a multiple component of $\operatorname{div}\left(s^{\prime}\right)_{R_{N}}$, we may consider \mathbf{p} as a prime ideal of $R_{N}[\mathbf{x}]$. If $\mathfrak{p}_{0}=\mathbf{p} \cap R_{N} \neq 0$, then the image of \mathbf{p} considered as an irreducible component of $\operatorname{div}\left(s^{\prime}\right)_{R_{N}}$ in $\operatorname{Spec}\left(R_{N}\right)$ contains exactly one element, namely \mathfrak{p}_{0}, in contrast to the surjectivity of $f_{R_{N}}$ on \mathbf{p}. Thus, $\mathbf{p} \cap R_{N}=0$, so the coordinates $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ of $\mathbf{z}^{\prime}=\left(x_{1}+\mathbf{p}, \ldots, x_{n}+\mathbf{p}\right)$ are algebraic over K. Since \mathbf{p} is finite over $\operatorname{Spec}\left(R_{N}\right)$, the ring $R_{N}\left[z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right]$ is a finitely generated R_{N}-module. Hence, $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ are integral over R_{N} (hence, over R). In addition, by Setup 12.2, $\mathbf{z}^{\prime} \in \Omega_{\mathfrak{p}}$ (resp. $\mathbf{z}^{\prime} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} M\right)$) for each $\mathfrak{p} \in \mathcal{T}$. Since \mathbf{z}^{\prime} is algebraic over K, we have $\mathbf{z}^{\prime} \in \Omega_{\mathfrak{p}}\left(\right.$ resp. $\left.\mathbf{z}^{\prime} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} M\right)\right)$ for each $\mathfrak{p} \in \mathcal{T}$.

If \mathbf{p} is the irreducible component of $\operatorname{div}\left(s^{\prime}\right)_{R_{N}}$ that corresponds to P, then by Part $\mathrm{E}, \mathbf{z}=\mathbf{x}(P) \in C(M)$. Since z_{1}, \ldots, z_{n} are integral over R, we have $\mathbf{z} \in C\left(\mathcal{O}_{M, \mathcal{V}} \backslash \mathcal{T}\right)$.

Next observe that for each $\tau \in \operatorname{Gal}(K)$ (resp. $\tau \in \operatorname{Gal}(M)$) we have $\operatorname{div}\left(s^{\prime}\right)^{\tau}=\operatorname{div}\left(s^{\prime}\right)$, because $a_{1}^{\prime}, \ldots, a_{l}^{\prime} \in K$ (resp. because $\left.a_{1}^{\prime}, \ldots, a_{l}^{\prime} \in M\right)$. Hence, \mathbf{p}^{τ} is also an irreducible component of $\operatorname{div}\left(s^{\prime}\right)_{R_{N}}$. Therefore, by the paragraph preceding the latter one, $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ (resp. $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} M\right)$) for each $\mathfrak{p} \in \mathcal{T}$.

In the alternative case (i.e., when M is weakly symmetrically K-stably PSC over $\left.\mathcal{O}_{M, \mathcal{V}}\right)$, we note that if $\mathfrak{p} \in \mathcal{S}$, then $M \subseteq K_{\text {tot, } \mathcal{S}} \subseteq K_{\mathfrak{p}}=L_{\mathfrak{p}}$. Hence,
$\Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} M\right)=\Omega_{\mathfrak{p}}$, so by the preceding paragraph, $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$. If $\mathfrak{p} \in \mathcal{T} \backslash \mathcal{S}$, then by the preceding paragraph, $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} M\right) \subseteq \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} K_{\text {tot }, \mathcal{S}}\right)$, as desired.

Proposition 12.4. Let $K, \mathcal{S}, \mathcal{V}$ be as in Subsection 4.8. Let M be a subfield of $K_{\mathrm{tot}, \mathcal{S}}$ that contains K and is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. Then, $(M, K, \mathcal{S}, \mathcal{V}) \models \operatorname{SAT}$ (Subsection 4.7).

Proof. By Proposition 12.3, $(M, K, \mathcal{S}, \mathcal{V}, C) \models$ SAT for every absolutely integral affine curve C over K. Hence, by Lemma 4.12, $(M, K, \mathcal{S}, \mathcal{V})=$ SAT, as claimed.

13. Varieties over M

We use the strong approximation theorem for varieties defined over K to prove the strong approximation theorem for varieties defined over M. The first step is to remove the adverb "symmetrically K-stably" from the condition " M is weakly symmetrically K-stably PSC over $\mathcal{O}_{M, \mathcal{V}}$ " that appears in Proposition 12.4 and allow instead the polynomial h that appears in Definition 12.1 to have coefficients in M (and not only in K). This is done via Weil's descent.

Definition 13.1. [GJR00, Def. 1.10]. Let M be an extension of K in $K_{\text {tot, } \mathcal{S}}$ and let \mathcal{O} be a subset of M. We say that M is weakly PSC over \mathcal{O} if for every absolutely irreducible polynomial $h \in M[T, Y]$ monic in Y such that $h(0, Y)$ decomposes into distinct monic linear factors over $K_{\mathrm{tot}, \mathcal{S}}$ and every polynomial $g \in M[T]$ with $g(0) \neq 0$ there exists $(a, b) \in \mathcal{O} \times M$ such that $h(a, b)=0$ and $g(a) \neq 0$.

Lemma 13.2. Let M be an extension of K in $K_{\text {tot, } \mathcal{S}}$ which is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. Then, M is weakly PSC over $\mathcal{O}_{M, \mathcal{V}}$.

Proof. Let $h \in M[T, Y]$ and $g \in M[T]$ be as in Definition 13.1 We prove that there exists $(a, b) \in \mathcal{O}_{M, \mathcal{V}} \times M$ such that $h(a, b)=0$ and $g(a) \neq 0$.

Part A. Weil's descent. Let L be a finite extension of K in M with $h \in L[T, Y]$ and $g \in L[T]$. Let V be the absolutely integral affine curve in \mathbb{A}_{L}^{3} defined by $h(T, Y)=0$ and $g(T) Z-1=0$.

Let $d=[L: K]$ and let $\sigma_{1}, \ldots, \sigma_{d}$ with $\sigma_{1}=1$ be elements of $\operatorname{Gal}(K)$ whose restrictions to L are all of the K-embeddings of L into \tilde{K}. Let $\omega_{1}, \ldots, \omega_{d} \in \mathcal{O}_{L}$ be a basis for L / K, where \mathcal{O}_{L} is the ring of integers of the global field L (Subsection 4.6).

Consider the linear morphism $\lambda: \mathbb{A}_{L}^{3 d} \rightarrow \mathbb{A}_{L}^{3}$ defined by

$$
\lambda(\mathbf{a}, \mathbf{b}, \mathbf{c})=\left(\sum_{i=1}^{d} \omega_{i} a_{i}, \sum_{i=1}^{d} \omega_{i} b_{i}, \sum_{i=1}^{d} \omega_{i} c_{i}\right),
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{d}\right)$, and $\mathbf{c}=\left(c_{1}, \ldots, c_{d}\right)$. By Weil's descent [FrJ08, p. 183, Prop. 10.6.2], there exists an absolutely integral
affine variety W in $\mathbb{A}_{K}^{3 d}$ such that the restriction of $\lambda_{\tilde{K}}^{\sigma_{1}} \times \cdots \times \lambda_{\tilde{K}}^{\sigma_{d}}$ to $W_{\tilde{K}}$ is an isomorphism $\Lambda: W_{\tilde{K}} \rightarrow V_{\tilde{K}}^{\sigma_{1}} \times \cdots \times V_{\tilde{K}}^{\sigma_{d}}$ which is defined by

$$
\begin{align*}
& \Lambda(\mathbf{a}, \mathbf{b}, \mathbf{c}) \tag{1}\\
& =\left(\sum_{i=1}^{d} \omega_{i}^{\sigma_{1}} a_{i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{1}} b_{i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{1}} c_{i}, \ldots, \sum_{i=1}^{d} \omega_{i}^{\sigma_{d}} a_{i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{d}} b_{i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{d}} c_{i}\right) .
\end{align*}
$$

Part B. Approximation data. Let $t_{0} \in K_{\text {sep }}$ be a root of $h(0, Y)$. By assumption $\mathbf{x}_{0}=\left(0, t_{0}, g(0)^{-1}\right) \in V_{\text {simp }}\left(K_{\text {tot }, \mathcal{S}}\right)$. Let L^{\prime} be a finite Galois extension of K in $K_{\text {tot }, \mathcal{S}}$ that contains $L\left(t_{0}\right)$. Then, $\mathbf{x}_{0} \in V_{\text {simp }}\left(L^{\prime}\right)$, so $\mathrm{x}_{0}^{\sigma_{i}} \in V_{\text {simp }}^{\sigma_{i}}\left(L^{\prime}\right), i=1, \ldots, d$. Hence, since Λ is defined over L^{\prime},

$$
\begin{equation*}
\mathbf{z}_{0}=\Lambda^{-1}\left(\mathbf{x}_{0}^{\sigma_{1}}, \ldots, \mathbf{x}_{0}^{\sigma_{d}}\right) \in W_{\operatorname{simp}}\left(L^{\prime}\right) . \tag{2}
\end{equation*}
$$

Let \mathcal{T} be a finite subset of \mathcal{V} such that $\mathcal{S} \subseteq \mathcal{T}, \quad \mathcal{V} \backslash \mathcal{T} \subseteq \mathbf{P}_{K \text {,fin }}$, and $\mathbf{z}_{0} \in W\left(\mathcal{O}_{L^{\prime}, \mathcal{V}} \backslash \mathcal{T}\right)$.

For each $\mathfrak{p} \in \mathcal{T}$ let $L_{\mathfrak{p}}=K_{\mathfrak{p}} L^{\prime}$ and
(3) $\Omega_{\mathfrak{p}}=\left\{\left.(\mathbf{a}, \mathbf{b}, \mathbf{c}) \in W_{\text {simp }}\left(L_{\mathfrak{p}}\right)| | \mathbf{a}\right|_{\mathfrak{p}} \leq 1\right.$ if $\mathfrak{p} \in \mathbf{P}_{K, \text { fin }}$ and

$$
\left.|\mathbf{a}|_{\mathfrak{p}}<\delta_{\mathfrak{p}} \text { if } \mathfrak{p} \in \mathbf{P}_{K, \text { inf }}\right\},
$$

where $\delta_{\mathfrak{p}}=\left(d \cdot \max _{1 \leq i, j \leq d}\left|\omega_{i}^{\sigma_{j}}\right|_{\mathfrak{p}}\right)^{-1}$ if $\mathfrak{p} \in \mathbf{P}_{K, \text { inf }}$. If $\mathfrak{p} \in \mathcal{S}$, then $L_{\mathfrak{p}}=K_{\mathfrak{p}}$, because $L^{\prime} \subset K_{\text {tot }, \mathcal{S}} \subset K_{\mathfrak{p}}$.

Let $\mathbf{a}_{0}, \mathbf{b}_{0}, \mathbf{c}_{0}$ be the points of $\left(L^{\prime}\right)^{d}$ such that $\mathbf{z}_{0}=\left(\mathbf{a}_{0}, \mathbf{b}_{0}, \mathbf{c}_{0}\right)$. By (1) and (2),

$$
\begin{aligned}
& \left(0, t_{0}^{\sigma_{1}},\left(g(0)^{-1}\right)^{\sigma_{1}}, \ldots, 0, t_{0}^{\sigma_{d}},\left(g(0)^{-1}\right)^{\sigma_{d}}\right) \\
& =\left(\mathbf{x}_{0}^{\sigma_{1}}, \ldots, \mathbf{x}_{0}^{\sigma_{d}}\right) \\
& =\Lambda\left(\mathbf{z}_{0}\right)=\Lambda\left(\mathbf{a}_{0}, \mathbf{b}_{0}, \mathbf{c}_{0}\right) \\
& =\left(\sum_{i=1}^{d} \omega_{i}^{\sigma_{1}} a_{0, i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{1}} b_{0, i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{1}} c_{0, i}, \ldots,\right. \\
& \left.\quad \sum_{i=1}^{d} \omega_{i}^{\sigma_{d}} a_{0, i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{d}} b_{0, i}, \sum_{i=1}^{d} \omega_{i}^{\sigma_{d}} c_{0, i}\right) .
\end{aligned}
$$

Let $Q=\left(\omega_{i}^{\sigma_{j}}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d}\left(L^{\prime}\right)$ [Lan93, p. 286, consequence of Cor. 5.4]. Then, $Q \mathbf{a}_{0}=\mathbf{0}$ (where \mathbf{a}_{0} is now considered as a column), so $\mathbf{a}_{0}=\mathbf{0}$. Hence, by (3), $\mathbf{z}_{0} \in \Omega_{\mathfrak{p}}$ for each $\mathfrak{p} \in \mathcal{T}$. Therefore, $\Omega_{\mathfrak{p}}$ is a nonempty \mathfrak{p}-open subset of $W_{\text {simp }}\left(L_{\mathfrak{p}}\right)$, invariant under $\operatorname{Gal}\left(L_{\mathfrak{p}} / K_{\mathfrak{p}}\right)$, for each $\mathfrak{p} \in \mathcal{T}$. Since $\mathbf{z}_{0} \in W\left(\mathcal{O}_{L^{\prime}, \mathcal{V}} \backslash \mathcal{T}\right)$, we have $\mathbf{z}_{0} \in W\left(\mathcal{O}_{\tilde{K}, \mathfrak{p}}\right)$ for each $\mathfrak{p} \in \mathcal{V} \backslash \mathcal{T}$. It follows that $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}$ is approximation data for $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, W$.

Part C. Conclusion of the proof. By Proposition 12.4,

$$
\left(M, K, \mathcal{S}, \mathcal{V}, W, \mathcal{T},\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}}\right) \models \operatorname{SAT} .
$$

Hence, there exists $\mathbf{z}=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \in W\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ such that $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for each $\mathfrak{p} \in \mathcal{T}$ and each $\tau \in \operatorname{Gal}(K)$. Let

$$
(a, b, c)=\lambda(\mathbf{z})=\left(\sum_{i=1}^{d} \omega_{i} a_{i}, \sum_{i=1}^{d} \omega_{i} b_{i}, \sum_{i=1}^{d} \omega_{i} c_{i}\right) .
$$

Since $\omega_{1}, \ldots, \omega_{d} \in L \subseteq M$, we have $(a, b, c) \in V(M)$. Hence, $a, b, c \in M$, $h(a, b)=0$, and $g(a) c=1$, so $g(a) \neq 0$. Moreover,

$$
a=\sum_{i=1}^{d} \omega_{i} a_{i} \in \mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}
$$

(because $\omega_{1}, \ldots, \omega_{d} \in \mathcal{O}_{L}$) and, by (3), $\left|a^{\tau}\right|_{\mathfrak{p}} \leq 1$ for each $\mathfrak{p} \in \mathcal{T}$ and each $\tau \in \operatorname{Gal}(K)$. Here, note that if $\mathfrak{p} \in \mathcal{T} \cap \mathbf{P}_{K, \text { inf }}$, then

$$
\left|a^{\tau}\right|_{\mathfrak{p}} \leq \sum_{i=1}^{d}\left|\omega_{i}^{\tau}\right|_{\mathfrak{p}}\left|a_{i}^{\tau}\right|_{\mathfrak{p}}<d \cdot \max _{1 \leq i, j \leq d}\left|\omega_{i}^{\sigma_{j}}\right|_{\mathfrak{p}} \cdot \delta_{\mathfrak{p}}=1 .
$$

Hence, $a \in \mathcal{O}_{M, \mathcal{V}} \backslash \mathcal{T} \cap \mathcal{O}_{M, \mathcal{T}}=\mathcal{O}_{M, \mathcal{V}}$, as desired.
Lemma 13.2 makes it possible to generalize the strong approximation theorem from varieties V defined over K to varieties V defined over finite extensions of K in $K_{\text {tot }, \mathcal{S}}$.

To this end we choose for each finite extension K^{\prime} of K in $K_{\text {tot, } \mathcal{S}}$ and for each $\mathfrak{p} \in \mathbf{P}_{K^{\prime}}$ a completion $\hat{K}_{\mathfrak{p}}^{\prime}$ of K^{\prime} at \mathfrak{p} and an embedding of \tilde{K} into the algebraic closure of \hat{K}_{p}^{\prime}, as we do in Subsection 4.1. Then the notions defined with respect to K are also well defined for K^{\prime}. In particular, $\mathcal{S}_{K^{\prime}}, \mathcal{T}_{K^{\prime}}$, and $\mathcal{V}_{K^{\prime}}$ are the sets of all $\mathfrak{p} \in \mathbf{P}_{K^{\prime}}$ that lie over \mathcal{S}, \mathcal{T}, and \mathcal{V}, respectively. Note that $\mathcal{S}_{K^{\prime}}$ and $\mathcal{T}_{K^{\prime}}$ are finite sets, $\mathcal{V}_{K^{\prime}}$ is a proper subset of $\mathbf{P}_{K^{\prime}}, \mathcal{S}_{K^{\prime}} \subseteq \mathcal{T}_{K^{\prime}} \subseteq \mathcal{V}_{K^{\prime}}$, and $\mathcal{V}_{K^{\prime}} \backslash \mathcal{T}_{K^{\prime}} \subseteq \mathbf{P}_{K^{\prime}, \text { fin }}$. Moreover, $K_{\mathfrak{p}}^{\prime}=\hat{K}_{\mathfrak{p}}^{\prime} \cap \tilde{K}$, for all $\mathfrak{p} \in \mathcal{T}_{K^{\prime}}$. Finally, observe that $K_{\text {tot }, \mathcal{S}_{K^{\prime}}}^{\prime}=K_{\text {tot }, \mathcal{S}}$.
Proposition 13.3. Let $K, \mathcal{S}, \mathcal{T}, \mathcal{V}$ be as in Subsection 4.8, let K^{\prime} be a
 which is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. Consider an absolutely integral affine variety V in $\mathbb{A}_{K^{\prime}}^{n}$ for some positive integer n. Let $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}_{K^{\prime}}}$ be approximation data for $K^{\prime}, \mathcal{S}_{K^{\prime}}, \mathcal{T}_{K^{\prime}}, \mathcal{V}_{K^{\prime}}, V$. Then there exists $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ such that $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} K_{\mathrm{tot}, \mathcal{S}}\right)$ for all $\mathfrak{p} \in \mathcal{T}_{K^{\prime}}$ and $\tau \in \operatorname{Gal}\left(K^{\prime}\right)$.
Proof. First we assume that V is a curve. By Lemma $13.2, M$ is weakly PSC over $\mathcal{O}_{M, \mathcal{V}}$. By definition, $\mathcal{O}_{M, \mathcal{V}_{K^{\prime}} \backslash \tau_{K^{\prime}}}=\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}$. Moreover, M is also weakly symmetrically K^{\prime}-stably $\mathrm{P} \mathcal{S}_{K^{\prime}} \mathrm{C}$ over $\mathcal{O}_{M, \mathcal{V}_{K^{\prime}}}$. Hence, we may apply Proposition 12.3 to K^{\prime} rather than to K and find $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V} \backslash \mathcal{T}}\right)$ such that $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} K_{\mathrm{tot}, \mathcal{S}}\right)$ for all $\mathfrak{p} \in \mathcal{T}_{K^{\prime}}$ and $\tau \in \operatorname{Gal}\left(K^{\prime}\right)$.

Finally, the reduction lemmas 4.10 and 4.12 work if we replace K by K^{\prime} and the condition " $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}$ for all $\tau \in \operatorname{Gal}(K)$ and $\mathfrak{p} \in \mathcal{T}$ " by the condition
" $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} K_{\text {tot }, \mathcal{S}}\right)$ for all $\tau \in \operatorname{Gal}\left(K^{\prime}\right)$ and $\mathfrak{p} \in \mathcal{T}_{K^{\prime}}$ ". Hence, the case where V is a curve implies the general case.

An interesting special case of Proposition 13.3 is the local-global principle stated as Proposition 13.4 below. It is a consequence of Lemma 13.2 and [JaR08, Thm. 2.5]. However, since the latter theorem is one of the main results of [JaR08] and its proof extends over all of that paper, we prefer to give a proof that relies on the results of the present work.

Given a field $K \subseteq M \subseteq K_{\text {tot }, \mathcal{S}}$ and a prime $\mathfrak{q} \in \mathcal{V}_{M}$ we set

$$
D_{M, \mathfrak{q}}=\left\{\left.x \in M| | x\right|_{\mathfrak{q}} \leq 1 \text { if }\left.\mathfrak{q}\right|_{K} \in \mathbf{P}_{K, \text { fin }} \text { and }|x|_{\mathfrak{q}}<1 \text { if }\left.\mathfrak{q}\right|_{K} \in \mathbf{P}_{K, \inf }\right\} .
$$

We also let $D_{M, \mathcal{V}}=\bigcap_{\mathfrak{q} \in \mathcal{V}_{M}} D_{M, \mathfrak{q}}$. Given $\mathfrak{p} \in \mathcal{V}_{K^{\prime}}$ for some extension K^{\prime} of K in $K_{\text {tot }, \mathcal{S}}$ and a field $K_{\mathfrak{p}}^{\prime} \subseteq L \subseteq \tilde{K}$, we set

$$
\begin{aligned}
D(L) & =D_{\mathfrak{p}}(L) \\
& =\left\{\left.x \in L| | x\right|_{\mathfrak{p}} \leq 1 \text { if }\left.\mathfrak{p}\right|_{K} \in \mathbf{P}_{K, \text { fin }} \text { and }|x|_{\mathfrak{p}}<1 \text { if }\left.\mathfrak{p}\right|_{K} \in \mathbf{P}_{K, \text { inf }}\right\} .
\end{aligned}
$$

Proposition 13.4 (Local-global principle). Let K be a global field, \mathcal{V} a proper subset of \mathbf{P}_{K}, and \mathcal{S} a finite subset of \mathcal{V}. Let M be an extension of K in $K_{\mathrm{tot}, \mathcal{S}}$. Suppose M is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. Let V be an absolutely integral affine variety in \mathbb{A}_{M}^{n} for some positive integer n such that $V_{\text {simp }}\left(D\left(M_{\mathfrak{q}}\right)\right) \neq \emptyset$ for each $\mathfrak{q} \in \mathcal{S}_{M}$ and $V\left(D\left(M_{\mathfrak{q}}\right)\right) \neq \emptyset$ for all $\mathfrak{q} \in \mathcal{V}_{M} \backslash \mathcal{S}_{M}$. Then, $V\left(D_{M, \mathcal{V}}\right) \neq \emptyset$.
Proof. We choose a finite extension K^{\prime} of K in M over which V is defined [Lan58, Sec. III.5, p. 74]. For each $\mathfrak{p} \in \mathcal{S}_{K^{\prime}}$ the \mathfrak{p}-closure $K_{\mathfrak{p}}^{\prime}$ of K^{\prime} that we have chosen contains $K_{\text {tot, } \mathcal{S}}$, hence also M. Thus, $K_{\mathfrak{p}}^{\prime}=M_{\mathfrak{q}}$, where \mathfrak{q} is the prime of M induced by $K_{\mathfrak{p}}^{\prime}$. By assumption, $\Omega_{\mathfrak{p}}=V_{\text {simp }}\left(D\left(K_{\mathfrak{p}}^{\prime}\right)\right)$ is nonempty. We set $L_{\mathfrak{p}}=K_{\mathfrak{p}}^{\prime}$.

Next we choose a finite subset \mathcal{T} of \mathcal{V} that contains $\mathcal{S} \cup\left(\mathcal{V} \cap \mathbf{P}_{K, \text { inf }}\right)$. For each $\mathfrak{p} \in \mathcal{T}_{K^{\prime}} \backslash \mathcal{S}_{K^{\prime}}$ the \mathfrak{p}-adic topology on $M K_{\mathfrak{p}}^{\prime}$ (which is actually $K_{\text {sep }}$, by [GJR00, p. 220, Prop. 1.15]) induces a prime $\mathfrak{q} \in \mathcal{T}_{M} \backslash \mathcal{S}_{M}$, so $M K_{\mathfrak{p}}^{\prime}$ contains $M_{\mathfrak{q}}$. Since $V\left(D\left(M_{\mathfrak{q}}\right)\right) \neq \emptyset$, there exists $\mathbf{z}_{\mathfrak{p}} \in V\left(D\left(M K_{\mathfrak{p}}^{\prime}\right)\right)$. We choose a finite Galois extension $L_{\mathfrak{p}}$ of $K_{\mathfrak{p}}^{\prime}$ such that $\mathbf{z}_{\mathfrak{p}} \in V\left(L_{\mathfrak{p}}\right)$ and set $\Omega_{\mathfrak{p}}=V\left(D\left(L_{\mathfrak{p}}\right)\right)$. Then, $\mathbf{z}_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$.

The collection $\left(L_{\mathfrak{p}}, \Omega_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{T}_{K^{\prime}}}$ obtained in this way is approximation data for $K^{\prime}, \mathcal{S}_{K^{\prime}}, \mathcal{T}_{K^{\prime}}, \mathcal{V}_{K^{\prime}}, V$. By Proposition 13.3, there exists $\mathbf{z} \in V\left(\mathcal{O}_{M, \mathcal{V}} \backslash \mathcal{T}\right)$ such that $\mathbf{z}^{\tau} \in \Omega_{\mathfrak{p}}\left(L_{\mathfrak{p}} K_{\text {tot }, \mathcal{S}}\right)$ for all $\mathfrak{p} \in \mathcal{T}_{K^{\prime}}$ and all $\tau \in \operatorname{Gal}\left(K^{\prime}\right)$. The latter condition implies that $z \in D_{M, \mathfrak{q}}$ for every coordinate z of \mathbf{z} and every $\mathfrak{q} \in \mathcal{T}_{M}$. Combining this conclusion with the former condition, we conclude that $\mathbf{z} \in V\left(D_{M, \mathcal{V}}\right)$, as desired.

Definition 13.5. We say that a field M_{0} is PAC over a subset O if for every absolutely irreducible polynomial $f \in M_{0}[X, Y]$ which is separable in Y there exist infinitely many points $(a, b) \in O \times M_{0}$ such that $f(a, b)=0$.

The next two results contain notation introduced in the second paragraph of the introduction.

Lemma 13.6 ([GJR00, p. 218, Lemma 1.12]). Let M_{0} be an algebraic extension of $K, M=M_{0} \cap K_{\mathrm{tot}, \mathcal{S}}$, and e a positive integer. Suppose that M_{0} is PAC over $\mathcal{O}_{K, \mathcal{V}}$. Then:
(a) M is weakly PSC over $\mathcal{O}_{K, \mathcal{V}}$. In particular, $K_{\text {tot }, \mathcal{S}}$ is weakly PSC over $\mathcal{O}_{K, \mathcal{V}}$ and $K_{\mathrm{tot}, \mathcal{S}}(\boldsymbol{\sigma})$ is weakly PSC over $\mathcal{O}_{K, \mathcal{V}}$ for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$.
(b) Let M^{\prime} be the maximal Galois extension of K inside M. Then M^{\prime} is weakly K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. In particular, $K_{\mathrm{tot}, \mathcal{S}}[\boldsymbol{\sigma}]$ is weakly K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$ for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$.

We conclude our work with the main result.
Theorem 13.7. Let K be a global field, e a nonnegative integer, \mathcal{V} a proper subset of the set of all primes of K, and \mathcal{S} a finite subset of \mathcal{V}. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ and for every subfield M of $K_{\text {tot, } \mathcal{S}}$ that contains $K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]$, we have:
(a) M is weakly PSC over $\mathcal{O}_{M, \mathcal{V}}$.
(b) $(M, K, \mathcal{S}, \mathcal{V}) \models$ SAT.
(c) M satisfies the local-global principle 13.4.

Proof. For almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$, Lemma 13.6 assures that $K_{\text {tot }, \mathcal{S}}[\boldsymbol{\sigma}]$ is weakly K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. Hence, by Definition 12.1, M is also weakly symmetrically K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$. It follows from Proposition 12.4 that $(M, K, \mathcal{S}, \mathcal{V}) \models$ SAT. Moreover, M satisfies the local-global principle 13.4. Finally, by Lemma $13.2, M$ is weakly PSC over $\mathcal{O}_{M, \mathcal{V}}$.

Remark 13.8.

(a) Statements (a) and (c) of Theorem 13.7 settle a question posed in [Jar06, p. 376, Remark 6] when $K=\mathbb{Q}$ and $\mathcal{S}=\emptyset$.
(b) Let M be an extension of K in $K_{\text {tot }, \mathcal{S}}$. It is possible to prove Proposition 13.3 under the assumption that M is weakly PSC over $\mathcal{O}_{M, \mathcal{V}}$ (rather that M is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, \mathcal{V}}$). Conversely, one may use the arguments of the proof of Lemma 13.2 to prove that if M satisfies the conclusion of Proposition 13.3, then M is weakly PSC over $\mathcal{O}_{M, \mathcal{V}}$.
(c) The local global principle mentioned in the abstract is a quick consequence of Theorem 13.7(c).

References

[AtM69] Atiyah, Michael F.; Macdonald, Ian G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. ix +128 pp. MR0242802, Zbl 0175.03601.
[BaJ08] BARY-SOROKER, LiOr; JARDEN, MOSHE. PAC fields over finitely generated fields. Math. Z. 260 (2008), no. 2, 329-334. MR2429615, Zbl 1146.12002, arXiv:0708.3966, doi: 10.1007/s00209-007-0276-3.
[BLR90] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel. Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. SpringerVerlag, Berlin, 1990. x+325 pp. ISBN: 3-540-50587-3. MR1045822, Zbl 0705.14001.
[Bou89] Bourbaki, Nicolas. Commutative algebra. Chapters 1-7. Translated from the French. Reprint of the 1972 edition. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. xxiv+625 pp. ISBN: 3-540-19371-5. MR0979760, Zbl 0666.13001.
[CaF67] Cassels, John W.S; Fröhlich, Albrecht, dirs. Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. xviii+366 pp. MR215665, Zbl 0153.07403.
[Che51] Chevalley, Claude. Introduction to the theory of algebraic functions of one variable. Mathematical Surveys, VI. American Mathematical Society, New York, N.Y., 1951. xi+188 pp. MR0042164, Zbl 0045.32301, doi: 10.1090/surv/006.
[Deu73] Deuring, Max. Lectures on the theory of algebraic functions of one variable. Lecture Notes in Mathematics, 314. Springer-Verlag, Berlin-New York, 1973. vi+151 pp. MR0344231, Zbl 0249.14008, doi: 10.1007/bfb0060944.
[Dri88] van Den Dries, Lou. Elimination theory for the ring of algebraic integers. J. Reine Angew. Math. 388 (1988), 189-205. MR0944190, Zbl 0659.12021, doi: 10.1515/crll.1988.388.189.
[Eis95] Eisenbud, David. Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995. xvi+785 pp. ISBN: 0-387-94268-8; 0-387-94269-6. MR1322960, Zbl 0819.13001, doi: 10.1007/978-1-4612-5350-1.
[FrJ08] Fried, Michael D.; Jarden, Moshe. Field arithmetic. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 11. Springer-Verlag, Berlin, 2008. xxiv+792 pp. ISBN: 978-3-540-77269-9. MR2445111, Zbl 1145.12001, doi: 10.1007/978-3-540-77270-5.
[GeJ75] Geyer, Wulf-Dieter; Jarden, Moshe. Fields with the density property. J. Algebra 35 (1975), 178-189. MR0389855, Zbl 0304.14016, doi: 10.1016/0021-8693(75)90043-5.
[GeJ89] Geyer, Wulf-Dieter; Jarden, Moshe. On stable fields in positive characteristic. Geom. Dedicata 29 (1989), no. 3, 335-375. MR0995309, Zbl 0703.12006 .
[GeJ02] Geyer, Wulf-Dieter; Jarden, Moshe. PSC Galois extensions of Hilbertian fields. Math. Nachr. 236 (2002), 119-160. MR1888560, Zbl 1007.12003.
[GJR00] Jarden, Moshe; Razon, Aharon. Skolem density problems over large Galois extensions of global fields. With an appendix by Wulf-Dieter Geyer. Contemp. Math., 270. Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 213-235. Amer. Math. Soc., Providence, RI, 2000. MR1802015, Zbl 1021.12002.
[GJR17] Geyer, Wulf-Dieter; Jarden, Moshe; Razon, Aharon. On stabilizers of algebraic function fields of one variable. Adv. Geom. 17 (2017), no. 2, 131-174. MR3652238, doi: 10.1515/advgeom-2016-0026.
[Goo69] Goodman, Jacob Eli. Affine open subsets of algebraic varieties and ample divisors. Ann. of Math. (2) 89 (1969), 160-183. MR0242843, Zbl 0159.50504, doi: 10.2307/1970814.
[GoW10] Görtz, Ulrich; Wedhorn, Torsten. Algebraic geometry I. Schemes with examples and exercises. Advanced Lectures in Mathematics. Vieweg + Teubner, Wiesbaden, 2010. viii+615 pp. ISBN: 978-3-8348-0676-5. MR2675155, Zbl 1213.14001, doi: 10.1007/978-3-8348-9722-0.
[GPr95] Green, Barry; Pop, Florian; Roquette, Peter. On Rumely's localglobal principle. Jahresber. Deutsch. Math.-Verein. 97 (1995), no. 2, 43-74. MR1341772, Zbl 0857.11033.
[Gro61II] Grothendieck, Alexander. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 pp. MR0217084, Zbl 0118.36206.
[Gro61III] Grothendieck, Alexander. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math. 11 (1961) 167 pp. MR0163910, Zbl 0118.36206.
[Gro67] Grothendieck, Alexander. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 pp. MR0238860, Zbl 0153.22301.
[Har77] Hartshorne, Robin. Algebraic geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp. ISBN: 0-387-90244-9. MR0463157, Zbl 0367.14001, doi: 10.1007/978-1-4757-3849-0.
[IsR05] Ischebeck, Friedrich; Rao, Ravi A. Ideals and reality. Projective modules and number of generators of ideals. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. xiv+336 pp. ISBN: 3-540-23032-7. MR2114392, Zbl 1075.13005, doi: 10.1007/b137484.
[Jar91] Jarden, Moshe. Intersections of local algebraic extensions of a Hilbertian field. Generators and relations in groups and geometries (Lucca, 1990), 343405, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 333. Kluwer Acad. Publ., Dordrecht, 1991. MR1206921, Zbl 0737.12001, doi: 10.1007/978-94-011-3382-1.
[Jar94] Jarden, Moshe. The inverse Galois problem over formal power series fields. Israel J. Math. 85 (1994), no. 1-3, 263-275. MR1264347, Zbl 0794.12004, doi: 10.1007/BF02758644.
[Jar06] Jarden, Moshe. PAC fields over number fields. J. Théor. Nombres Bordeaux 18 (2006), no. 2, 371-377. MR2289430, Zbl 1146.12003, doi: 10.5802/jtnb.550.
[JaP16] Jarden, Moshe; Poonen, Bjorn. Galois points on varieties. J. Ramanujan Math. Soc. 31 (2016), no. 2, 189-194. MR3518181.
[JaR94] Jarden, Moshe; Razon, Aharon. Pseudo algebraically closed fields over rings. Israel J. Math. 86 (1994), no. 1-3, 25-59. MR1276130, Zbl 0802.12007, doi: 10.1007/BF02773673.
[JaR95] Jarden, Moshe; Razon, Aharon. Skolem density problems over algebraic PSC fields over rings. Nieuw Arch. Wisk. (4) 13 (1995), no. 3, 381-399. MR1378804, Zbl 0859.12005.
[JaR98] Jarden, Moshe; Razon, Aharon. Rumely's local global principle for algebraic PSC fields over rings. Trans. Amer. Math. Soc. 350, (1998), no. 1, 55-85. MR1355075, Zbl 0924.11092, doi: 10.1090/S0002-9947-98-01630-4.
[JaR08] Jarden, Moshe; Razon, Aharon. Rumely's local global principle for weakly PSC fields over holomorphy domains. Funct. Approx. Comment. Math. 39 (2008), part 1, 19-47. ISBN: 978-83-232-1955-2. MR2490086, Zbl 1235.12006, doi: 10.7169/facm/1229696552.
[Lan58] Lang, Serge. Introduction to algebraic geometry. Interscience Publishers, Inc., New York-London, 1958. xi+260 pp. MR0100591, Zbl 0095.15301.
[Lan93] Lang, Serge. Algebra. Third edition. Eddison-Wesley, Reading, MA, 1993. xv+906. MR1878556, Zbl 0848.13001.
[Liu06] Liu, Qing. Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, 6. Oxford University Press, 2006. xv+577 pp. ISBN: 0-19-850284-2. MR1917232, Zbl 1103.14001.
[Mat80] Matsumura, Hideyuki. Commutative algebra. Second edition. Mathematics Lecture Note Series, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. xv+313 pp. ISBN: 0-8053-7026-9. MR0575344, Zbl 0441.13001, doi: 10.1017/S0013091500028157.
[MoB89] Moret-Bailly, Laurent. Groupes de Picard et problémes de Skolem II. Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 181-194. MR1005158, Zbl 0704.14015, doi: 10.24033/asens. 1582 .
[Mum88] Mumford, David. The red book of varieties and schemes. Lecture Notes in Mathematics, 1358. Springer-Verlag, Berlin, 1988. vi+309 pp. ISBN: 3-540-50497-4. MR0971985, Zbl 0658.14001, doi: 10.1007/b62130.
[Neu98] Neumann, Konrad. Every finitely generated regular field extension has a stable transcendence base. Israel J. Math. 104 (1998), 221-260. MR1622303, Zbl 0923.12006, doi: 10.1007/BF02897065.
[Pre84] Prestel, Alexander. Lectures on formally real fields. Lecture Notes in Mathematics, 1093. Springer-Verlag, Berlin, 1984. xi+125 pp. ISBN: 3-540-13885-4. MR0769847, Zbl 0548.12011.
[Pre86] Prestel, Alexander. Einführung in die Mathematische Logik und Modelltheorie. Vieweg Studium: Aufbaukurs Mathematik, 60. Friedr. Vieweg E Sohn, Braunschweig, 1986. xiv+286 pp. ISBN: 3-528-07260-1. MR906655, Zbl 0616.03001, doi: 10.1007/978-3-663-07641-4.
[Ray70] Raynaud, Michel. Anneaux locaux henséliens. Lecture Notes in Mathematics, 169. Springer-Verlag, Berlin-New York, 1970. v+129 pp. MR0277519, Zbl 0203.05102, doi: $10.1007 / \mathrm{bfb} 0069571$.
[Ros02] Rosen, Michael. Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002. xii+358 pp. ISBN: 0-387-953353. MR1876657, Zbl 1043.11079, doi: 10.1007/978-1-4757-6046-0.
[Rum86] Rumely, Robert S. Arithmetic over the ring of all algebraic integers. J. Reine Angew. Math. 368 (1986), 127-133. MR0850618, Zbl 0581.14014, doi: 10.1515/crll.1986.368.127.
[Wae91] van der Waerden, Bartel L. Algebra. II. Based in part on lectures by E. Artin and E. Noether. Translated from the fifth German edition by John R. Schulenberger. Springer-Verlag, New York, 1991. xii+284 pp. ISBN: 0-387-97425-3. MR1080173, Zbl 0724.12002.
[Wei62] Weil, André. Foundations of algebraic geometry. American Mathematical Society, Providence, R.I. 1962. xx+363 pp. MR0144898, Zbl 0168.18701.
[ZaS75II] Zariski, Oscar; Samuel, Pierre. Commutative Algebra. II. Reprint of the 1960 edition. Graduate Texts in Mathematics, 29. Springer-Verlag, New YorkHeidelberg, 1975. x+414 pp. MR0389876, Zbl 0322.13001.
(Wulf-Dieter Geyer) Department of Mathematics, Universität Erlangen-Nürnberg, Erlangen, Germany
geyer@mi.uni-erlangen.de
(Moshe Jarden) School of Mathematics, Tel Aviv University, Tel Aviv, Israel jarden@post.tau.ac.il
(Aharon Razon) Elta, Ashdod, Israel
razona@elta.co.il
This paper is available via http://nyjm.albany.edu/j/2017/23-67.html.

