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Solubility of groups can be characterized
by configuration

Ali Rejali and Meisam Soleimani Malekan

Abstract. The concept of configuration was first introduced by Rosen-
blatt and Willis to give a characterization for the amenability of groups.
We show that group properties of being soluble or FC can be character-
ized by configuration sets. Then we investigate a condition on configu-
ration pairs, which leads to isomorphism. We introduce a somewhat dif-
ferent notion of configuration equivalence, namely strong configuration
equivalence, and prove that strong configuration equivalence coincides
with isomorphism.
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1. Introduction and definitions

In the present paper, all groups are assumed to be finitely generated. Let
G be a group, we denote the identity of the group G by eG. We refer readers
to [4] for terminology and statements used for finitely generated groups.

The notion of a configuration for a group was introduced in [8]. It was
shown in that paper that the amenability of a group can be characterized by
configurations. The notion of the configuration is applied to other algebraic
structures such as semigroups ([1]) and hypergroups and also, has results
in amenability of a class of Banach algebras, known as Lau algebras ([12]).
For more on work done in configurations, we refer the reader to [13].

Definition 1.1. let G be a group. Let g = (g1, . . . , gn) be an ordered
generating set and E = {E1, . . . , Em} be a finite partition of G.
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A configuration C corresponding to (g, E), is an (n+ 1)-tuple

C = (c0, . . . , cn),

where ck ∈ {1, . . . ,m} for each k, such that there are x0, x1, . . . , xn ∈ G
with xk ∈ Eck , j = 0, 1, . . . , n, and for each k = 1, . . . , n, xk = gkx0. In this
case, we say that (x0, x1, . . . , xn) has configuration C.

In addition to left multiplication, if we consider right multiplication of
group elements, we will have the definition of two-sided configuration (see
[7] for more details).

For g and E as above, we call (g, E) a configuration pair. The set of
configurations corresponding to the configuration pair (g, E) will be denoted
by Con(g, E). The set of all configuration sets of G is denoted by Con(G).
It is not hard to see:

Remark 1.1. Let Con(g, E) be a configuration set for a group G and let us
have y ∈ G and E ∈ E . Then it may be assumed that y ∈ E.

In [8], the authors conjectured that combinatorial properties of configu-
rations can be used to characterize various kinds of behavior of groups, spe-
cially, group properties which lead to amenability. According to this conjec-
ture, in [2], the notion of configuration equivalence was created: A group G is
configuration contained in a group H, written G - H, if Con(G) ⊆ Con(H),
and two groups G and H are configuration equivalent, written G ≈ H, if
Con(G) = Con(H).

It would be worthy of mention that the condition that

Con(g, E) = Con(h,F)

implies that the generating sets g and h and the partitions E and F each
have the same numbers of elements.

Notation 1.1. Let G and H be two groups with generating sets g and h,
respectively. Suppose that for partitions

E = {E1, . . . , Em} and F = {F1, . . . , Fm}
of G and H respectively, the equality Con(g, E) = Con(h,F) established.
Then we say that Ei is corresponding to Fi, and write Ei! Fi, i = 1, . . . ,m.

The first question discussed following the definition of (two-sided) config-
uration equivalence is that of which properties of the groups can be charac-
terized by (two-sided) configuration sets?

In [2], Abdollahi, Rejali and Willis showed that finiteness and period-
icity are the properties which can be characterized by configuration. In
that paper, the authors proved that for two configuration equivalent groups,
the classes of their isomorphic finite quotients are the same. The word “fi-
nite” in the previous statement, can be replaced by “Abelian” (see [3]). In
[9], it is shown that if G and H are configuration equivalent groups, then
G/G′ ∼= H/H ′. These results are generalized in the context of two-sided
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configuration equivalence; two-sided configuration equivalent groups, G and
H, contain exactly the same number of normal subgroups of index n, n ∈ N.
Moreover, we have

∏
{G/N : |G : N | <∞} ∼=

∏
{H/N : |H : N| <∞}

(see [5, Corollary 3.9]). If G and H have the same two-sided configuration
sets and N is a normal subgroup of G such that G/N is finitely presented
and has a golden configuration pair, then there is a normal subgroup N of
H such that G/N ∼= H/N ([6]).

Let Fn be the free group on the set {f1, . . . , fn}, where n is a positive
integer. Suppose that µ = µ(f1, . . . , fn) is an element of Fn. we call µ = eG
a group-law in a group G, if for all n-tuples (x1, . . . , xn) of elements of G,
we have µ(x1, . . . , xn) = eG. It was shown in [2, Theorem 5.1] that two
configuration equivalent groups, should satisfy in the same semi-group laws,
and we generalized this result by proving that same group laws should be
established in configuration equivalent groups. Hence, in particular, being
Abelian and the group property of being nilpotent of class c are other prop-
erties which can be characterized by configuration (see [2] and [3]). In [3], it
was shown that if G ≈ H, and G is a torsion free nilpotent group of Hirsch
length h, then so is H. It is interesting to know the answer to the question
whether being FC-group is conserved by equivalence of configuration. In [3],
this question was answered under the assumption of being-nilpotent. Here
we affirmatively answer this question without any extra hypothesis. We af-
firmatively answer [9, Question 1] in Theorem 2.1 below. Also, we show that
the solubility of a group G can be recovered from Con(G) (see Corollary 2.1
in the following).

In [6], we prove that two-sided equivalent groups have same Tarski, and
class numbers. Also, it is shown that containing non-Abelian free subgroup
of rank n, n ∈ N, can be characterized by two-sided configuration sets.

Also, the question of for which groups configuration equivalence implies
isomorphism, has been of interest. In other words, for which groups G,
if G ≈ H for a group H, then will H be isomorphic to G? In [6], we
negatively answer this question by introducing nonisomorphic, but two-sided
configuration equivalent groups.

In [2], it was shown that for the classes of finite, free and Abelian groups,
these two notions, configuration equivalence and isomorphism, are the same.
In [3], it was proved that those groups with the form of Zn × F , where Z
is the group of integers, n is a positive integer and F is an arbitrary finite
group, are determined up to isomorphism by their configuration sets. In [3],
it was proved that if G ≈ D∞, where D∞ is the infinite dihedral group, then
G ∼= D∞.
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Studying the proof of the statements mentioned in [2] and [3], we found
out that it was the existence of certain configuration pairs which implied iso-
morphism. We call this certain type of configuration pair golden and in The-
orem 4.1, we will show that in the class of finitely presented Hopfian groups
with golden configuration pair, configuration equivalence coincides with iso-
morphism. In [5], it is shown that for the class of finitely presented Hopfian
groups with golden configuration pairs two-sided configuration equivalence
implies isomorphism. This class contains the class of FC and polycyclic
groups.

For the concept of configuration equivalence coincides with isomorphism,
we think that the identity element of a group should be recognized by con-
figuration sets, and it seems that the usual definition of configuration equiv-
alence could not do so; That is, if a partition E of a group G contains {eG},
then the equality Con(g, E) = Con(g′, E ′), for configuration pairs (g, E) and
(g′, E ′) of G, can not assure us that E ′ contains {eG}, too. This defect pro-
pelled us to introduce a new version of configuration equivalence which we
show does coincide with isomorphism.

Acknowledgements. Thanks are due to George A. Willis for all his sug-
gestions and corrections which greatly improved the final version of our
work. The authors, also, would like to express their gratitude toward Ba-
nach Algebra Center of Excellence for Mathematics, University of Isfahan.

2. Configuration and group properties

At first, we require the following notation in order to write proofs more
succinctly:

Notation 2.1. Let G be a group with g = (g1, . . . , gn) as its generating
set. Let p be a positive integer, let J and ρ be p-tuples with components in

{1, 2, . . . , n} and {±1}, respectively. We denote the product
∏p
i=1 g

ρ(i)
J(i) by

W (J, ρ; g). We call the pair (J, ρ) a representative pair on g and W (J, ρ; g)
the word corresponding to (J, ρ) in g.

For an arbitrary multiple, J , we denote the number of its components
by `(J). When we speak of a representative pair, (J, ρ), we assume the
same number of components for J and ρ. If J = (J(1), . . . , J(p)), and
ρ = (ρ(1), . . . , ρ(p)), where p is a positive integer, we set

J−1 := (J(p), . . . , J(1)) and ρ−1 := (−ρ(p), . . . ,−ρ(1))

For pi ∈ N, if Ji is a pi-tuple, i = 1, 2, J1⊕J2 is a (p1 +p2)-tuple that has
J1 as its first p1 components, and J2 as its second p2 components. It can be
easily seen that

W (J1, ρ1; g)W (J2, ρ2; g) = W (J1 ⊕ J2, ρ1 ⊕ ρ2; g)

and
W (J, ρ; g)−1 = W (J−1, ρ−1; g)
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for representative pairs (Ji, ρi), i = 1, 2.
Let G and H be two groups with generating sets g = (g1, . . . , gn) and

h = (h1, . . . , hn), respectively. There is a relation, denoted by Th
g, from G

to H which contains (g, h) ∈ G ×H, if there is a representative pair (J, ρ)
such that g = W (J, ρ; g) and h = W (J, ρ; h). By the above notation, it is
easily noticeable that:

• If Th
g is a function, then it will automatically be a homomorphism.

• Th
g is an epimorphism of groups if and only if for every representative

pair (J, ρ), W (J, ρ; g) = eG implies W (J, ρ; h) = eH .

• Th
g is an isomorphism of groups if and only if both relations, Th

g and
Tg

h are epimorphism.

Recall that we say that a property P can be characterized by configuration
sets if all of configuration equivalent groups have property P in common or
do not have this property. It is likely that the group properties which imply
amenability, can be characterized by configurations. In the papers written
on configuration, some of these properties such as being finite, Abelian,
nilpotent of class c, amenable or nonamenable are investigated. We will
prove that being FC and solubility are two other such properties that can
be characterized by configurations.

In the definition of configuration sets it will be convenient to replace
“partition” by “σ-algebra”, as follows:

Let G be a group. There is a correspondence between finite σ-algebras
of G, and finite partitions of G. Indeed, for a finite σ-algebra A, the set of
atoms1 of A is a partition of G, and for a finite collection C of subsets of G,
the σ-algebra generated by elements of C is finite. We denote the atomic sets
of a σ-algebra A by atom(A). Also, if C is a finite collection of subsets of
G, we use σ(C) to denote the σ-algebra generated by C. In the following, we
always consider σ-algebras to be finite. Now, for a σ-algebra A, we define
Con(g,A) to be Con(g,atom(A)).

We can also use ! for σ-algebras; Let E := {E1, . . . , Em} and F :=
{F1, . . . , Fm} be partitions of G and H respectively, such that Ei ! Fi,
i = 1, . . . ,m. For A ∈ σ(E) and B ∈ σ(F), say A! B, when

{k : Ek ∩A 6= ∅} = {k : Fk ∩B 6= ∅}.
In other words, if A! B, and A = Ei1 ∪ · · · ∪Eij , then B = Fi1 ∪ · · · ∪Fij .
In the following, we will use this technical lemma:

Lemma 2.1. Let G and H be two groups with finite σ-algebras A and B,
and generating sets g = (g1, . . . , gn), and h = (h1, . . . , hn), respectively, such
that Con(g,A) = Con(h,B). Suppose that A1, A2 ∈ A and B1, B2 ∈ B, are
such that Ai! Bi, i = 1, 2. we have:

(a) If grA1 ⊆ A2, then hrB1 ⊆ B2, r ∈ {1, . . . , n}.
1An atomic set of a σ-algebra A, is a nonempty element, which contains no other

elements of A.
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(b) If grA1 = A2, then hrB1 = B2, r ∈ {1, . . . , n}.

Proof. Set

atom(A) = {E1, . . . , Em}, and atom(B) = {F1, . . . , Fm}.

such that Ei! Fi, i = 1, . . . ,m. Also, set

Ik := {i : Ei ∩Ak 6= ∅}, k = 1, 2.

So, by assumption,

Ak =
⋃
i∈Ik

Ei, and Bk =
⋃
i∈Ik

Fi (k = 1, 2).

Now, for C = (c0, c1, . . . , cn) in Con(g,A), cr ∈ I2 if c0 ∈ I1, this proves (a).
For proving (b), note that if C = (c0, c1, . . . , cn) is in Con(g,A), then

c0 ∈ I1, if and only if cr ∈ I2. �

A little more preparation is needed to go through the main lemma of this
paper:

Definition 2.1. Assume that G and H are two groups, and let F be a
finite subset of G containing eG. A map φ : FF−1 → H is called a local
homomorphism on F , if

φ(xy−1) = φ(x)φ(y)−1 (x, y ∈ F ).

Like homomorphisms, for a local homomorphism φ on F , we have

• φ(eG) = eH ,
• φ(x−1) = φ(x)−1, x ∈ F .

If F is a finite subgroup of G, then it will be clear that a local homomorphism
φ on F becomes a homomorphism of groups.

We, now state the key lemma of the paper.

Lemma 2.2. Let G and H be two groups such that G - H. Let g =
(g1, . . . , gn) be a generating set of G and F be a finite set of representative
pairs on g. Then there exists a generating set h = (h1, . . . , hn) of H such
that T g

h is a local homomorphism on {eH} ∪ {W (J, ρ; h) : (J, ρ) ∈ F}.

Proof. For a representative pair (J, ρ), set E(J, ρ) := {W (J, ρ; g)} and set
E(1) = {eG}. Let n0 := max{`(J) : (J, ρ) ∈ F} and consider the following
sets of representative pairs:

S1 := {(J, ρ) : `(J) ≤ 2n0, ρ is arbitrary}
S2 := {(J, ρ) : `(J) ≤ n0, ρ is arbitrary}.

A combinatorial argument shows that all above sets are finite. Let A be
the σ-algebra generated by E(1) and the sets E(J, ρ), (J, ρ) ∈ S0. Since
E(J, ρ)’s are singleton, we have

(1) E(J, ρ) = W (J, ρ; g)E(1), (J, ρ) ∈ S1.



SOLUBILITY OF GROUPS 1433

By G - H, there are a generating set h and a σ-algebra B of H such
that Con(g,A) = Con(h,B). We denote by F (1) and F (J, ρ), (J, ρ) ∈ S1,
elements in B where

E(1)! F (1), E(J, ρ)! F (J, ρ), (J, ρ) ∈ S1.

Without loss of generality, we can assume that eH ∈ F (1). We claim that
the following equations are established

F (J, ρ) = W (J, ρ; h)F (1), (J, ρ) ∈ S1.(2)

We prove this claim by induction on `(J). If J has only one component,
there is nothing to be proved by Lemma 2.1(b). Now, suppose that Equation
(2) is established when `(J) < p. Let

J = (J(1), J(2), . . . , J(p)) and ρ = (ρ(1), ρ(2), . . . ρ(p))

be such that (J, ρ) ∈ S1. Let I1 = (J(1)), I2 = (J(2), . . . , J(p)), δ1 = (ρ(1)),
and δ2 = (ρ(2), . . . , ρ(p)). Therefore J = I1 ⊕ I2 and ρ = δ1 ⊕ δ2. By
induction hypothesis, we have F (I2, δ2) = W (I2, δ2; h)F (1). The equality
Con(g,A) = Con(h,B) and Lemma 2.1(b) imply that

F (J, ρ) = W (I1, δ1; h)F (I2, δ2).

Therefore,

F (J, ρ) = W (I1, δ1; h)F (I2, δ2)

= W (I1, δ1; h)W (I2, δ2; h)F (1) = W (J, ρ; h)F (1)

and this proves Equation (2) for `(J) = p.
By Equation (2) we have W (J, ρ; h) ∈ F (J, ρ). Now, if we have

W (J, ρ; h) = eH

for some pair (J, ρ) ∈ S1, according to obtained equalities, we get

F (J, ρ) = F (1),

so E(J, ρ) = E(1) and this gives W (J, ρ; g) = eG. Hence, Tg
h is a well-defined

local homomorphism on

{eH} ∪ {W (J, ρ; h) : (J, ρ) ∈ S2}.

Indeed if W (J, ρ; h) = W (I, δ; h), for (J, ρ) and (I, δ) in S2, then

W (J ⊕ I−1, ρ⊕ δ−1; h) = eH ,

and (J ⊕ I−1, ρ ⊕ δ−1) ∈ S1, so W (J ⊕ I−1, ρ ⊕ δ−1; g) = eG, and this
implies that W (J, ρ; g) = W (I, δ; g). But F ⊆ S2, therefore Tg

h is a local

homomorphism on {eH} ∪ {W (J, ρ; h) : (J, ρ) ∈ F}. �

The following result can be obtained from the proof of the above lemma:
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Remark 2.1. Let G and H be two groups with G ≈ H. Let (g, E) be a
configuration pair of G and F be a finite set of representative pairs on g. Let
E ′ be a refinement of E which contains {eG} and singletons {W (J, ρ; g)},
(J, ρ) ∈ S1, where S1 is defined as in the proof of the previous lemma.
Assume that Con(g, E ′) = Con(h,F ′), for a configuration pair (h,F ′) of H.
We denote by F (1) and F (J, ρ), (J, ρ) ∈ S1, elements in F ′ where

{eG}! F (1), {W (J, ρ; g)}! F (J, ρ), (J, ρ) ∈ S1.

If we assume that eH ∈ F (1), then we have W (J, ρ; h) ∈ F (J, ρ), for (J, ρ) ∈
F.

In [2, Theorem 5.1], it was proved that two configuration equivalent
groups satisfy in same semi-group laws; Considering Lemma 2.2, we can
generalize this result:

Proposition 2.1. Let G and H be two groups with G - H and suppose that
H satisfies the group law µ(x1, ..., xn) = eH . Then G satisfies the same
law.

Proof. Suppose that µ(x1, ..., xn) =
∏N
i=1 x

ρ(i)
J(i) for N -tuples J and ρ with

J ∈ {1, 2, . . . , n}N and ρ ∈ {±1}N .

Also, suppose that G does not satisfy in this group law, so there exists
g1, . . . , gn ∈ G, such that µ(g1, . . . , gn) 6= eG. Let g0 be a generating set of
G, so that g = (g1, . . . , gn) ⊕ g0 is also a generating set. By Notation 2.1,
W (J, ρ; g) 6= eG, and by the above lemma, we can get a generating set h of
H such that W (J, ρ; h) 6= eH . This means that µ(h1, . . . , hn) 6= eH , which
contradicts the group law in H. �

Let G be a group with a generating set g = (g1, . . . , gn). We say that
representative pair (J, ρ) on g is in kth derivation form if, for the free non-
Abelian group of rank n > 0, Fn, with generating set f = (f1, . . . , fn),

W (J, ρ; f) ∈ F
(k)
n , in which the power (k) stands for denoting the kth derived

subgroup. We have:

Lemma 2.3. Let G be a group with a generating set g = (g1, . . . , gn). Then

G(k) = {W (J, ρ; g) : (J, ρ) is a representative pair in kth derivation form}.

Proof. Let f be a generating set of Fn. Since there are no relations in Fn,
the equality W (J1, ρ1; f) = W (J2, ρ2; f) implies W (J1, ρ1; g) = W (J2, ρ2; g)
for the generating set g.

For representative pairs (J, ρ) and (I, δ), we denote J−1⊕I−1⊕J⊕I and
ρ−1 ⊕ δ−1 ⊕ ρ⊕ δ by [J, I] and [ρ, δ], respectively. By these notations,

[W (J, ρ; g),W (I, δ; g)] = W ([J, I], [ρ, δ]; g)

where [x, y] = x−1y−1xy, x, y ∈ G.
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We only prove the lemma in the case where k = 1. For larger values
of k one can use induction. First, suppose that g ∈ G(1); so there are
representative pairs (Ji, ρi) and (Ii, δi), i = 1, . . . ,m, such that

g =
m∏
i=1

[W (Ji, ρi; g),W (Ii, δi; g)]

=
m∏
i=1

W ([Ji, Ii], [ρi, δi]; g)

= W

(
m⊕
i=1

[Ji, Ii],

m⊕
i=1

[ρi, δi]; g

)
;

but it is clear that (
⊕m

i=1[Ji, Ii],
⊕m

i=1[ρi, δi]) is in the first derivation form.
Conversely, suppose that (J, ρ) is in the first derivation form, so, by an

argument as above, we have

W (J, ρ; f) = W

(
m⊕
i=1

[Ji, Ii],

m⊕
i=1

[ρi, δi]; f

)
for representative pairs (Ji, ρi) and (Ii, δi), i = 1, . . . ,m. By the note men-
tioned at the beginning of the proof, the following holds:

W (J, ρ; g) = W

(
m⊕
i=1

[Ji, Ii],

m⊕
i=1

[ρi, δi]; g

)

=

m∏
i=1

[W (Ji, ρi; g),W (Ii, δi; g)] ∈ G(1). �

Configurations show that a group is not soluble with derived length k, for
a positive integer k:

Proposition 2.2. Let G be a group such that G(k) 6= {eG}, for a positive
integer k. Then, for each generating set g of G, there is a partition E of G,
such that the configuration set Con(g, E) cannot arise from a soluble group
of derived length k.

Proof. Since G(k) 6= {eG}, there exists a representative pair, (J0, ρ0), in
kth derivation form such that W (J0, ρ0; g) 6= eG. Set, as in the proof of
Lemma 2.2,

S1 := {(J, ρ) : `(J) ≤ 2`(J0), ρ is arbitrary}.

Let E be any partition which contains {eG} and singletons {W (J, ρ; g)}, for
(J, ρ) ∈ S1. Then, by Remark 2.1, if Con(g, E) = Con(h,F) for a configura-
tion pair (h,F) of a group H, then W (J0, ρ0; h) 6= eH . But, W (J0, ρ0; h) ∈
H(k), for (J0, ρ0) is in kth derivation form, whence H(k) 6= {eH}. �

We also answer Question 1 in [9] affirmatively:
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Theorem 2.1. Let G and H be two groups such that G ≈ H. Then G(k)

and H(k) have same cardinalities, for each positive integer k. Furthermore,
if G(k) is finite for some positive integer k, then we will have G(k) ∼= H(k).

Proof. Let g be a generating set of G. Suppose that |G(k)| ≥ N for a
positive integer N . Then there are representative pairs (Ji, ρi), i = 1, . . . , N ,
in kth derivation form, such that W (Ji, ρi; g)’s are pairwise distinct. By
Lemma 2.2, we can find a generating set h of H such that W (Ji, ρi; h)’s are

pairwise distinct, but by previous lemma, W (Ji, ρi; h) ∈ H(k), so |H(k)| ≥ N .

Therefore, G(k) and H(k) have same cardinalities.
Now, suppose that G(k) is finite; consider representative pairs (Ji, ρi),

i = 1, . . . , N , in kth derivation form, such that elements W (Ji, ρi; g)’s are

nonidentity and pairwise distinct in G(k). By Lemma 2.2, we can choose a
generating set h of H such that W (Ji, ρi; h)’s are nonidentity and pairwise
distinct and Tg

h is a local homomorphism on

{eH} ∪ {W (Ji, ρi; g) : i = 1, . . . , N}.
But, by the first part of the statement, we should have

H(k) = {eH} ∪ {W (Ji, ρi; h) : i = 1, . . . , N}.
Therefore, Tg

h|H(k) is indeed an isomorphism. This completes the proof. �

As a consequence of this theorem we have:

Corollary 2.1. Let G and H be two groups such that G ≈ H. Then G is
soluble if and only if H is soluble. Furthermore, their derived lengths are
the same.

Now, we will show that being FC can be recovered by configuration sets.
The following remark will play a crucial role:

Remark 2.2. Let G be a group with a generating set g. For g ∈ G, put

Φg : G→ G, x 7→ gxg−1

and InnG := {Φg : g ∈ G}. It is well-known that G/Z(G) ∼= InnG, where
Z(G) stands for the center of G. For representative pairs (Ji, ρi), i = 1, 2,
ΦW (J1,ρ1,g) 6= ΦW (J2,ρ2;g) if and only if there is a representative pair (I, δ)
such that

ΦW (J1,ρ1,g)(W (I, δ; g)) 6= ΦW (J2,ρ2;g)(W (I, δ; g))

and one can easily check that the last inequality is equivalent to the following
one:

W (J1 ⊕ I ⊕ J−11 , ρ1 ⊕ δ ⊕ σ−11 ; g) 6= W (J2 ⊕ I ⊕ J−12 , ρ2 ⊕ δ ⊕ σ−12 ; g).

Now, we assert the main result of the section:

Theorem 2.2. Let G and H be two groups such that G ≈ H. Then InnG
and InnH have same cardinalities. Moreover, if InnG is finite, then

InnG ∼= InnH.
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Proof. Suppose that |InnG| ≥ N , for a positive integer N . So, there are
representative pairs (Jk, ρk), k = 1, . . . , N , such that ΦW (Jk,ρk;g)’s are pair-
wise distinct. By the above remark, for each k = 2, . . . , N , there exist
representative pairs, (Ik,l, δk,l), l = 1, . . . , k − 1, such that

(3) W (Jk⊕Ik,l⊕J−1k , ρk⊕δk,l⊕ρ−1k ; g) 6= W (Jl⊕Ik,l⊕J−1l , ρl⊕δk,l⊕ρ−1l ; g)

Let F be the set of representative pairs

(Jk, ρk) k = 1, . . . , N

along with{
(Jk ⊕ Ik,l ⊕ J−1k , ρk ⊕ δk,l ⊕ ρ−1k )

(Jl ⊕ Ik,l ⊕ J−1l , ρl ⊕ δk,l ⊕ ρ−1l )
k = 2, . . . , N, l = 1, . . . , k − 1.

Applying Lemma 2.2 to F, we gain a generating set h of H such that (3) is
satisfied for h instead of g. But, again, Remark 2.2 gives that ΦW (Jk,ρk;h)’s
are pairwise distinct, so we have |InnH| ≥ N , this proves the first part of
the Lemma.

Now, suppose that InnG is finite, say

InnG = {ΦeG} ∪ {ΦW (Jk,ρk;g) : k = 1, . . . , N}.

As done earlier, for each k = 1, . . . , N , choose (Ik,l, δk,l), l = 1, . . . , k − 1,
such that

W (Jk ⊕ Ik,l ⊕ J−1k , ρk ⊕ δk,l ⊕ ρ−1k ; g) 6= W (Jl ⊕ Ik,l ⊕ J−1l , ρl ⊕ δk,l ⊕ ρ−1l ; g).

Construct F as above and apply Lemma 2.2 to F to obtain a generating
set h of H, such that (3) is satisfied for h instead of g and Tg

h is a local
homomorphism on

{eG} ∪ {W (J, ρ; h) : (J, ρ) ∈ F}.

Therefore,

InnH = {ΦeG} ∪ {ΦW (Jk,ρk;h) : k = 1, . . . , N}
and the map

Θ : InnH → InnG, ΦW (Jk,ρk;h) 7→ ΦW (Jk,ρk;g)

is a local homomorphism on the finite group InnH which is injective, so Θ
induces the desired isomorphism. �

Corollary 2.2. Assume that G and H are two finitely generated groups
such that G is an FC-group and G ≈ H. Then H is an FC-group and the
following hold:

(1) G× Z ∼= H × Z.
(2) G

Z(G)
∼= H

Z(H) and Z(G) ∼= Z(H).

(3) G
G′
∼= H

H′ and G′ ∼= H ′.
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Proof. It is proved in [10] that a finitely generated group G is an FC-group
if and only if G

Z(G) is finite. So, by Theorem 2.2 and Remark 2.2, G
Z(G)

∼= H
Z(H)

and, therefore, H is an FC-group, too.
If G is a finitely generated FC-group, then G is isomorphic with a sub-

group of Zn × F , for some finite group F (see [10]). Therefore, by [9, Lem-
ma 1], G × Z ∼= H × Z, Z(G) ∼= Z(H) and G′ ∼= H ′. Also, [9, Theorem 2]
gives G

G′
∼= H

H′ . �

The following question is natural:

Question 2.1. What we can say about central series of two configuration
equivalent groups? Are they equivalent?

There are nonisomorphic groups G and H such that G×Z ∼= H ×Z. See
the following groups, for instance:

G := 〈x, y|x11 = eG, y
−1xy = x2〉

H := 〈x, z|x11 = eH , z
−1xz = x8〉

In addition, suppose that zy = yz, and let C := 〈y7z〉 and D := 〈yz3〉. Then
G×C ∼= H ×D (see [11, Theorem 13]). Are these two groups configuration
equivalent?

Question 2.2. For a group that is not an FC-group, is there a single con-
figuration or set of configurations which can not arise form an FC-group?

3. Strong configuration equivalence and isomorphism

In this section we will introduce the notion of strong configuration equiv-
alence and will prove that this type of configuration equivalence leads to
isomorphism. First, consider the definition:

Definition 3.1. We say that two groups G and H are strong configuration
equivalent, if there exist ordered generating sets g of G and h of H, such
that:

(1) For each partition E of G there exists a partition F of H such that
Con(g, E) = Con(h,F).

(2) For each partition F of H there is a partition E of G such that
Con(h,F) = Con(g, E).

In this case, we will write (G; g) ≈s (H; h).
If only condition (1) is satisfied we will say that G is strongly configuration

contained in H and will denote it by (G; g) -s (H; h).

One can easily show, as done in the proof of Lemma 2.2, that:

Lemma 3.1. Let G and H be two groups such that (G; g) -s (H; h). Let F
be a finite set of representative pairs on g. Then T g

h is a local homomorphism

on {eH} ∪ {W (J, ρ; h) : (J, ρ) ∈ F}.
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The following lemma will show that this type of configuration equivalence
has the ability to recognize a generating set of a group.

Lemma 3.2. If (G; g) -s (H; h), then T g
h is an epimorphism from H onto

G.

Proof. Suppose that W (J0, ρ0; g) 6= eG. Applying Lemma 3.1 to

F := {(J0, ρ0)},
we conclude that T g

h is a local homomorphism on {eH} ∪ {W (J0, ρ0; h)}, so,
consequently, W (J0, ρ0; h) 6= eH . This completes the proof. �

Now, we state the main theorem of this section.

Theorem 3.1. Two groups are strongly configuration equivalent if and only
if they are isomorphic.

Proof. First suppose that (G; g) ≈s (H; h). By the above lemma, Th
g and

Tg
h are epimorphism. So, Th

g : G→ H is an isomorphism.

Conversely, suppose that G
φ∼= H. Let g = (g1, . . . , gn) be a generating set

of G, and set h := φ(g) = (φ(g1), . . . , φ(gn)). Then h is a generating set of
H. If E is a partition of G. Then F := φ(E) = {φ(E) : E ∈ E} will be a
partition of H which satisfies (1) in Definition 3.1. Also, for a partition F
of H, E := φ−1(F) establishes (2) in the above-mentioned definition. �

4. Configuration and isomorphism

What really makes it difficult to work with configuration equivalence is
that it seems that this type of equivalence can not recognize the identity
element of a group. In the previous section, this problem was completely
resolved by introducing a new type of configuration equivalence. We now
intend to fix this problem partially by defining a special type of configuration
pair which is playing an important role in isomorphisms.

Let G be a group and g be a generating set of G. A representative pair
(J, ρ) on g is called reduced, if ρ(k) = ρ(k + 1), whenever J(k) = J(k + 1),
for k < `(J). It is evident that if (J, ρ) = (I1 ⊕ I2, δ1 ⊕ δ2) is reduced, then
both representative pairs (Ik, δk)’s are reduced, too.

Definition 4.1. Let G be a group and (g, E) be a configuration pair of G
such that {eG} ∈ E . We call (g, E) golden, if it can be concluded from the
equation Con(g, E) = Con(g′, E ′), for a configuration pair (g′, E ′) of G, that

W (J, ρ; g) 6= eG ⇒ W (J, ρ; g′)E′ ∩ E′ = ∅(4)

where (J, ρ) is a reduced representative pair and E′ denotes the element of
E ′ corresponding to {eG}.

The following lemma is exactly what we expect from golden configuration
pairs:
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Lemma 4.1. Let (g, E) be a golden configuration pair of a Hopfian group
G. Then for each configuration pair (g′, E ′) which satisfies

Con(g, E) = Con(g′, E ′),
T g

g′ is an automorphism of G. Also, if {eG}! E′ ∈ E ′ and eG ∈ E′, then

(g′, E ′) is golden too.

Proof. By the implication (4) for a reduced representative pair (J, ρ),

W (J, ρ; g′) 6= eG whenever W (J, ρ; g) 6= eG.

Therefore, Tg
g′ is an epimorphism from G onto G. But G is Hopfian, hence

φ := Tg
g′ is indeed an automorphism.

Now, assume that {eG} ! E′ ∈ E ′ and E′ contains eG. If E′ is not
singleton, then eG 6= W (J, ρ; g′) ∈ E′ for a reduced representative pair
(J, ρ). But

W (J, ρ; g′) ∈W (J, ρ; g′)E′ ∩ E′

for E′ contains eG, so, again, by using implication (4), we get

W (J, ρ; g) = eG = φ(W (J, ρ; g′)),

whence W (J, ρ; g′) = eG, and this is a contradiction. If

Con(g′, E ′) = Con(g′′, E ′′),
for a configuration pair (g′′, E ′′) of G, and {eG}! E′′, then for each reduced
pair (J, ρ),

W (J, ρ; g′) 6= eG ⇒ W (J, ρ; g) = φ(W (J, ρ; g′)) 6= eG

⇒ W (J, ρ; g′′)E′′ ∩ E′′ = ∅. �

Example 4.1. Below, we’ve listed some groups which have a golden con-
figuration pair:

(1) All non-Abelian free groups have a golden configuration pair. Con-
sider a generating set f = (f1, . . . , fn) of Fn. Set

E = {E0, Ek, E−k; k = 1, . . . , n}
where E0 = {eFn}, and

Ek = {reduced words starting with fk}
E−k = {reduced words starting with f−1k }

for k = 1, . . . , n. One can easily verify that for k ∈ {1, . . . , n},
fk(Fn \ E−k) = Ek and fkE−k = Fn \ Ek(5)

If H is a group with a configuration pair (h,F) such that Con(f, E) =
Con(h,F). Then h and F can be displayed as

h = (h1, . . . , hn)

F = {F0, Fk, F−k; k = 1, . . . , n}, eH ∈ F0
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where

F0! E0, Fk! Ek, F−k! E−k, k = 1, . . . , n.

By Lemma 2.1 and relations (5), for k ∈ {1, . . . , n}, the following
relations will hold:

hk(H \ F−k) = Fk and hkF−k = H \ Fk
Considering these relations, it may be concluded that for each re-
duced representative pair (J, ρ) on h,

W (J, ρ; h)F0 ⊆ Fρ(1)J(1).
So, (f, E) is a golden configuration pair of Fn (see [2, Proposition 6.1]
for details).

(2) Let Z be the group of integers, n be a positive integer and F be
a finite group. Then all groups on the form Zn × F have a golden
configuration pair. Indeed, suppose that F = {x0 = eF , x1, . . . , xm}
is an arbitrary finite group and n ∈ N. Let g = (g1, . . . , gn+m), where

gi = (ei, eF ), i = 1, . . . , n

gn+j = (o, xj), j = 1, . . . ,m.

where o is the neutral element of Zn, and ei is the element of Zn,
whose only nonzero component, ith one, is 1.

Let Σ be the set of all functions from {1, . . . , n} into {−1, 0, 1}.
Set

E(τ, j) = τ(1)N× · · · × τ(n)N× {xj}
for τ ∈ Σ and j = 0, 1, . . . ,m. Consider the σ-algebra, A, generated
by sets {gi}, {gigj}, 1 ≤ i, j ≤ n and E(τ, j), τ ∈ Σ and j =
0, 1, . . . ,m. Then (g,atom(A)) is a golden configuration pair. By
the proof of [3, Theorem 3.5], the reader can certify the correctness
of this claim. In particular, all finite and all Abelian groups have a
golden configuration pair.

(3) The infinite dihedral group, D∞ = 〈x, y : x2 = y2 = 1〉, has a golden
configuration pair. Let g = (x, y), and E = {Ek : k = 1, . . . , 5},
where

E1 = {eD∞}, E2 = {x}, E3 = {y}
and

E4 = {g1g2 . . . gn : n ∈ N, n > 1, g1 = x, gi ∈ {x, y}, gi 6= gi−1, i = 2, . . . , n}
E5 = {g1g2 . . . gn : n ∈ N, n > 1, g1 = y, gi ∈ {x, y}, gi 6= gi−1, i = 2, . . . , n}.

By [3, Example 3.7], it can be seen that (g, E) is a golden configura-
tion pair.

Let G and H be two groups. Consider partitions E = {E1, . . . , Er} of G,
F = {F1, . . . , Fr} of H, and their refinements

E ′ = {E′1, . . . , E′s}, andF ′ = {F ′1, . . . , F ′s}.
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We say that these two refinements E ′ and F ′ are similar and write (E ′, E) ∼
(F ′,F), if

{l : Ek ∩ E′l 6= ∅} = {l : Fk ∩ F ′l 6= ∅} (k = 1, . . . , r).

In other words, if Ek =
⋃t
j=1E

′
ij

, then we have Fk =
⋃t
j=1 F

′
ij

.

Note that it is implicit in the definition of similarity that similar partitions
have equal numbers of sets.

Lemma 4.2. Let E ′ = {E′1, . . . , E′s} be a refinement of a partition E =
{E1, . . . , Er} of G. For a partition F ′ = {F ′1, . . . , F ′s} of H, there exists a
partition F = {F1, . . . , Fr} of H such that (E ′, E) ∼ (F ′,F).

Proof. It is enough to set

Fk =
⋃
{F ′l : Ek ∩ E′l 6= ∅}

for k = 1, . . . , r. �

An important feature of similar refinements is presented below:

Lemma 4.3. let G and H be two groups. Assume that (g, E) and (h,F) are
two configuration pairs for G and H, respectively, and let E ′ and F ′ be their
similar refinements such that Con(g, E ′) = Con(h,F ′). Then

Con(g, E) = Con(h,F).

Proof. Without loss of generality, let

E = {E1, . . . , Em} and E ′ = {K1, . . . ,Km,Km+1}

where Ki = Ei, i = 1, . . . ,m− 1, and Km ∪Km+1 = Em.
Note that if C = (c0, c1, . . . , cn) belongs to Con(g, E ′), then by changing

components which are m or m+ 1 into m, we will obtain a configuration Ĉ
in Con(g, E). We claim that every configuration in Con(g, E) arises in this
way. Assume that Con(g, E) contains a configuration C = (c0, c1, . . . , cn). Let
(x0, x1, . . . , xn) have the configuration C. Now, replace components ci = m
with m or m + 1 depending on xi ∈ Km or xi ∈ Km+1, respectively, to
obtain a configuration C̃ in Con(g, E ′). It is obvious that for C ∈ Con(g, E),̂̃C = C.

By the symmetry, we only show that Con(g, E) ⊆ Con(h,F). If C ∈
Con(g, E), then

C̃ ∈ Con(g, E ′) = Con(h,F ′).

Therefore, by the above explanation, C = ̂̃C ∈ Con(h,F). �

The following lemma is of particular importance:

Lemma 4.4. Let G be a group with a golden configuration pair (g, E). Then
for each refinement E ′ of E, the configuration pair (g, E ′) is golden too.
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Proof. Assume that (x,K′) is a configuration pair of G such that

Con(g, E ′) = Con(x,K′).
Assume that {eG} ! K ′ ∈ K′. Make K′ coarser to gain a partition K
such that (E ′, E) ∼ (K′,K) (see lemma 4.2). So, If {eG}! K ∈ K, then
K = K ′. By Lemma 4.3, we have Con(g, E) = Con(x,K), and this completes
the proof. �

Lemma 4.5. Let G and H be two groups with G ≈ H. Assume that G is
Hopfian with a golden configuration pair (g, E) and that (h,F) is a configu-
ration pair for H such that Con(g, E) = Con(h,F). Then:

(a) If {eG}! F ∈ F , then F is a singleton set.
(b) Let F ′ be a refinement of F . Then there exists a partition E ′ of G

such that (g, E ′) is a golden configuration pair and

Con(h,F ′) = Con(g, E ′).

Proof. (a) Assume to contrary that, F is not a singleton set, so we can
write F = F1 ∪ F2, for nonempty sets F1 and F2. Consider the following
refinement of F ,

K := {F1, F2} ∪ (F \ {F}).
There is a configuration pair (g′,L′) such that Con(g′,L′) = Con(h,K).
Suppose that Fi! Li ∈ L′, i = 1, 2. Let partition L be such that (L′,L) ∼
(K′,K). Lemma 4.3 implies that

Con(g′,L) = Con(h,F) = Con(g, E).

But (g, E) is golden, hence by Lemma 4.1 and Remark 1.1, we can assume
that (g′,L) is golden, so we should have {eG} = L1 ∪ L2 and this is impos-
sible.

(b) Now, let F ′ be a refinement of F . By G ≈ H, there exists a configu-
ration pair (x,P ′) of G such that Con(h,F ′) = Con(x,P ′). Let P be coarser
than P ′ with (P ′,P) ∼ (F ′,F). Hence, by lemma 4.3

Con(x,P) = Con(h,F) = Con(g, E)(6)

so, ψ := Tg
x is an automorphism of G. Now, put

E ′ := ψ−1(P ′) = {ψ−1(P ′) : P ′ ∈ P ′}.
We have

Con(g, E ′) = Con(ψ(g), ψ(E ′)) = Con(x,P ′) = Con(h,F ′)
and by Lemma 4.1, we can assume that (g, E ′) is golden. �

Now, we will state and prove the main theorem of this section.

Theorem 4.1. Let G be a Hopfian group with a golden configuration pair
and H be a group such that G ≈ H. Then G is finitely presented if and only
if H is finitely presented, and in the case that G or H is a finitely presented
group, we have G ∼= H.
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Proof. Let (g, E) be a golden configuration pair of the Hopfian group G.
Suppose that G is finitely presented and put {W (Ji, ρi; g), i = 1, . . . ,m}

for its set of defining relators. Set F = {(Ji, ρi), i = 1, . . . ,m}. By Lem-
ma 4.4, we can assume that E contains {eG} and singletons {W (J, ρ; g)},
(J, ρ) ∈ S0, where S0 is defined as in the proof of Lemma 2.2. Now, con-
sider Con(g, E) = Con(h,F), for a configuration pair (h,F) of H. Hence,
according to Lemma 4.5(a), we have {eH} ∈ F . Also, by Remark 2.1, we
have W (Ji, ρi; h) = eH , i = 1, . . . ,m.

We claim that {W (Ji, ρi; h), i = 1, . . . ,m} is a set of defining relators,
because if it is not, then we can find a relator in H, say W (I, δ;h), which can
not be obtained from {W (Ji, ρi; h), i = 1, . . . ,m}. But, by Lemma 4.5(b),
and using Remark 2.1 again, we have W (I, δ; g) = eG and this contradicts
the fact that {W (Ji, ρi; g), i = 1, . . . ,m} is a set of defining relators of G.

So, G and H are two groups with the same sets of defining relators, and
therefore G ∼= H, by [4, Theorem 1.1].

Now, let (h,F) be a configuration pair such that Con(g, E) = Con(h,F).
Put {W (Ji, ρi; h), i = 1, . . . ,m} for a set of defining relators of H, and con-
sider a representative pair (J0, ρ0) such that W (J0, ρ0; h) 6= eH . Appealing
once more to Remark 2.1, and using part (b) of Lemma 4.5 again, we can
assume, without loss of generality that W (Ji, ρi; g) = eG, i = 1, . . . ,m and
W (J0, ρ0; g) 6= eG. Hence, [4, Theorem 1.1] implies G ∼= H. �

By previous theorem and Example 4.1, we have:

Corollary 4.1. The following hold:

(a) If G ≈ Fn, then G ∼= Fn.
(b) If G ≈ Zn×F , where F is an arbitrary finite group, then G ∼= Zn×F .
(c) If G ≈ D∞, then G ∼= D∞.

Theorem 4.1 leads us to the following questions:

Question 4.1.

(1) Is there a finitely generated group without a golden configuration
pair?

(2) Does each Hopfian group have a golden configuration pair?
(3) How about finitely presented Hopfian groups? Do they have a golden

configuration pair?
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