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Cellular automata, duality and sofic
groups

Laurent Bartholdi

To Tullio G. Ceccherini-Silberstein, on the occasion of his fiftieth anniversary

Abstract. We produce for arbitrary nonamenable group G and field
K a nonpreinjective, surjective linear cellular automaton. This answers
positively Open Problem (OP-14) in Ceccherini-Silberstein and Coor-
naert’s monograph “Cellular Automata and Groups”.

We also reprove in a direct manner, for linear cellular automata, the
result by Capobianco, Kari and Taati that cellular automata over sofic
groups are injective if and only if they are postsurjective.

These results come from considerations related to matrices over group
rings: we prove that a matrix’s kernel and the image of its adjoint are
mutual orthogonals of each other. This gives rise to a notion of “dual
cellular automaton”, which is preinjective if and only if the original
cellular automaton is surjective, and is injective if and only if the original
cellular automaton is postsurjective.
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1. Introduction

1.1. Cellular automata. Let G be a group and let K be a field. A linear
cellular automaton on G is — no more, no less — a square matrix with
entries in the group ring KG.

The interpretation of a linear cellular automaton Θ P MnpKGq is as fol-
lows, see [7, Corollary 8.7.8]. Let S be a finite subset of G such that all
entries of Θ are in the K-span of S. Construct the graph G with vertex
set G, and with an edge from g to gs for all g P G, s P S. Put a copy
of the vector space V :“ Kn at each vertex of G . Elements of the vector
space V G “ tc : G Ñ V u are called configurations. Then Θ defines a one-
step evolution rule still written Θ on the space of configurations, in which
each vertex of G inherits a new value in V depending on the values at its
neighbours: one may write Θ “

ř

sPS Θss for K-matrices Θs, and then every
configuration c P V G evolves under Θ to the configuration taking at every
g P G the value

ř

sPS Θspcps
´1gqq. More concisely, c evolves to Θ ¨ c. For

more information on linear cellular automata, we defer to [7, Chapter 8].
Linear cellular automata are natural linear analogues of classical cellular

automata, in which each vertex of G takes a value in a finite set A, which
evolves according to the values at its neighbours. The cellular automaton is
thus a locally-defined evolution rule on the compact space AG. In particular,
if K is a finite field, then every linear cellular automaton is also a classical
cellular automaton.

The converse, however, is far from true: linear cellular automata are
extremely restricted computational models, and there is no clear way of
converting a classical cellular automaton into a linear one. Every self-map
of a finite set A induces a self-map of the finite-dimensional vector space
V :“ KA, so cellular automata acting on AG induce linear self-maps on

KAG
, but this space is much larger than V G – KAˆG: in pedantic terms, the

former is a completion of the tensor power
Â

G V (the “measuring coalgebra”
KGá V ), while the latter is a completion of the direct sum

À

G V .

1.2. Sofic groups and surjunctivity. How are algebraic properties of the
group G reflected in the cellular automata carried by G ? We single out some
properties of cellular automata which have received particular attention: let
us write x „ y for x, y P AG when tg P G | xpgq ‰ ypgqu is finite. A cellular
automaton Θ: AG ý is

injective if Θpxq “ Θpyq implies x “ y;
preinjective if Θpxq “ Θpyq ^ x „ y implies x “ y; when x ‰ y

and Θpxq “ Θpyq and x „ y one calls such x, y Mutually Eraseable
Configurations;

surjective if ΘpAGq “ AG; when x P AGzΘpAGq one calls x a Garden
of Eden;

postsurjective if y „ Θpxq implies Dz „ x : Θpzq “ y.



CELLULAR AUTOMATA, DUALITY AND SOFIC GROUPS 1419

Moore and Myhill’s celebrated “Garden of Eden” theorem asserts that, if
G “ Zd, then cellular automata are preinjective if and only if they are sur-
jective [11,12]. This has been extended to amenable groups G by Ceccherini-
Silberstein, Mach̀ı and Scarabotti [5], and I proved in [2,3] that both results
may fail as soon as G is not amenable. We shall not need the precise defini-
tion of amenable groups; suffice it to say that one of the equivalent definitions
states that G contains finite subsets that are arbitrarily close to invariant
under translation, in the sense that for every finite S Ď G and every ε ą 0
there exists a finite subset F Ď G with #pFSzF q ă ε#F . For our purpose,
the main result of [3] may be formulated as:

Theorem 1.1. For a group G, the following are equivalent:

(1) G is nonamenable.
(2) For some integer n and every (equivalently, some) field K, there is

an injective KG-linear map pKGqn Ñ pKGqn´1.

This KG-linear map is nothing more than an pn ´ 1q ˆ n matrix with
entries in KG. We shall sketch Theorem 1.1’s proof in §3.

We shall not need the precise definition of sofic groups, a common gen-
eralization of amenable and residually finite groups; we refer to the original
article [16]. Suffice it to say that it is at present unknown whether nonsofic
groups exist, and that if G is sofic then it satisfies Gottschalk’s “Surjunc-
tivity Conjecture” from [10], namely every injective cellular automaton is
surjective [16, §3]. Capobianco, Kaari and Taati show in [4] that, when G
is sofic, every postsurjective cellular automaton is preinjective. Thus

postsurjective

injective

surjective

preinjective

iff G amenableif G sofic

We remark that if a cellular automaton is injective and surjective, then
its inverse is also a cellular automaton (the oldest reference seems to be [14,
Corollary 4]; see also [7, Theorem 1.10.2]). Similarly, if a cellular automaton
is preinjective and postsurjective, then it is bijective and its inverse is also
a cellular automaton, see [4, Theorem 1].

The notions of (pre)injectivity and (post)surjectivity become substan-
tially simpler in the context of linear cellular automata, and exhibit more
clearly the duality:

Lemma 1.2. A linear cellular automaton Θ: V G ý is preinjective, re-
spectively postsurjective if and only if its restriction Θç

À

G V to
À

G V is
injective, respectively surjective. �

Note that linear cellular automata have closed image (see Proposition 2.3),
so nonsurjective linear cellular automata Θ: V G ý avoid a nonempty open
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subset of V G, namely there exists a finite subset F Ď G and x P V F such
that Θpyq never restricts to x on F .

1.3. A problem of Ceccherini-Silberstein and Coornaert. Ceccheri-
ni-Silberstein and Coornaert prove in [6] that if G is an amenable group then
a linear cellular automaton on G is preinjective if and only if it is surjective,
and ask if this is also a characterization of amenability in the restricted
context of linear cellular automata.

I gave in [3] a construction, for every nonamenable group G, of a preinjec-
tive, nonsurjective cellular automaton on G; and noted that it is in fact a lin-
ear cellular automaton. Ceccherini-Silberstein and Coornaert ask in [7, Open
Problem 14]:

Problem 1.3. Let G be a nonamenable group and let K be a field. Does
there exist a finite-dimensional K-vector space V and a linear cellular au-
tomaton Θ: V G ý which is surjective but not preinjective?

The group ring KG admits an anti-involution ˚, defined on basis elements
g P G by g˚ :“ g´1 and extended by linearity. It induces an anti-involution
on MnpKGq as follows: for Θ P MnpKGq, set pΘ˚qij “ Θ˚ji for all i, j P

t1, . . . , nu; namely, Θ˚ is computed from Θ by transposing the matrix and
applying ˚ to all its entries. Clearly Θ˚˚ “ Θ. There is a natural bilinear
pairing pKGqn ˆ pKnqG Ñ K, given by

(1) xv|ξy :“
ÿ

gPG

vpgq ¨ ξpgq.

I shall prove in §4 the following:

Theorem 1.4. Let G be a group, let K be a field, and let Θ P MnpKGq be
a linear cellular automaton. Then, with respect to the pairing (1),

kerpΘçpKGqnqK “ impΘ˚çpKnqGq,(2)

kerpΘçpKnqGqK “ impΘ˚çpKGqnq,(3)

impΘçpKGqnqK “ kerpΘ˚çpKnqGq,(4)

impΘçpKnqGqK “ kerpΘ˚çpKGqnq.(5)

In particular, Θ is preinjective if and only if Θ˚ is surjective, and Θ is
injective if and only if Θ˚ is postsurjective.

This answers positively Problem 1.3:

Corollary 1.5. Let G be a nonamenable group and let K be an arbitrary
(possibly finite) field. Then there exist surjective, nonpreinjective linear cel-
lular automata on G.

Proof. Let Θ P MnpKGq be a preinjective, nonsurjective linear cellular
automaton, obtained e.g. by adding a full row of 0’s to the matrix given by
Theorem 1.1. Then Θ˚ is the required example. �
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1.4. Capobianco, Kari and Taati’s result. From this duality of linear
cellular automata, one also deduces an immediate proof of Capobianco, Kari
and Taati’s main result, when restricted to linear cellular automata:

Theorem 1.6 (See [4, Theorem 2]). Let G be a sofic group. Then every
postsurjective linear cellular automaton is preinjective.

Proof. Let Θ be a postsurjective linear cellular automaton. By Theo-
rem 1.4, Θ˚ is injective, so Θ˚ is surjective by [8, Theorem 1.2], so Θ is
preinjective again by Theorem 1.4. �

1.5. Reddite ergo quæ Cæsaris sunt. The notion of dual linear cellular
automata is quite natural, but its first appearance seems only to be a passing
remark in [13]. The last line of Theorem 1.4 has been proven, in the setting of
locally finite graphs, by Matthew Tointon in [15]. I am indebted to Professor
Coornaert for having pointed out that reference to me when I shared this
note with him.

In a recent article [9], Gaboriau and Seward study the sofic entropy of
algebraic actions, and note the following consequence of Corollary 1.5: if G
is sofic but not amenable, then the Yuzvinsky addition formula for entropy
hpG í Aq “ hpG í Bq ` hpG í A{Bq fails for some G-modules B ď A.
Indeed take A “ pKnqG and B “ kerpΘq for a surjective, nonpreinjective
cellular automaton Θ. I am grateful to Messrs. Gaboriau and Seward for
having communicated their note to me ahead of its publication.

2. Linear cellular automata

We start with a field K and an integer n. We write V :“ Kn, and identify
V with V ˚. There is a natural bilinear, nondegenerate pairing V ˚ˆV Ñ K
given by

xφ|vy “ φpvq “
n
ÿ

i“1

φivi.

Let G be a group. We denote by V G the vector space of functions GÑ V ,
and define its topology by taking as base of open sets the

BS,O :“
 

c P V G
ˇ

ˇ cçS P O
(

for all finite S Ď G and all Zariski-open O Ď V S . We note the easy:

Lemma 2.1. The restriction maps πS : V G Ñ V S are continuous for all
finite S Ď G, and V G is compact (but not Hausdorff).

Proof. πS is continuous by construction. To show that V G is compact, most
proofs of Tychonoff’s theorem adapt verbatim. For example, by Alexander’s
subbase theorem [1, Theorem 1], it suffices to show that every cover by
the BS,O admits a finite subcover. Let therefore pBSi,OiqiPI be a cover. In
particular, I ‰ H, so one may choose j P I. Consider the projected cover
pBSi,OiçSjqiPI of V Sj . It is a cover by Zariski-open subsets of V Sj , and the
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Zariski topology is compact, so there exists a finite subcover pBSi,OiçSjqiPJ .

Finally pBSi,OiqiPJYtju is a finite cover of V G. For the last claim, the Zariski
topology itself is not Hausdorff. �

We denote by V ˚G the vector subspace of finitely-supported functions in
V G. There is a left action of G on V G by translation: for g P G, c P V G we
define gc P V G by pgcqphq “ cpg´1hq. This action preserves V ˚G. There is
also a bilinear pairing

x´|´y : V ˚Gˆ V G Ñ K, xω|cy “
ÿ

gPG

xωpgq|cpgqy.

Lemma 2.2. x´|´y is nondegenerate in both arguments. �

In the notation introduced above, a linear cellular automaton is both an
element of V b V ˚G and a G-equivariant, continuous self-map Θ: V G ý.
Note that Θ restricts to a self-map V ˚G ý.

Proposition 2.3. Let Θ: V G ý be a linear cellular automaton. Then
ΘpV Gq is a closed subspace of V G.

Proof. Verbatim the proof of [7, Theorem 8.8.1]. Note that the authors
prove in fact the weaker statement that ΘpV Gq is closed in the prodiscrete
topology. Note also that the proposition does not follow trivially from the
fact that V G is compact, because V G is not Hausdorff. �

Consider a linear cellular automaton Θ P V b V ˚G, written as

Θ “
ÿ

i

vi b φigi

for finitely many vi P V, φi P V
˚, gi P G. Then, tracing back to our original

definition, its adjoint Θ˚ P V ˚ b V G is Θ˚ “
ř

i φi b vig
´1
i .

Lemma 2.4. Let Θ P V b V ˚G be a cellular automaton, with adjoint Θ˚.
Then

xΘ˚pωq|cy “ xω|Θpcqy for all ω P V ˚G, c P V G.

Proof. Write Θ as a finite sum
ř

i vi b φigi. Then the sides of the above
equation are respectively

ÿ

gPG

A!

ÿ

i

φi b vipg
´1
i ωq

)

pgq
ˇ

ˇ

ˇ
cpgq

E

“
ÿ

gPG,i

xφi|cpgqy xωpgigq|viy

and
ÿ

gPG

A

ωpgq
ˇ

ˇ

ˇ

!

ÿ

i

vi b φipgicq
)

pgq
E

“
ÿ

gPG,i

xωpgq|viy xφi|cpg
´1
i gqy,

which are just permutations of each other. �
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3. Proof of Theorem 1.1

The main result of [3] is the construction, on an arbitrary nonamenable
group G, of a nonsurjective, preinjective cellular automaton. This cellular
automaton is in fact linear, given by an n ˆ n matrix Θ with entries in
KS for some n and some large enough finite subset S Ă G. The cellular
automaton is guaranteed to be nonsurjective by imposing that Θ has a full
row of 0’s. On the other hand, the matrix Θ depends on N “ npn ´ 1q#S
parameters and may be thus viewed as an element still written Θ of KN . I
show in [3] that, unless Θ belongs to a finite union of hypersurfaces of KN

defined over Z, the corresponding cellular automaton is preinjective. This
will be the case as soon as K is large enough (say of cardinality at least 2t;
in particular infinite is O.K.).

The a priori dependency of n on the cardinality of K may be removed as
follows. The cellular automaton Θ is preinjective when K is a field extension
of degree at least t. For all such extensions K1, restrict scalars to the ground
field K so as to obtain a preinjective cellular automaton with stateset pKtqn,
given by an pn ´ 1qt ˆ nt matrix with entries in KG. Add some rows of
0’s to this matrix to obtain an pnt ´ 1q ˆ nt matrix still written Θ; the
preinjectivity of the cellular automaton is equivalent to the injectivity of the
map Θ: pKGqnt´1 Ñ pKGqnt, see Lemma 1.2.

4. Proof of Theorem 1.4

Let Θ PMnpKGq be a linear cellular automaton, and as in §2 set

V “ V ˚ “ Kn,

with the usual scalar product.
We begin by the inclusion kerpΘçV ˚GqK Ě impΘ˚çV Gq from (2). Given

c P impΘ˚çV Gq, say c “ Θ˚pdq, for all ω P kerpΘçV ˚Gq we have

xω|cy “ xω|Θ˚pdqy “ xΘpωq|dy “ x0|dy “ 0,

so c K kerpΘçV ˚Gq. The exact same computation gives all ‘Ě’ inclusions
from (3), (4) and (5).

We continue with the inclusion kerpΘçV ˚GqK Ď impΘ˚çV Gq from (2).
Given c R impΘ˚çV Gq, there exists by Proposition 2.3 an open neighbour-
hood of c in V Gz impΘ˚çV Gq; so there exists a finite subset S Ď G and a
proper subspace W ă V S such that the projection πSpV

Gq belongs to W .
Since V S is finite-dimensional, there exists a linear form ω on V S that van-
ishes on W but does not vanish on c. Note that ω, qua element of pV Sq˚, is
canonically identified with an element of pV ˚qS , and therefore with an ele-
ment of V ˚G. From ω K impΘ˚çV Gq we get Θpωq K V G so Θpωq “ 0 because
the bilinear pairing x´|´y is nondegenerate. Therefore c M kerpΘçV ˚Gq as
desired.
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We continue with the inclusion kerpΘçV GqK Ď impΘ˚çV ˚Gq from (3).
Given ω R impΘ˚çV ˚Gq, there exists a linear form c P pV ˚Gq˚ that van-
ishes on impΘ˚çV ˚Gq but does not vanish on ω. Note that pV ˚Gq˚ canon-
ically identifies with V G. From c K impΘ˚çV ˚Gq we get Θpcq K V ˚G, so
Θpcq “ 0 because the bilinear pairing x´|´y is nondegenerate. Therefore
ω M kerpΘçV Gq as desired.

We finally consider the inclusion impΘçV ˚GqK Ď kerpΘ˚çV Gq from (4).
Given c K impΘçV ˚Gq, we have c K Θpωq for all ω P V ˚G, so Θ˚pcq K ω for
all ω P V ˚G. Therefore Θ˚pcq K V ˚G, and Θ˚pcq “ 0 because the bilinear
pairing x´|´y is nondegenerate. The exact same computation gives the ‘Ď’
inclusion from (5).

Recalling that Θ is preinjective if and only if kerpΘçV ˚Gq “ 0 and Θ is
injective if and only if kerpΘçV Gq “ 0 and Θ is postsurjective if and only if
impΘçV ˚Gq “ V ˚G and Θ is surjective if and only if impΘçV Gq “ V G, the
last conclusions follow.
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