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Simplicity of skew generalized power
series rings

Ryszard Mazurek and Kamal Paykan

Abstract. A skew generalized power series ring R[[S, ω]] consists of
all functions from a strictly ordered monoid S to a ring R whose sup-
port contains neither infinite descending chains nor infinite antichains,
with pointwise addition, and with multiplication given by convolution
twisted by an action ω of the monoid S on the ring R. Special cases
of the skew generalized power series ring construction are skew poly-
nomial rings, skew Laurent polynomial rings, skew power series rings,
skew Laurent series rings, skew monoid rings, skew group rings, skew
Mal’cev–Neumann series rings, the “untwisted” versions of all of these,
and generalized power series rings. In this paper we obtain necessary
and sufficient conditions on R, S and ω such that the skew general-
ized power series ring R[[S, ω]] is a simple ring. As particular cases
of our general results we obtain new theorems on skew monoid rings,
skew Mal’cev–Neumann series rings and generalized power series rings,
as well as known characterizations for the simplicity of skew Laurent
polynomial rings, skew Laurent series rings and skew group rings.
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1. Introduction

Given a ring R, a strictly ordered monoid (S,≤) and a monoid homo-
morphism ω : S → End(R), one can construct the skew generalized power
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series ring R[[S, ω]] (see Section 2 for details). Skew generalized power series
rings are a common generalization of skew polynomial rings, skew power se-
ries rings, skew Laurent polynomial rings, skew Laurent series rings, skew
monoid rings, skew group rings, skew Mal’cev–Neumann series rings, and of
course the “untwisted” versions of all of these. Hence any result on skew
generalized power series rings has its counterpart for each of these particu-
lar ring extensions, and these counterparts follow immediately from a single
proof. This property makes skew generalized power series rings a useful tool
for unifying results on the ring extensions listed above; such an approach
was applied, e.g., in [1], [8], [9], [10], [15], [17], [19], [25].

Skew generalized power series rings that are division rings were studied
in [13]. A more general class of rings than division rings is formed by simple
rings, i.e., nonzero rings A such that the only ideals of A are the zero ideal
(0) and the whole ring A. Because of the importance of simple rings in
general theory of rings, it is natural to ask under what conditions on a ring
R, a strictly ordered monoid (S,≤) and a monoid homomorphism

ω : S → End(R),

the skew generalized power series ring R[[S, ω]] is simple. In this paper
we study this problem, obtaining complete solutions for some quite general
cases (e.g., when the monoid S is commutative or the order ≤ is total).

The paper is organized as follows. In Section 2 we recall the construction
of a skew generalized power series ring R[[S, ω]] and show how the aforemen-
tioned ring extensions can be obtained as special cases of the construction.
In Section 3 we prove that for the ring R[[S, ω]] to be simple it is neces-
sary that R is (S, ω)-simple, i.e., (0) and R are the only ideals I of R with
ωs(I) ⊆ I for all s ∈ S; such an ideal I is said to be (S, ω)-invariant. In that
section we study relationships between ideals of a skew generalized power
series ring R[[S, ω]] and (S, ω)-invariant ideals of R. Since the center of a
simple ring is a field, in Section 4 we focus on skew generalized power series
rings whose central elements form a field. In particular, in Theorem 4.4 we
show that if S is a torsion-free abelian group and R is (S, ω)-simple, then the
center of the ring R[[S, ω]] is a field if and only if the elements s ∈ S for which
ω(s) is an inner automorphism of R satisfy some special property related
to the order ≤ on S. In Section 5 we characterize the simplicity of a skew
generalized power series ring R[[S, ω]], concentrating mainly on the cases
where the order ≤ is total (Theorem 5.2) or the monoid S is commutative
(Theorems 5.12, 5.15 and 5.17). As particular cases of our general results
we obtain new theorems on skew monoid rings, skew Mal’cev–Neumann se-
ries rings and generalized power series rings. Moreover, special cases of our
results are well-known characterizations of the simplicity of skew Laurent
polynomial rings given by Jordan ([4]), skew Laurent series rings given by

Tuganbaev ([24]), and skew group rings given by Crow ([2]) and Öinert ([18])
— in fact, these characterizations were the main motivations for this study.
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Throughout this paper all rings are nonzero and with identity element.
Monoid operation is written multiplicatively, except when we are dealing
with special examples where an additive notation is more suitable. We
assume that identity elements of rings and monoids are inherited by subrings
and submonoids, and preserved under homomorphisms, but neither rings
nor monoids are assumed to be commutative. We will denote by End(R)
the monoid of endomorphisms of a ring R, and by Aut(R) the group of
automorphisms of R.

If S is a monoid or a ring, then the group of invertible elements of S is
denoted by U(S). When we consider an order ≤ on a set S, then the word
“an order” means “a partial order” unless otherwise stated. The order ≤ is
total (respectively trivial) if any two different elements of S are comparable
(respectively incomparable) with respect to ≤. The set of integers is denoted
by Z and the set of positive integers by N.

2. Preliminaries

In this section we recall the skew generalized power series ring construc-
tion (which was introduced in [13]) as well as some of its properties, which
will be used in further sections. For this we need some definitions.

An ordered set (S,≤) is called artinian if every strictly decreasing se-
quence of elements of S is finite, and (S,≤) is called narrow if every subset
of pairwise order-incomparable elements of S is finite. Thus (S,≤) is ar-
tinian and narrow if and only if every nonempty subset of S has at least one
but only a finite number of minimal elements. An ordered monoid is a pair
(S,≤) consisting of a monoid S and an order ≤ on S such that a ≤ b implies
ac ≤ bc and ca ≤ cb for all a, b, c ∈ S. An ordered monoid (S,≤) is said to
be strictly ordered if a < b implies ac < bc and ca < cb for all a, b, c ∈ S.

For a ring R and a strictly ordered monoid (S,≤), in the 1990s Ribenboim
defined the ring of generalized power series R[[S]] consisting of all maps from
S to R whose support is artinian and narrow, with the pointwise addition
and the convolution multiplication (see [22]). This construction provided
interesting examples of rings and it was extensively studied (e.g., in [3], [11],
[16], [20], [21]).

In [13], the first author and Ziembowski introduced a “twisted” version
of the Ribenboim construction. Now we recall the construction of the skew
generalized power series ring introduced in [13]. Let R be a ring, (S,≤) a
strictly ordered monoid, and ω : S → End(R) a monoid homomorphism.
For s ∈ S, let ωs denote the image of s under ω, that is ωs = ω(s). Let A
be the set of all functions f : S → R such that the support

supp(f) = {s ∈ S : f(s) 6= 0}

is artinian and narrow. Then for any s ∈ S and f, g ∈ A the set

Xs(f, g) = {(x, y) ∈ supp(f)× supp(g) : s = xy}
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is finite. Thus one can define the product fg : S → R of f, g ∈ A as follows:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v)) for any s ∈ S

(by convention, a sum over the empty set is 0). With pointwise addition and
multiplication as defined above, A becomes a ring, called the ring of skew
generalized power series with coefficients in R and exponents in S (one can
think of a map f : S → R as a formal series

∑
s∈S

rss, where rs = f(s) ∈ R)

and denoted either by R[[S, ω,≤]], or by R[[S≤, ω]], or by R[[S, ω]] if there
is no ambiguity concerning the order ≤. We will use the same symbol 1
to denote the identity elements of the monoid S, the ring R, and the ring
R[[S, ω]].

To each r ∈ R and s ∈ S we associate elements cr, es ∈ R[[S, ω]] defined
by

cr(x) =

{
r if x = 1,

0 if x ∈ S \ {1}
and es(x) =

{
1 if x = s,

0 if x ∈ S \ {s}

(i.e., cr and es are the power series cr = r1 and es = 1s). It is clear that
r 7→ cr is a ring embedding of R into R[[S, ω]] and s 7→ es is a monoid
embedding of S into the multiplicative monoid of the ring R[[S, ω]], and
escr = cωs(r)es.

As promised, below we show how the classical constructions mentioned in
Section 1 can be viewed as special cases of the skew generalized power series
ring construction (the next three paragraphs are taken from [10, Section 1],
with some small changes).

Let R be a ring and α an endomorphism of R. Then for the additive
monoid S = N∪{0} of nonnegative integers, the map ω : S → End(R) given
by

(2.1) ω(n) = αn for any n ∈ S,
is a monoid homomorphism. If furthermore α is an automorphism of R,
then (2.1) defines also a monoid homomorphism ω : S → Aut(R) for S = Z,
the additive monoid of integers. We can consider two different orders on
each of the monoids N ∪ {0} and Z: the trivial order and the natural linear
order. In both cases these monoids are strictly ordered, and thus in each of
the cases we can construct the skew generalized power series ring R[[S, ω]].
As a result, we obtain the following extensions of the ring R:

(1) If S = N ∪ {0} and ≤ is the trivial order, then the ring R[[S, ω]] is
isomorphic to the skew polynomial ring R[x, α].

(2) If S = N ∪ {0} and ≤ is the natural linear order, then R[[S, ω]] is
isomorphic to the skew power series ring R[[x, α]].

(3) If S = Z and ≤ is the trivial order, and α is an automorphism of
R, then R[[S, ω]] is isomorphic to the skew Laurent polynomial ring
R[x, x−1;α].
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(4) If S = Z and ≤ is the natural linear order, and α is an automorphism
of R, then R[[S, ω]] is isomorphic to the skew Laurent series ring
R[[x, x−1;α]].

By applying the above points (1)–(4) to the case where α is the identity
map of R, we can see that also the following ring extensions are special cases
of the skew generalized power series ring construction: the ring of polyno-
mials R[x], the ring of power series R[[x]], the ring of Laurent polynomials
R[x, x−1], and the ring of Laurent series R[[x, x−1]].

Furthermore, any monoid S is a strictly ordered monoid with respect
to the trivial order on S. Hence if R is a ring, and S is a monoid, and
ω : S → End(R) is a monoid homomorphism, then we can impose the trivial
order on S and construct the skew generalized power series ring R[[S, ω]],
which in this case will be denoted by R[S, ω]. It is clear that the ring R[S, ω]
is isomorphic to the classical skew monoid ring built from R and S using
the action ω of S on R. If ω is trivial (i.e., ω sends every element of S to the
identity endomorphism of R), we write R[S] instead of R[S, ω]. Obviously
the ring R[S] is isomorphic to the ordinary monoid ring of S over R.

If S is a commutative monoid, then the skew generalized power series ring
R[[S, ω]] is the same as the twisted generalized power series ring related to
ω, introduced by Liu in [7].

If (T,≤) is a totally ordered set, then a nonempty subset X ⊆ T is
artinian and narrow if and only if X is well-ordered. Hence, if (S,≤) is a
totally ordered group, then the generalized power series ring R[[S]] is the
same as the Mal’cev–Neumann series ring R((S)), and if ω : S → Aut(R) is a
group homomorphism, then the skew generalized power series ring R[[S, ω]]
coincides with the skew Mal’cev–Neumann series ringR((S, ω)) (see [5, §14]).

We now recall some facts about units of skew generalized power series
rings, which will be used later on in this paper.

Recall from [22] that an order ≤ on a monoid S is said to be subtotal if
for any s, t ∈ S there exists n ∈ N such that sn ≤ tn or tn ≤ sn. Subtotal
orders appear naturally in the context of fields of generalized power series
(see Corollary 5.10). A total order on a monoid is clearly subtotal, but the
converse need not be true (see, e.g., [14, Example 3.8] or [22, p. 371]). If
(S,≤) is an ordered abelian group, then the order ≤ is subtotal if and only
if for every s ∈ S there exists n ∈ N such that sn ≥ 1 or sn ≤ 1.

Recall that a monoid S is said to be torsion-free if for any n ∈ N and
s, t ∈ S, sn = tn implies s = t. It is easy to see that if (S,≤) is an ordered
torsion-free commutative monoid such that ≤ is subtotal, then the binary
relation � on S defined by

s � t if and only if sn ≤ tn for some n ∈ N

is a total order on S and (S,�) is a strictly ordered monoid. The order �
will be called the total order associated with ≤. Clearly, s ≤ t implies s � t
for any s, t ∈ S, and thus by [13, Proposition 1.1], if a subset T of S is
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artinian and narrow with respect to ≤, then T is well-ordered with respect
to �. Hence for any f ∈ R[[S, ω]] \ {0} there exists a smallest element s0 of
supp(f) with respect to �.

To characterize skew generalized power series rings that are simple, we
will need the following results on units of such rings.

Proposition 2.1 ([13, Lemma 2.5]). Let R be a ring, (S,≤) an ordered
abelian torsion-free group such that ≤ is subtotal, ω : S → End(R) a monoid
homomorphism, and � the total order associated with ≤. Let A = R[[S, ω]].
If f ∈ A \ {0} and for the smallest element s0 of supp(f) with respect to �
we have f(s0) ∈ U(R), then f ∈ U(A).

Proposition 2.2 ([13, Proposition 2.2]). Let R be a ring, (S,≤) a strictly
ordered monoid, ω : S → End(R) a monoid homomorphism and

A = R[[S, ω]].

Let f ∈ A and assume that there exists a smallest element s0 in supp(f). If
s0 ∈ U(S) and f(s0) ∈ U(R), then f ∈ U(A).

3. (S, ω)-invariant ideals and (S, ω)-simple rings

The purpose of this paper is to find sufficient and necessary conditions
on a ring R, a strictly ordered monoid (S,≤) and a monoid homomorphism
ω : S → End(R) under which the skew generalized power series ring R[[S, ω]]
is simple, i.e., has no proper nonzero ideals. For this it is natural to start
with taking a closer look at connections between ideals of R[[S, ω]] and those
of R (for clarity, we will usually use the symbol I to denote an ideal of R,
and J for an ideal of R[[S, ω]]).

As we show in Proposition 3.2(a) below, for any right ideal I of R the set

I[[S, ω]] = {f ∈ R[[S, ω]] : f(s) ∈ I for any s ∈ S},

i.e., the set of power series f ∈ R[[S, ω]] with all coefficients in I, is a right
ideal of R[[S, ω]]. However, for I[[S, ω]] to be an ideal of R[[S, ω]] it may
not be enough that I is an ideal of R; as we show in Proposition 3.2(b) the
following property of I is crucial.

Definition 3.1. Let R be a ring, S a monoid, and ω : S → End(R) a
monoid homomorphism. An ideal I of R is said to be (S, ω)-invariant if
ωs(I) ⊆ I for any s ∈ S.

Keeping the notation of Definition 3.1, let us notice that if S is a group,
then each ωs is an automorphism of R and thus in this case I is (S, ω)-
invariant if and only if ωs(I) = I for any s ∈ S.

Proposition 3.2. Let R be a ring, (S,≤) a strictly ordered monoid, and
ω : S → End(R) a monoid homomorphism. Then:

(a) If I is a right ideal of R, then I[[S, ω]] is a right ideal of R[[S, ω]].
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(b) If I is an ideal of R, then I[[S, ω]] is an ideal of R[[S, ω]] if and only
if I is (S, ω)-invariant.

Proof. (a) Assume that I is a right ideal of R. Then 0 ∈ I[[S, ω]], so
I[[S, ω]] 6= ∅. Let f, g ∈ I[[S, ω]] and h ∈ R[[S, ω]]. Then f(x), g(x) ∈ I for
any x ∈ S and thus for any s ∈ S we have

(f + g)(s) = f(s) + g(s) ∈ I
and

(fh)(s) =
∑

(x,y)∈Xs(f,h)

f(x)ωx(h(y)) ∈ I.

Hence f + h, fh ∈ I[[S, ω]] and (a) follows.
(b) Let I be an ideal of R. Assume that I[[S, ω]] is an ideal of R[[S, ω]] and

let s ∈ S and a ∈ I. Then ca ∈ I[[S, ω]], and since I[[S, ω]] is an ideal, also
esca ∈ I[[S, ω]]. Hence ωs(a) = (esca)(s) ∈ I, which shows that ωs(I) ⊆ I.
Thus I is (S, ω)-invariant.

To complete the proof of (b), assume that I is (S, ω)-invariant and let
f ∈ I[[S, ω]]. Then for any x, y ∈ S we have ωx(f(y)) ∈ ωx(I) ⊆ I. Hence
for any h ∈ R[[S, ω]] and s ∈ S we obtain

(hf)(s) =
∑

(x,y)∈Xs(h,f)

h(x)ωx(f(y)) ∈ I.

Thus hf ∈ I[[S, ω]], which together with (a) shows that I[[S, ω]] is an ideal
of R[[S, ω]]. �

Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S → End(R) a
monoid homomorphism. As we already know from Proposition 3.2(b), each
(S, ω)-invariant ideal of R leads to an ideal of the skew generalized power
series ring R[[S, ω]]. Now we focus on the opposite direction. Namely, we
will show how (S, ω)-invariant ideals of R can be produced from ideals of
R[[S, ω]]. In particular, we will make use of the order ≤ on S to deter-
mine some (S, ω)-invariant ideals of R. For this we introduce the following
notation: if f ∈ R[[S, ω]] \ {0}, then we write µ(f) to denote the set of
minimal elements of supp(f). In the proof of Proposition 3.4 we will need
the following properties of the set µ(f).

Lemma 3.3. Let R be a ring, (S,≤) a strictly ordered monoid, and ω :
S → End(R) a monoid homomorphism. Then the following inclusions hold
for any f, g ∈ R[[S, ω]] and r ∈ R:

(a) µ(f) ∩ µ(g) ∩ supp(f + g) ⊆ µ(f + g).
(b) µ(f) ∩ supp(crf) ⊆ µ(crf).
(c) µ(f) ∩ supp(fcr) ⊆ µ(fcr).

Proof. To prove (a), consider an element t ∈ µ(f)∩µ(g)∩ supp(f + g) and
suppose that t 6∈ µ(f + g). Then t ∈ supp(f + g) \ µ(f + g) and thus there
exists v ∈ supp(f + g) such that v < t. Since v < t and t ∈ µ(f) ∩ µ(g),
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it must be f(v) = 0 and g(v) = 0. Hence (f + g)(v) = f(v) + g(v) = 0, so
v 6∈ supp(f + g). This contradiction completes the proof of (a). Parts (b)
and (c) can be proved in a similar fashion. �

We are now ready to prove the following result which provides important
examples of (S, ω)-invariant ideals. If S is a monoid or a ring, then Z(S)
denotes the center of S, i.e.,

Z(S) = {s ∈ S : st = ts for any t ∈ S}.
An element s ∈ S is said to be central if s ∈ Z(S).

Proposition 3.4. Let R be a ring, (S,≤) an ordered group, and

ω : S → End(R)

a monoid homomorphism. Let J be a nonempty subset of R[[S, ω]] such that
for any f, g ∈ J, r ∈ R and s ∈ S we have

(3.1) f + g, crf, fcr, esfes−1 ∈ J
(for instance, J can be an ideal of R[[S, ω]]). Then:

(a) For any t ∈ Z(S) the sets

I1 = {f(t) : f ∈ J} and I2 = {f(t) : f ∈ J, t ∈ µ(f)} ∪ {0}
are (S, ω)-invariant ideals of R.

(b) If the group S is abelian, then for any t ∈ S and h ∈ R[[S, ω]] the
set

I3 = {f(t) : f ∈ J, supp(f) ⊆ supp(h)}
is an (S, ω)-invariant ideal of R.

Proof. (a) Let t ∈ Z(S). To prove that I1 is an (S, ω)-invariant ideal of R,
first observe that for any f, g ∈ J and r ∈ R we have

(3.2) f(t)+g(t) = (f+g)(t), r ·f(t) = (crf)(t), f(t)·r = (fcωt−1 (r))(t).

Combining (3.1) with (3.2), we can see that I1 is an ideal of R. To show
that the ideal I1 is (S, ω)-invariant, consider any s ∈ S. Notice that for any
f ∈ R[[S, ω]] and v ∈ S the following equality holds:

(3.3) (esfes−1)(v) = ωs(f(s−1vs)).

Since t ∈ Z(S), it follows from (3.3) that for any f ∈ J we have

(3.4) ωs(f(t)) = (esfes−1)(t),

and furthermore esfes−1 ∈ J by (3.1), which implies that ωs(I1) ⊆ I1, as
desired.

To prove that I2 is an (S, ω)-invariant ideal of R, we start by showing
that if a, b ∈ I2, then also a + b ∈ I2. The case where a = 0, or b = 0, or
a + b = 0 is clear. Hence we assume that a, b, a + b are all nonzero. Then
a = f(t) and b = g(t) for some f, g ∈ J such that t ∈ µ(f) and t ∈ µ(g).
Since furthermore (f + g)(t) = f(t) + g(t) = a + b 6= 0, it follows that
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t ∈ µ(f) ∩ µ(g) ∩ supp(f + g) and thus t ∈ µ(f + g) by Lemma 3.3. Hence
(3.1) implies that a + b = (f + g)(t) ∈ I2, which shows that I2 + I2 ⊆ I2.
Using (3.1), (3.2) and Lemma 3.3 one can easily verify that also rI2 ⊆ I2
and I2r ⊆ I2 for any r ∈ R, and thus I2 is an ideal of R. To complete the
proof of (a), we have to show that if s ∈ S and a ∈ I2, then ωs(a) ∈ I2.
The case where ωs(a) = 0 is clear. Thus we assume that ωs(a) 6= 0. Then
a = f(t) for some f ∈ J such that t ∈ µ(f). We have ωs(a) = (esfes−1)(t)
by (3.4), and esfes−1 ∈ J by (3.1). Hence to show that ωs(a) ∈ I2 it
suffices to show that t ∈ µ(esfes−1). Suppose that t 6∈ µ(esfes−1). Since
(esfes−1)(t) = ωs(a) 6= 0, t ∈ supp(esfes−1)\µ(esfes−1) and thus there exists
v ∈ supp(esfes−1) such that v < t. Since t ∈ Z(S), we get s−1vs < s−1ts = t
and thus f(s−1vs) = 0. Hence, applying (3.3), we obtain

0 6= (esfes−1)(v) = ωs(f(s−1vs)) = ωs(0) = 0.

This contradiction completes the proof of (a).
(b) To prove that I3 is an (S, ω)-invariant ideal of R, it suffices to use (3.1),

(3.2), (3.4) and the following inclusions, which hold for any f, g ∈ R[[S, ω]],
r ∈ R and s ∈ S (we recall that, by assumption, S is abelian):

supp(f + g) ⊆ supp(f) ∪ supp(g),

supp(crf) ∪ supp(fcr) ∪ supp(esfes−1) ⊆ supp(f). �

We know from Proposition 3.2(b) that for a ring R, a strictly ordered
monoid (S,≤) and a monoid homomorphism ω : S → End(R), if I is an
(S, ω)-invariant ideal of R, then I[[S, ω]] is an ideal of R[[S, ω]]. Hence, if
the ring R[[S, ω]] is simple, then it must be that

I[[S, ω]] = (0) or I[[S, ω]] = R[[S, ω]],

and thus I = (0) or I = R. Therefore, the property of R used in the
following definition is a necessary condition for R[[S, ω]] to be a simple ring.

Definition 3.5. Let R be a ring, S a monoid, and ω : S → End(R) a
monoid homomorphism. The ring R is said to be (S, ω)-simple if (0) and R
are the only (S, ω)-invariant ideals of R.

In the case when S is a group, the notion of an (S, ω)-simple ring appeared
in [2] and [18], where the simplicity of skew group rings was studied. The
notion of an (S, ω)-simple ring is also a generalization of the well-known
notion of an α-simple ring, which appears in the literature in the context
of the simplicity of skew Laurent series rings (see, e.g., [5, p. 46]). Recall
that if α is an endomorphism of a ring R, then the ring R is said to be
α-simple if R contains no nonzero proper ideal I with α(I) ⊆ I. Obviously,
R is α-simple if and only if R is αn-simple for every nonnegative integer
n. Hence R is α-simple if and only if R is (S, ω)-simple, where S is the
additive monoid of nonnegative integers and ω : S → End(R) is defined by
ω(n) = αn.
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Keeping the notation of Definition 3.5, let us observe that if R is a simple
ring, then R is (S, ω)-simple. However, the opposite implication need not
be true. To see this, it suffices to take any simple ring Q and consider
the direct sum R = Q ⊕ Q of two copies of Q, the additive monoid S of
nonnegative integers, and the monoid homomorphism ω : S → End(R)
defined by ω1(x, y) = (y, x) for any (x, y) ∈ R (cf. [23, Example 4.10]).
Indeed, the only nonzero proper ideals of R are Q ⊕ (0) and (0) ⊕ Q, and
none of them is (S, ω)-invariant.

Let us notice that in the definition of an (S, ω)-simple ring no order on
S is required. However, when a skew generalized power series ring R[[S, ω]]
is considered, then S is necessarily endowed with a strict order ≤. The
following proposition characterizes (S, ω)-simple rings in terms of properties
of the ring R[[S, ω]] in the case where (S,≤) is an ordered group. We will
use this result in Section 5 to characterize the simplicity of R[[S, ω]].

Proposition 3.6. Let R be a ring, (S,≤) an ordered group, and ω : S →
End(R) a monoid homomorphism. Then the following statements are equiv-
alent:

(1) R is an (S, ω)-simple ring.
(2) If J is a nonempty subset of R[[S, ω]] such that J 6= {0} and for any

g, h ∈ J, r ∈ R and s, t ∈ S we have

g + h, crg, gcr, esget ∈ J

(for instance, if J is a nonzero ideal of R[[S, ω]]), then there exists
f ∈ J such that f(1) = 1 and 1 is a minimal element of supp(f).

(3) For any nonzero ideal J of R[[S, ω]] there exists f ∈ J such that
f(1) = 1.

Proof. (1) ⇒ (2) Assume (1) and let J be a subset of A = R[[S, ω]] such
that J satisfies all the conditions given in (2). Then there exists g ∈ J \{0}.
Choose any t ∈ µ(g) and denote h = get−1 . Then h = e1get−1 ∈ J and
h(1) = (get−1)(1) = g(t) 6= 0. Hence 1 ∈ supp(h). We show that 1 ∈ µ(h).
Otherwise there exists v ∈ S such that v < 1 and h(v) 6= 0. Since v < 1, we
obtain vt < t and since t ∈ µ(g), it must be g(vt) = 0. But then

0 6= h(v) = (get−1)(v) = g(vt) = 0,

and this contradiction shows that 1 ∈ µ(h). Hence h(1) is a nonzero element
of the set

I = {f(1) : f ∈ J, 1 ∈ µ(f)} ∪ {0}.
Thus, by Proposition 3.4(a), I is a nonzero (S, ω)-invariant ideal of R, so
(1) implies that I = R. Hence 1 ∈ I and thus (2) holds.

(2) ⇒ (3) is obvious.
(3) ⇒ (1) Assume (3) and let I be a nonzero (S, ω)-invariant ideal of R.

Then by Proposition 3.2(b) the set I[[S, ω]] is a nonzero ideal of R[[S, ω]].
Hence by (3) there exists f ∈ I[[S, ω]] such that f(1) = 1. Since f ∈ I[[S, ω]],
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we have f(t) ∈ I for any t ∈ S. Hence 1 = f(1) ∈ I, and thus I = R, which
shows that R is (S, ω)-simple. �

4. Skew generalized power series rings whose center is a field

It is well known that the center of any simple ring is a field (see, e.g., [6, p.
22]). Since the aim of this paper is to characterize simple skew generalized
power series rings, in this section we concentrate on skew generalized power
series rings whose center is a field. We start with a necessary condition for
this phenomenon. Recall that an endomorphism α of a ring R is said to be
an inner automorphism of R induced by a unit u of R if α(x) = uxu−1 holds
for all x ∈ R.

Proposition 4.1. Let R be a ring, (S,≤) a strictly ordered monoid, and
ω : S → End(R) a monoid homomorphism such that the center of the ring
R[[S, ω]] is a field. Let s be a central and cancellative element of S. If ωs is
an inner automorphism of R induced by a unit u of R such that ωt(u) = u
for any t ∈ S, then there are positive integers m,n such that m 6= n and
sm ≤ sn.

Proof. The case where s = 1 is clear. Hence we assume that s ∈ S \ {1} is
a central and cancellative element such that ωs(x) = uxu−1 for any x ∈ R,
where u is a unit of R with the property that ωt(u) = u for any t ∈ S (hence
also ωt(u

−1) = u−1, which will be used for a moment). We show that cu−1es
is in the center of R[[S, ω]]. For this, consider any g ∈ R[[S, ω]] and v ∈ S.
Assume first that there exists t ∈ S such that v = ts. Then, since s is
cancellative and central, such an element t is unique and v = st, and thus

(gcu−1es)(v) = g(t)ωt(u
−1) = g(t)u−1 = u−1

(
ug(t)u−1

)
= u−1ωs(g(t)) = (cu−1esg)(v).

We are left with the case where there is no t ∈ S with v = ts. Then
Xv(g, cu−1es) = ∅ = Xv(cu−1es, g), and thus (gcu−1es)(v) and (cu−1esg)(v)
are both equal to 0. Hence in any case we have (gcu−1es)(v) = (cu−1esg)(v),
which shows that cu−1es is in the center of R[[S, ω]]. Thus 1+cu−1es is in the
center of R[[S, ω]] as well, and since s 6= 1, the central element 1 + cu−1es is
nonzero. By hypothesis, the center of R[[S, ω]] is a field and thus 1 + cu−1es
is a unit of R[[S, ω]]. Now by combining [12, Lemma 2.1] and [13, Lemma
1.4] we conclude that there exist different positive integers m and n such
that sm ≤ sn. �

In the following two lemmas we focus on central elements of a skew gen-
eralized power series ring R[[S, ω]] in the case where S is a commutative
cancellative monoid.

Lemma 4.2. Let R be a ring, (S,≤) an ordered commutative cancellative
monoid, and ω : S → End(R) a monoid homomorphism. Then the following
statements are equivalent:
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(1) f ∈ Z(R[[S, ω]]).
(2) cresf = fcres for any s ∈ S and r ∈ R.
(3) For any s ∈ S the following conditions are satisfied:

(i) ωt(f(s)) = f(s) for any t ∈ S.
(ii) r · f(s) = f(s)ωs(r) for any r ∈ R.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3) Let s ∈ S. By (2), for any t ∈ S we have

etf = c1etf = fc1et = fet.

Hence ωt(f(s)) = (etf)(ts) = (fet)(st) = f(s), i.e., (3i) holds. To prove
(3ii), let r be any element of R. Then crf = cre1f = fcre1 = fcr by (2),
and thus r · f(s) = (crf)(s) = (fcr)(s) = f(s)ωs(r), as desired.

(3)⇒ (1) Assume (3) and let g ∈ R[[S, ω]]. Then for any v ∈ S we obtain

(fg)(v) =
∑

(s,t)∈Xv(f,g)

f(s)ωs(g(t)) =
∑

(t,s)∈Xv(g,f)

g(t)f(s)

=
∑

(t,s)∈Xv(g,f)

g(t)ωt(f(s)) = (gf)(v),

which shows that fg = gf . Hence f belongs to the center of R[[S, ω]]. �

Lemma 4.3. Let R be a ring, (S,≤) an ordered commutative cancellative
monoid, and ω : S → End(R) a monoid homomorphism such that the ring
R is (S, ω)-simple. Then the following statements are equivalent:

(1) f ∈ Z(R[[S, ω]]).
(2) For any s ∈ supp(f) we have that f(s) ∈ U(R), ωs is the inner

automorphism of R induced by u = f(s)−1, and ωt(u) = u for any
t ∈ S.

Proof. (1) ⇒ (2) Let f ∈ Z(R[[S, ω]]). Take any s ∈ supp(f) and denote
a = f(s). Applying Lemma 4.2 we obtain that

(4.1) ωt(a) = a for any t ∈ S

and

(4.2) ra = aωs(r) for any r ∈ R.

It follows from (4.2) that Ra ⊆ aR, and thus aR is an ideal of R. Further-
more, (4.1) implies that the nonzero ideal aR is (S, ω)-invariant. Since R is
(S, ω)-simple, 1 ∈ aR and thus 1 = au for some u ∈ R. Applying (4.1) and
(4.2) we obtain that also 1 = ωs(1) = ωs(au) = ωs(a)ωs(u) = aωs(u) = ua
and thus a = f(s) is a unit of R. Now for u = a−1 = f(s)−1 we infer from
(4.1) and (4.2) that ωt(u) = u and ωs(r) = uru−1 for any t ∈ S and r ∈ R,
which completes the proof of (1) ⇒ (2).

(2) ⇒ (1) It is easy to see that condition (2) of Lemma 4.3 implies con-
dition (3) of Lemma 4.2. Hence f ∈ Z(R[[S, ω]] by Lemma 4.2. �
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We close this section with the following result, which shows that if S is
a torsion-free abelian group and R is an (S, ω)-simple ring, then whether
or not the center of the ring R[[S, ω]] is a field depends on some special
property of the elements s ∈ S for which ωs is an inner automorphism.

Theorem 4.4. Let R be a ring, (S,≤) an ordered torsion-free abelian group,
and ω : S → End(R) a monoid homomorphism such that the ring R is
(S, ω)-simple. Then the following statements are equivalent:

(1) The center of the ring R[[S, ω]] is a field.
(2) For any s ∈ S, if ωs is an inner automorphism of R induced by a

unit u of R such that ωt(u) = u for any t ∈ S, then there is a positive
integer n such that sn ≥ 1 or sn ≤ 1.

Proof. (1) ⇒ (2) Assume (1) and consider any s ∈ S for which ωs is an
inner automorphism of R induced by a unit u of R such that ωt(u) = u for
any t ∈ S. Then by Proposition 4.1 there exist k,m ∈ N such that k < m
and

(4.3) sm ≥ sk or sm ≤ sk.

Since S is a group, s is invertible and thus for n = m−k we infer from (4.3)
that sn ≥ 1 or sn ≤ 1. Hence (2) holds.

(2) ⇒ (1) Assume (2), denote A = R[[S, ω]], and consider any element
f ∈ Z(A) \ {0}. To complete the proof it suffices to show that f is a unit
of A. Let s ∈ supp(f). From Lemma 4.3 it follows that ωs satisfies the
condition described in (2), i.e.,

ωs is an inner automorphism of R induced by a unit u of R(4.4)

such that ωt(u) = u for any t ∈ S.

Therefore, if V is the subgroup of S generated by supp(f), then for any
v ∈ V the endomorphism ωv satisfies condition (4.4) (with s replaced by v)
and thus it follows from (2) that

(4.5) for any v ∈ V there exists n ∈ N such that vn ≥ 1 or vn ≤ 1.

Hence the order ≤ restricted to V is subtotal. Since S is a torsion-free
abelian group, so is V . Thus if ≤′ denotes the order ≤ restricted to V ,
then (V,≤′) is a subtotally ordered torsion-free abelian group. Furthermore,
Lemma 4.3 implies that f(s) is a unit of R for any s ∈ supp(f). Hence it
follows from Proposition 2.1 that f is a unit of the ring B = R[[V, ω′,≤′]],
where ω′ is the restriction of the monoid homomorphism ω : S → End(R)
to V . Since B is a subring of A, f is also a unit of A, as desired. �

5. Simple skew generalized power series rings

In this section we will characterize the simplicity of a skew generalized
power series ring R[[S, ω]] under various assumptions on R, S and ω. In
previous sections we found and studied two necessary conditions for the
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simplicity of R[[S, ω]]: the ring R being (S, ω)-simple, and the center of
R[[S, ω]] being a field. In the following lemma, to these two conditions we
add some other necessary conditions for R[[S, ω]] to be a simple ring.

Lemma 5.1. Let R be a ring, (S,≤) a strictly ordered monoid, and

ω : S → End(R)

a monoid homomorphism. If the ring R[[S, ω]] is simple, then:

(i) S is the only ideal of the monoid S.
(ii) R is an (S, ω)-simple ring.
(iii) Z(R[[S, ω]]) is a field.
(iv) For any s ∈ Z(S), if ωs is an inner automorphism of R induced by

a unit u of R such that ωt(u) = u for any t ∈ S, then there is a
positive integer n such that sn ≥ 1 or sn ≤ 1.

(v) For any nonzero ideal J of R[[S, ω]] there exists f ∈ J \ {0} such
that supp(f) is finite.

(vi) J ∩ Z(R[[S, ω]]) 6= {0} for any nonzero ideal J of R[[S, ω]].

Proof. (i) Let s ∈ S. Since A = R[[S, ω]] is a simple ring, AesA = A and
thus 1 ∈ AesA. Hence

(5.1) 1 = f1esg1 + · · ·+ fnesgn

for some f1, g1, . . . , fn, gn ∈ A. From (5.1) it follows that for some i ≤ n we
have 1 ∈ supp(fiesgi) and thus there exist t, v ∈ S such that 1 = tsv. Hence
SsS = S, which proves (i).

(ii) was proved in the paragraph preceding Definition 3.5.
(iii) follows from the well-known fact that the center of any simple ring

is a field.
(iv) Let s ∈ Z(S). Then (i) implies that s is an invertible element of S.

Now (iv) follows from (iii) and Proposition 4.1.
(v) If J is a nonzero ideal of R[[S, ω]] and the ring R[[S, ω]] is simple, then

J = R[[S, ω]] and thus 1 ∈ J , which proves (v).
(vi) follows by the same argument as that used in the proof of (v), since

1 ∈ Z(R[[S, ω]]). �

The following theorem characterizes simple rings of skew generalized po-
wer series with exponents in a strictly totally ordered monoid. As we will
see in the five corollaries following this theorem, it provides a rich source of
examples of simple rings.

Theorem 5.2. Let R be a ring, (S,≤) a strictly totally ordered monoid, and
ω : S → End(R) a monoid homomorphism. Then the following statements
are equivalent:

(1) R[[S, ω]] is a simple ring.
(2) (i) S is a group.

(ii) R is an (S, ω)-simple ring.
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Proof. (1) ⇒ (2) Assume (1) and consider any element s ∈ S. It follows
from Lemma 5.1(i) that 1 = tsv for some t, v ∈ S. Since (S,≤) is a strictly
totally ordered monoid, it is cancellative and thus

1 = tsv ⇒ t = (tsv)t ⇒ t = t(svt) ⇒ 1 = s(vt),

Hence all elements of S are invertible and thus S is a group, proving (2i).
Part (2ii) is an immediate consequence of Lemma 5.1(ii).

(2) ⇒ (1) Assume (2) and let J be any nonzero ideal of R[[S, ω]]. Then
by Proposition 3.6 there exists f ∈ J such that 1 is the smallest element
of supp(f) and f(1) = 1. It follows from Proposition 2.2 that f is a unit
of R[[S, ω]], and since f ∈ J , it must be J = R[[S, ω]]. Hence (2) implies
(1). �

The following corollaries are immediate consequences of Theorem 5.2.

Corollary 5.3. Let R be a ring, let (S,≤) be a totally ordered group, and
let ω : S → Aut(R) be a group homomorphism. Then the skew Mal’cev–
Neumann series ring R((S, ω)) is simple if and only if R is (S, ω)-simple.

Corollary 5.4 ([24, Theorem 11.8]). Let R be a ring and α an automor-
phism of R. Then the skew Laurent series ring R[[x, x−1;α]] is simple if and
only if R is α-simple.

Corollary 5.5. Let R be a ring and (S,≤) a strictly totally ordered monoid.
Then the generalized power series ring R[[S]] is simple if and only if S is a
group and the ring R is simple.

Corollary 5.6. Let R be a ring and (S,≤) a totally ordered group. Then
the Mal’cev–Neumann series ring R((S)) is simple if and only if R is simple.

Corollary 5.7. Let R be a ring. Then the Laurent series ring R[[x, x−1]]
is simple if and only if R is simple.

The following theorem provides a characterization of the simplicity of a
skew generalized power series ring R[[S, ω]] in the case where S is a torsion-
free commutative monoid and the order ≤ is subtotal.

Theorem 5.8. Let R be a ring, (S,≤) a strictly ordered torsion-free com-
mutative monoid, and ω : S → End(R) a monoid homomorphism. Assume
that the order ≤ is subtotal. Then the following statements are equivalent:

(1) R[[S, ω]] is a simple ring.
(2) (i) S is a group.

(ii) R is an (S, ω)-simple ring.

Proof. (1) ⇒ (2) It is easy to see that every strictly subtotally ordered
torsion-free commutative monoid is cancellative. Now (1) ⇒ (2) follows by
arguments similar to those used in the first part of the proof of Theorem 5.2.

(2) ⇒ (1) Assume (2) and let � be the total order associated with ≤.
Then A = R[[S, ω]] = R[[S, ω,≤]] is a subring of the ring B = R[[S, ω,�]].
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To get (1) we need to show that if J is a nonzero ideal of A, then J = A.
Since R is (S, ω)-simple, Proposition 3.6 applied to the ring B implies that
there exists f ∈ J such that f(1) = 1 and 1 is the smallest element of
supp(f) with respect to �. Hence we deduce from Proposition 2.1 that f is
a unit of A, which implies that J = A, as desired. �

The following result characterizes simple rings among rings of generalized
power series with exponents in a commutative monoid.

Corollary 5.9. Let R be a ring and let (S,≤) be a strictly ordered commu-
tative monoid. Then the following statements are equivalent:

(1) R[[S]] is a simple ring.
(2) (i) S is a torsion-free group.

(ii) ≤ is subtotal.
(iii) R is a simple ring.

Proof. (1)⇒ (2) Assume that R[[S]] is a simple ring. Then parts (i) and (ii)
of Lemma 5.1 imply that S is a group and R is a simple ring. Furthermore,
since we consider the generalized power series ring R[[S]], for any s ∈ S the
endomorphism ωs is by definition the identity map of R and thus each ωs is
the inner automorphism of R induced by 1 ∈ R. Hence by Lemma 5.1(iv), if
s ∈ S, then there exists a positive integer n such that sn ≥ 1 or sn ≤ 1. Thus
the order ≤ is subtotal. It remains to show that the group S is torsion-free.
Let s ∈ S \ {1} and suppose that there exists m ∈ N such that sm = 1.
Then m > 1 and we may assume m to be the smallest such integer. Since S
is commutative, es− 1 ∈ Z(R[[S]]), and since (1) implies that Z(R[[S]]) is a
field, it follows that es − 1 is a unit of R[[S]]. From sm = 1 we infer that

(es − 1)(esm−1 + esm−2 + · · ·+ es + 1) = 0.

Since es − 1 is a unit, it follows that esm−1 + esm−2 + · · ·+ es + 1 = 0, which
however is impossible, since by the minimality of m we have sk 6= 1 for any
1 ≤ k ≤ m− 1. Hence the group S is torsion-free.

(2) ⇒ (1) is an immediate consequence of Theorem 5.8. �

Applying Corollary 5.9 to commutative rings, we obtain the following
result of Elliott and Ribenboim which characterizes generalized power series
rings that are fields.

Corollary 5.10 ([3, Theorem 1]). Let R be a commutative ring and (S,≤)
a strictly ordered commutative monoid. Then the following statements are
equivalent:

(1) R[[S]] is a field.
(2) R is a field, S is a torsion-free group and ≤ is subtotal.

In [18, Proposition 4.2] Öinert proved that if G is an abelian group, R is a
ring, and ω : G→ Aut(R) is a group homomorphism such that R is (G,ω)-
simple, then every nonzero ideal of the skew group ring R[G,ω] contains a
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nonzero central element. In the following lemma we extend Öinert’s result
to skew generalized power series rings. This lemma will be used in the proof
of Theorem 5.12.

Lemma 5.11. Let R be a ring, (S,≤) an ordered abelian group, and

ω : S → End(R)

a monoid homomorphism such that the ring R is (S, ω)-simple. Let J be an
ideal of the ring A = R[[S, ω]] such that supp(f) is finite for some f ∈ J\{0}.
Then J ∩ Z(A) 6= {0}.

Proof. By assumption, in J there exists a nonzero element whose support is
finite. We choose k ∈ J \ {0} such that the number of elements of supp(k),
say n, is minimal. Choose any t ∈ supp(k) and set h = ket−1 . Then
h(1) = k(t) 6= 0 and h ∈ J , and thus by Proposition 3.4(b) the set

I = {f(1) : f ∈ J, supp(f) ⊆ supp(h)}
is a nonzero (S, ω)-invariant ideal of R. Since R is (S, ω)-simple, it follows
that I = R and thus 1 ∈ I. Hence there exists f ∈ J such that f(1) = 1 and
supp(f) ⊆ supp(h). In particular we have the following relations between
cardinalities of the supports of f, h and k:

|supp(f)| ≤ |supp(h)| ≤ |supp(k)| = n.

Hence the minimality of n implies that |supp(f)| = n. Observe that if r ∈ R
and s ∈ S, then supp(cresfes−1 − fcr) ⊆ supp(f) and since

(cresfes−1)(1) = r = (fcr)(1),

we conclude that 1 ∈ supp(f) \ supp(cresfes−1 − fcr). Hence

supp(cresfes−1 − fcr)  supp(f),

and thus the minimality of n forces that cresfes−1 = fcr. Hence

cresf = fcres.

Since r ∈ R and s ∈ S are arbitrary, it follows from Lemma 4.2 that f ∈
Z(A). Hence f ∈ J ∩ Z(A) \ {0}, which shows that J ∩ Z(A) 6= {0}. �

The following result characterizes the simplicity of skew generalized power
series rings R[[S, ω]] in the case where (S,≤) is a strictly ordered commuta-
tive monoid.

Theorem 5.12. Let R be a ring, (S,≤) a strictly ordered commutative
monoid, and ω : S → End(R) a monoid homomorphism. Then the following
statements are equivalent:

(1) R[[S, ω]] is a simple ring.
(2) (i) S is a group.

(ii) R is an (S, ω)-simple ring.
(iii) Z(R[[S, ω]]) is a field.
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(iv) For any nonzero ideal J of R[[S, ω]] there exists f ∈ J \ {0}
such that supp(f) is finite.

(3) (i) S is a group.
(ii) R is an (S, ω)-simple ring.
(iii) Z(R[[S, ω]]) is a field.
(iv) J ∩ Z(R[[S, ω]]) 6= {0} for any nonzero ideal J of R[[S, ω]].

Proof. (1) ⇒ (2) and (2) ⇒ (3) are immediate consequences of Lemmas
5.1 and 5.11, respectively. To prove the implication (3) ⇒ (1), assume (3)
and let J be a nonzero ideal of A = R[[S, ω]]. By part (3iv) of (3), there
exists f ∈ J \ {0} such that f ∈ Z(A). Hence (3iii) implies that f is a unit
of A and thus J = A, which proves that A is a simple ring. �

The following two corollaries are immediate consequences of the equiva-
lence of (1) and (2) in Theorem 5.12.

Corollary 5.13. Let R be a ring, S a commutative monoid, and

ω : S → End(R)

a monoid homomorphism. Then the following statements are equivalent:

(1) The skew monoid ring R[S, ω] is simple.
(2) S is a group, R is an (S, ω)-simple ring and Z(R[S, ω]) is a field.

Corollary 5.14 ([18, Theorem 1.2(c)]). Let R be a ring, S an abelian group,
and ω : S → Aut(R) a group homomorphism. Then the skew group ring
R[S, ω] is simple if and only if R is (S, ω)-simple and Z(R[S, ω]) is a field.

Below we provide a characterization of simple skew generalized power
series rings R[[S, ω]] in the case where (S,≤) is a strictly ordered torsion-
free commutative monoid.

Theorem 5.15. Let R be a ring, (S,≤) a strictly ordered torsion-free com-
mutative monoid, and ω : S → End(R) a monoid homomorphism. Then the
following statements are equivalent:

(1) R[[S, ω]] is a simple ring.
(2) (i) S is a group.

(ii) R is an (S, ω)-simple ring.
(iii) For any s ∈ S, if ωs is an inner automorphism of R induced by

a unit u of R such that ωt(u) = u for any t ∈ S, then there is
a positive integer n such that sn ≥ 1 or sn ≤ 1.

(iv) For any nonzero ideal J of R[[S, ω]] there exists f ∈ J \ {0}
such that supp(f) is finite.

(3) (i) S is a group.
(ii) R is an (S, ω)-simple ring.
(iii) For any s ∈ S, if ωs is an inner automorphism of R induced by

a unit u of R such that ωt(u) = u for any t ∈ S, then there is
a positive integer n such that sn ≥ 1 or sn ≤ 1.
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(iv) J ∩ Z(R[[S, ω]]) 6= {0} for any nonzero ideal J of R[[S, ω]].

Proof. For the proof it suffices to note that, by Theorem 4.4, if S is torsion-
free, then in Theorem 5.12 the condition (2iii) of part (2) can be replaced
by the condition (2iii) stated in Theorem 5.15. Similarly, condition (3iii) of
part (3) in Theorem 5.12 can be replaced by the condition (3iii) stated in
Theorem 5.15. �

The following well-known result is a consequence of Theorem 5.15.

Corollary 5.16 ([4, Theorem 1], [5, Theorem 3.18]). Let α be an automor-
phism of a ring R. Then the following statements are equivalent:

(1) R[x, x−1;α] is a simple ring.
(2) R is α-simple and there is no positive integer n for which αn is an

inner automorphism of R.
(3) R is α-simple and there is no positive integer n for which αn is an

inner automorphism of R induced by a unit of R fixed by α.

Proof. (1)⇔ (3) is an immediate consequence of the equivalence of (1) and
(2) in Theorem 5.15. (2) ⇒ (3) is obvious. For the proof of (3) ⇒ (2) see
[5, Proof of Theorem 3.13]. �

We close this paper by extending to skew generalized power series rings
a characterization of skew group rings of abelian groups due to Crow (see
Corollary 5.18).

Let ω : S → End(R) be an action of a monoid S on a ring R (i.e., ω is a
monoid homomorphism). If the identity of S is the only element of S that
maps to an inner automorphism of R, then the action ω is said to be outer
(cf. [2, p. 127]).

Theorem 5.17. Let R be a ring, (S,≤) a strictly ordered commutative
monoid, and ω : S → End(R) an outer action of the monoid S on the
ring R. Then the following conditions are equivalent:

(1) R[[S, ω]] is a simple ring.
(2) (i) S is a group.

(ii) R is an (S, ω)-simple ring.
(iii) For any nonzero ideal J of R[[S, ω]] there exists f ∈ J \ {0}

such that supp(f) is finite.
(3) (i) S is a group.

(ii) R is an (S, ω)-simple ring.
(iii) J ∩ Z(R[[S, ω]]) 6= {0} for any nonzero ideal J of R[[S, ω]].

Proof. (1) ⇒ (2) and (2) ⇒ (3) follow immediately from Lemmas 5.1 and
5.11, respectively. To prove the implication (3) ⇒ (1), assume (3) and let
J be a nonzero ideal of A = R[[S, ω]]. By part (3iii) of (3), there exists
f ∈ J \ {0} such that f ∈ Z(A). Since ω is outer, Lemma 4.3 implies that
supp(f) = {1} and f(1) ∈ U(R). Hence it follows from Proposition 2.2 that
f is a unit of A. Thus J = A, which proves the simplicity of A. �
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As an immediate corollary of the equivalence (1) ⇔ (2) in Theorem 5.17
we obtain the aforementioned result of Crow.

Corollary 5.18 ([2, Proposition 2.1]). If S is an abelian group with outer
action ω on a ring R, then the skew group ring R[S, ω] is simple if and only
if R is (S, ω)-simple.
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generalized power series rings. Internat. J. Algebra Comput. 25 (2015), no. 5, 725–744.
MR3384079, Zbl 1325.16036, doi: 10.1142/S0218196715500174.

[17] Nasr-Isfahani, Alireza R. Radicals of skew generalized power series rings. J.
Algebra Appl. 12 (2013), no. 1, 1250129, 13 pp. MR3005581, Zbl 1264.16021,
doi: 10.1142/S0219498812501290.
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